close

Enter

Log in using OpenID

2 - Mašinski fakultet u Zenici

embedDownload
Ma{instvo 2(7), 105 – 116, (2003)
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
ANALIZA MOGU]NOSTI POVE]ANJA NOSIVOSTI
REDUKTORA PRIMJENOM OPTIMALNOG IZBORA
OP]IH PARAMETARA
Mr. Mirsad D`aferovi}1), Prof. dr. Du{an Vukojevi}2), Mr. Nedeljko Vukojevi}2),
1)Op}ina Zavidovi}i, 2) Ma{inski fakultet u Zenici, Fakultetska br. 1, 72 000 Zenica
REZIME:
U cilju iznala`enja i izbora optimalnih parova zup~anika potrebno je provjeriti uticaj svih faktora koji
odre|uju nosivost jednog zup~astog para. Za postupak optimalnog izbora osnovnih parametara zup~astog
para va`ni su samo osnovni parametri i faktori zubaca koji su u funkciji istih, a da se optere}enje, {irina
zup~anika, faktori optere}enja i materijala mogu u postupku optimiranja izostaviti jer su isti.
Postupkom optimiranja rezultata izbora osnovnih parametara metodom selekcije prema utvr|enom cilju,
mogu}e je dobiti par zup~anika sa osnovnim parametrima koji }e imati i najpovoljnija naponska
stanja ili neka druga unaprijed definisana stanja. Provjera navedenih ~injenica provodi se prora~unom
nosivosti zup~astih parova postoje}eg reduktora i zup~astog para reduktora definisanog metodom
optimiranja osnovnih parametara pomo}u adekvatnih ra~unarskih programa.
Klju~ne rije~i: reduktori, optimizacija, nosivost
ANALYSIS OF THE POTENTIALS FOR INCREASE OF THE
REDUCTION GEAR BEARING CAPACITY BY USE OF
OPTIMAL SELECTION OF GENERAL PARAMETARS
Mirsad D`aferovi}1), MSc. Mech.Eng.; Du{an Vukojevi}2), PhD professor; Nedeljko
Vukojevi}2), MSc. Mech. Eng, Senior asisstant 1)Municipality of Zavidovi}i, 2)Faculty
of Mechanical Engineering in Zenica, Fakultetska br. 1. 72000 Zenica, B&H
SUMMARY:
In order to find optimal pairs of gears it is necessary to check the impact of all the factors which
determine bearing capacity of a pair of gears. Basic parameters and factors of dentils are important for
procedure of optimal selection of basic parameters of pair of gears, while load, width of gear, load and
material factors can be avoided in the process of optimisation because they have identical values.
Process of optimisation of choice of basic parameter results by method of selection according to the
objective set, it is possible to get a pair of gears with basic parameters which will also have
optimal stress notation of other pre-determined states. The above facts can be tested by computing
bearing capacity of gear pairs of the existing reduction gears and reduction gear dentated pair
defined by method of optimisation of basic parameters, using suitable software.
Key words: reduction gears, optimization, bearing capacity
- 105 -
Ma{instvo 2(7), 105 – 116, (2003)
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
1. UVOD
1. INTRODUCTION
U smislu pojeftinjenja i podizanja kvaliteta proizvoda
nametnula se ideja standardizacije i unifikacije i
grupne tehnologije. U sve o{trijoj konkurenciji
eminentnih svjetskih proizvo|a~a opreme, a ovdje
je konkretno rije~ o ma{inskoj opremi, jedan od
bitnih faktora je svakako ujedna~avanje kvaliteta na
gotovim proizvodima, koji imaju karakter standarda.
Upravo na ovoj ideji je, kroz jedan kriti~ki osvrt i
analizu postoje}eg reduktora "Krivaja", razvijen je
novi
kompatibilni mati~ni model u zadatim
granicama, primjenom odgovaraju}e ra~unarske
podr{ke.
In order to achieve lower price and better quality
of products, the idea of standardisation and
unification, as well as group technology has been
imposed. Competition is becoming a more and
more serious issue for producers worldwide, and
here it is about machine equipment, where one of
the main factors is unification of quality of final
products as well as standardisation.
This very idea, through critical view and analysis of
the existing “Krivaja” reduction gears, was a
starting point for development of a new compatible
basic model with determined limits, using suitable
software support.
2.
2.
“Krivaja” reduction gear, in terms of construction,
represent one of the possible solutions for enginereduction gears for general industrial use (Figure 1).
All the research, analyses, critics and conclusions
necessary for determination of starting points for
design of a new family of reduction gears are based
on the existing construction MRZ-250, from the
“Krivaja” reduction gear family consisting of three-level
construction reduction gears, the same axial distance
for all three pairs of gears with axial distance from
amin = 81 to amax = 184.6 mm, Figure 1.
