close

Enter

Log in using OpenID

Cover Page - Scientific Publication Office

embedDownload
1
MJAL M
MANAS
JOURNAL OF
AGRICULTURE AND
LIFE SCIENCE
joumal s .manas .edu.kg_____________________
4
1 2014
Volume Issue Year
Authors
Tinatin Döölotkeldieva
Saykal Bobuşeva
Article Title
Pages
Identifıcation and Prevalence of Ralstonia solanacearum
from potato fields of Kyrgyzstan
Fungi Associated with Cysts of Globodera rostochiensis,
Mehmet Karakaş Heterodera cruciferae and Heterodera schachii (Nematoda:
Heteroderidae)
Elif Tezel Ersanlı
Arif Gönülol
Phytoplankton Dynamics and Some Physicochemical
Variables in Cakmak Reservoir (Samsun, Turkey)
Murat Musayev The Vegetation and Productivity of The Caspian’s Shores
Vagif Atamov In Azerbaijan
Musa Cabbarov
Kyrgyz Turkish Manas University
1-9
10-16
17-25
26-33
Scientific Publication Office
Manas Journal of
Agriculture And Life Science (MJAL)
Manas Tarım ve Yaşam Bilimleri Dergisi
un
Annual Publishing Refereed Scientific Journal
ISSN: 1694-5107
Year: 2014
Volume: 4
Issue: 1
OWNERS
EDITOR
ASSOCIATE EDITOR
EDITORIAL BOARD
FIELD EDITORS
EDITORIAL ASSISTANTS
Kyrgyz Turkish Manas University
Prof.Dr. Sebahattin BALCI
Prof Dr. Asılbek KULMIRZAYEV
Prof. Dr. Ali İrfan İLBAŞ
Prof. Dr. Tinatin DÖÖLETKELDİYEVA
Doç.Dr. Gülbübü KURMANBEKOVA
Prof. Dr. Ali İrfan İLBAŞ
Prof. Dr. Tinatin DÖÖLETKELDİYEVA
Prof. Dr. Ali Osman SOLAK
Prof. Dr. Ali BAHADIR
Prof.Dr. Zarlık MAYMEKOV
Doç.Dr. Anarseyit DEYDİYEV
Doç.Dr. Kadırbay ÇEKİROV
Doç.Dr. Nazgül İMANBERDİEVA
Doç.Dr. Savaş CANBULAT
Doç.Dr. Nurbek ALDAYAROV
Doç.Dr. Nurudin KIDIRALİYEV
Yrd.Doç.Dr. Zeki SEVEROĞLU
Dr. Mira CUNUSOVA
Dr. Abdıkerim ABDULLAYEV
Dr. Nurlan MAMATOV
Dr. Mahabat KONURBAYEVA
Jumagul NURAKUN KYZY
Aibek KARABAEV
ISSUE REVIEWERS
Prof. Dr. Tinatin DÖÖLETKELDİYEVA
Doç.Dr. Gülbübü KURMANBEKOVA
Doç. Dr. Nazgül İMANBERDİEVA
Yrd.Doç.Dr. Zeki SEVEROĞLU
Dr. Mahabat KONURBAYEVA
Dr. Nurzat TOTUBAYEVA
Dr.Saykal BOBUŞEVA
M
MANAS Journal o f Agriculture and
Life Sciences
MJAL4(1) (2014) 1-9
http://joumals.manas.edu.kg
Identification and Prevalence of Ralstonia Solanacearum from Potato
Fields of Kyrgyzstan
Tinatin Döölotkeldieva
Kyrgyzstan Türkiye Manas University, Faculty o f Agriculture, Plant Protection Department, Bişkek,
Kyrgyzstan, [email protected]
Saykal Bobuşeva
Kyrgyzstan Türkiye Manas University, Faculty o f Agriculture, Plant Protection Department, Bişkek,
Kyrgyzstan, [email protected]
Received: 14.03.2014
Reviewed: 13.11.2014
Accepted: 05.12.2014
Abstract For the first time inKyrgyzstanRaltsonia solanacearum bacteriumas a pathogenof bacterial
wilt (quarantine for the country object) was obtained and identified by enzyme-linked
immunosorbent assay (ELISA) and biochemical methods. Three potato (Solanum tuberosum)
cultivars: Picasso, Sante andNevskiy were usedfor isolationof pathogen, whichwere collected
fromdifferent regions of Kyrgyzstan. Detection and identification of the pathogen by ELISA
performed directly fromdiseased potato shoots and leaves, and frompure culture of Ralstonia
solanacearum isolatedfromtubers of potato seedduringstorage. For ELISAw
as usedRalstonia
solanacerium PathoScreenRKit D
ASELISA(Agdiaproduct, USA).Isolatedraces ofRalstonia
solanacearum bybiochem
ical characteristicswereclassifiedasa3-biotype.
Keywords
potato (Solanum tuberosum) cultivars, identification of
assay, biochemical tests.
the
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Ralstonia solanacearum
, ELISA
Döölotkeldieva, Bobuşeva., Identification and Prevalence o f Ralstonia Solanacearum from Potato Fields o f Kyrgyzstan
1. INTRODUCTION
is a soil-borne pathogenthat naturally infects roots. It exhibits a strongandtissuespecific tropismwithinthe host, specifically invading, andhighly multiplyinginthe xylemvessels [1, 2]. It
causesawilt diseaseinmorethan450plant speciesof 54botanical families acrosstheglobe [3,4,5]. Ralstonia
solanacearum hasbeenstudiedintensivelybothbiochem
icallyandgenetically, andhaslongbeenrecognizedas
a model systemfor the analysis of pathogenicity [6]. It is well adaptedto life insoil inthe absence of host
plants [7], therebyprovidingagoodsystemtoinvestigatefunctions governingadaptationtosuchanecological
niche. Consideringthegeneticdiversityamongthestrainsresponsibleforwiltingdiseaseindifferent plants, the
pathogenis nowtermedasRalstonia solanacearum species complex[ 8].Inatraditional waythis pahogenhas
been classified into five races with respect to their host specificity and six biovars according to their
biochemical properties [9].
Thefirst signs ofthediseaseare showninthebeginningofthefloweringandtuber formation. Plants suddenly
wilt; the leaves turnyellow, shrivel and droop. The lower basal part of the stemsoftens and rots. Atypical
feature of brown rot is the splitting of the stems, the cross-cut of themfollowa drop of bacterial exudates.
Subsequently, thebacteriapenetrate intothe stolon, thenintoyoungtubers, causingbrowningof thevascular
ring. Fromsectionsoftheaffectedvesselsandtubersfollowsbrownmucus [10]. Bacterial wilt occursmainlyin
tropic, sub-tropic and warmtemperature zones [11]. However, this disease has extended to more temperate
areas [12].
Ralstonia solanacearum is ab-proteobacteriumandw
hosecompletegenomesequence waspresented
by analysis of strain GMI1000. The 5.8-megabase (Mb) genome is organized into two replicons: a 3.7-Mb
chromosomeanda2.1-Mbmegaplasmid. Thegenomeencodesmanyproteinspotentiallyassociatedwitharole
inpathogenicity. [13].
Ralstonia solanacearum
Brown slimy bacterial bacteriosis of potatoes (bacterial wilt, or wilt) caused by Ralstonia solanacearum
isarelativelyanewdiseasein thefieldsofKyrgyzstan. Therearestill nodataand recordsofthe
scientists andexperts onthebiologyanddistributionofthis diseaseinthe potatocrops regions ofKyrgyzstan.
There are suggestions that this bacterial disease was brought withimportedplanting material to Kyrgyzstan
fromneighboringcountries. So, thediseasehasbeenfoundinRussiain 1999byquarantine inspectiononlyin
theareaof0.06hectares, plantedwithimportedvarieties Santa, thentheinfestationofpotatohasbeenfoundin
manyregionsofRussia:intheUrals, FarEast, WesternandEasternSiberia[14].
potatoes (RS)
InKyrgyzstan, the potato (Solanum tuberosum) is a staple product for the population Recently, in different
regionsthefarms start togrowthevarieties suchasPicasso, Sante, Nevskiy, whichwereimportedfromRussia
andother countries oftheworld, besidesto local potatovarieties. Approximately 32%ofpotatoesyields are
lost per year due toviral, bacterial, fungal, andpest attackto potato tuber andpotato plant [15]. There is a
particular threat topotatoproduction(especiallythe seedproduction) becauseof asymptomatic cases ofthese
bacterial diseases; asapparentlyhealthytubershaveamarginhidden(latent) infectionandposeathreattocrops
next year, soit is important tobe abletoidentifyit inthecontaminatedmaterial. Still, theprevalenceandhost
rangeofracesandbiovarsofRalstonia solanacearum isunknowninpotatoes cultivatedregions ofKyrgyzstan,
but it isbecomingincreasingly clear that this species causes disease invegetationperiodand instorage after
harvesting.
The objective of this study was to develop simple and reliable tools to distinguishthe biovars of Ralstonia
by usingbiochemical and ELISAtests and to determine the prevalence of pathogenraces in
commercial potatoesfieldsofKyrgyzstan.
solanacearum
2. MATERIALSandMETHODS.
2.1.
Origin of isolates. For direct isolationofRalstonia solanacearum were usedpotatoes tubers of
Picasso, SanteandNevskiyvarieties, whichwere collectedinthefall 2010and2011fromIssuk-Kul andChy
regions ofcountry. All isolatesfrompotatoesfields camefromindividual tubers ofdifferent plants. Eachtuber
wasplacedinanindividual plasticbagafterharvest.
2
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Döölotkeldieva, Bobuşeva., Identification and Prevalence o f Ralstonia Solanacearum from Potato Fields o f Kyrgyzstan
2.2. Cultural characterization. The infected part of tubers was cut using a sterile sharp knife. A
suspension fromplant ooze and exudates was prepared in sterile distilled water and then streaked onto
Kelman’stetrazoliumchloride(TZC) agar and2%sucrosepeptoneagar (SPA).Afterincubationat 28°Cfor 24
to 36 h, chartered colonies of Ralstonia solanacearum were selected on mediums. Isolates ofR.
solanacearum w
ere maintained in sterile distilledwater for following identification steps and stored at room
temperature. Pure cultures were tested by biochemical and enzyme-linked immunosorbent assay (ELISA)
methods. Amobility, gramnegative reaction, catalase, amylolytic and lecithinase activity, liquefaction of
gelatin, saccharolytic enzymes, theformationofindoleandotherbiochemical properties weredetermined. For
pigment formation tests the liquid mediums: meat-peptone broth and tryptophan broth were used. More
consistent results were obtainedwhenL-tyrosine was addedtothe medium. The abilitytodenitrificationwas
testedusingthesemi-solidmedium: 10%peptone, 5%NaCL, 2,0%KNO3,3,0%Bactoagarand Hiss reagent.
2.3. Test todeterminethe mobility. Cellsofvirulent racesofRalstonia solanacearum aremotilewhen
viewed microscopically, while avirulent races cells are immobile. The mobility was observed using the
medium: 0, 1%tryptone, 0, 1% glycerol, 10%phosphatebuffer, 3, 5%Bactoagar.
2.4. The biovars test. The pathogenspecies is subdivided into races based on host range. Currently,
polymerasechainreaction(PCR) isusedfordefinitiveidentificationofpathogenrace. Toidentifythebiovarof
pathogenspecies we have usedbiochemical methodbasedonthe utilizationof the disaccharides: cellobiose,
lactoseandmaltoseandoxidationofthehexosealcohols: dulcitol, mannitol, andsorbitol [9, 16].
2.5. AccumulationofRalstoniasolanacearumisolatesinthehost-plant tissue.
Healthy potatotubers ofdifferent varieties wereusedfor accumulationthepathogenculture inthe
host cell. Thetubers were washedprofuselyandthoroughlywithwater, andthenwere sterilizedin96%ethyl
alcohol, afterthat thoroughlyrinsedinsterilewaterandcut intopieces andplacedinPetri dishes, onwet sterile
filter paper. Bacterial suspensions at a concentration of 108CFU/ml were infiltrated into potato slices.
Inoculatedsliceswereincubatedat optimal temperature(280C)forthebacteria. Theoptimummoistureensured
therapidgrowthofbacteria.
2.6. Pathogenesis assays on potato seedlings and plants. Three potato (Solanum tuberosum)
cultivars were usedfor pathogenicitytests: Picasso (highlysensitivity), Sante (mediumresistant) andNevskiy
(highly resistant) .Three-weekoldplants growninsoil were inoculatedby soil drenchwithout root severing.
The concentrationof bacterial inoculums was 108CFU/ml. The experiment was repeated at least two times,
givingatotal of sixtest plants. Inoculatedplants were kept ina roomconditionwithnatural light andmean
temperatureat 28°C. Percentageofplantsshowingthewiltingsymptomwasrecordedduring28days.
2.7. TolerancetoNaCL, 2, 0%tests. TodeterminethesensitivityofRalstonia solanacearum isolates
to sodiumchloride different media were included inthis study : TTC medium(1%peptone, 0.1%casein
hydrolysate, 0.5%glucose, 1,5%Bactoagar, 0.005%TTC); potatomediumwithout gentian- violet ( 2.0%
potatoextract, 2,0% Bactoagar); peptone-yeast ( 0, 5%yeast extract , 1,0%peptone , 2,0%Bactoagar );
extract sucrose- peptone ( 2,0 %saccharose, 0,5%peptone, 0,05%potassiumphosphate dibasic, 0,025%
magnesiumsulfate, 2,0%Bactoagar) withtheaddition of 2,0%sodiumchloride.
2.8. Immunoblot ELISAtest (Agdia). TheRalstonia solanacearum (RS) ELISAtest was used with
plant samples exhibitingsymptoms of Rs andwithbacterial culture samples. Accordingtoprotocol of DAS
ELISAofAgdiathesampleswereaddedtomicroplatecoatedwithmonoclonal antibodiestoEPSofRs. IfEPS
ispresent inthe sample, it isboundbyantibodies andcapturedonthemicroplateduringtheincubationperiod.
Afterincubation, theplatewaswashedtoremoveunboundsample. Anenzymeconjugatesolution, containinga
monoclonal antibodyconjugatedtoperoxidase, is addedandbinded toanycapturedEPS. After incubationthe
plate is washedtoremove anyunboundconjugate. This final bindingcreates a sandwichofthe target analyte
betweenthe two specific antibodies. Weels inwhicha blue color developedwas indicatedpositive results.
Wells inwhichthere was no significant color development indicated negative result. Test results were valid
only
ifpositivecontrol wellsgiveapositiveresult andbufferwellsremaincolorless.
3. RESULTSandDISCUSSION.
3.1.
Origin of isolates and OrganismCharacteristics. We have analyzedpotato tubers of Picasso,
Sante, Nevskiyvarieties. Ralstonia solanacearum - as apathogenofbacterial wilt was obtainedfromPicasso
variety. 12isolatesfrompotatofields ofIssuk-Kul and7isolatesfromChyregionswereidentifiedasRalstonia
solanacearum species.
