Absolute Chronology for Early Civilisations in Austria and Central

Status of the Austrian Science Fund Project
P12253-PHY:
Absolute Chronology for Early Civilisations in
Austria and Central Europe using 14C Dating
with
Accelerator Mass Spectrometry1
Peter STADLER2, Susanne DRAXLER3, Herwig FRIESINGER4, Walter KUTSCHERA3,
Alfred PRILLER3, Werner ROM3, Peter STEIER3, Eva M. WILD3
1
Parts of this report are in the publishing process. Citations to these publications will be
given at the corresponding sections.
2
Prähistorische Abteilung, Naturhistorisches Museum, Vienna, and Institut für Ur- und
Frühgeschichte, University of Vienna.
3
Institut für Isotopenforschung und Kernphysik, University of Vienna.
4
Institut für Ur- und Frühgeschichte, University of Vienna.
Table of Contents
Summary__________________________________________________________________ 3
Sample collection ___________________________________________________________ 5
Development for the 14C Measurements at VERA _________________________________ 5
Report of the Collagen Extraction Unit (Susanne DRAXLER) __________________________ 6
Aim _______________________________________________________________________________
Construction ________________________________________________________________________
Process ____________________________________________________________________________
Tests ______________________________________________________________________________
Conclusion _________________________________________________________________________
6
6
6
7
8
The Micromass OPTIMA® Stable-Isotope Mass Spectrometer (Eva M. WILD, Walter
KUTSCHERA, Vienna) ___________________________________________________________ 9
Introduction ________________________________________________________________________ 9
Purchase ___________________________________________________________________________ 9
Installation and Acceptance ____________________________________________________________ 9
First measurements __________________________________________________________________ 10
Outlook ___________________________________________________________________________ 12
14
C Data Base _____________________________________________________________ 13
The samples ______________________________________________________________ 13
Results___________________________________________________________________ 14
Linear Ceramics (6th millennium BC) from different sites ____________________________ 16
Brunn am Gebirge/Wolfholz, District Mödling, Lower Austria (Peter STADLER, Vienna) ___________
Szentgyörgyvölgy, District Zala, Western Hungary (Eszter BÁNNFY, Budapest) __________________
Rosenburg, District Horn, Lower Austria (Eva LENNEIS, Vienna)______________________________
Mold, District Horn, Lower Austria (Eva LENNEIS, Vienna) __________________________________
16
18
19
19
ù, Prague) __________________ 19
Bylany, District Kutná Hora, Bohemia, Czech Republic (Ivan PAVL
th
Lengyel-Painted Ceramics (5 millennium BC) ____________________________________ 20
Michelstetten, District Mistelbach, Lower Austria, Phase II of Lengyel (Ângela CARNEIRO, Vienna) __ 20
Ground plan of a house from Epi-Lengyel from Münchendorf, District Mödling, Lower Austria (Peter
STADLER, Vienna)___________________________________________________________________ 21
The Baden Culture (4th millennium BC) __________________________________________ 22
Boleráz and Classical Baden (Elisabeth RUTTKAY, Peter STADLER, Vienna) _____________________ 22
Boleráz of Arbon Bleiche 3, Bodensee, Switzerland (Peter STADLER, Vienna, Urs LEUZINGER, Trifun
SORMAZ, Zürich) ___________________________________________________________________ 23
The Iceman (Ötzi), a possibility of dating his death more exactly (Peter STADLER, Vienna) 25
Early Middle Ages ____________________________________________________________ 28
Avar Period Settlement (7th century AD) from Brunn, Wolfholz II, District Mödling, Lower Austria
(Peter STADLER, Vienna) _____________________________________________________________ 28
Calibrating the relative chronology in the Avar Age (6th to 9th century) to an absolute chronology (Peter
STADLER, Vienna)___________________________________________________________________ 29
Avar and Magyar settlement from Örménykút, County Békés, Eastern Hungary (Hajnalka HEROLD) __ 30
The fortification of Thunau/Kamp, MG. Gars, Lower Austria, (10th/9th century BC and 8th/9th century
AD) (Herwig FRIESINGER, Vienna) ____________________________________________________ 31
Conclusion and Outlook ____________________________________________________ 34
2
Summary
„Men occasionally stumble
over the truth, but most of them
pick themselves up and hurry
off as if nothing happened.“
WINSTON CHURCHILL
This project is an interdisciplinary initiative of archaeologists and nuclear physicists to substantially improve the absolute chronology of archaeologically interesting cultures in Austria and Central Europe by using 14C dating with Accelerator Mass Spectrometry (AMS). An improved absolute chronology based on precise 14C dating would lead to a better understanding of the interactions between
early cultures and would help to deepen our insight into the rich diversity of prehistoric life in Austria and adjacent countries. The 14C dating is performed at the
Vienna Environmental Research Accelerator (VERA), a new centre for AMS at
the Institute for Isotopenforschung und Kernphysik5 of the University of Vienna,
which came into operation in 1996.