Transmission ration for the “Krivaja” family reduction
gears are in the range from imin = 8.0 to imax = 63.
a
Reduktor »Krivaja« konstrukcijski predstavlja jednu
od mogu}ih konstrukcija
motor-reduktora op{te
industrijske namjene (slika 1). Sva potrebna
istra`ivanja, analize, kriti~ke ocjene i zaklju~ke
potrebne za utvr|ivanje polaznih osnova za projekat
nove familije reduktora se zasnivaju i polaze od
postoje}e konstrukcije MRZ-250 iz familije reduktora
"Krivaja" koju ~ine reduktori trostepene konstrukcije,
istih osnih razmaka za sva tri para zup~anika sa
do
rasponom
osnih
razmaka
od
amin=81
amax=184,6 mm, slika1. Prenosni odnosi familije
reduktora "Krivaja" su u rasponu od imin=8,0 do
imax=63.
CRITICAL ANALYSIS OF THE
EXISTING REDUCTION GEARS
CONSTRUCTION
Slika 1. Vanjski izgled motor-reduktora "Krivaja"
Figure 1. External view of the “Krivaja” engine-reduction gear
- 106 -
a
KRITI^KA ANALIZA POSTOJE]E
KONSTRUKCIJE REDUKTORA
Ma{instvo 2(7), 105 – 116, (2003)
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
Ne
analiziraju}i
detaljno samo konstrukcijsko
rje{enje postoje}eg reduktora mogu se na bazi
ozubljenja
zup~astih
parova,
kao
osnovnih
elemenata sklopa, izvesti sljede}i zaklju~ci:
Without analysing the construction solution of the
existing reduction gear, but based on denticulation
of pairs of gears, being the basic elements of
assembly, the following can be concluded:
- rje{enje sa istim osnim razmakom »a« i istim
parametrima ozubljenja mn i β ima sa stanovi{ta
izrade, glodala i kontrole nesumnjive prednosti,
- the solution which includes the same axial
distance «a» and the same denticulation parametars
mn i β has indisputable advantages from the point
of view of production, lathe and control;
- veliki broj parova zup~anika za ostvarivanje
razli~itih prenosnih odnosa je neracionalan i
nepotreban, jer zahtjeva veliki broj pojedina~nih
elemenata reduktora,
- nije mogu}e primjeniti princip ugradnje istih
dijelova (zup~astih parova) u vi{e razli~itih veli~ina
familije reduktora, jer svaka veli~ina reduktora ima
razli~it osni razmak,
- ve}i utro{ak materijala (s obzirom da te`ina
raste sa kvadratom porasta pre~nika) jer su ve}i
pre~nici zup~anika prvog i drugog para,
- sa uglom nagiba zuba β=8° nisu iskori{tene
prednosti kosog ozubljenja (β=10÷20°),
- zubi nisu korigovani, te nisu iskori{tene
prednosti korigovanih profila zuba u vezi sa
pove}anjem nosivosti korijena zuba, izjedna~avanja
klizanja bokova zuba u zahvatu itd.,
- osni razmaci i prenosni odnosi nisu birani iz
reda
standardnih
brojeva
pa
je
isklju~ena
mogu}nost standardizacije i tipizacije veli~ina.
Po{to su navedene karakteristike za ostale iste
uslove: optere}enje, materijal i kvalitet ozubljenja, u
direktnoj funkciji od op{tih parametara ozubljenja
(mn, β, z1, z2, x1, x2) pretpostavlja se da nije
ostvarena maksimalna mogu}a nosivost s obzirom
na :
osnovne parametre,
stepen prekrivanja,
klizanje bokova zuba i
raspored parcijalnih prenosnih odnosa po
parovima.
Navedene pretpostavke treba istra`iti kroz prora~un
i uporednu analizu tipskih trostepenih reduktora,
stare i nove izvedbe, primjenom metode optimalnog
izbora op{tih parametara (programskih paketa) pod
istim uslovima.
- having numerous pairs of gears for realising
various transmission ration is not economic and
necessary because it requires a great number of
reduction gears individual elements
- it is not possible to realise the principle of
assembly of identical parts (dentated pairs) in
several different size families of reduction gears
because each size has different axial distance
- bigger consumption of materials (taking into
account that weight grows with square of diameter
growth) because diameters of the first and second
pair are bigger
- the dentil angle of inclination β = 8° does not
exploit the advantages of angled denticulation
(β=10-20°)
- dentils are not corrected, so the advantages of
corrected dentil sections are not exploited in terms
of bearing capacity increase of dentil root,
equalisation of dentil sides in rotation etc.
- axial distances and transmission ratios have not
been
chosen
from
standard
numbers,
the
possibility of standardisation and unification of sizes
is, therefore, excluded
Since the listed characteristics for the rest of
conditions:
load,
material
and
quality
of
denticulation, in direct connection of the general
parameters of denticulation (mn, β, z1, z2, x1, x2), it
is supposed that the maximum possible load
capacity has not been achieved, with regard to:
basic parameters
degree of covering
slide of dentil backs
arrangement of partial transmission ratios
by pairs
The above characteristics should be analysed through
computation and parallel analysis of typical three-level
reduction gears of old and new production, applying
the method of optimal selection of general parameters
(softwers) under the same conditions.
- 107 -
Ma{instvo 2(7), 105 – 116, (2003)
3.