3
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Döölotkeldieva, Bobuşeva., Identification and Prevalence o f Ralstonia Solanacearum from Potato Fields o f Kyrgyzstan
Large, elevated, fluidal andwhite colonies of isolatedbacteria were grownafter twodays onTZCmedium,
and white, fluidal withwhorls characteristic colonies were appeared on SPA. The organismwas capable to
growat 28 - 36 ° Ctemperatures aerobically and does not formendospores. The bacteriumis slightly thick
sticks withdimensions of 0.7-0.9 microns, gram- negative, motile andis non-encapsulated. Cells of obtained
isolatesRalstonia solanacearum weremotilewhenviewedmicroscopically, that isindicatedtoit’stheabilityof
virulent. Theisolateswerecatalaseand oxidasepositive.
NewisolatesofRalstonia solanacearum wereabletoreducenitratetonitrite. Changingthemediumcolortored
and formationa layer of foamfroman intensive gas release indicate to a complete reductionof nitrate and
denitrification(fig.1).
m
Fig.1. Formation a layer o f foam from an intensive gas release indicate a complete reduction of nitrate and denitrification by Ralstonia
solanacearum
3.2. Sensitivity to NaCL, 2, 0 %tests. The causative agent of potato brown rot is more sensitive to the
presenceof salt inthe environment thanother nosporeformingplant pathogenbacteria. Typically, bacteriaof
Pseudomonas genus can develop tolerance to 3 %or m
ore of sodiumchloride [17]. Whereas Ralstonia
solanacearum isolates have a sensitivity to 2%N
aCL, even somespecies can prevent their growthinthe
presenceinthemediumonly 1.0%salt.
ThesensitivityofRalstonia solanacearum isolatestosodiumchloridewasdifferentinusedmedia. Isolateshave
formedcoloniesdifferinshape, sizeandcolor; alsodifferintheintensityofgrowth. Thegrowthofbacteriawas
inhibitedonthe TTCmediumwith2, 0%NaCL, sothe colonies were slightlynoticeable (fig.2, A). Whereas,
thegrowthofbacteriacolonies onthepotatomediumwithout gentian- violet andpeptone-yeast mediumwas
normal withahighvisibility(fig.2, D, C). Ontheextract sucrose-peptonethegrowthofbacteriawas slight, but
thegrowthhasnot stoppedandfurthercontinued(fig.2, B). Different compositionsofusedmediawiththesame
content of sodiumchloridehaveadifferent effect onthe sensitivityofRalstonia solanacearum isolates tosalt.
The pathogenisolates have showed a considerable tolerance inpotato mediumwithout gentian- violet and
peptone -yeast medium. The isolates have showed a very lowtolerance onthe TTCmedium, a resistant
tolerancewasvisibleontheextract sucrose-peptonemedium.
4
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Döölotkeldieva, Bobuşeva., Identification and Prevalence o f Ralstonia Solanacearum from Potato Fields o f Kyrgyzstan
C
D
Fig.2. A- a growth inhibition on the TTC medium with 2, 0% NaCL, B- inhibited but continued growth on saccharose peptone
medium with 2, 0% NaCL, C- a normal growth on the on Genthian violet medium with 2, 0% NaCL ; D- a normal growth on the
peptone-yeast medium with 2,0 % NaCL, for 48 hours
3.4.
The biovars test. Specific host range anddistributionof Ralstonia solanacearum depends onthe
raceandthebiovars ofthepathogen. Intable 1. thedatarelatedtotherelationshipofrace, biovars, host range,
and geographic distributionof Ralstonia solanacearum are summarized. It is knownthe five races of potato
brownrot. The most dangerous is a race 3that is affectingthe potatoes in lowtemperature. The infection
persists for a longtime inplant debris and potato tubers (ina latent form), and it is commonin temperate
regions. It’smainsourcesareinfectedsoil, cropresidues, weedsofthegenus Solanaceae [16].
Table 1. Races and biovars o f Ralstonia solanacearum.(Adapted from Daughtrey 2003) [10]
Race
1
2
3
4
5
Geographicdistribution
HostRange
Wide
Asia, Australia
Americas
Caribbean, Brazil, Worldwide
Banana, otherMusa spp.
Potato, someotherSolanaceae, Geranium; WorldwideexceptUSandCanada
fewotherspecies
Ginger
Asia
Mulberry
| China
Biovar
3, 4
1
1
2
3,4
5
5
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Döölotkeldieva, Bobuşeva., Identification and Prevalence o f Ralstonia Solanacearum from Potato Fields o f Kyrgyzstan
Isolatedraces ofRalstonia solanacearum bybiochemical characteristics wereclassifiedas a3-biotype, sothey
were able to oxidize the disaccharide: cellobiose, lactose and maltose and the hexose alcohols: dulcitol,
mannitol, and sorbitol. Table 2 illustrates the classification into biovars based on this method. When
bromomethyl Blauwasused as an indicator the mediumbecomesyellowasaresult ofoxidation, andwhen
Andred indicatorwasused,themediumhaschangedtored. Transformationofthesesubstrateby isolates has
occurredslowly, forexampleasshowninFig.3inthepresenceof bromomethyl Blauindicatoran oxidationof
dulcitol wasoccurredonlyafter 12days (fig.3A).
Table 2. Classification of Ralstonia solanacearum into biovars. (Adapted from French et al, 1995)[9]
Physiological Tests
Utilizationofdisaccharides
Cellobiose
Lactose
Maltose
Oxidationofalcohols
Dulcitol
Mannitol
Sorbitol
2 days
4-5days
1
-
2
+
+
+
Biovars
3
+
+
+
4
-
5
+
+
+
-
-
+
+
+
+
+
+
+
7-9days
10-12days
Fig.3 An oxidation of dulcitol by Ralstonia solanacearum isolates in the presence of bromomethyl Blau indicator
3.5. AccumulationofRalstoniasolanacearumisolatesinthehost-plant tissue.
Inmanycases Ralstonia solanacearum bacteria are closely interrelatedwithsecondarypathogens such
asthecausativeagent of soft rotErwinia carotovora var. atroseptica [18].Thiscreates somedifficultiesforthe
isolationof a pure culture of Ralstonia solanacearum fromthe affected tissue. For the accumulationof the
culture of the pathogeninthe host cell andto determinate it’svirulence, bacterial suspensions of Ralstonia
solanacearum at aconcentrationof 108CFU
/ml wereinfiltratedinto sterile healthypotato slices. Theywere
incubated at lower temperatures (220C), in moisture chamber. The optimum moisture ensured the rapid
growthofbacteria. Theorganismquicklybegantomultiplyininfectedhost cells. Onthethirddayadarkringed
circleswereappearedonpotatoslices. Gradually, arottingoftheentiresurfaceofpotatosliceshas started. In5
daystherewasacompletedecay, withthereleaseofodorsandturningintomucous(fig. 4).
Of all the varieties tested only Picasso showed high sensitivity to rotting at lowtemperatures. These
results allowed us to identify which varieties are more resistant or more susceptible to this disease. It is
important toprovide advice to farmers whichvarieties are thebest to growindifferent climatic zones of the
republic. Thistest additionallyhasconfirmedthat obtainedRalstonia solanacearum newisolatesarebelongto
biovar 3, which can survive at lowtemperatures. Some researchers have noted in their results that, high
6
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Döölotkeldieva, Bobuşeva., Identification and Prevalence o f Ralstonia Solanacearum from Potato Fields o f Kyrgyzstan
temperatures andhighsoil moisturegenerallyfavorsRalstonia solanacearum, theexceptionbeingcertainRace
3strainsthat arepathogeniconpotatoandareabletogrowwell at lowertemperatures [9].
Fig.4. Rotted potato tubers o f Picasso variety in 5 days after infiltration o f a pathogen suspension.
3.6.
Pathogenesis assays on potato seedlings and plants. Three potato (Solanum tuberosum)
cultivarswereusedforpathogenicitytests: Picasso(highlysensitivity), Sante (mediumresistant) and Nevskiy
(highly resistant). In between 3-6 days began to appear the symptoms of disease in the Picasso variety
plants. The first symptoms of the disease were wilting leaves on the ends of branches. During disease
development, theleavesturnchlorosis andeventuallynecrotic. Closetothegroundpart ofthe stemofinfected
plantsturngray-brown. Thisisacharacteristicsymptomofpotatoesbrownrot (fig.5AandB). Inthevarietyof
Sante the symptoms of disease beganto appear in2weeks, andthe lower leaves are browned anddry, turn
yellowandchlorosis. Stemshavestoodrelativelyforlongtime, andthen4weekslater startedtobend. Nevskiy
varietywas resistant tothepathogeninfecteddose. Within6weekstherewerenosignsofdisease. Thespecific
symptoms: wiltingoftheleavesattheendofthedaywithrecoveryat night, theedgesoftheleavesturnedblack
andcurledwere observedwithin5to 10days, but no symptoms were observedoncontrol plants treatedwith
sterilewater.
A
B
Fig.5. A: close to the ground part o f the stem of infected became grey brown; B: infected plants show yellowing, wilting, and browning of
lower leaves followed by necrosis;
7
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Döölotkeldieva, Bobuşeva., Identification and Prevalence o f Ralstonia Solanacearum from Potato Fields o f Kyrgyzstan
3.7.
Immunoblot ELISAtest (Agdia). Using the ELISAtechnologyhasallowedtoidentify Ralstonia
bacteriafrom diseasedleaves of potato at a concentrationof 103-104cells\ml. Detectionand
identificationofthepathogenbyELISA(Agdiaproduct, USA) performeddirectlyfromdiseasedpotato stems
andleavesat aconcentrationof 103-104cells\ml. Weels inwhichabluecolor developedwas indicatedpositive
results. The bacteriumwas reisolated fromthe infected leaves and stems and identified as described above
(fig.6).
solanacearum
Fıg.6. Weels with a blue color developed is indicated positive results from diseased potato stems and leaves at a concentration o f 103-104
cells\ml.
In this study, we have used well known, efficient methods and bioassay for systematic screening of R.
foridentificationphenotypicandbiochemical profile, alsoforpathogencityandvirulence. Asa
result, anaggressiverace, biovar 3wasmost isolatedfromthepotatofieldsofTupdistrict ofIssyk-Kul region,
especiallyinfields wherePicassovarietywas grown. This areais characterizedby wet andtemperate climate
thanother areas of the Issyk-Kul region. The lowpercentage of affectionwiththis agent was notedin Sante
variety. The pathogen was no almost obtained fromNevskiy variety plants and tubers. In this region, the
pathogens wereisolatedfromgrowingplants withcharacter symptoms andtubers after harvest instorage, they
wereavailableforsale.
In Chuy oblast, where the climate is hot and the humidity is relatively low [15], pathogen races of R.
solanacearum w
ere obtainedfromPicasso and Santapotatovarieties. Inthis region, essentially isolates were
relievedfromthetubersforsale, orinstorage.
Wehavenot foundR. solanacearum species as causativeagentsofwilt inlocal potatoesvarieties(redand
whitecrumbly) growninmountainousareasofKochkordistrict, Thisindicatesthatthediseasehaspenetrated
intoKyrgyzstanfromneighboringcountriestogetherwithplantingmaterial.
Ourresults forthefirst time inKyrgyzstanhaverevealedthepresenceRalstonia solanacearum bacteriumas a
pathogenofbacterial wilt (quarantineforthecountryobject) inthepotatofieldsofIssyk-Kul andChyregions.
As well as our results have allowedto determine whichvarieties are most susceptible to the disease and in
which district athreat constitutestomost ofitswidedissemination. Thisisimportant toprevent farmers, which
varieties they shouldbuy as plantingmaterial. The areas inwhichhave not yet been introduced commercial
varietiesshouldberemainingcleanzonesfromthisdisease.
solanacearum
8
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Döölotkeldieva, Bobuşeva., Identification and Prevalence o f Ralstonia Solanacearum from Potato Fields o f Kyrgyzstan
REFERENCES
[1] Smith, E. F. (1896). A bacterial disease of tomato, pepper, eggplant and Irish potato (Bacillus
solanacearum nov. sp.). U
SDep. Agric. Div. VegetablePhysiology. Pathol. Bull. 12, 1±28
[2] Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H. &Nishiuchi, Y. (1995). TransferoftwoBurkholderia and
an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii and Ralstonia
eutropha.Microbiol. Immunol. 39, 897±904
[3] AllenC., Prior, PandHayward, A.C. (2005). Bacterial Wilt Disease andthe Ralstonia solanacearum
Species Complex, A
PSPress, StPaul, MN, USA,p.528.
[4] Agrios, G.N. (1997). PlantPathology, 4thEdition. AcademicPress, SanDiego, CA
[5] Stevenson, W.R., R. Loria, G.D. Franc, and D.P. Weingartner, Eds. (2001). Compendiumof Potato
Diseases, 2ndEd. APSPress, St. Paul, MN.
[6] Staskawicz, B. J., Mudgett, M.B., Dangl, J. L. &Galan, J. E. (2001).Commonandcontrastingthemesof
plant andanimal diseases. Science292, 2285-2289.
[7] Granada, G. A. &Sequeira, L. (1983). Survival ofPseudomonas solanacearuminsoil, rhizosphereand
plantroots. Can. J. Microbiol. 29, 433-440.
[8] Genin, SandDenny, T.P. (2012). Pathogenomics ofthe Ralstoniasolanacearumspecies complex. Ann.
Rev.Phytopathol, 50, 67-89.
[9] French, E.B., L. Gutarra, P. Aley, and J. Elphinstone.(1995).Culture media for Ralstonia
solanacearumisolation, identification, andmaintenance. Fitopatologia 30 (3): 126-130.
[10] Daughtrey, M. (2003). Southernbacterial wilt, causedbyRalstoniasolanacearum. SocietyofAmerican
Florists’19thAnnual ConferenceonInsect andDiseaseManagement on Ornamentals.
[11] Jaunet, T. X. and J.-F. Wang. (1999). Variation in genotype and aggressiveness of Ralstonia
solanacearumrace 1isolatedfromtomatoinTaiwan. Phytopathology89: 320-327.
[12] Kim, S. H., T. N. Olson, N. W.Schaadand G. W.Moorman. (2003). Ralstonia solanacearum race 3,
biovar 2, the causal agent of brownrot of potato, identifiedingeraniums inPennsylvania, Delaware,
andConnecticut. PlantDis. 87: 450.
[13] Salanoubat M., Genin, S., Artiguenave F., Gouzy. J., S. Mangenot. (2002). Genome sequence of the
plantpathogenRalstoniasolanacearum.NATURE. VOL415. P.497-502.
[14] http://www.kartofel.org/bolezn/bacteria/bacwilt.htm
[15] Anoverviewoftheemergenceandspreadofmajorpestsanddiseases ofcropsintheKyrgyzRepublicin
2010andtheforecast oftheirappearance in 2011.Bishkek.
[16] Staskawicz, B. J., Mudgett, M.B., Dangl, J. L. &Galan, J. E. (2001). Commonandcontrastingthemes
ofplant andanimal diseases. Science292, 2285±2289.
[17] ^e^gaKOBP.A., MhmhhB.E. (2006). ®HTonoTOreHHbieMHKpoopraHH3Mbi, Mhhck.
[18] Fegan, M., andPrior, P. (2005). Howcomplexisthe "Ralstoniasolanacearum speciescomplex"?Pages
449-461 in: Bacterial Wilt Disease and the Ralstonia solanacearumSpecies Complex. C. Allen, P.
Prior, andA.C.Hayward, eds. AmericanPhytopathological Society, St. Paul, MN.
