Dinamica del gas – AA 2013-14 – part 2

Dinamica del Gas nelle Galassie
II. Star formation
• Overview on ISM
– • Plasmas
– • Charge neutrality, infinite conductivity; Field freezing; Euler equation with magnetic force; Magnetic
Pressure and tension; Magnetic virial theorem; Shocks with magnetic field.
Stability of clouds
– • Molecular clouds: composition and properties. Isothermal sphere, Lane-Emden equation; Bonnor-Ebert sphere and mass; Analysis of stability; Effect of
rotation; Effect of magnetic field; Hydromagnetic waves; The role of turbulence.
Collapse of clouds – Free-fall time; Self-similar collapse; Ambipolar diffusion, magnetic braking.
- The Formation of Stars, Stahler & Palla, Wiley-VCH - The Physics of Astrophysics, F. H. Shu, University Science Books
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
1
Molecular clouds
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
2
Location of GMCs
Strahler & Palla, 2006, W-VCH
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
3
IR allsky
Ophiucus
Cygnus
Rosette
Orion
Taurus
IRAS 12-100 micron
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
5
Orion
nebula
Distance from Sun ~ 400 pc
CO map outer contours
dots = CO peaks
Shaded loop = UV emission
Maddalena et al. 1986
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
6
CO J=2-1
Orion A
Optical multicolor
Maddalena et al. 1986
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
7
Rosette cloud
CO J=3-2 peak emission map. O stars are shown as triangles.
Squares show the locations of the outflows found in the region.
Dent et al. 2009, MNRAS
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
8
Dense cores
T ~ 10-15 K, n ~ 2x103 - 2x105 cm-3, sizes < 1 pc
More than 50% have associated IR sources
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
9
Properties of molecular complexes
Type
n
(cm-3)
L
(pc)
M
(MO)
T
(K)
cs
(km/s)
σobs
(km/s)
GMCs
102
50
105
15
0.25
2
Dark clouds
103
1-10
102-4
10
0.2
1
Dense cores
104
0.1
10
10
0.2
0.3
Filippo Fraternali (Unibo)
vrot
(km/s/
pc)
Dinamica del gas – AA 2013-14 – part 2
<0.05
B
(µG)
vA
(km/s)
10
1.5
<0.1 10-30
0.5-1.5
~30
~0.4
<~1
10
Composition of
MCs
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
11
Composition of MC
Aul = radiative de-exitation coefficient
Strahler & Palla, 2006, W-VCH
For n >> ncrit -> LTE
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
12
Orion B - CO vs CS
CO - moderately high density
Filippo Fraternali (Unibo)
CS -> High density regions
Lada et al. 1992
Dinamica del gas – AA 2013-14 – part 2
13
Dense cores
Elongated
(mostly
prolate)
whether or
not they
harbour an
embedded
star
Myers et al. 1991
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
14
HI envelops
Rosette MC
CO J=1-0
+
HI envelop (dashed) Filippo Fraternali (Unibo)
Blitz & Thaddeus 1980, ApJ
Dinamica del gas – AA 2013-14 – part 2
15
Heating & cooling
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
16
H2 formation and maintenance
Strahler & Palla, 2006, W-VCH
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
17
Cooling inside MCs
Rotational transitions:
12CO, 13CO
O2, H2O etc.
Tielens 2005, CUP
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
18
Heating of MC vs CNM
CR = cosmic ray ionization
decay of turbulence
grav = gravitational heating
ambipolar diffusion
d-g = collision with dust-grains
Tielens 2005, CUP
pe = photo-electric effect
CR = cosmic ray ionization
CI = photoionization of Carbon
X-ray ionization
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
19
Stability of clouds
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
20
MCs are rather stable
tff ~ (G ρ)-1/2
MC blown away by stellar
winds
O stars
From the stellar cluster age
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
21
Bonnor-Ebert mass
unstable
Boyle’s law: stable
Bonnor 1956
Filippo Fraternali (Unibo)
Strahler & Palla, 2006, W-VCH
Dinamica del gas – AA 2013-14 – part 2
22
Coalsack G2 dense core
Extinction map
Bonnor-Ebert sphere with ξ=5.8
Lada et al. 2004, ApJ
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
23
Barnard 68
Alves et al. 2001, Nature
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
24
Equilibrium of rotating clouds
β = Ω02 R03/ 3GM
Along R
Ω0, R0 of the
initial sphere
from which the
cloud has
contracted
Along z
Isothermal sphere
Strahler 1983, ApJ
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
25
Critical mass with rotation
β = Ω02 R03/ 3GM
unstable
For comparison:
Bonnor-Ebert sphere
unstable
Strahler 1983, ApJ
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
26
Velocity gradients?