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
OSNOVNI PODACI I POSTAVKE ZA
NOVU IZVEDBU REDUKTORA
Da bi se pristupilo projektovanju nove familije
reduktora pove}ane nosivosti potrebno je postaviti
osnove projekta nove familije reduktora i to:
okvirne veli~ine familije, osni razmaci
parova zup~anika i prenosni odnosi
koncepcija konstrukcije reduktora,
prora~un i konstrukcija mati~nog projekta,
standardni brojevi i
zakon modela.
Na slici 2 prikazan je trostepeni reduktor koji
predstavlja usvojenu novu koncepciju reduktora,
osnih razmaka a1, a2, a3 koji zatvaraju trougao.
Ulazna osa motora i izlaznog vratila reduktora su u
istoj ravnini (ose se poklapaju).
3. GENERAL DATA AND POSTULATES
FOR NEW CONSTRUCTION OF
REDUCTION GEARS
In order to start designing a new family of
reduction gears of increased bearing capacity, it is
necessary to determine the design basics, such
as:
• nominal sizes of the family, axial distance of
gear pairs and transmission rations,
• the concept of reduction gear construction,
• computation and construction of the basic design,
• standard numbers
• model rule.
Slika 2. Osni razmaci parova zup~anika
Figure 2. Gear pairs axial distances
Ovakva konstrukcija omogu}ava bolje iskori{tenje
prostora,
tipizaciju
dijelova,
princip
grupne
tehnologije i ugradnju istih dijelova u vi{e razli~itih
reduktora.
Vrijednosti
osnih razmaka parova zup~anika i
prenosnih odnosa reduktora nove izvedbe se biraju
iz reda standardnih brojeva R10 za sljede}e zadate
grani~ne veli~ine, koje pokrivaju pro{ireni raspon
postoje}eg proizvodnog programa:
osni razmaci parova zup~anika: amin=80 mm i
amax=250 mm,
prenosni odnosi reduktora: inmin=8 i inmax=63 i
faktor porasta standardnih brojeva za R10:
ϕ=1,25.
A construction like this one enables better use of
space, unification of parts, principle of group
technology and assembly of identical parts in
different reduction gears.
The values of gear pairs axial distances and
transmission ratios for reduction gears of new
construction shall be selected from standard
numbers R10 for the following determined limit
values, which cover extended range of the existing
production program capacity:
axial distances of gear pairs. amin = 80 mm
and amax = 250 mm,
transmission rations of reduction gears: imin =
8 and imax = 63 and
factor of standard numbers growth R10; ϕ=1.25
- 108 -
Ma{instvo 2(7), 105 – 116, (2003)
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
Nazivne veli~ine reduktora nove izvedbe su
odre|ene
veli~inom
osnog
razmaka
«a3»,
posljednjeg spregnutog para, ~ije veli~ine tako|e
odgovaraju grani~nim veli~inama osnih razmaka
a3max=250
parova zup~anika: a3min=80 mm i
mm. Primjenom faktora porasta: ϕ=1,25 iz reda
standardnih brojeva R10 dobiju se karakteristi~ne
veli~ine prikazane u tabelama 1, 2 i 3.
Nominal values of the new construction reduction
gears are determined by the size of axial distance
«a3», last composed pair, whose values also comply
with the limit values of gear pairs axial distances:
a3min = 80 mm and a3max = 250 mm. Using the
growth factor: ϕ = 1.25, selected from the standard
numbers R10, the characteristic values will be given,
as shown in the tables 1, 2 and 3.
Tabela 1. Nazivne veli~ine reduktora
Table 1. Nominal values of reduction gears
Osni razmaci a3 (mm)
Axial distance a3 (mm)
80
100
125
160
200
250
Tabela 2. Parcijalni osni razmaci
Table 2. Partial axial distances
Nazivna vel.reduktora
Nominal value of reduction gear
80
100
125
160
200
250
a1 (mm)
a2 (mm)
a3 (mm)
80
80
80
80
80
100
80
100
125
100
125
160
125
160
200
160
200
250
Tabela 3. Nazivni prenosni odnosi reduktora » in «
Table 3. Nominal transmission ratios for reduction gears «in»
Prenosni odnosi*
Transmision ratio*
8
10
16
20
*Prenosni odnosi pojedinih parova zup~anika za
nazivne prenosne odnose reduktora su odre|eni
analizom izbalansirane nosivosti [6].
4. ANALIZA UTICAJNIH FAKTORA NA
NOSIVOST PAROVA ZUP^ANIKA
U cilju iznala`enja i izbora optimalnih parova
zup~anika za novi model reduktora , potrebno je
prethodno provjeriti analizu svih faktora koji
odre|uju nosivost jednog zup~astog para. Globalno
posmatrano svaki par zup~anika je geometrijski
odre|en
njegovim
osnim
razmakom
»a«
i
prenosnim odnosom »i«. Kod projektovanja familije
zup~astih parova ili reduktora radi se sa nazivnim
prenosnim odnosom » in « koji se mo`e razlikovati
od stvarnog » i « za veli~inu odstupanja » ∆i «
koja ne treba biti ve}a od dozvoljenih grani~nih
i ∆imin. Ta~ne dimenzije
odstupanja ∆imax
zup~anika u paru su odre|ene izborom njihovih
osnovnih parametara.