9
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
MJALMANAS Journal o f Agriculture and
Life Sciences
http://joumals.manas.edu.kg
MJAL4(1) (2014) 10-16
Fungi Associated with Cysts of Globodera rostochiensis, Heterodera
cruciferae and Heterodera schachii (Nematoda: Heteroderidae)
Mehmet Karakaş
AnkaraUniversity, ScienceFaculty, Department ofBiology06100Tandogan-Ankara, Turkey,
[email protected]
Received; 25/03/2014
Abstract
Keywords:
Reviewed;13/11/2014
Accepted:05/12/2014
CystsofGlobodera rostochiensis (Wollenweber) Behrensfrompotato(Solanum tuberosum L.)
fields andHeterodera cruciferae Franklinfromcabbage (Brassica oleracea L. var. capitata
subvar. rubra L.) fields andHeterodera schachtii Schmidt fromsugar-beet (Beta vulgaris L.)
fields inTurkey were collected and examinedfor the presence of fungi. Of the total of 196
cystsof G. rostochiensis, 39.7%werecolonizedbyoneormoreof7different speciesoffungi,
all of whichwere fromthe genera Cylindrocarpon, Fusarium, Gliocladium, Verticillium and
Alternaria. Ofthetotal of 136cystsofH. cruciferae, 37.5%w
erecolonizedbyoneor moreof
7 different species of fungi, all of which were fromthe genera Cylindrocarpon, Fusarium,
Nematophthora, Periconia and Verticillium, and 38.9%of the 154cysts of H. schachtii w
ere
colonizedbyoneormoreof7different speciesfromthesamegenera.
Nematophagous fungi, Globodera rostochiensis, Heterodera cruciferae, Heterodera schachtii,
biological control
Globodera rostochiensis, Heterodera cruciferae ve Heterodera
schachtii (Nematoda: Heteroderidae)’nin Kistleri ile İlişkili Mantarlar
Özet:
Anahtar
Kelimeler:
Türkiye’de patates (Solanum tuberosum L.) tarlalarından Globodera rostochiensis
(Wollenweber) Behrens, lahana (Brassica oleracea L. var. capitata subvar. rubra L.)
tarlalarındanHeterodera cruciferae Franklinve şeker pancarı (Beta vulgaris L.) tarlalarından
Heterodera schachtii Schm
idt kistleri toplanmış ve mantar mevcudiyeti bakımından
incelenmiştir. Toplam196 G. rostochiensis kistinin39.7%si 7farklı türe ait bir ya da daha
fazla mantar türü ile beraber bulunmuştur. Bu mantar türleri, Cylindrocarpon, Fusarium,
Gliocladium, Verticillium ve Alternaria cinslerine aittir. Toplam136 H. cruciferae kistinin
37.5%i 7farklı türe ait bir ya da dahafazla mantar türüileberaber bulunmuş olupbunların
hepside Cylindrocarpon, Fusarium, Nematophthora, Periconia ve Verticillum cinslerine ait
mantartürleridir. H. schachtii yeait toplam154kistin38.9%uiseyineaynı şekildebir önceki
cinslereait olanmantarlarileilişkili olarakbulunmuştur.
Nematofaj mantarlar, Globodera rostochiensis, Heterodera cruciferae, Heterodera schachtii,
biyolojikkontrol
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Karakaş, Fungi Associated with Cysts o f Globodera rostochiensis, Heterodera cruciferae and Heterodera
schachii (Nematoda: Heteroderidae)
1. INTRODUCTION
Nematophagous (nematode-destroying) fungi are natural enemies of nematodes. Nematophagous fungi have
beenfoundinall regions of the world, fromtropics to Antarctica. Theyhavebeenreportedfromagricultural,
gardenandforest soils, andare especiallyabundant in soils richinorganic material [1]. They comprise three
maingroupsoffungi; thenematode-trappingandtheendoparasiticfungi that attackvermiformlivingnematodes
byusingspecializedstructures, andtheeggandcystparasiticfungi that attackthesestageswiththeir hyphal tips
[2, 3]. Thereasonforthecontinuinginterest inthesefungi is, inpart, theirpotential asbiocontrol agents against
plant andanimal parasitic nematodes. Fromthis point ofviewespecially, the eggandcyst parasiticfungi have
beeninvestigatedindepthbecauseofthepromiseofthesefungi asbiocontrol agents [4, 5].
Biological control of plant parasitic nematodes usingnematophagous fungi has receivedconsiderable attention
recently, because of the urgent needfor alternatives toreplace synthetic nematicides that arebeingphasedout
duetoenvironmental concerns [6, 7]. Thepotatocyst nematode (PCN), Globodera rostochiensis (Wollenweber,
1923) Behrens, 1975andthecabbagecyst nematode(CCN), Heterodera cruciferae Franklin, 1945andthebeet
cyst nematode (BCN), Heterodera schachtii Schmidt, 1871 are some of the most important plant parasitic
nematodes inthe world. Since nematophagous fungi were first discovered insoil in 1852 [8], more than200
speciesoffungi havebeenidentifiedas colonizers ofcysts, eggsandfemales ofeight species ofcyst nematodes
insoil, includingPCNandBCN[9,10]. Thepercentagesofcysts, eggsandfemalesofcystsnematodescolonized
by fungi in agricultural soil ranged from10-90%, with about 50%being the most common [11, 12]. Two
possible routes for biological management of plant parasitic nematodes have been proposed. One is mass
produceaneffectivenematodedestroyingfungus inthelaboratory, andthenapplyittosoil [13] andtheotheris
enhance the natural nematophagous fungal populations in soil by altering their surrounding conditions. But
commercial success of these approaches has beenlimited; however, there are encouragingreports onreducing
nematodepopulationsbyaddingcertainkindsofamendments, suchaschitinandgreenmanurecropstosoil [14,
15, 16, 17].
Theobjectiveofthis studywastoinvestigatethespeciesandfrequenciesoffungi colonizingcystsofPCN, CCN
andBCNcollectedfromCentral AnatoliaofTurkey.
2. MATERIALandMETHODS
Fungal isolationfromcysts of nematodes: Soil samples were collectedfrompotato (Solanum tuberosum L.)
fields (Nevşehir: 38° 37,2'N; 34° 43,2'E) naturallyinfestedwithPCN, andfromcabbage (Brassica oleracea L.
var. capitata subvar. rubra L.) fields (Çorum: 40° 33,0'N; 34° 57,0'E) naturally infestedwithCCN, andfrom
sugar-beet (Beta vulgaris L.) fields (Eskişehir: 39° 46,2N; 30° 30,0'E) infestedwithBCNin several areas of
Central AnatoliainTurkey. The soil was air-driedovernight andthe cysts were extractedbytheFenwickCan
Method[18]. Atotal of 196cystsofPCN, 136ofCCNand 154ofBCNwerecollected. Cysts werehandpicked
underastereoscopicmicroscope(Meademodel 8300), at 15xmagnificationandtransferredconsecutivelyintoa
10%sodiumhypochlorite (NaClO) solutionfor 5min, 100^LL-1streptomycinfor 15min, 20^LL-1malachite
greenfor 10min, andsterilizedwater for surface disinfestations. The cysts were partiallyair-driedafterwards.
Five surface-drieddisinfestedcystswereplacedontothecorners at asterilizedsquarecoverglasswhichwas on
potatodextroseagar inaPetri dish(9cmdiameter) under sterile conditions. ThePetri dishes weresealed with
paraffinfilmand incubated at 23 °C. Fungi growing fromthe cysts were examinedvisually or with a light
microscope (Olympus model CX21) at lowmagnification (x40) to determine the sites fromwhichthe fungi
grew. The fungal colonies emergingfromcysts were transferred once they reachedthe agar under the cover
glass. Identifications offungi weremadefromthese subcultures. Identificationofthenematophagousfungi was
basedonthe morphological characteristics of conidiophores andconidia [19, 20, 21, 22]. If needed, nematodes
were addedto fungal cultures to induce sporulationfor identification. Sporulationwas also induced in some
culturesbyexposingfungal myceliumtoablacklight lamp(Model X-15B115volts60Hz).
3. RESULTSANDDISCUSSION
3.1.
Fungi associated with cysts of PCN: Of the 196 cysts of PCNexamined, 78 or 39.7%were
colonizedby fungi (Table 1). Seven species of fungi were identified, representing 5different genera. Of the
fungi identified, most were species of Fusarium. Fusarium oxysporum Schlechtendahl was found to be
associatedwith33cysts or 16.8%. Gliocladium roseum Bainier, Verticillium coccosporum W.Gams, Alternaria
alternata (Fr.) K
eissl, Cylindrocarpon destructans (Zinser) Scholtenwere infrequently associated with cysts
(Table 1; Figure 1). Most fungi isolatedemergedfromanywhere onthe cysts surface whereas C. destructans
emergedonlyfromthevulvaofthecysts. Thisdifferenceisimportantforidentificationsoffungi.
11
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Karakaş, Fungi Associated with Cysts o f Globodera rostochiensis, Heterodera cruciferae and Heterodera
schachii (Nematoda: Heteroderidae)
3.2.
Fungi associated with cysts of CCN: Of the 136 cysts of CCNexamined, 51 (37.5%) were
colonized by fungi (Table 2; Figure 2). Seven species of fungi were isolated and identified. Most fungi
associatedwithcysts of PCNwere species of Fusarium. Fusarium oxysporum was associatedwith 26 cysts
(19.1%), andC. destructans associatedwith11cysts (8.0%). Fusarium solani andF. tabacinum eachcolonized
2.9%ofthecysts. All otherspeciesfromothergeneraoccurredat relativelylowfrequency(1.5-2.5%).
3.3 Fungi associated with cysts of BCN: For this research, of the 154 cysts of BCNexamined, 60
(38.9%) werecolonizedbyfungi (Table3; Figure 3). Sevenspecies offungi wereisolatedandidentified. All of
themwere the same species of fungi that were isolatedfromcysts of BCN. The frequencies of associationof
these fungi withcysts of BCNwere similar tothose of CCN. Most fungi associatedwithcysts of BCNwere
species of Fusarium. Fusarium oxysporum was associated with 30 cysts (19.4%) but C. destructans was
associatedwith 16cysts (10.3%). All other species fromother generaoccurredat relatively lowfrequencyfor
BCN(0.5- 2.5%).
This researchshowedthat numerous fungi were associatedwithcysts of cyst nematodes. The fungal
generafromPCN, CCNandBCNweresimilar, especiallythosefoundinCCNandBCN. Thesefungi associated
withnematodes mayrepresent adistinct mycoflorainthe soil. Agricultural soils generallycontainhundreds of
speciesoffungibelongingto 170genera [20]. At thespecieslevel, 10fungal specieswereisolatedfromcystsof
PCN, CCNandBCN. Fusarium oxysporum, C. destructans andV. coccosporium wereassociatedwiththesecyst
nematodeswhereasF. heterosporium, G. roseum andA. alternata wereassociatedwithonlyPCN. This suggests
that the mycofloras ofthe cyst nematodes maybe different. Becausebiological life cycle, hosts andnutritional
needsofcyst nematodesaregenerallydifferent.
Cylindrocarpon destructans hasbeenreportedas aneggparasite of several cyst nem
atodes [23, 24]. A
Fusarium species associatedwitheggm
assesbut not females hasbeenreportedtobe aneggparasite [25]. All
thefungi isolatedfromPCN, CCNandBCNhavebeenreportedtobeassociatedwithplant-parasiticnematodes,
especiallycyst-formingnematodes. Afewofthemhavebeenprovenobligateparasitesofnematodesbut most of
themare opportunisticparasites andsaprophytes. For those obligate parasites, their effectiveness indestroying
nematodes invitro has not ledthemtobe successful bio-control agents ofplant parasitic nematodes. However,
therearereportswhichindicatethatviabilityofnematodeswasgreatlyreducedafterbeingcolonizedbysomeof
these opportunistic fungal parasites in laboratory [23]. In soil, the populations of these opportunistic fungi
associatedwithnematodes canbe significantlygreaterthanpopulations ofobligateparasites [26, 27, 28]. Many
nematode trapping fungi have been found to occur more frequently in the rhizospheres of several plants,
especiallyleguminousplants, e.g. soybeanandpea, thaninroot freesoil [29, 30, 31]. This effect couldpossibly
be duetoincreasedor changedroot exudationintheseplants. The suppressiveness of suppressive soils against
plant parasiticnematodes hasbeenreportedtobepositivelyrelatedtothepopulationofall the fungal parasites,
including the opportunists [9]. Although a great deal of knowledge is lacking on the mode of action and
populationdynamicsoftheseopportunisticfungal parasites, theirimportanceinfutureintegratedmanagement of
plantparasiticnematodesshouldnotbeunderestimated.
4. CONCLUSION
Oneimportant aspect ofnematophagousfungi isthepossibilityofusingthemforbiological control ofplant- and
animal- parasitic nematodes. Plant parasitic nematodes, e.g. root knot andcyst nematodes, are global pests in
agricultureandhorticulture, causingsevereyieldlosses.
Owingtothebanofmanynematicides, e.g. methyl bromide, because ofhealthandenvironmental concerns, new
alternativesfornematodecontrol arethereforeneeded. Biological control maybesuchanalternative.
Mostly, plant parasitic nematodes attackplant roots and, therefore, the ability of the nematophagous fungi to
growintherhizosphereisofgreat importancefortheircapacitytocontrol thesenematodes.
12
M JA L MANAS Journal ofAgriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Karakaş, Fungi Associated with Cysts o f Globodera rostochiensis, Heterodera cruciferae and Heterodera
schachii (Nematoda: Heteroderidae)
Table 1. Fungal species associated with cysts of Globodera rostochiensis
Fungal species
Fusarium heterosporum
Fusarium oxysporum
Fusarium solani
Gliocladium roseum
Verticillium coccosporum
Alternaria alternate
Cylindrocarpon destructans
Total cystscolonized*
PSD: 9.21
*Atotal of 196cystswereexamined.
PSD: PopulationStandartDeviation
Cystscolonizedbyfungi
Number (n)
10
33
4
5
7
8
11
78
Percentage(%)
5.1
16.8
2.0
2.5
3.5
4.0
5.6
39.7
Figure 1. Fungal species associated with cysts o f Globodera rostochiensis (F h. Fusarium heterosporum, F o: Fusarium oxysporum, F s:
Fusarium solani, G r: Gliocladium roseum, V c: Verticillium coccosporum, A a: Alternaria alternate, C d: Cylindrocarpon destructans).
Table 2. Fungal species associated with cysts of Heterodera cruciferae
Fungal species
Cylindrocarpon destructans
Fusarium oxysporum
Fusarium solani
Fusarium tabacinum
Nematophthora gynophila
Periconia macrospinosa
Verticillium coccosporium
Total cystscolonized*
PSD: 8.20
*Atotal of 136cystswereexamined.