In the first two years of the project, 1555 samples from Austria and adjacent
countries, Slovakia, Czech Republic, Hungary, Romania, Slovenia were collected. Besides collecting and analysing samples from a variety of welldocumented sites, emphasis will be put on a detailed analysis of the Early
Bronze Age Cemetery from Franzhausen I in Lower Austria (2200 BC to 1500
BC)6, and on the Early and Middle Avar Period (568 AD to ~700 AD)7. All information about the samples was fed into a data base. In addition a database of
radiocarbon dates was built up from literature.
So far we have made high precision radiocarbon determinations for about 270
samples, which shall be discussed here. Additional activities were the set-up of
a new semi-automatic collagen extraction and the preparation of an eight-fold
graphitisation and first tests running our new stable isotope mass spectrometer.
We obtained new results for the Linear Ceramics Culture: The chronological
position of Brunn am Gebirge/Wolfholz, which is very important for the genesis
of this culture. Also results from Szentgyörgyvölgy, Rosenburg, Mold and Bylany are discussed. From Lengyel Culture phase II could be separated for the
first time from phase I also using our radiocarbon dates. A house plan of unknown age can be dated to the Epi-Lengyel.
5
The former Institut für Radiumforschung und Kernphysik.
116 samples were collected.
7
Here 190 samples could be collected.
6
3
For the Baden Culture two groups can be differentiated archaeologically, BadenBoleráz and Baden-Classical, which were confirmed by radiocarbon dates. Baden-Boleráz begins much earlier than expected, at about 3640 and lasts until
3370 BC. Baden-Classical goes from 3360 to 2930 BC. The site from Arbon
Bleiche 3, which contains material of late Boleráz together with that from late
Pfyn and early Horgen, fits very well in between the two Baden phases. The
ideas of an Eastern genesis of the Baden Culture must be cross-checked by dating new samples of the Eastern parallel cultures, because the current dates would
not support spreading of these cultures from the East to the West. On the contrary – at the moment – it seems possible that Baden Culture (Boleráz) developed somewhere in Lower Austria, Moravia, Slovakia or Western Hungary and
then spread to the East.
For the late Neolithic Iceman “Ötzi” a hypothesis for narrowing down the time
of his death is presented by connecting his death with a global event in the year
3200 BC. By simulating a “wiggle matching” procedure, it is shown, that if the
Iceman’s bow contained more than 60 year rings and would be available, this
hypothesis could be verified.
Wiggle matching is also our main interest in connection with two archaeological
contexts from Early Middle Ages. In the first case wood remains from a well of
the Avar Period (7th century) and in the second case charcoals from a fortification were dated by dendrochronology. The calibration curve for 8th and 9th century gives ambiguous results for the standard calibration procedure. However
radiocarbon dates confirmed the results from dendrochronology by narrowing
down the time span by wiggle matching.
For the absolute chronology of Avar grave-complexes a method is proposed,
which could use wiggle matching also for sequence dates obtained by seriation.
We hope to finish at least 1000 samples in the third year, beginning in April
2000, by increasing man power in the sample preparation substantially.
4
Sample collection
In June 1999 we stopped the further reception of samples, because we had already obtained 1555 samples, 555 more than in our original project proposal. All
the sample sheets received by the different sample suppliers were fed into a database. 74 fields of information were entered, concerning general information,
laboratory data, sample parameters, scientific investigations by archaeobotany,
zoology and human biology. Some of the parameters are used for possible correction of the calibrated radiocarbon age, such as dendrochronology for wigglematching or the age of a skeleton to estimate the offset given to the radiocarbon
age.8 Table 1 presents all of these fields with some explanation where necessary.