25
31,5
40
50
63
*Some gear pair transmission ratios for the reduction
gears nominal transmission ratios have been determined
by analysing the balanced load capacity [6].
4. ANALYSIS OF THE FACTORS
INFLUENCING THE GEAR PAIRS
LOAD CAPACITY
In order to determine and select the optimal gear
pairs for the new model of reduction gears, it is
necessary to check first the analysis of all the
factors which determine a dentated pair bearing
capacity. Generally speaking, each pair of gears is
geometrically determined by its axial distance «a»
and transmission ratio «i». When designing a
dentated pairs family or reduction gears, it is
important to differentiate between the nominal
transmission ration « in », which can differ from the
actual « i «, for the deviation value «∆i», which
should not be bigger than the allowed limit
deviation ∆imax, ∆imin. The precise dimensions of
gears in a pair have been determined by selection
of their basic parameters.
- 109 -
Ma{instvo 2(7), 105 – 116, (2003)
Odstupanje
odnosa:
stvarnog
∆i = 1 −
od
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
nazivnog
prenosnog
in
⋅ 100[%] ......................(1)
i
∆i = 1 −
Osni razmak:
a=
Deviation of the accurate from nominal transmission
ratio:
in
⋅ 100[%] ......................(1)
i
Axial distance:
mn
[(z1 + z 2 ) + 2 cos β (x1 + x2 )] .....(2)
2 cos β
a=
Slijedi zaklju~ak da se zup~asti par definisan osnim
razmakom
»a«
i
prenosnim
odnosom
»in« kinematski
mo`e
ostvariti
sa
razli~itim
osnovnim parametrima (mn, β, z1, z2, x1, x2) u
okviru prethodno zadatih grani~nih veli~ina modula
mn, odstupanja prenosnog odnosa ∆imax i ∆imin,
ugla nagiba bo~ne linije zuba βmax i βmin te
faktora pomjeranja profila xmax i xmin, a koje moraju
biti u korelacijskoj ovisnosti. Promjenom jedne ili
vi{e od ovih osnovnih veli~ina moraju se skladno
mijenjati i ostale. Tabela 4 daje primjer jednog
para zup~anika osnog razmaka a=140 i in=1,25 sa
dozvoljenim odstupanjem ∆i=3%.
mn
[(z1 + z 2 ) + 2 cos β (x1 + x2 )] .....(2)
2 cos β
It can be concluded that the dentated pair defined
by axial distance «a» and transmission ration «in»
kinetically can be realised with different basic
parameters (mn, β, z1, z2, x1, x2), within the
predetermined
limit
values
of
module
mn,
transmission ratio, deviations ∆imax and ∆imin, angle
of dentil side line inclination βmax and βmin, as well
as factors of section translation
xmax and xmin,
which must be in correlation. Changing one or
more of these basic parameters, others must be
changed accordingly. Table 4 gives an example of
one gear pair, with axial distance of a = 140 and
in = 1.25, with allowed deviation ∆i = 3%.
Tabela 4. Mogu}e grupe osnovnih parametara za jedan par zup~anika i za osni razmak a=140 mm i
prenosni odnos iu=1,25
Table 4. Possible groups of basic parameters for one gear pair, for the axial distance a=140 mm and
transmission ration iu = 1.25
Rb.
No.
1
2
3
4
5
6
7
8
9
10
BROJ ZUBA
No of Dentils
mn
x1
β
P
Z1
Z2
[mm]
[-]
[o]
[kW]
30
30
30
30
31
35
35
40
40
40
38
38
37
38
38
43
43
49
50
51
4
4
4
4
4
3,5
3,5
3
3
3
0,06
0,09
0,33
0,09
0,14
0,07
0,10
0,53
0,27
0,03
13
13
13
13
13
12
12
13
13
13
133
132
128
132
122
110
109
75
78
83
Ovako definisani zup~asti parovi imaju, zbog uticaja
svakog od osnovnih parametara direktno svojom
veli~inom ili faktorima koji su u funkciji tih
parametara, razli~ite izra~unate snage, te da je
postupak pravilnog izbora osnovnih parametara
veoma bitan za njihovu nosivost.
The dentated pairs defined in such a manner, due to
the influence of each basic parameter (directly by its
value or by factors which are in function of those
parameters) have different computed power. The
process of correct selection of basic parameters is
also very important for their bearing capacity.
- 110 -
Ma{instvo 2(7), 105 – 116, (2003)
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
Selekcijom dobivenih rezultata od vi{e mogu}ih
osnovnih parametara zup~astog para mogu}e je za
pretpostavljeni
»CILJ«
dobiti
najpogodniji
»REZULTAT«.
Za
najve}i
broj
projektovanih
zup~astih
parova
industrijske
namjene
kao
prioritetan »CILJ« se postavlja njihova sigurnost na
nosivost korijena i boka zuba uz zadovoljenje i
ostalih karakteristi~nih veli~ina.