PSD: PopulationStandartDeviation
Cystscolonizedbyfungi
Number (n)
11
26
4
4
2
1
3
51
Percentage(%)
8.0
19.1
2.9
2.9
1.4
0.7
2.2
37.5
13
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Karakaş, Fungi Associated with Cysts o f Globodera rostochiensis, Heterodera cruciferae and Heterodera
schachii (Nematoda: Heteroderidae)
Heterodera cnıciferae
26
11
1
1
Cd
■
4
1
Fo
Fs
,
4
1
■
1
Ft
Ng
3
1
_
Pm
1
■
^ -1
Vc
Fııngiil species
Figure 2. Fungal species associated with cysts o f Heterodera cruciferae (C d: Cylindrocarpon destructans, F o: Fusarium oxysporum, F s:
Fusarium solani, F t: Fusarium tabacinum, N g: Nematophthora gynophila, P m: Periconia macrospinosa, V c. Verticillium coccosporium).
Table 3. Fungal species associated with cysts of Heterodera schachtii
Fungal species
Cylindrocarpon destructans
Fusarium oxysporum
Fusarium solani
Fusarium tabacinum
Nematophthora gynophila
Periconia macrospinosa
Verticillium coccosporium
Total cystscolonized*
PSD: 9.91
*Atotal of 154cystswereexamined.
PSD: PopulationStandartDeviation
Cystscolonizedbyfungi
Number (n)
16
30
4
2
4
3
1
60
Percentage(%)
10.3
19.4
2.5
1.2
2.5
1.9
0.6
38.9
14
M JA L MANAS Journal o f Agriculture and Life Sciences
http://joumals.manas.edu.kg © 2014
Karakaş, Fungi Associated with Cysts o f Globodera rostochiensis, Heterodera cruciferae and Heterodera
schachii (Nematoda: Heteroderidae)
Heterodera schachtii
35
30
30
25
20
16
■a 15
10
4
■
1
Cd
Fo
Fs
,
,
-
4
,
Ft
■
Nj
3
,
■
Pm
,
Vc
F u n g al species
Figure 3. Fungal species associated with cysts of Heterodera schachtii (C d: Cylindrocarpon destructans, F o: Fusarium oxysporum, F s:
Fusarium solani, F t: Fusarium tabacinum, N g: Nematophthora gynophila, P m: Periconia macrospinosa, V c. Verticillium coccosporium).
REFERENCES
[1] Gray, N.F. (1983) Ecology of nematophagous fungi: Distribution and habitat. Ann. o f Appl. Biol.,
102(3), 501-509.
[2] Nordbring-Hertz, B. (2004) Morphogenesis inthenematode-trappingfungusArthrobotrys oligospora anextensiveplasticityofinfectionstructures. Mycologist, 18, 125-133.
[3] Liu, XZ., X. Meichun and C. Yongsheng (2009) The living strategy of nematophagous fungi.
Mycoscience 50, 20-25.
[4] Jansson, H-B. andL.V. Lopez-Llorca(2001) Biologyofnematophagous fungi In: MisraJKandHorn
BW(eds)Mycology: Trichomycetes, otherFungal GroupsandMushrooms. Enfield: SciencePublishers.
pp. 145-173.
[5] Jansson, H-B. andL.V. Lopez-Llorca(2004) Control ofnematodesbyfungi. In: AroraDK(ed.) Fungal
Biotechnology in Agriculture, Food, and Environmental Applications . NewY
ork: Marcel Dekker. pp.
205-215.
[6] Kerry, B.R. (1990) Anassessment of progress toward microbial control of plant-parasitic nematodes.
Suppl. J. Nematol., 22, 621-631.
[7] Fekete, C., M.Tholandes., B. Rajashekar., D. Ahren., E. Friman., T. JohanssonandA. Tunlid(2008)
Paralysis of nematodes: shift inthe transcriptome of the nematode-trappingfungus Monacrosporium
haptotylum duringinfectionof Caenorhabditis elegans. EnvironmentalMicrobiology, 10, 364-375.
[8] Fresenius, G.(1852) BeitragezurMykologie. Heft 1-2. pp. 1-80.
[9] Kerry, B.R. (1988)Fungal parasites ofcyst nematodes.Agric. Ecosyst. Environ., 24, 293-305.
[10] Nordbring-Hertz, B., H-B. JanssonandA. Tunlid (2006) Nematophagous fungi. Encyclopedia o f Life
Sciences, JohnW
iley&Sons, Ltd. (doi: 10. 1038/npg.els.0004293), 1-11.
[11] Tribe, H.T. (1980) Extent of disease in populations of Heterodera, with special reference to H.
schachtii. Ann. Appl. Biol., 92, 61-72.
[12] Clovis, C.J. and R.A. Nolan (1983) Fungi associated with cysts, eggs andjuveniles of the golden
nematode(Globodera rostochiensis) inNewfoundland. Nematologica, 29, 345-356.
[13] Coosemans, J. (1991) Methods for introducing Verticillium chlamydosporium into soil. IOBC/WPRS
B ull, 14, 39-46.
[14] Spiegel, Y., I. Chet andE. Cohn(1987)Useofchitinforcontrollingplant-parasiticnematodes. II. Mode
ofaction. Plant Soil, 98, 337-345.
[15] Schlang, J.W., J.W. Stendel and J. Muller (1988) Influence of resistant green manure crops on the
populationdynamicsofHeterodera schachtii anditsfungal eggparasites. Proceedings o f the European
Society o f Nematologists 19thInternational Nematology Symposium, U
ppsala, Sweden, p. 69(Abstr.).
15
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Karakaş, Fungi Associated with Cysts o f Globodera rostochiensis, Heterodera cruciferae and Heterodera
schachii (Nematoda: Heteroderidae)
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
Âhman, J., B. Ek., L. Rask and A. Tunlid (1996) Sequence analysis and regulation of a cuticle
degradingserineproteasefromthenematophagousfungusArthrobotrys oligospora. Microbiology, 142,
1605-1616.
Âhman, J., M. Olssonand T. Johansson (2002) Improvingthe pathogenicity of a nematode-trapping
fungusbygeneticengineeringofsubtilisinwithnematotoxicactivity. Appl. and Environ. Microbiology,
68, 3408-3415.
Fenwick, D.W. (1952) Heterodera rostochiensis. Sampling techniques and the limits of their
applicability. Proceedings o f the International Nematology Symposium training course, Rome. pp. 8-17.
Barron, G.L. (1977) Thenematode-destroyingfungi. Canada: Lancaster Press, pp. 140.
Domsch, K.H., W. Gams and T.A. Anderson (1980) Compendiumof soil fungi. Vol. 1. Academic
Press, NewY
ork. 859pp.
Gerlach, W. and H. Nirenberg (1982) The genus Fusarium. A Pictorial Atlas. Biologische
Bundesanstalt fü r Land-und Forstwirtschalt Institut fü r Microbiologie, Berlin-D
ahlem. pp. 406.
Nelson, P.E., T.A. ToussounandW.F.O. Marasas (1983) Fusarium species -Anillustratedmanual for
identification. The Pennsylvania State University Press. UniversityparkandLondon, pp. 193.
Nigh, E.A., I.J. Thomason and S.D. Van Gundy (1980) Identification and distribution of fungal
parasitesofHeterodera schachtii eggsinCalifornia. Phytopathology, 70, 884-889.
Dackman, C. andB. Nordbring-Hertz(1985) Fungal parasities ofthecereal cyst nematodeHeterodera
avenae insouthernSw
eden. J. Nematol., 17, 50-55.
Morgan-Jones, G., J.F. White and R. Rodriquez-Kabana (1984) Fungal parasites of Meloidogyne
incognita inanAlabam
asoybeanfieldsoil. Nematropica, 14, 93-96.
Yu, Q. (1989) Selectionofpromisingfungi forbiocontrol ofnematodes. MSthesis. Catholic University
o f Leuven. Faculty o f Agricultural Sciences. Leuven, Belgium
, 73pp.
Persmark, L., A. Banck andH-B. Jansson (1996) Populationdynamics of nematophagous fungi and
nematodes inanarable soil: vertical and seasonal fluctuations. Soil Biol. and Biochemist., 28, 1005­
1014.
Persmark, L. andB. Nordbring-Hertz(1997) Conidial trapformationofnematode-trappingfungi insoil
andsoil extracts. FEMSMicrobiology Ecology, 22, 313-324.
Bordallo, J.J., L.V. Lopez-LlorcaandH. Jansson(2002) Effects ofegg-parasiticandnematode-trapping
fungi onplant roots. New Phytologest, 154, 491-499.
Monfort, E., L.V. Lopez-LlorcaandH-B. Jansson(2005) Colonisationof seminal roots of wheat and
barleybyegg-parasiticnematophagousfungi andtheir effectsonGaeumannomyces graminis var. tritici
anddevelopment ofroot-rot. Soil Biol. and Biochemist., 37, 1229-1235.
Tunlid, A. and D. Ahren (2011) Molecular mechanisms of the infectionbetween nematode-trapping
fungi and nematodes-lessons fromgenomics. In: Biological Control o f plant parasitic nematodes:
building coherence between microbial ecology and molecular mechanisms. (Spiegel, I. andK
. Davies,
ed.) Springer, Heidelberg. pp. 145-169.
16
M JA L MANAS Journal ofAgriculture and Life Sciences
http://journals.manas.edu.kg © 2014
MJALMANAS Journal o f Agriculture
and Life Sciences
http://joumals.manas.edu.kg
MJAL4(1) (2014) 17—
25
Phytoplankton Dynamics and Some Physicochemical Variables in
Cakmak Reservoir (Samsun, Turkey)
E lif Tezel Ersanlı
SinopUniversity, FacultyofArtsandScience, Department ofBiology, Sinop, 57000, Turkey
A rif Gönülol
OndokuzMayısUniversity, FacultyofArtsandScience, Department ofBiology, Samsun, 55139, Turkey
Received ; 24/06/2014
Reviewed; 13/11/2014
Accepted:05/12/2014
Abstract Phytoplankton dynamics and some physicochemical properties of CakmakReservoir were
investigated betweenMay 2003 and April 2005 which is used for irrigation and drinking
water supply. Atotal of 132 taxa were identified belonging to the following divisions;
Cyanobacteria, Charophyta, Chlorophyta, Cryptophyta, Euglenozoa, Myzozoa and
Ochrophyta. AlthoughOchrophytes were rich inrespect to species diversity, Chlorophytes
attainedalargerpopulationdensity. Ulnaria ulna, Fragilaria tenera andGoniochloris mutica
fromOchrophyta, Chlorella vulgaris, Monoraphidium obtusum and Ulothrix tenerrima from
Chlorophyta, Cryptomonas ovata andC. erosa fromCryptophytaincreasedinsome months.
The seasonal variationofphytoplanktonbasedondepthwas compatiblewithsurface water.
Phytoplankton abundance was lower in winter and there was an increase in summer in
Cakmak Reservoir. The reservoir water was slightly alkaline according to the pH; was
alkaline according to the calcium; was in the slightly hard water group according to the
hardnessvalues; hadlowandmediumproductivitydegreeaccordingtothephosphorus.
Keywords Phytoplankton, reservoir, seasonal variation, water properties;
İçme suyutemini ve sulamaamaçlı kurulanÇakmakBaraj Gölü’nünfitoplanktondinamiği
Özet
vebazı fizikokimyasal özellikleri Mayıs 2003 -Nisan2005tarihleri arasındaincelenmiştir.
Cyanobacteria, Charophyta, Chlorophyta, Cryptophyta, Euglenozoa, Myzozoa ve
Ochrophyta divizyolarına ait 132 takson tespit edilmiştir. Ochrophyta divizyosu tür
çeşitliliği açısından zengin olmasına rağmen Chlorophyta divizyosunun populasyon
büyüklüğü daha fazladır. Ochrophyta divizyosundan Ulnaria ulna, Fragilaria tenera ve
Goniochloris mutica , Chlorophyta divizyosundan Chlorella vulgaris , Monoraphidium
obtusum ve Ulothrix tenerrima; CryptophytadivizyosundanCryptomonas ovata veC. erosa
türlerinin bazı aylarda sayıca arttığı gözlenmiştir. Derinlik örneklerinde fitoplanktonun
mevsimsel değişimi yüzey suyu örnekleri ile benzer mevsimsel değişim göstermiştir.
Çakmak Baraj Gölü’nde fitoplankton bolluğu kışın daha düşük iken yaz aylarında artış
kaydedilmiştir. Baraj suyununpHdeğerlerine göre hafif alkali ikenkalsiyumdeğerlerine
görealkali olduğu; sertlikdeğerlerinegörehafifsert sulargrubunda; fosfordeğerlerinegöre
isedüşükveortaverimlilikderecesinesahipolduğubelirlenmiştir.
Anahtar
Fitoplankton, baraj gölü, mevsimsel değişim, sukalitesi;
sözcükler:
MJALMANAS Journal of Agriculture and Life Sciences
http://journals.manas.edu.kg© 2014
Ersanlı, Gönülol., Phytoplankton Dynamics and Some Physicochemical Variables in Cakmak Reservoir (Samsun, Turkey)
1. INTRODUCTION
In order to control flood events and water utilization, reservoir construction is essential in human life.
Water quality is a critical factor for its utilization. Therefore, to use water efficiently froma reservoir,
water quality monitoringand evaluationare needed [1]. Anthropogenic influences andnatural processes
impairtheirusefordrinking, industrial, agricultural, recreationorotherpurposes [2].
Water quality affects species composition, abundance and the physiological status of aquatic species.
Studies have shown that most algae are sensitive to changing environmental conditions. Planktonic
organisms respondpromptlytoenvironmental changes andexhibit more conservative characteristics than
physical and chemical variables [3]. The sustainability of aquatic ecosystems canbe provided with an
effectiveecological management ofresourcesandaccuratemonitoring. AccordingtotheWaterFramework
Directive (WFD), it requires an emphasis on local conditions. WFD's aimis the prevention of further
destructions of aquatic ecosystems and other ecosystems, the improvement of the aquatic environment,
long-termprotectionof existingwater resources andit alsoaims topromote the sustainableuse ofwater
resourcesandtoreducethepollutioningroundwater [4].
Thereis nophycological studyonCakmakReservoir. The aimofthis studyis tosummarize structure of
phytoplankton community and to determine water quality in Cakmak Reservoir used for irrigation and
drinkingwatersupply.
2. MATERIALSandMETHODS
CakmakReservoiris locatedinthesoutheast of SamsuninTurkey(41°44' and40°05' N; 37°05' and35°
30' E). It wasestablishedonRiverAbdal between1985and1988inordertoensuredrinkingwateranduse
itforindustrial purposes; theactivestoragevolumeis76hm3andtheareais6.5km2andthehighest water
level is 122.75m.It hasapproximately5kmlengthand1-1.5kmwidth[5].
Four stations were selected in order to determine phytoplankton dynamics, its seasonal variation and
physicochemical properties ofwater (Figure 1). Water sampleswerecollectedfromstations, monthly. The
water samples were collected with Hydro-Bios Nansen water sampler. Samples were preserved in
formaldehydethat will result inconcentrationof 4%.Phytoplanktonwere identifiedandcountedat 400X
magnification using the method of Utermohl [6] under Prior inverted microscope. The results were
calculated according to method of Lund et al. [7]. Diatoms were prepared according to the method of
Round[8]. Physicochemical variablesdescribedbelowweremeasuredinsurfacewater samplestakenfrom
the station1. The conductivity, temperature, dissolvedoxygenandpHwere measuredwithConsort C534
samplingequipment andwater transparencywas measuredwitha secchi disc. The ammonia-N, nitrite-N,
nitrate-N, bicarbonate, calcium, total hardness, magnesium, ortho-phosphate, sulfate and organic matter
analysesweredeterminedaccordingtothestandardmethodsat DSI VII. QualityControl Laboratory[9].