A clear case L1495
Typical β = 0.02 (very low)
Gradient ~ 3 km/s/pc
Goodman et al. 1993, ApJ
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
27
Magnetostatic equilibrium
Filippo Fraternali (Unibo)
Dinamica del gas – AA
Strahler
2013-14
& Palla,
– part2006,
2 W-VCH
28
Critical mass with Magnetic field
α = B02 / 8 π P0
B0, P0 of the initial homogenous sphere from
which the cloud has contracted
Filippo Fraternali (Unibo)
Tomisaka et al. 1988, ApJ
Strahler & Palla, 2006, W-VCH
Dinamica del gas – AA 2013-14 – part 2
29
Problems with Magnetic field
Magnetic field orientation non coherent
(evidence for MHD waves?)
Dense cores are not too
elongated but probably
prolate!
Loren 1989, ApJ
Goodman et al. 1990, ApJ
Myers et al. 1991
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
30
Large velocity dispersion
CO J=1-0
Taurus cloud complex
Channel maps at different velocities
Mizuno et al. 1995
σoss ~ 1-2 km/s
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
31
Non-thermal kinetic energy
Equilibrium between non-thermal kinetic
energy (T) and gravitational energy (W)
2o Larson’s law αvir ~ 1
log Kturb /|W|
GM ~ σ2 L
Larson 1981; Stahler & Palla 2006, W-VCH
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
32
Turbulence achievements
Supersonic turbulence predicts
If dense cores are the products of turbulence
then one expect a power-law spectrum
σ ∝ L 1/2 1o Larson’s law
σ (velocity dispersion) ∝ S0.4 (size)
Clumps in Rosette MC
Williams & Blitz 1994, ApJ
Solomon et al. 1987
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
33
Pre-stellar cores and IMF
Ward-Thompson & Whitworth, CUP
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
34
Different IMFs
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
35
Summary SF & turbulence
Filippo Fraternali (Unibo)
McKee & Ostriker 2007, ARA&A
Dinamica del gas – AA 2013-14 – part 2
36
Collapse of clouds
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
37
Dense cores
with and
without stars
R = radius of the cloud
Benson & Myers 1989, ApJS
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
39
Self-similar isothermal collapse
Basic equations
Self-similarity
Filippo Fraternali (Unibo)
a = cs (sound speed)
Solution
Dinamica del gas – AA 2013-14 – part 2
Shu 1977, ApJ
40
Inside-out collapse
Similarity variables: x = r / cst
v(x) = u(r,t) / cs
Filippo Fraternali (Unibo)
a
b
Shu 1977, ApJ
Dinamica del gas – AA 2013-14 – part 2
41
Simulations of collapse
(“core” = protostar)
Mass accretion
Non-dimentional
variables:
ρ / ρc
Density profile
Foster & Chevalier 1993
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
42
Deformation of field lines
Initial field is rather uniform
NGC 1333 IRAS 4A
B0 ~ 0.5 mG
tcoll ~ few 104 yr
Frau et al. 2011, A&A
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
43
From dense cores to stars
Optical-IR spectral energy distribution
i = 0
i = 0
i = 90
i = 90
i = 0
i = 90
i = inclination along the line of sight
Lada 1999, Kluwer
Hogerheijde 1998
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
44
Formation of protostars
Strahler & Palla, 2006, W-VCH
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
45
SF on the large scale
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
46
Star formation indicators
Kennicutt et
al. 2008
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
47
SFR vs galaxy type
Filippo Fraternali (Unibo)
Kennicutt 1998, ARA&A
Dinamica del gas – AA 2013-14 – part 2
48
HI distribution vs optical/UV
Sancisi et al. 2008, A&ARv
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
49
HI and Molecular clouds in M33
Engargiola et al. 2002
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
50
The Kennicutt-Schmidt (K-S) law
Kennicutt 1998
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
51
“Local” K-S law
Leroy et al. 2008
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
52
Local K-S law
21 galaxies
THINGS
Slope change?
Filippo Fraternali (Unibo)
Dinamica del gas – AA 2013-14 – part 2
53