Selecting the results from several different basic
parameters of dentated pair, it is possible, for a
set «OBJECTIVE», to get the most suitable
«RESULT». For the majority of designed dentated
pairs for industrial use, the priority «OBJECTIVE» is
safety in relation to the dentil base and side
bearing capacity as well as fulfilling
other
characteristic values.
4.1. Postupak optimalnog izbora
osnovnih parametara
4.1. Procedure of optimal selection of
basic parametars
Za postupak optimalnog izbora osnovnih parametara
para zup~anika uzima se za pretpostavljeni »CILJ«
nosivost korjena i boka zupca para zup~anika
odre|enog osnim razmakom »a« i nazivnim
prenosnim odnosom »in« za jednako optere}enje,
uslove rada, materijal i kvalitet ozubljenja koje je
gotovo isklju~ivo u funkciji op{tih parametara (mn,
β, z1, z2, x1, x2), {to se zasniva na izrazima za
napone [2]:
For the purposes of optimal selection of basic
parameters, the «OBJECTIVE» set is the bearing
capacity of dentil base and the dentated pair side,
determined by axial distance «a» and nominal
transmission ration «in» for equal load, working
conditions, material and quality of dentation that is
almost completely in the function of general
parameters (mn, β, z1, z2, x1, x2). It is based on
the following stress expressions [2]:
•
-
radni napon korjena zupca
σF =
•
•
•
Ft
⋅ K A ⋅ K V ⋅ K Fα ⋅ K Fβ ⋅ YFa ⋅ YSa ⋅ Yβ ⋅ Yε ≤ σ FP ................................(3)
b ⋅ mn
dozvoljeni napon korjena zupca,
-
σ FP = σ F lim ⋅ YR ⋅ Yx ⋅ YN / S F min ...........(4)
radni napon na boku zupca,
σ H = Z E ⋅ Z H ⋅ Z β ⋅ Zε ⋅
•
Dentil base working stress:
-
Dentil base allowed stess:
σ FP = σ F lim ⋅ YR ⋅ Yx ⋅ YN / S F min ……………………(4)
Working stress on dentil side:
Ft i + 1
⋅
⋅ K A ⋅ K V ⋅ K Hα ⋅ K Hβ ≤ σ HP .........................(5)
b ⋅ d1 i
dozvoljeni napon na boku zupca.
-
Allowed stress on dentil side:
σ HP = σ H lim ⋅ Z L ⋅ Z R ⋅ Z V ⋅ Z W ⋅ Z X ⋅ Z N / S H min ..............................(6)
Iz navedenog slijedi zaklju~ak da su za postupak
optimalnog izbora osnovnih parametara zup~astog
para va`ni samo osnovni geometrijski parametri i
faktori zubaca: YFa, YSa, Yβ, Yε, ZH, Zβ, Zε koji su u
funkciji istih, a da se optere}enje Ft, {irina
zup~anika b, faktori optere}enja i uslova rada (KA,
KV, KFα, KFβ, KHα, KHβ) te materijala i kvaliteta
ozubljenja (YR, YX, YN, ZL, ZR, ZV, ZW, ZX, ZN, ZE)
mogu u postupku optimiranja izostaviti jer su isti.
Izostavljanjem
ovih
veli~ina
u
izrazima
za
odre|ivanje napona korijena i boka zuba dobijamo
vrijednosti koje mo`emo ozna~iti kao karakteristike
tih napona:
dentil factors: YFa, YSa, Yβ, Yε, ZH, Zβ, Zε are
important for the procedure of optimal selection of
basic parameters of dentated pair, and they are in
function of the above. The load Ft, width of dentil
b, factors of load and working conditions (KA, KV,
KFα, KFβ, KHα, KHβ), as well as material and
dentation quality (YR, YX, YN, ZL, ZR, ZV, ZW, ZX,
ZN, Z) can be avoided in the process of
optimisation, because they have the same values.