Algal species were identifiedaccordingto the following: Anagnostidis andKomârek [10], Komârekand
Anagnostidis [11-13], Hartley [14], Krammer and Lange-Bertalot [15-18], John et al. [19], Wehr and
Sheath [20], Krammer [21], Tsarenko et al. [22]. All taxa were also checkedonthe algaebase web site
[23].
M JA L MAMA!S Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
18
Ersanlı, Gönülol., Phytoplankton Dynamics and Some Physicochemical Variables in Cakmak Reservoir (Samsun, Turkey)
3. RESULTSandDISCUSSION
Cakmak Reservoir is used for irrigation and drinking water supply. Phytoplankton dynamics and some
physicochemical properties ofthe reservoir were investigatedbetweenMay2003 andApril 2005. Atotal
of 132 taxa were identifiedbelonging to the following divisions; Cyanobacteria (16), Charophyta (10),
Chlorophyta (27), Cryptophyta (2), Euglenozoa (17), Myzozoa (6) and Ochrophyta (54). The taxa
identifiedinCakmakReservoirweregiveninTable 1.
Throughout theinvestigationperiod, conductivity, temperature, dissolvedoxygen, pH, watertransparency,
ammonia-N, nitrite-N, nitrate-N,bicarbonate, calcium,total hardness, magnesium, ortho-phosphate, sulfate
andorganicmatteranalysesweremeasuredandpresentedinTable2.
The temperature which is important for aquatic organisms influences many chemical and biological
processes [24]. Thetemperaturewas measuredbetween9.4°Cand25.6°Cinsurfacewater samples. Fogg
andThake [25] reportedthat phytoplanktonabundanceintemperatelakes islowinwinter evenifthereare
sufficient nutrients, lowtemperature and lowlight intensity. Phytoplankton abundance inreservoir was
lowerinwinterandtherewasanincreaseinsummer. Accordingtotheaverage secchi discdepth(115cm),
thetrophic state ofthe reservoir has eutrophy [26]. ThepH(7.2 to 8.6) indicatedthat the reservoir water
was slightlyalkaline. The measuredpHvalues were withinthe range (6.5-9.0) offreshwater aquatic life
[27]. pHmeasuredinthelakesoftheBlackSeaRegionalsoshowedslight alkalineproperties [28-29]. The
water conductivity (77-104 ^mhos cm-1) was betweenlimit values in natural waters accordingto Boyd
[30]. The nitrite-N, nitrate-Nand ammonia-Nconcentrations were determined as 0.000 to 0.084 mgl-1,
0.04 to 1.35 mg l-1and0.00 to 1.50 mgl-1, respectively. Horne and Goldman [31] reported nitrate and
ammoniaare lowconcentrations innatural water andnitriteistoolowduetothenitrateconversioninthe
presence of oxygen. Accordingtomeasuredvalues (0.00to0.06mgl-1) ofphosphorus, the reservoir was
betweenlowandmediumproductivitydegrees [32]. Thereservoir water hardness was rangedfrom137.5
to212.5°FSandinterms of these results, the reservoir water was inthe slightly hardwater group [33].
Bicarbonate values variedbetween 113 mg l-1and 203 mg l-1and the calciumlevels were determined
between39mgl-1and60mgl-1.Presence of highconcentrations ofcalciumindicatedthat water showed
alkaline character. LowMgconcentrations affect the productivity of phytoplanktoninlakes andthus the
reservoir (6.7-15.2 mgl-1) has oligotrophic character [33]. The concentrationof sulfate innatural waters
variedfroma fewmg l-1to several hundred mg l-1[34]. Sulfate concentrations of reservoir water were
measuredbetween1.9mgl-1and59.0mgl-1.
Themost commontaxonomicgroupinphytoplanktonwasOchrophyta, occupyingthe40%ofthediversity
among the taxonomic groups as in most of the algological studies in our country [29, 35, 36]. Centric
diatoms are described as planktonic organisms by Round [37]. Cyclotella species were present in all
seasons. Cyclotella meneghiniana and Melosira spp. are often present in oligotrophic lakes. Among
pennate diatoms, Ulnaria ulna was over reproduction in the winter. This species is characteristic for
eutrophic lakes [38], however it has also been dominant in oligotrophic lakes [39, 40]. The identified
species in reservoir Fragilaria, Amphora, Nitzschia and Navicula were found in neutral and slightly
alkalinewatersandAmphora ovalis, Navicula cryptocephala existedinalkalinewaters [41].
Chrysophyceae was representedbyDinobryon sertularia inthe reservoir. This species was dominant in
early autumnand winter. Rawson [42] statedthat it was accepted as anindicator of oligotrophic lakes.
Chlorella vulgaris andMonoraphidium obtusum fromchloropyhtes increased in num
ber during summer
months and Pediastrum was represented by 1 species. Legnerova [43] reported that Monoraphidium
speciesarecommoninoligotrophicandmesotrophiclakeswhilePediastrum membersarecharacteristicof
mesotrophic lakes. Charophyta was represented by 10 species in Cakmak Reservoir. Cosmarium and
Closterium are usuallypresent inoligotrophic lakes [37, 38, 42]. Cosmarium species are oftenpresent in
CakmakReservoir. Ceratium spp. fromMyzozoa were observed commonly inphytoplankton. Ceratium
hirundinella reachedsignificant num
bers inthe autumn. C. hirundinella canbe foundinoligotrophic and
eutrophiclakes andalmost all over theworlddistribution[19]. Myzozoamembers were commonlyfound
inspringandautumnandrareinwinterinthereservoir. Inourcountry, it wasfoundtobecommonaswell
[44]. Peridinium cinctum was characteristic dinoflagellate of eutrophic and mezotrophic lakes and this
species canbe found in many different environments [42]. Reynolds [45] stated that most species are
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
19
Ersanlı, Gönülol., Phytoplankton Dynamics and Some Physicochemical Variables in Cakmak Reservoir (Samsun, Turkey)
abundant inepilimnion, whiledinoflagellates areadaptedtodeeper waters. Dinoflagellate andochrophyte
densitywereincreasedinphytoplanktoninCakmakReservoir. Euglenozoamembers weremoreabundant
in polluted waters [46]. However Euglenozoa members were found in the most of the oligotrophic
reservoirsinourcountry[28, 44, 47].
Theseasonal variationinthewatercolumnwasgenerallyshownasanadjustmenttotheseasonal changein
the surface water inCakmakReservoir phytoplankton. The abundance of ChlorophytaandCyanobacteria
descendedthroughdeeperwaterwhileOchrophytaandMyzozoaincreased. Sincelight cannot reachtothe
deep, photosynthetic algae existed near the surface, whereas the heterotrophic or mixotrophic organisms
wereabletodistributeindeeperwaterlevels.
Thereservoir water was unpollutedaccordingtotheaveragedissolvedoxygenconcentration; was slightly
alkaline according to pH; was alkaline accordingto calciumconcentrationand was inthe slightly hard
water group according to hardness values. The trophic state of the reservoir had eutrophic character
accordingto the average secchi disc depth, while it was betweenlowand mediumproductivity degrees
according to phosphorus concentration and had oligotrophic character according to Mg concentrations.
Furthermore, morphometric structureofthelake, pooraquaticmacrophytes, watercolor rangingfromblue
toblue-greenandphytoplanktondynamicshavebeensupportingthatthelakehadoligotrophiccharacter.
4. TABLES
Table 1. The taxa identifıed in Cakmak Reservoir
Divisio
:Cyanobacteria
Class
:Cyanophyceae
Aphanocapsa incerta (Lemmermann) Cronberg & Komarek
Chroococcus minor (Kützing) Nâgeli
Chroococcus pallidus Nâgeli
Chroococcus turgidus (Kützing) Nâgeli
Gloeothece linearis Nâgeli
Gomphosphaeria aponina Kützing
Limnococcus limneticus (Lemmermann) Komarkova, et. al.
Merismopedia elegans A. Braun ex Kützing
Merismopedia glauca (Ehrenberg) Kützing
Merismopedia punctata Meyen
Microcystis aeruginosa (Kützing) Kützing
Oscillatoria tenuis C. Agardh ex Gomont
Spirulina major Kützing ex Gomont
Spirulina princeps West & G. S. West
Spirulina subsalsa Oerstedt ex Gomont
Wollea saccata (Wolle) Bornet & Flahault
Divisio
:Charophyta_________________________________
Class
:Zygnematophyceae___________________________
Closterium acutum Brebisson
Closterium dianae Ehrenberg ex Ralfs
Closterium moniliferum Ehrenberg ex Ralfs
Cosmarium bioculatum Brebisson ex Ralfs
Cosmarium formosulum H off
Cosmarium granatum Brebisson ex Ralfs
Cosmarium laeve Rabenhorst
Spirogyra varians (Hassall) Kützing
Spirogyra weberi Kützing
Staurastrum gracile Ralfs ex Ralfs
Divisio
:Chlorophyta_________________________________
_______ Class________________:Chlorocophyceae__________
Acutodesmus obliquus (Turpin) Hegewald & Hanagata
Ankistrodesmus falcatus (Corda) Ralfs
Asterococcus sp.
Chlamydomonas globosa J. W. Snow
Coelastrum microporum Nâgeli
Desmodesmus abundans (Kirchner) E. Hegewald
Desmodesmus communis (E. H. Hegewald) E. H. Hegewald
Monoraphidium griffithii (Berkeley) Komarkova-Legnerova
M JA L MANAS Journal ofAgriculture and Life Sciences
http://journals.manas.edu.kg © 2014
20
Ersanlı, Gönülol., Phytoplankton Dynamics and Some Physicochemical Variables in Cakmak Reservoir (Samsun, Turkey)
Monoraphidium minutum (Nâgeli) Komârkovâ-legnerovâ
Monoraphidium obtusum (Korshikov) Komârkovâ-Legnerovâ
Monactinus simplex (Meyen) Corda
Pediastrum duplex Meyen
Pseudocharacium obtusum (A. Braun) Petry-Hesse
Pseudopediastrum boryanum (Turpin) E. Hegewald
Raphidocelis subcapitata (Korshikov) G. Nygaard et. al.
Scenedesmus ecornis (Ehrenberg) Chodat
Scenedesmus obtusus Meyen
Scenedesmus verrucosus Y. V. Roll
Selenastrum gracile Reinsch
Stauridium privum (Printz) E. Hegewald
Tetraedron minimum (A. Braun) Hansgirg
Tetrastrum komarekii Hindâk
Class
:Trebouxiophyceae______________________________________________
Botryococcus braunii Kützing
Chlorella vulgaris Beyerinck [Beijerinck]
Gloeotila subconstricta (G. S. West) Printz
Oocystis borgei J. Snow
Class
:Ulvophyceae___________________________________________________
Ulothrix tenerrima (Kützing) Kützing
Divisio
:C ryptophyta___________________________________________________
_______ O rdo________________:Cryptophyceae______________________________
Cryptomonas erosa Ehrenberg
Cryptomonas ovata Ehrenberg
Divisio
:Euglenozoa____________________________________________________
_______ Class________________:Euglenophyceae_____________________________
Astasia shadowskii Korshikov
Euglena clavata Skuja
Euglena elongata Schewiakoff
Euglena gracilis Klebs
Euglena oxyuris Schmarda f. skvortzovii (Popowa) Popowa
Euglena retronata L. P. Johnson
Euglena splendens P. A. Dangeard
Lepocinclus oxyuris (Schmarda) Marin & Melkonian
Phacus acuminatus Stokes
Phacus caudatus Hübner
Phacus longicauda (Ehrenberg) Dujardin var. rotunda (Pochmann) Huber-Pestalozzi
Strombomonas verrucosa (E. Daday) Deflandre
Trachelomonas crebea Kellicott var. brevicollis Prescott
Trachelomonas hispida (Perty) F. Stein
Trachelomonas inflata Skvortzov var. crenulatocollis Skvortzov
Trachelomonas oblonga Lemmermann var. pulcherrima (Playfair) Popova
Trachelomonas volvocina (Ehrenberg) Ehrenberg
Divisio
:Myzozoa______________________________________________________
_______ Class________________:Dinophyceae________________________________
Ceratium furcoides (Levander) Langhans
Ceratium hirundinella (O. F. Müller) Dujardin
Ceratium hirundinella var. silesiacum (Schroeder) Huber-Pestalozzi
Peridiniopsis thompsonii (Thompson) Bourrelly
Peridinium aciculiferum Lemmermann
Peridinium cinctum (O. F. Müller) Ehrenberg
Divisio
:O chrophyta___________________________________________________
Class
:Bacillariophyceae______________________________________________
Amphora ovalis (Kützing) Kützing
Asterionella formosa Hassall
Aulacoseira granulata (Ehrenberg) Simonsen
Aulacoseira granulata var. angustissima (O. F. Müller) Simonsen
Aulacoseira islandica (O. F. Müller) Simonsen
Brachysira brebissonii R. Ross
Caloneis dubia Krammer
Cocconeis pediculus Ehrenberg
Cocconeis placentula Ehrenberg
Cocconeis placentula var. klinoraphis Geitler
Coscinodiscus rothii (Ehrenberg) Grunow
Cyclotella meneghiniana Kützing
Cyclotella ocellata Pantocsek_______________________________________________
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
21
Ersanlı, Gönülol., Phytoplankton Dynamics and Some Physicochemical Variables in Cakmak Reservoir (Samsun, Turkey)
Cymatopleura solea (Brebisson) W.Smith
Cymbella affinis Kützing
Diatoma anceps (Ehrenberg) Grunow
Diatoma vulgaris Bory de Saint-Vincent
Discostella glomerata (H.Bachmann) Houk & Klee
Encyonema minutum (Hilse) D. G. Mann
Encyonema prostratum (Berkeley) Kützing
Eunotia pectinalis (Kützing) Rabenhorst
Fragilaria tenera (W. Smith) Lange-Bertalot
Fragilariforma virescens (Ralfs) D. M. Williams & Round
Gomphonema clavatum Ehrenberg
Gomphonema truncatum Ehrenberg
Gyrosigma acuminatum (Kützing) Rabenhorst
Gyrosigma macrum (W. Smith) J. W. Griffith & Henfrey
Halamphora normanii (Rabenhorst) Levkov
Hantzschia amphioxys (Ehrenberg) Grunow
Luticola obligata (Hustedt) D. G. Mann
Melosira varians C. Agardh
Navicula cincta (Ehrenberg) Ralfs
Navicula cryptocephala var. veneta (Kützing) Rabenhorst
Navicula longicephala Hustedt
Navicula radiosa Kützing
Navicula rhynchocephala Kützing
Neidium bisulcatum (Lagerstedt) Cleve var. subampliatum Krammer
Neidium iridis (Ehrenberg) Cleve
Nitzschia acicularis (Kützing) W. Smith
Nitzschia palea (Kützing) W. Smith
Pleurosigma angulatum (Queckett) W.Smith
Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot
Stauroneis anceps Ehrenberg
Surirella linearis W. Smith
Surirella ovalis Brebisson
Synedra camtschatica Grunow
Tabellaria fenestrata (Lyngbye) Kützing
Tabularia gaillonii (Bory de Saint-Vincent) Bukhtiyarova
Ulnaria acus (Kützing) M. Aboal
Ulnaria danica (Kützing) Compere & Bukhtiyarova
Ulnaria delicatissima (W. Smith) M. Aboal & P. C. Silva
Ulnaria ulna (Nitzsch) P. Compere
Class
:Chrysophyceae___________________________________
Dinobryon sertularia Ehrenberg
Class
:Xanthophyceae__________________________________
Goniochloris fallax Fott
Goniochloris mutica (A. Braun) Fott___________________________
Table 2. Physicochemical variables in surface water samples taken from the station 1 at Cakmak Reservoir
June 03
July 03
August 03
Septem ber 03
O ctober 03
Novem ber 03
Decem ber 03
25.5
25.0
24.8
22.6
17.0
12.4
11.9
4.3
4D.6
4.6
5.0
6.8
8.7
9.0
8H.3
8.5
8.6
8.3
7.8
8.0
8.2
1 o04 0. m40
9C
8 0. A
10
98
0.05
96
0.15
92
0.00
92
1.50
92
0.20
0.0 ti 03
0.0N00
0.007
0.038
0.001
0.084
0.003
MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
0. ti04
0.N55
0.05
0.11
0.24
0.55
0.40
1 ci58
1B
65
170
138
138
150
145
4 la3
4 C
6
42
39
40
45
46
142.0
15T8.0
165.0
142.5
157.0
175.0
156.5
9.7
12.2
12.0
10.9
14.0
15.2
14.6
0. r01
0. O
02
0.02
0.06
0.03
0.05
0.04
21.6
50.4
33.6
13.0
13.0
31.7
27.4
1. r56
1. O
84
1.56
1.76
1.60
2.04
1.98
22
7 a0
1W
00
80
120
90
150
240
Ersanlı, Gönülol., Phytoplankton Dynamics and Some Physicochemical Variables in Cakmak Reservoir (Samsun, Turkey)
Ja n u a ry 04
F ebruary 04
M arch 04
A pril 04
May 04
June 04
July 04
August 04
Septem ber 04
O ctober 04
November 04
Decem ber 04
Ja n u a ry 05
F ebruary 05
M arch 05
A pril 05
9.8
9.4
11.2
12.5
18.1
25.0
25.4
22.5
18.3
14.4
13.1
11.0
10.0
12.2
16.6
18.0
11.1
11.2
9.2
8.6
6.0
4.6
4.5
5.2
6.0
8.0
8.3
10.2
11.0
8.8
7.5
5.9
7.9
7.5
8.2
8.1
7.8
8.4
8.5
8.0
7.2
7.6
8.1
7.8
7.2
8.2
8.1
7.9
82
77
92
82
90
98
96
96
99
97
98
96
97
94
101
94
0.10
0.15
0.05
0.00
0.00
0.05
0.20
0.05
0.00
0.15
0.00
0.00
0.05
0.20
0.00
0.05
0.004
0.006
0.003
0.003
0.010
0.008
0.006
0.003
0.013
0.000
0.003
0.006
0.000
0.000
0.040
0.005
0.90
0.60
0.60
0.80
0.30
0.35
1.04
0.55
0.20
0.55
0.70
0.70
0.60
0.60
1.05
1.35
155
163
168
203
140
155
158
165
145
155
160
158
113
158
133
163
48
56
55
59
46
50
52
58
39
42
45
60
44
54
58
52
188.0
185.0
197.5
200.0
175.0
155.0
167.5
212.5
142.5
155.0
145.0
190.0
137.5
187.5
187.5
187.5
9.9
10.9
14.6
12.8
10.2
7.3
9.7
12.2
10.9
12.2
12.8
12.4
6.7
12.8
10.3
13.9
0.02
0.03
0.00
0.03
0.00
0.00
0.01
0.00
0.01
0.02
0.03
0.01
0.00
0.00
0.01
0.01
51.8
26.4
30.7
2.4
7.7
1.9
21.6
50.4
2.9
4.3
19.7
33.6
23.5
33.1
59.0
28.8
1.75
1.84
1.68
1.96
1.64
1.80
1.64
1.92
1.68
1.36
1.22
1.44
1.56
1.64
1.68
0.64
90
90
75
90
180
90
60
80
130
90
120
180
130
100
75
120
5. FIGURE
2
3
4
1
1.41° 06'30 "N, 36 ”37' 26 E
2.41° 06'56 "N, 36”36'43‘E
3.41° 06' 24 "N, 36° 35' 49" E
4.41° 05 ' 53 " N, 36" 34' 55'E
Yukarıagcaguney
°
.
\
°
s t.ı
f
S t.4
CAKMAK
St.3
/
r~
^
İ\
ü
Cıngırtıkaya
/
1
O
R E S E R V O İR
"
i
1
3
Ni
U/
^ —
Koldere
/
\/
4
/" M
o Cakmak
N
Abdal River /
/
t
0
500
1000
Şekil 1. Geographic location of the Cakmak Reservoir and sampling stations
REFERENCES
[1] NakashimaS, YamadaY, TadaK, CharacterizationofthewaterqualityofdamlakesonShikoku
Island, Japan, Limnol. 8, (2007) 1-22.
[2] Carpenter SR, CaracoNF, Correll DL, HowarthRW,SharpleyAN, SmithVHNonpoint pollution
ofsurfacewaterswithphosphorusandnitrogen. Eco. Appl. 83, (1998) 559-568.
[3] Nogueira MG, Phytoplankton composition, dominance and abundance as indicators of
environmental compartmentalization in JurumirimReservoir (Paranapanema River), Sâo Paulo,
Brazil, Hydrobiol. 431, (2000) 115-128.
M JA L MAMA!S Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
23
Ersanlı, Gönülol., Phytoplankton Dynamics and Some Physicochemical Variables in Cakmak Reservoir (Samsun, Turkey)
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
WFD(Water FrameworkDirective), Manual of applicationof the Water FrameworkDirective in
Turkey2003.
Anonymous. Samsundrinkingwaterproject, T.C. DSI VII. Regional Manager, Samsun1991.
Sournia A, Phytoplankton Manual, United Nations Educational Scientific and Cultural
Organization, Paris 1978.
LundJWG, KiplingC, Le CrenED, The invertedmicroscope methodof estimatingalgal numbers
andthestatisticalbasisofestimationsbycounting, Hydrobiol. 11, (1958) 143-170.
RoundFE, Aninvestigationoftwobentic algal communities inMalharmTarn, Torkshire, J. Ecol.
41, (1953) 97-174.
APHA, Standart methods for examination of water and wastewater, 16thEdn. APHA, AWWA,
WPCF, WashingtonDC, USA1992.
Anagnostidis K, Komarek J. Modern approach to the classification systemof cyanophytes. 3Oscillatoriales. Arch. FürHydrobiol. (Suppl. 80), Algological Studies50(53), (1988) 327-472.
Komarek J, Anagnostidis K, Modern approach to the classification systemof Cyanophytes 2Chroococcales. Arch. fürHydrobiol., (Suppl. 73) Algological Studies434, (1986)157-226.
Komarek J, Anagnostidis K, Modern approach to the classification systemof Cyanophytes. 4.
Nostocales. Arch. fürHydrobiol., (Suppl. 82), Algological Studies56, (1989) 247-345.
Komarek J, Anagnostidis K, Cyanoprokaryota, Chroococcales, Süflwasserfloravon Mitteleuropa.
Stuttgart, NewYork, GustavFisherVerlag19/1, 54p. 1999.
HartleyB, AnAtlasofBritishDiatoms, BiopressLtd. England, 601p. 1996.
Krammer K, Lange-Bertalot H, 3. Bacillariophyceae. Centrales, Fragilariaceae, Eunoticeae,
SüflwasserfloravonMitteleuropa. Stuttgart, NewYork, GustavFischerVerlag2/31991a.
Krammer K, Lange-Bertalot H, 4. Bacillariophyceae. Achnanthaceae, Kritische Ergânzungen zu
Navicula (Lineolatae) und Gomphonema G
esamtliteraturverzeichnis, Süfiwasserflora von
Mitteleuropa. Stuttgart, NewYork, GustavFischerVerlag2/41991b.
Krammer K, Lange-Bertalot H, Bacillariophyceae. 1. Naviculaceae, Süflwasserflora von
Mitteleuropa. Stuttgart, NewYork, GustavFischerVerlag2/1 1999a.
Krammer K, Lange-Bertalot H, Bacillariophyceae. 2. Bacillariaceae, Epithemiaceae, Surirellaceae,
SüflwasserfloravonMitteleuropa. Stuttgart, NewYork, GustavFischerVerlag2/21999b.
JohnDM,WhittonBA,BrookAJ, TheFreshwaterAlgal FloraoftheBritishIsles: Anidentification
guidetofreshwaterandterrestrial algae. TheNatural HistoryMuseumandTheBritishPhycological
Society, CambridgeUniversityPress2003.
WehrJD, SheathR, FrehwateralgaeofNorthAmerica, ecologyandclassification, Avolumeinthe
aquaticecologyseries, AcademicPress, NewYork2003.
KrammerK,DiatomsofEurope, Volume4, A.R.G. GantnerVerlagK.G. 2003.
TsarenkoPM,WessePS, NevoE, AlgaeofUkraine, Diversity, NomenclatureTaxonomy, Ecology
andGeography, A.R.G. GantnerVerlagK.G., Germany2006.
Guiry MD, Guiry GM, Algaebase. World-wide electronic publication, National University of
Ireland, Galway. http://www.algaebase.org2012.
LarnierK,RouxH, DartusD, CrozeO, WatertemperaturemodelingintheGaronneRiver (France).
Knowl. Managt. AquaticEcosyst. 398, (2010) 04.
Fogg GE, Thake B, Algal Cultures and Phytoplankton Ecology, 3rdEdition, The University of
WisconsinPress 1987.
Carlson RE, Simpson J, A coordinator’s guide to volunteer lake monitoring methods. North
AmericanLakeManagement Society1996.
USEPA, Quality criteria for water, office of water environmental protection regulation and
standards, Washington, WaterEPA440/5-86-001 1986.
Yazıcı N, Gonulol A, Floristicandecological researchonphytoplanktoninSuat UgurluReservoir
(Carsamba-Samsun, Turkey), EgeUniversity, J. ofFish. 11, 42-43, (1994) 71-93.
Ersanlı E, Gonulol A, AStudyonthephytoplanktonof Lake Simenit, Turkey, Cryp. Algo. 27(3)
(2006) 289-305.
BoydCE, Waterqualityinwarmwaterfishponds, CraftmasterPrintersInc, Alabama1979.
HorneAJ, GoldmanC,Limnology, McGraw-Hill, Inc., PrintedinSingapure 1997.
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
24
Ersanlı, Gönülol., Phytoplankton Dynamics and Some Physicochemical Variables in Cakmak Reservoir (Samsun, Turkey)
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
Nisbet M,VerneauxJ, Composantes ChimiquesDesEauxCourantesAnalesdeLimnol. 6, 2(1970)
161-190.
EgemenO, SunluU, WaterQuality, EgeUniversity, FacultyofFisheries, PublicationNo: 14, Izmir
1996.
Sengul F, Turkman A, Water and wastewater analysis, Dokuz Eylül University, Department of
Environmental Engineering, Bornova, Izmir 1991.
Gonulol A, Comak O, Floristic studies onphytoplankton of Bafra FishLakes (Lake Balık, Lake
Uzun) IV.Bacillorophyta, Dinophyta, Xanthophyta, J. Sci. OMU. 4, 1, (1992) 1-19.
TasB, Gonulol A, Anecologicandtaxonomicstudyonphytoplanktonofashallowlake, Turkey, J.
Envir. Biol. 28(2), (2007) 439-445.
RoundFE, The Biology of the Algae, SecondEdition, Edward Arnold (Publishers) Ltd, London
1973.
Hutchinson GE, A Treatise on Limnology Vol: II. Introduction To Lake Biology and the
Limnoplankton, JohnWileyandSons. Inc., Newyork, London, Sydney1967.
Kılınc S, Dere S, Aninvestigationofseasonal variationofphytoplanktonofHafikLake (Sivas), (in
English), IX.National BiologyCongress, Istanbul, September21-23, (1988) 589-605.
Tas B, Astudy of phytoplanktonand its seasonal variationinDerbent Reservoir (Bafra Samsun,
Turkey), Ph.D. Thesis, OndokuzMayısUniversity, InstituteofScience, Samsun2003.
RoundFE, Studies onbottomlivingalgae insame lakes of the EnglishLakeDistrict. Part II. The
DistribitiononBacillariophyceaeonSediments, J. Ecol. 45, (1957) 343-360.
RawsonDS, Algal indicatorsoflaketypes. Limnol. andOcean. 4, Vol 1(1) 18-25, (1956) 386-398.
Legnerova J, The generaAnkistrodesmus Corda and Raphidium Kütz. and their position in the
familyAnkistrodesmusmaceae, Preslia37, (1965) 1-8.
CevikF, Algae communities andsome of water qualitycharacteristics of SeyhanReservoir, Ph.D.
Thesis, CukurovaUniversity, Instituteof Science, Adana, (inEnglish) 1999.
ReynoldsCS, Theecologyoffreshwaterphytoplankton, ChambridgeUniv. 1993.
Round FE, The phytoplankton of three water supply reservoirs in Central Wales. Arch. Fur.
Hydrobiol. 52, (1956) 457-469.
AydogduGE, Algal flora of Seferihisar DamLake (Izmir, Turkey), (inEnglish), Master's Thesis,
EgeUniversity, InstituteofScience, Izmir 1998.
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
25
MJALMANAS Journal o f Agriculture
and Life Sciences
http://joumals.manas.edu.kg
MJAL4(1) (2014) 26-33
The Vegetation and Productivity of The Caspian’s Shores In
Azerbaijan
Murat Musayev
AzerbaycanMilli BilimlerAkademisi BotanikEnstitüsü,Patamdar Şosesi 70, Bakü/Azerbaycan
[email protected]
V agif Atamov
RecepTayyipErdoğanÜniversitesi FenEdebiyat Fakültesi Biyoloji BölümüRize/Türkiye
[email protected]
Musa Cabbarov
BaküDevletÜniversitesi Biyoloji Fakültesi BotanikKürsüsüZhalilov23, Bakü/Azerbaycan
R eceived; 25/11/2013
Reviewed; 13/11/2014
Accepted: 05/12/2014
Abstract This study was performed on the phloristic and phytosociologic features and the
classificationandproductivity ofthevegetationof Caspianshores inAzerbaijan. Between
Abseron peninsula and Astaraya (100-150 mshore zone) of the shore, 34 families, 93
geneses, and 134 species were defined. In the study area 17 species are submerged in
water, 25ofthemarepartiallysubmerged and79ofthemareexpandedintheswampsand
damp places. In the region, desert, semi-desert, swamp, and forest ecosiistems, sandydesert, halophytic damp desert, halophytic arid desert, subtropical semi-desert, ephimeric
subtropical semi-desert, swamp, meadow-swamp, shoreplainforest, andshoretugayforest,
consisting of 48 formations and 57 associations were identified. The productivity of the
ground surface and underground phytomasses were 40-6400 gr and 50-4560 gr,
respectively.