Omitting these parameters in the expressions for
computing dentil base and side stress, we get
values which can be referred to as characteristics
of those stresses:
- 111 -
Ma{instvo 2(7), 105 – 116, (2003)
•
•
za korjen zuba:
kσ F = YFa ⋅ YSa ⋅ Yβ ⋅ Yε ⋅
•
•
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
for dentil base:
-
1
mn
kσ F = YFa ⋅ YSa ⋅ Yβ ⋅ Yε ⋅
...........(7)
za bok zuba:
z
 z
kσ H = Z H ⋅ Z β ⋅ Z ε ⋅  2 + 1 ⋅ 1
 z1
 z2
1
mn
……………(7)
for dentil side:
-
z
 z
kσ H = Z H ⋅ Z β ⋅ Z ε ⋅  2 + 1 ⋅ 1
 z1
 z2
.............(8)
Ovako dobijene veli~ine se uzimaju za dalji
postupak optimiranja izbora osnovnih parametara, a
na bazi pore|enja odnosno selekcije dobijenih
rezultata karakteristike napona za sve kinematski
ostvarljive zup~aste parove osnog razmaka »a« i
definisane
osnovnim
prenosnog
odnosa
»in«
parametrima (mn, β, z1, z2, x1, x2), za prethodno
zadate grani~ne veli~ine:
Max. odstupanje zadatog prenosnog odnosa
Maximum deviation of determined transmission ratio
Min. odstupanje zadatog prenosnog odnosa
Minimum deviation of determined transmission ratio
Max. ugao nagiba bo~ne linije
Maximum angle of side line inclination
Min. ugao nagiba bo~ne linije
Minimum angle of side line inclination
Faktor {irine zuba
Dentil width factor
Max .faktor modula
Maximum modul factor
Min. faktor modula
Minimum modul factor
Min. broj zuba zup~anika
Minimum number of gear dentils
Stepen prekrivanja bo~ne linije
Rate of covering side line
Stepen prekrivanja profila
Rate of section covering
Specifi~no klizanje bokova zuba
Specific slide of dentil sides
Max.faktor pomaka profila
Maximum factor of section translation
Min.faktor pomaka profila
Minimum factor of section translation
Selekcija rezultata se vr{i prema vrijednostima
karakteristike napona kσF i kσH (zavisno od
zadatog prioriteta) pri ~emu moraju biti zadovoljene
i prethodno zadate grani~ne veli~ine. Najmanja
dobivena vrijednost karakteristike napona odre|uje
«IZBOR» osnovnih parametara.
…………….…(8)
The computed values shall be used in further
procedure of optimisation selection of basic
parameters, based on comparison i.e. selection of
the computed results of the stress characteristics
for all the kinetically possible dentil pairs with axial
distance «a» and transmission ration «in» defined
by basic parameters (mn, β, z1, z2, x1, x2), for
predetermined limit values:
∆imax
(%)
∆imin
(%)
βmax
(°)
βmin
(°)
b/a
--
(b/mn)max
--
(b/mn)min
--
zmin
--
εβ
--
εα
--
ξmax
--
xmax
--
xmin
--
The results are selected according to the values of
stress characteristics kσF and kσH (depending of the
determined priority), provided that the limit values
have been predetermined and fulfilled. The lowest
value of the stress characteristics determines the
«SELECTION» of the basic parameters.
- 112 -
Ma{instvo 2(7), 105 – 116, (2003)
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
Prora~un se izvodi pomo}u programa «ZAROP» [7]
koji daje optimalan odnos osnovnih parametara
zup~anika za unaprijed odabranu funkciju bilo da
se radi o nosivosti, stepenu prekrivanja, klizanju
bokova zuba ili ta~nosti zadatog prenosnog odnosa
i funkcioni{e na bazi prethodno une{enih, zadatih
grani~nih veli~ina (min., max.) navedenih u
pregledu ulaznih podataka programa "ZAROP".
Computation is done by software «ZAROP» (7) which
gives optimal relation among basic dentil parameters
for the predetermined chosen function, whether it is
about bearing capacity, rate of covering, slide of
dentil sides or accuracy of the determined
transmission ratio and it functions based on previous
input of the determined limit values (min., max.) listed
in the software «ZAROP» review of input.
4.2 Osnovni parametri i nosivost
parova zup~anika
4.2. Basic parametars
capacity of gear pairs
Provjera
navedenih
zaklju~aka
se
prora~unom nosivosti zup~astih parova za:
a)
b)
provodi
and
bearing
The above conclusions can be tested by computation
of the gear pairs bearing capacity for the:
Zup~aste
parove
postoje}eg
reduktora
"Krivaja", tip MRZ-250. Pregled osnovnih
parametara prema tehni~koj dokumentaciji dat
je u tabeli 5.
Zup~aste parove novog reduktora tip MR-250,
definisani
metodom
optimiranja
osnovnih
parametara pomo}u programa "ZAROP" [7].
Pregled osnovnih parametara je dat u tabeli 6.
a)
b)
dentated pairs of the existing reduction gear
«Krivaja», type MRZ-250. The review of the
basic parameters, according to the technical
documentation is given in the Table 5.
dentated pairs of the new reduction gear,
type
MR-250,
defined
by
method
of
optimisation
of
basic
parameters
using
software «ZAROP» (7). The review of basic
parameters is given in the Table 6.
Tabela 5. Osnovni parametri reduktora tip MRZ-250
Table 5. Basic parameters of the reduction gear, type MRZ-250
Rb.-No
in*
a
b
mn
Z1
z2
β
x
x1
u
74
4,25
18
68
0
0
0
3,77
4,25
4,25
4,25
4,25
4,25
4,25
34
30
25
21
19
18
52
56
61
65
67
68
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1,52
1,86
2,44
3,09
3,52
3,77
d i%
PRVI STEPEN – FIRST RATE
1 do 10
4
184,6
DRUGI STEPEN – SECOND RATE
1
2
3
4
5
6 do 10
1,6
1,8
2,5
3,15
3,55
4
184,6
184,6
184,6
184,6
184,6
184,6
74
74
74
74
74
74
TRE]I STEPEN – THIRD RATE
1 do 5
6
7
8
9
10
1,4
1,8
2,0
2,8
3,55
4,0
184,6
184,6
184,6
184,6
184,6
184,6
74
74
74
74
74
74
4,25
4,25
4,25
4,25
4,25
4,25
36
31
27
23
19
17
50
55
59
63
67
69
* Uzeti su samo prenosni odnosi parova reduktora
MRZ-250 koji odgovaraju pribli`no vrijednostima iz
standardnog reda R10.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1,38
1,77
2,18
2,73
3,52
4,05
*The table shows only the transmission rations of
the MRZ-250 reduction gear pairs, which
approximately correspond to the values from
standard order R10.
- 113 -
Ma{instvo 2(7), 105 – 116, (2003)
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
Optimiranje osnovnih parametara zup~astih parova
postoje}eg reduktora tip MRZ-250, se izvodi
pomo}u programa "ZAROP" (Zahnradoptimirung) [7].
The basic parameters of dentated pairs of the
existing MRZ-250 reduction gear are optimised by
software «zarop» (Zahnradoptimirung) (7).
Tabela 6. Osnovni parametri novog reduktora tip MR-250
Table 6. Basic parameters of the new reduction gear, type MR-250
Rb.-No.
in
a
b
PRVI STEPEN – FIRST RATE
1 do 10 4
184,6
74
mn
z1
z2
β
x
x1
u
5
15
56
13
0,51
0,27
3,73
4,5
5
4,5
4
4
5
32
25
23
22
20
15
48
46
56
67
69
56
12
13
13
13
13
13
0,13
0,51
0,50
0,50
0,50
0,51
0,09
0,31
0,29
0,29
0,28
0,27
1,50
1,84
2,43
3,04
3,45
3,73
4,5
4,5
4,5
5
4
4
34
29
25
19
20
18
46
51
54
52
69
72
12
12
13
13
13
13
0,13
0,13
0,50
0,51
0,50
-0,03
0,10
0,08
0,31
0,29
0,28
0,22
1,38
1,75
2,16
2,73
3,45
4,00
d i%
DRUGI STEPEN – SECOND RATE
1
2
3
4
5
6 do 10
1,6
1,8
2,5
3,15
3,55
4
184,6
184,6
184,6
184,6
184,6
184,6
74
74
74
74
74
74
TRE]I STEPEN – THIRD RATE
1 do 5
6
7
8
9
10
1,4
1,8
2,0
2,8
3,55
4,0
184,6
184,6
184,6
184,6
184,6
184,6
74
74
74
74
74
74
Analizom tabele 5 i tabele 6, mogu}e je uo~iti da
su veli~ine osnovnih parametara mn, z, β i x
razli~ite za iste vrijednosti prenosnih odnosa, {to je
rezultat analiti~kog postupka programa «ZAROP»
odnosno selekcije rezultata. Za prora~un nosivosti
zup~astih parova kori{ten je program «GEARPAC
CX.3.1» [5]. Prora~un se izvodi paralelno za obje
grupe parova zup~anika (tabele 5 i 6) istih
karakteristika materijala, kvaliteta, broja obrtaja i
ostalim potrebnim ulaznim veli~inama.
Dokaz
primjenjenog postupka je dat tabelarnim i grafi~kim
prikazom dobijenih nosivosti (tabela 7 i slika 3) iz
kojih je prednost postupka optimizacije o~ita.
Analysing table 5 and table 6, it is possible to
notice that the values of basic parameters mn, z, β
and x are different for the same values of
transmission ratios, which is the result of analytic
procedure of software «ZAROP», i.e. the selection
of results. For the bearing capacity of dentated
pairs computation, the «GEARPAC CX.3.1» software
(5) has been used. Computation is done in parallel
for both groups of gear pairs (table 5. and table
6.) with the same characteristics of material,
quality, number of rotations and other necessary
input values. The table below represents the
procedure, as well as the chart of the computed
bearing capacity values (table 7. and figure 3),
which shows advantages of optimisation procedure.
- 114 -
Ma{instvo 2(7), 105 – 116, (2003)
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
Tabela 7 .Pregled nosivosti parova zup~anika
Table 7. List of the gear pairs bearing capacities
PK
PR
1,38
114
133
1,52
104
127
1,77
96
113
1,86
92
107
2,18
81
93
2,44
75
86
2,73
67
78
3,09
55
57
3,52
42
50
3,77
38
47
4,05
33
40
Uporedni pregled nosivosti parova zupčanika
Comaprative review of bearing capacity of gear pairs
140
120
100
Dozvoljena snagaAllowed power kW
i
80
60
40
20
1
1.5
2
2.5
3
3.5
4
4.5
Prenosni odnos-Transmisio ratio i
PK
PR
Slika 3. Grafi~ki pregled nosivosti parova zup~anika
Figure 3. Gear pairs bearing capacity chart
Legenda:
PK- nosivost parova zup~anika postoje}eg reduktora ,tip MRZ-250;
PR- nosivost optimiranih parova zup~anika reduktora, tip MR-250;
Note:
PK – gear pairs bearing capacity for the existing reduction gear, type MRZ-250;
PR – optimised gear pairs bearing capacity for the reduction gear, type MR-250;
5. ZAKLJU^AK
5.