Keywords:
Azerbaijan, Caspian Sea, vegetation, productivity
Hazar’ın Azerbaycan’a ait sahil vejetasyonu ve verimliliği
Özet Bu çalışmada Azerbaycan sınırları içerisinde kalan Hazar Denizi sahil kesimlerindeki
vejetasyonun floristik ve fitososyolojik özellikleri ve verimliliği araştırılmıştır.
Azerbaycan’ın AbşeronyarımadasındanAstaraya kadar olangüney kesimlerini kapsayan
sahilinde(denizden100-150molansahil zonu) 34familya, 93cinseait olan134bitki türü
tespit edilmiştir. Araştırmaalanındaki bitkilerin 17türü suiçerisinde suyabatmış şekilde,
25’i yarıya kadar suyabatmış şekilde, 79’u ise bataklıkve nemli yerlerde yayılmaktadır.
Araştırma alanında: çol, yarı-çol, su-bataklık, orman ekosistemlerine ait, kumul-çöl,
halofitiksucul çöl, halofitikçoraklaşmış-çöl, subtropikyarı-çöl, efemerli subtropikyarı-çöl,
sulubataklık, çimenleşmiş bataklık, kıyı düzlükormanve kıyı tugay ormanı olmaküzere
48bitki birliği ve 57alt birliktespit edilmiştir. Araştırılanalanınbitki örtüsünde rastlanan
birliklerdetopraküstüfitokütleninverimliliği 40-6400gr, toprakaltı fitokütledeise50-4560
graralığındadeğişmektedir.
Anahtar
Kelimeler:
Azerbaycan, Hazar Denizi, vejetasyon, verimlilik
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Musayev, Atamov, Cabbarov., The Vegetation and Productivity o f The Caspian’s Shores In Azerbaijan
1. GİRİŞ
Hazar Denizininkumullarında genelde psammofit bitkiler yayılış gösterir. Özellikleyapraksız çalılar ve
yarı çalılar karakteristiktir. Bunlara örnek olarak; Calligonum bakuense Litu. ve C. petunnikowii Litu.,
Ephedra distachya L., Eleagnus caspica (D
.Sosn) A.Grossh., Nitraria schoberi L., N. komorowii İljinet
Lava., Artemisia arenaria DC., Convolvulus persicus L., Glycyrrhiza glabra L., Astragalus igniarius M.
Pop., A. hyrcanus Pall., A. bakuensiz Bge., Medicago coerulea Less. ve M. littoralis Rohde., Elymus
giganteus V
ahl., Phragmites communis (L.) Trin. taksonlarınıverebiliriz.
Kumullarınbitki formasyonları ile sertleştiği ve taban suyununyüzeye yakın durumda olduğu engebeli
topoğrafyalarda, yukarıda sayılan bitkilere ek olarak Kochia prostrata (L.) Schrad., Salsola pestifera
A.Nes., S. paulsenii Litu., Tournefortia sibirica L., Centaurea adpressa Ledeb., Gypsophylla bicolor
Freyn., Limonium meyeri (Boiss.) Ktze., Alhagi pseudoalhagi (M.B.) Desv., Melilotus caspicus Grun.,
Calamogrostis gigantea Roshev., C.glauca (M
.B.) Trin., Erianthus purpurascens Anderss., Cynodon
dactylon (L.) Pers., Aeluropus littoralis (G
oudn) Parlatore., Carex extensa Good., C. melanostachya M.B.,
Juncus littoralis C.A
.Mey., J. acutus L. bitkileribulunmaktadır.
Araştırmaalanınındarastlananbitki birliklerininfitokütlelerinin(topraküstüvetoprakaltı) araştırılması ve
yemolaraktopraküstükütlenindeğerlendirilmesi deekonomikveekolojikaçıdanönemtaşımaktadır.
2. GEREÇveYÖNTEM
HazarDenizi’ninkıyı kesimlerindeyapılanarazi çalışmaları Abşeronyarımadasınınkuzeyinden(BuzovnaBilgeh) başlayarak güneye doğru Kızılağaç Körfezine kadar olan geniş bir alanı (yaklaşık 450 km)
kapsamaktadır. 11 değişik noktada örneklik alan seçilmiş ve bu noktalarda karakteristik bitki birlikleri
belirlenmiştir. Örneklik alanlarda bitki örtüsünün floristik ve fitososyolojik özellikleri incelenmiştir.
Bitkilerin teşhisi 8 ciltlik Azerbaycan Florası eserine göre, vejetasyon sınıflandırması ise dominantlık
prensipine göreyapılmıştır (1, 2, 3). Denizkıyısındanyaklaşık 100-150 muzaklaştıkçabitki birlikleri ve
onlarınyayılışı incelenmiştir, yaptığımız kayıtlarvenotlaradayanarakvekaynaklaradayanarak,
Azerbaycan’ınHazar Denizi sahil kesimininvejetasyonharitası verilmiştir (4, 5, 6, 7, 8, 9, 10). Haritanın
çizimi “MS World” programında, harıtanın lejandası ise Azerbaycan’ın Hazar Denizi sahil kesiminin
vejetasyonsınıflandırılması baz alınarakyapılmıştır (19). Araştırma alanındayayılış gösterenbirlikler ve
bunlarıntopraküstüve toprakaltı fitokütlesininverimliliği (25 cm2-likalanda gramcinsinden) ve mutlak
nemoranıbelirlenmiştir(3, 11).
3.TARTIŞMA
Hazarın kıyı kesimlerinde yapılan arazi çalışmaları Abşeron yarımadasının kuzeyinden (BuzovnaBilgeh) başlayarakgüneye, Kızılağaçkörfezinekadar olangeniş bir kıyı kesimini kapsamıştır (Şekil
1).
Dahadüşükyükseklikteolantopografyalardahalofitikbitkiler (Salsola soda, S.crassa, Salicornia europea,
Petrosimonia brachiata, Kalidium caspicum, Suaeda dendroides, Halostachus caspicus, Tamarix
ramasissima) ve onlarınoluşturduğubitki gruplaşm
aları ile yanısıra su-bataklıkbirliklerine (Phragmites
communis, Carex bordzilowskii, C.exteusa, Juncus littoralis, J. acutus, J.marittimus, Bolboschaenus
maritimus, Typha angustifolia rastlanm
aktadır. Ancak, yukseklikği deniz seviyesinin üstünde olan
topografyalarda ise yarı çöl, ve çoraklaşmış çöl tipli bitki birliklerine (Artemisia fragrans, Salsola
dendroides, Bromus japonicus, Zerna rubens ) rastlanm
aktadır. Kıyıdanuzaklaştıkca toprakta sıcaklık
değerininarttığı, ortamıniseasitortamdanbazikbirortamadoğrudeğiştiği görülmektedir.
R. Şahsuvarovun (7) Samur Deveçi Düzünde yaptığı araştırma sonuçları ile mükayese edersek Hazarın
güneyve kuzey kesimlerde bir birine benzer olduğunu, fakat floristikaçıdanKuzey kesimlerde floranın
dahazenginolduğugörülmektedir. Bufarklılığınnedeni isebizimaraştırmalarımizınsadecekıyıyayakın
olanalanlarındışınaçıkılmamasındankaynaklanmaktadır.
27
M JA L MANAS Journal o f Agriculture and Life Sciences
http://joumals.manas.edu.kg © 2014
Musayev, Atamov, Cabbarov., The Vegetation and Productivity o f The Caspian’s Shores In Azerbaijan
Hazarınsahil kesimlerininkumul vejetasyonuekolojiközelliklerine göre psamnofit-litoral, fitososyolojik
özelliklerinegöreiseçölvejetasyonutipininkumul-çöl alttipinegirer(12). Denizkıyısındabubitkileretek
tek, safveyakarışıkşeklinderastlanmaktadır.
Mayılov’agöre(12) Azerbaycan’dakumullaryaklaşık117650hektaralanı kapsamaktadır. Bununyaklaşık
24150hektarı hareketli kumullualanlaroluptümüHazarDenizi’ninsahil kesimlerini kapsamaktadır. Bazı
araştırmalara göre Hazar DenizininAzerbaycan’la sınırlanansahil kesimleri dar bant şeklinde kumul-çöl
vejetasyonuileörtülüdür(4, 5, 6, 12, 13, 1415, 16).
Aliyev ’e göre (13) Abşeron’un 300binhektarı kumul alanlardanoluşur, bununda % 30-35’ini hareket
edenkumullaroluşturur.
R. Şahsuvarov Hazarın Azerbaycana ait kuzey kıyı kesimlerinde (Samur-Deveçi düzünde) deniz kıyısı
nemli çoraklaşmış, hereket eden kumullu, yarı hareketli kumullu ve sertleşmiş kumullu substratlarda;
kumul-çöl, su-bataklık, çayır-çimen, orman, kayaca bağlı olan vejetasyon tiplerinde 17 formasyon, 59
assosasyonve 56 familyaya ait 298 vasküler bitki türününoldugunubelirlemiştir (7). Bu alanAbşeron
yarımadasınınkuzeykesimlerini kapsamaktadır.
Hazar Denizinin, Yalama, Hazmaz, Deveci ve Lenkeran düzü ile sınırlanan kesimlerinde bataklaşmış
çimenlerveotlubataklıklargenişyayılışgösterir.
Ramsar listesine giren, Uluslararası düzeyde kuşların korunması amacı ile koruk alanı ilan edilmiş
Kızılağaç körfezi de araştırma alanımız kapsamınadadır. Buradayaygınolan sucul bitkiler, bataklaşmışçimenlerveasıl-bataklıklarkışlayankuşlarınmeskeni olup, balıklarınüremesi veavcılıkiçindeönemli bir
alandır. Buradayaygınolansucul bitkilerden: MyriophyllumverticillatumL., M.spicatumL. , Nymphaea
alba L., Alismaplantago-aquaticaL., PolygonumamphibiumL.var. natansLeyss., PotomogetondensusL.
, P. pectinatus L., P. crispus L., Najas minor All., N.marina L. , CeratophpyllumsubmersumL., C.
demersumL., NajasmarinaL., N. minorAll., Bolboschoeanus maritimus (L.) Pall., Sparganiumneclectum
Beeby, ZannicheliamajorBoen., TrapahyrcanaWoron. taksonlarını örnekverebiliriz.
V. Atamov (19) Hazar’ın sahil kesimlerinin bitki örtüsünde; Phrametum, Bolboschetum, Thyphetum,
Calamogrostisetum, Juncetum, Kalidietum, Halocnetum, Halostachusetumgibi bitki birliklerinin geniş
alanları kapsadığıveotverimliliğininyüksekolduğu ortayakonmuştur.
M.Musayev, V. Atamov(20) tarafındanAzerbaycan’ınsu-bataklıkflorasında: 62familyave208cinseait
toplam502 takson olduğu, bu bitkilerden 169’un hidrofit, 243’ün higrofit, 90’ının ise hidatofit olduğu
belirlenmiştir.
Seçmen ve Leblebici (21) Türkiyenin sulak alanlarının florası ve bitkiliğinin araştırılması sonucu bu
ekosistemlerinyıllıktemel üretimgücününenüst düzeydeolansistemlerolduğunubelirtmişlerdir.
Hazar Denizi’nin Deveci, Abşeron, Masallı ve Lenkeran bölgelerinde yaygın olan Juncus littoralis
C.A.Mey. vePhragmitescommunis (L.) Trin. türleri genelliklesaf, bazeniseGlycyrrhizaglabraL., Alhagi
pseudoalhagi Desv., Artemisia szovitsiana (Boiss.) A. Grossh., Limonium meyeri (Boiss.) Ktze.,
Phsylliostachys spicata (Willd.) Nevski., Tripoliumvulgare (L.) Nessab gibi türlerinkatılımı ilebirlikler
oluşturur. Bu kesimlerde rastlanan Scirpus tabernaemontani Gmel., S .lacustris L., Carex bordzilowski
V.Krecz. , C. compactaLam. , C.divisaHuds. , C.riparia Curt., ThyphalatifoliaL., T. angustifoliaL., T.
laxmannii Lep., SparganiumpolyedrumA.et.G., S. neglectumBeeby., S. microcarpum(Neum.) Cel.,
Juncus acutusL., J. littoralis C. A.Mey., J. gerardi Leis., J. maritimusLam. gibi türler dekıyı kesimlerde
yaygınolantürlerdendir.
Bubirliklerde Phragmites communis’in 1m2alandaortalamatopraküstüyaş kütlesi 5kg, ortalamaboyu
ise 2.5-3 m’ye ulaşır. Sahilinkurakyerlerinde ise bubitkininortalama boyu 1,8 m, 1m2-de olangövde
sayısı 24, 1m2-deolanyaşkütleise3,5-4,0kgcivarındadır(10, 18).
Hazar Denizi’nin kuzey kıyısındakı Deveci limanında ve güneyindeki Celilabad ve Masallı bölgeleri
arasındakı sahil kesimlerinde Juncus littoralis, J. acutus, J. marittimus türlerininoluşturduğusafbirliklere
rastlanır. Bu birliklerin floristik kompozisyonu alanın nemlilik ve tuzluluk oranına bağlı olarak
değişmektedir.
28
M JA L MAMA!S Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Musayev, Atamov, Cabbarov., The Vegetation and Productivity o f The Caspian’s Shores In Azerbaijan
N
t
CASPIAN SEA
Sandyshoredesert
Semi-desert
Ephemerical subtropical semi-desert
Halofitical humiddesert
Halofitical drydesert
PlaneForest andforest-sidemeadow
Shoreoakforest
Forest-sidemeadow
Meadow-swamporgrassyswamp
Tipical halofitical desert
River-sideforest
M: 1:2 000 000
Şekil 1. Azerbaycan ’ın Hazar Denizi kıyısındaki vejetasyon tipleri.
DenizkıyısındanuzaklaştıkçaJuncus littoralis’in bolluğu, verimliliği ve örtüş derecesi belli bir uzaklığa
kadar gitgide artar. Bu birliğin ortalama boyu 1m, örtüş derecesi %90’dır. Şıhov sahil kesimlerinde
Phragmites communis bazı yerlerde20-30menindeolm
aküzeregenişalanlarayayılmaktadır(8, 10).
29
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Musayev, Atamov, Cabbarov., The Vegetation and Productivity o f The Caspian’s Shores In Azerbaijan
Apşeronyarmadasınınkuzeyindengüneyine (Astara’ya) kadar olanbölgede geniş alanlan kaplayan; subataklık(Hövsan, Zire, Şıhav, KızılağaçKörfezi, Şahdili); kumul-çöl (Hövsan, Türkan, Artyom, Sangaçal,
Elet ); halofitik-çöl (Taşgil, Şirvankoruğu, Sangaçal, Saratovka, Neftçala); ve yarı-çöl (Hövsan, Türkan,
Artyom,EletDres, Daşğili)vejetasyontiplerinerastlanmaktadır(Şekil 1).
Şekil 1’de Hazar Denizi’ninkıyı kesimlerinde yayılış gösterenbitki birlikleri (çöl, yarı-çöl, su-bataklık,
orman), ve alt tipleri (kumul-çöl, halofitiksucul (nemli)-çöl, halofitikçoraklaşmış-çöl, subtropikyarı-çöl,
efemerli subtropik yarı-çöl, çimenleşmiş su-bataklık ve bataklaşmış çimenve kıyı ormanlar) haritanın
lejandasındaverilmiştir. Araştırma alanındayaygınrastlanan23 bitki birliğinde topraküstüve toprakaltı
fitokütleninyaş ve kuruağırlıkları incelenmiş ve mutlaknemoranınınassosastonlaragöre değişme oranı
belirlenmiştir. Fitokütleoranınındeğişmesi 0,25cm2’likalandaincelenmişveverilertablo 1-deverilmiştir.