Na osnovu provedene analize mogu se potvrditi
sljede}e ~injenice:
Svaki zup~asti par osnog razmaka »a« i
prenosnog odnosa »i« je geometrijski odre|en
njegovim osnovnim parametrima: mn, z1, z2, β, x1, x2.
Svaki zup~asti par osnog razmaka »a« i
prenosnog odnosa »i« mo`e biti realiziran u okviru
zadatih grani~nih odstupanja (amax i aimin), razli~itim
vrijednostima osnovnih parametara koji su u
odgovaraju}em korelacijskom odnosu, pri ~emu je
ispunjen uslov:
The above analysis confirms the following facts:
Each gear pair with axial distance «a» and
transmission
ratio
«i»
is
geometrically
determined by its basic parameters: mn, z1, z2,
β, x1, x2.
Each gear pair with axial distance «a» and
transmission ratio «i» can be realised within
the determined limit deviation (amax and amin),
by different values of the basic parameters
which are in certain correlation, where the
following condition has been fulfilled:
a=
mn
[(z1 + z 2 ) + (x1 + x2 )cos β ] .
2 ⋅ cos β
CONCLUSION
a=
-
Nazivna optere}enja korijena zuba σF i
boka zuba σH zup~astih parova osnog razmaka »a«
i
prenosnog
odnosa
»i«
optere}enih
istim
momentom, istih karakteristika materijala i kvaliteta
zup~anika su samo u funkciji osnovnih parametara:
σF,σH= f (mn, z1, z2, β, x1, x2 ).
Zup~asti parovi istog osnog razmaka »a« i
prenosnog odnosa »i« definisani razli~itim osnovnim
parametrima, optere}eni istim momentom, istih
karakteristika materijala i kvaliteta zup~anika, imaju
razli~ite napone korijena i boka zuba.
-
- 115 -
mn
[(z1 + z 2 ) + (x1 + x2 )cos β ]
2 ⋅ cos β
Nominal load of dentil base σF and dentil side
σH of dentated pairs with axial distance «a»
and transmission ration «i», loaded by the
same moment, with the same material
characteristics and the same quality fo gears
are in the function of only the basic
parameters:
σF,σH = f (mn, z1, z2, β, x1, x2).
Gear pairs with same axial distance «a» and
transmission ratio «i» defined by different basic
parameters, loaded by the same moment, with the
same material quality, as well as quality of gears,
have different stress of dentil base and side.
Ma{instvo 2(7), 105 – 116, (2003)
M.D`aferovi}, ...: ANALIZA MOGU]NOSTI POVE]ANJA....
Za iste karakteristike, osni razmak »a«
prenosni odnos »i« {irinu zup~anika »b«, materijal,
kvalitet ozubljenja, stepene sigurnosti i broj obrtaja
pogonskog zup~anika, zup~asti parovi definisani
metodom optimiranja osnovnih parametara imaju
dozvoljene snage i do 30% ve}e izuzev u jednom
slu~aju gdje se vrijednosti poklapaju (tabela 7 i
slika 3).
6.
For the same characteristics, axial distance
«a» and transmission ratio «i», gear width «b»,
material, quality of dentation, sefety degree and
number of rotations of engine gear, dentated pairs
defined by optimisation of basic parameters
method have the allowed power which is up to
30% higher, except in one specific case when the
values overlap (table7. and figure 3.).
-
LITERATURA - REFERENCES
[1]
Niemann,G.Winter,H.:"Maschinenelemente
Band II", Zweite voellig neubearbeitete
Auflage, Springer-Verlag, Berlin, 1985.,
[2]
Grupa
autora:
"In`injersko-ma{inski
priru~nik II", Zavod za ud`benike i
nastavna sredstva, Beograd, 1992.,
[3]
Ober{mit,E.:"Ozubljenja
Liber, Zagreb, 1982.,
[4]
Kopri}, S., Tati}. Z.: "Optimizacija
cilindri~nih
zup~astih
parova",
Me|unarodni
nau~no
srtu~ni
skup
"Tendencije
u
razvoju
ma{inskih
konstrukcija
i
tehnologija-TMT
'95",
str.240., Zenica, 1995.,
i
[5]
Grupa autora: "Uputstvo za upotrebu
programa GEARPAC CX. 3.1 –prora~un
cilindri~nih
evolventnih
zup~anika",
Tehni~ki
fakultet Rijeka, Zavod za
osnove konstruisanja , Rijeka, 1989.,
[6]
D`aferovi},M:"Istra`ivanje
mogu}nosti
primjene
mehanike
sli~nosti
pri
projektovanju reduktora", Magistarski rad,
Ma{inski fakultet u Zenici, 2000.,
[7]
Kopri},[. i dr.:"Program za optimizaciju
geometrije zup~anika – ZAROP", TTUTuzla, 1999.god.
zup~anici",
- 116 -
Author
Document
Category
Uncategorized
Views
4
File Size
752 KB
Tags
1/--pages
Report inappropriate content