Tablo 1. Hazar Denizi’nin Azerbaycan sahil kesimlerinin yaygın assosasyonlarının verimliliği.
Assosasyonlar
1
2
3
4
5
6
7
9
10
11
12
13
14
15
16
17
18
19
20
21
Juncusetum littoralisae
Juncusetum .marittimae
Junco
marittimii
Limonietum
meyeriae
Junco
marittimii
- Glycyrrhizetum
glabrae
Ephedretum distachyae
Astragaletum hyrcanusae
Astragalo
hyrcanae
-Juncusetum
littoralisae
Ephedreto
distachya-Artemisetum
szovitsianae
Calamagrosto giganthei- Phragmetumcommunisae
Thyphetum angustifoliae
Carexetum divisae
Kalidetum caspicumae
Salsoletum dendroidesae
Artemisetum szovitsianae
Artemisetum fragransae
Salsoletum ericoidesae
Alhagetum pseudalhagiae
Tamarixetum ramassisimae
Alhago
pseudoalhagi-Hordetum
leporiniae
Atropa
gigantei-Halocnemetum
strobilaseae
22
Salicorno europea-Kalidietum caspicae
23
24
Petrosimo
brachiata-Salicornietum
europeae
Salicornietum europeae
Topraküstü
Fitokütle Toprakaltı
Fitokütle
(gr/25cm2)
(gr/25cm2)
Nem Yaş Kuru Nem
Yaş Kuru
4000 1350 1650 1200 2060 5140
900 208 693
1440 6400 800
6400 2480 3920
160 65
95
100 47
53
1150 665 485
250 163 88
200 158 43
50
40
10
4800 2800 2000 5440 4560 880
250 75
175
448 112 336
640 470 170
4300 1164 3136
536 224 312
3392 1520 1872
644 434 210
389 202 187
550 252 298
252 195 57
2048 640 1408 464 240 224
550 129 422
184 144 40
255 154 101
69
47
22
990 648 342
596 364 232
400 339 61
118 82
36
810 447 343
725 367 358
102 50
52
258 170 88
172 78
93,5 505 170 335
2600 291 2309 692 250 445
1210 470 740
304 91
213
714 187 527
320 130 190
30
M JA L MAMA!S Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Musayev, Atamov, Cabbarov., The Vegetation and Productivity o f The Caspian’s Shores In Azerbaijan
Tablo 1’dendegörüldüğügibi mutlaknemoranı 2500-3000graralığındadeğişmektedir.
Myriophyllum
verticillatum, M. spicatum , Nymphaea alba , Alisma plantago-aquatica, Polygonum amphibium
natans, Potomogeton densus., P. pectinatus., P. crispus., Najas minor, N.marina., Ceratophpyllum
submersum., C. demersum, Bolboschoeanus maritimus, Sparganium neclectum, Zannichelia major, Trapa
hyrcana
var.
taksonlannınsafveyakarışıkşekildeoluşturmuşolduklarıbirliklerdemutlaknemoranı 2500­
3000gr. arasındadeyişmektedir.
Mutlak nemoranı 2500 gramile 1500 gramarasında deyişenbirliklere; Salicorno europea-Kalidietum
caspicae (2309 gr), Astragaletum hyrcanusae (2000 gr), Juncusetum littoralisae ( 1650 gr), Salsoletum
dendroidesae(1408 gr) örnek verilebilir. Bu birliklerde m
utlak nem oranı 2309-1408 gr aralığında
değişmektedir(Tablo 1).
Mutlaknemoranı ortaderecede (100-1000 gr aralığında) olanassosasayonlara: Petrosimonio brachiataeSalicornietum europea, Junco maritimus-Limonietum meyeriae, Juncusetum littoraliae,. Salicornietum
europae, Salsoletum dendroidesae, Artemisietum fragransae, Thyphetum angustifoliae, Ephedretum
distachiae, Kalidietum caspicae, Carexetum divisae, Phragmetum communisae, Ephedro distachyiiCalamagrostisetum giganteumae
örnekverilebilir.
Hazar Denizinin Azerbaycan’a bağlı kıyı kesimlerinin nemoranı en düşük olanbirliklere (50-100 gr);
Junco maritimus-Glycyrrhizetum glabrae, Astragaletum hyrcanusae, Alhagetum pseudoalhagae, Alhago
pseudoalhagii-Hordetum leporiniae, Atropiseto gigantei-Halocnemetum strobilaseumae’y i örnek
verebiliriz.
Juncusetum littoralisae (5140 gr), Junco maritimii-Phragmetum communisae (3920 gr), Phragmetum
communisae (3136 gr), Thyphetum angustifoliae (1872gr) birliklerinde toprakaltı fitokütlede m
utlaknem
oranı 1872-5140 gr aralığında değişmektedir. Bunların dışında kalan diğer birliklerde topraküstü ve
toprakaltı fitokütledeki nemoranı dahadüşükorandadır(22-880graralığında).
Tablo 1’de görüldüğü gibi bazı birliklerde topraküstüfitokütlede mutlak nemoranı Salicorno europaeKalidietum caspicae (2309 gr), Astragaletum hyrcanusae (2000 gr), Juncetum littoralisii(1650 gr),
Salsoletum dendroidesae (1408 gr) toprakaltı fitokütledeki nemoranına göre dahayüksek olduğu halde,
bazı birliklerde; Juncusetum littoralisae (5140 gr), Junco littoralisii-Phragmetum communisae (3920 gr),
Phragmetum communisae (3136 gr), Thyphetum angustifoliae (1872 gr) ise tamtersi görünm
ektedir.
Bazılarında ise topraküstü ve toprakaltı fitokütlede olan mutlak nemoranı birbirine yakın orandadır.
Örneğin, topraküstüvetoprakaltı mutlaknemoranı sırası ileJunco littoralisii-Glycyrrhizetum glabrae için
94,8-53,2 gr, Astragaletum hyrcanusae 42,5-10 gr, Carexetum divisae 210-187 gr, Salsoletum
dendroidesae 342-232gr,Alhagetum pseudoalhagae 61-36gr, Tamarixetum ramasissimusae 343-358gr.
SONUÇ
Hazar Denizi’nin Azerbaycan’a ait sahil kesimlerinde çöl, yarı-çöl, su-bataklık, orman, Kumul-çöl,
halofitiknemli-çöl, halofitikçoraklaşmış-çöl, efemerli subtropikyarı-çöl, subtropikyarı-çöl, sulubataklık
ve bataklaşmış çimen, kıyı olmak üzere 48 bitki birliği ve 57 alt birliğe rastlanmıştır. Azerbaycan’ın
AbşeronyarımadasındanAstarayakadar olangüneykesimleri kapsayansahilinde 34familya, 93cinse ait
olan134bitki türünerastlanmıştır.
Türsayısı bakımındanenzenginolanfamilyalar: Poaceae (26tür), Chenopodiaceae (24),Asteraceae (13),
Cyperaceae (12), ve Fabaceae (5 tür)‘dir. Bu fam
ilyalara ait olan taksonlar toplamtakson sayısının
%54’ünü(75tür) oluşturur. Araştırmaalanındarastlanılmış cinslerden: Salsola (7tür) veArtemisia (4tür)
tür sayısı bakımından daha zengin, Zerna, Juncus, Carex, Medicago (her biri 2 türle temsil olunur),
Lepidium, Centaurea, Aegilops, Limonium, Suaeda, Chondrilla (herbiri 1türle tem
sil olunur) gibi cinsler
ise tür sayısı daha az olmalarına ragmenpopulasyonyoğunlukları dahafazladır. Bu cinslere ait olantür
sayısı toplamtür sayısının%30,3’ünü(37tür) oluşturmuştur.
31
M JA L MANAS Journal o f Agriculture and Life Sciences
http://joumals.manas.edu.kg © 2014
Musayev, Atamov, Cabbarov., The Vegetation and Productivity o f The Caspian’s Shores In Azerbaijan
Araştırılanalanınbitki örtüsünderastlananbirliklerintopraküstükuruotverimliliği 25cm2alanda40-6400
gr, toprakaltı fitokütleise50-4560gr (40cmderinlikte) arasındadeğişmektedir.
Junco littoralii-Phragmetum communisae ,Astragalo hyrcanusae-Juncusetum littoralisae, Phragmetum
communisae, Thyphetum ancustifoliae’mn
verimliliği dahafazlaolup25cm2’detoprakaltı kısımları 1164­
4560 gr, topraküstü kısımları ise 470-640 gr aralığında değişmektedir. Diğer birliklerin topraküstü
kısımlarının verimliliği ise 25 cm2’de 50-470 gr, toprakaltı kısımları ise 40-1164 gr aralığında
değişmektedir. Bubirliklerdemutlaknemoranı topraküstüfitokütlede60-1650gr, toprakaltı fitokütledeise
10-5140gr arasındadeğişmektedir. Mutlakneminyüksekorandaolması bubirliklerinsulubir ortamlarda
gelişmesindenkaynaklanmaktadır.
Toprakaltı fitokütledeki mutlak nem oranı Astragaletum hyrcanusae, Artemisietum szovitsianae,
Alhagetum pseudoalhagae, Ephedretum distachyae, Junco marittimusae Glychyrrizetum glabrae, Alhago
pseudoalhagii-Hordetum leporiniae ’de daha düşük olup 10-88 gr arasında; Juncusetum littoralisae,
Phragmetum communisae, Thyphetum angustifoliae’de 1872-5140gr, diğerlerinde ise 187-445gr arasında
değişmektedir. Alhagetum pseudoalhagae , Alhago pseudoalhagii-Hordetum leporiniae, Junco
marittimusii-Glycyrrhizetum glabrae’de m
utlaknem52-94,8 gr arasındadeğiştiği halde, diğer birliklerde
buoran101-2309gr aralığındadeğişmektedir. Toprakaltı fitokütle mutlaknemoranı açısındantopraküstü
fitokütleilekıyaslandığındadahadüşükolduğugörülür. Bununnedeni isebubitkilerinsuluveyayeterince
nemli bir ortamda yaşamasına bağlı olarak, kök sisteminin, arid bir ortamda gelişenbitkilerden farklı
olarak, fazlagelişmemesinebaglıdır.
KAYNAKLAR
[1] AzerbaycanFlorasi (1950-1961), ANAz.SSR, Baku, Vol.1-8
[2] Rabotnov, T. A. (1983) Fitosenologiya. Moskov: İzd.-voMosk. Un.-ta, 296pp.
[3] Yaroşenko, P. D. (1961) Geobotanika(osnovnıeponyatiya, napravleniyai metodı). İzd.-voAkademii
naukSSSR, M.-L., 449pp.
[4] Prilipko, L.İ. (1970) RastitelnıypokrovAzerbaydjana. Baku, 168pp.
[5] Haciyev, V.C. (1992) Azerbaycanınbitki örtüsüharitası. M.1:600000.
[6] Grossheym,A.A. ( 1948) RastitelnıypokrovKavkaza.İzd. MOİP,
[7] Şaksuvarov, R.T. (1994) Psammofitnaya rastitelnost pribrejnoy polosı Kaspiyskogo morya (SamurDivicinskayaallyuvialno-morskaya) nizmennost. Avtoref. Dissert. kand. biol. nauk. Baku, 33pp.
[8] Prilipko, L.I., Agacanov, S. D.(1972) Rastitelnost Azerbaydjanskogo poberejiya Kaspiya i prognozı
yeyizmeneniyavı svyazi sı dinamikoyurovnya morya. Vı kn.: RastitelnıyBogatstvo Azerbaydjana.
Baku, Elm, 35-52pp.
[9] Prilipko, L.I. (1965) Kartarastitelnosti AzerbaydjanskoySSR(sovremennıypokrov), M1:1000000.,
Moskov
[10] Haciyev, V. C., Mailov, A. I., Atamov, V. V., &Ponomarenko, L. I. (1991) Zapası Phragmites
australis(Cav.)Trin.ex Steud. I Arundo donax L. vı Azerbaydjane. J. Rastitelnıy resursı, v.3,
Leningrad, pp. 42-46
[11]Titlyanova, A. A., (1988) Biologiçeskaya produktivnost travyanıch ekosistem. Geografiçeskie
zakonomernosti i ekologiçeskieosobennosti. Novosibirski, Nauka, 134pp.
[12]Mailov, A.I. (1989) Natural resources of Azerbaijandeserts. J.of Problems of Desert Development.
Ashabad, N.5, pp. 63-65
[13]Aliyev, S. J. (1966) Sezonnaya dinamika travastoya (nadzemnıch i podzemnıch çastey) zimnıch
pastbiş Şirvani-(yestestvennıchi seyannıch). Avtoref. Dissert. kand. biol. nauk. Baku, 41pp.
[14]Beydeman, I. N. (1954) Razvitii rastitelnosti i poçvı vı nizmennosti VostoçnogoZakavkazya. Vı kn:
Voprosı uluçşeniyakormovoybazı vı stepnoy, polupustınnoyi pustınnoyzonakSSSR. M.-L., pp.123186
[15]Grosshaym, A. A. (1945) Nekotorıe botaniçeskie problemı vı Azerbaydjane. Izvestiya ANAzerb.
SSR, N-6, Baku, pp.109-121
[16]Glushko, T. A. (1989) Influence of the Caspianseawart level onthe formationof landscape onthe
north-easterncoast. J.ofProblemsofDesertDevelopment, Ashkhabad, N. 5, pp. 25-32.
32
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Musayev, Atamov, Cabbarov., The Vegetation and Productivity o f The Caspian’s Shores In Azerbaijan
[17] Aliev, R. A. (1954) Gengizovıepolupustıni Azerbaydjanai ichkormovoeznaçenie. Baku, 128pp.
[18] Prilipkpo, L I., Aliyev, R.A., Bogdanov, M. P. &Mailov, A.I. (1961) Perspektivı ispolzovaniya
prirodnıch zapasov Trostnika i Arundo trostnikovogo dlya bumajno-selluloznoy promışlennosti vı
Azerbaydjane. J. İzvestiyaANAzerb.SSR(seriyabiol. i med. nauk) Baku: N7, pp.31-43, 1961
[19]Atamov V.V., (2008) Phytosociological Characteristics the Vegetation of the Caspian's Shores in
Azerbaijan. International Journal ofBotany, 4: pp.1-13
[20]Musayev, M.K, Atamov, V. V. (2013) Useful plantsofwater-marshfloraof Azerbaijan. Biological
DiversityandConservation, Vol.6, N. 2, pp.150-180
[21]Seçmen, Ö. Leblebici, E. (1997) Türkiye sulakalanbitkileri ve bitki örtüsü. Ege Üniversitesi
basımevi, Bornova, İzmir, 404pp.
33
M JA L MANAS Journal o f Agriculture and Life Sciences
http://journals.manas.edu.kg © 2014
Author
Document
Category
Uncategorized
Views
0
File Size
892 KB
Tags
1/--pages
Report inappropriate content