Development for the 14C Measurements at VERA
The new Vienna Environmental Research Accelerator (VERA) is the facility of
choice for all 14C measurements within the project. First 14C dating test experiments with this facility started in the middle of 1996.9 In 1997, a variety of dating experiments and also systematic measurements were performed including
fully automated 14C measurements.10 This led to the current precision of 0.5%,
quite satisfactory for the project. Within the project the following specific activities concerning VERA have been pursued:
The employed chemist, Susanne DRAXLER, built a semi-automatic collagen extraction system for bone samples, see below. This allows to treat 24 bone samples simultaneously. She is also building an eight-fold graphitisation system, and
is responsible to prepare all archaeological samples for the AMS measurements.
The current status of the sample preparation is, that 441 samples have been
treated with ABA11, of which we have about 270 samples ready, 191 samples
must now be converted to CO2 and graphitized, 1300 samples must be prepared,
graphitized and measured.
8
WILD Eva M et al., 2000(?), 14C dating with the bomb peak: an application to forensic medicine, to be published in Nuclear Instruments and Methods B.
9
PRILLER Alfred, GOLSER Robin, HILLE Peter, KUTSCHERA Walter, ROM Werner, STEIER Peter, WALLNER Anton., WILD Eva M., 1997, First performance tests of VERA. Nuclear Instruments and Methods B 123, 193-198.
10
PUCHEGGER Stefan, ROM Werner, STEIER Peter 2000(?), Automated evaluation of 14C
AMS-measurements. To be published in Nuclear Instruments and Methods B.
11
Acid Base Acid treatment.
5
Report of the Collagen Extraction Unit (Susanne
DRAXLER)
Aim
To increase the amount of chemically pre-treated samples with the ABA-method
a Collagen Extraction Unit was constructed according to system development at
the Oxford Radiocarbon Lab.12 This unit especially helps in dealing with bone
samples, where cleaning and preparation procedures for combustion are very
time consuming. In addition it is also possible to clean other materials such as
charcoal or wood in the same unit.
Construction
The unit is assembled around a 24-channel peristaltic pump with an noncommercial
1-to-24-channel-Polytetrafluorethylene(PTFE)-distributor.
To
switch between the different washing liquids an E-valve is used. The pump
equipped with soft Tygon tubes presses the liquids into specially constructed
sample cells: after a no-return-valve and a PTFE-tube the liquid enters a
PTFE/glass-cap through a two-way-PTFE-valve and reaches the crushed, precleaned sample by being led through a glass capillary. The sample is placed in a
manufactured glass vessel of about 11ml size with a tapered bottom and a thread
at the top to close it with the cap. The liquid is allowed to percolate through the
sample material slowly and is pressed out of the cell by holding back solid particles with a PTFE-filter positioned in the cap. See Figure 1.
To control the process a PC was equipped with different programs, developed in
co-operation with the electronics workshop of VERA. To be able to heat the
sample cells, a special heater was constructed fitting to the tapered form of the
cells.
Process
The process of pre-treatment is equal to the manual procedure as described in
the literature. The samples are pre-cleaned manually to inspect them of impurities. This means to scrap off soil and/or cortex with a scalpel or mini drill and to
12
LAW I.A., HEDGES R.E.M, 1989, A semi-automated bone pre-treatment system and
the pre-treatment of older and contaminated samples, Radiocarbon, Vol. 31, No. 3,
P247-253.
6
remove residues of impurities by exposing it to ultrasonic waves in Aqua bidest.
After that the bones are crushed into pieces of one or two millimetres diameter.
We found out that bone powder gives problems with the filter and too large
pieces cannot be treated satisfactorily. About 500 mg of this material is used for
the extraction.
The cells are assembled freshly with new filters and capillaries and cleaned
PTFE- and glass-material. For bone samples the following procedure is used, see
Table 2.
It is possible to stop or manipulate the program while working if this is requested. After the last step the pH-value of each cell has to be tested manually
and if necessary corrected to pH=3. Then the valves are closed and the cells are
heated up to 90 °C for about three days to dissolve and gelatinise the sample.
After that the sample liquid is removed from the cell by opening the valves and
using nitrogen to press it through the filter to hold back undissolved parts. The
liquid is collected in a beaker and dried. This material is used for combustion.
If the unit is used for charcoal or wood the procedure changes, see Table 3.
After pre-treating the samples the PTFE-glass-cap is changed to a cap with a
glassfilter and the cells will be heated to 60°C to dry the samples.
Tests
To test the system first two charcoal samples were used to detect impurities in
only two lines. This was to find out the best way of cleaning the cells and to get
an idea about the treatment times with different liquids.
Charcoal V0185 was divided into two pieces to treat it manually and with the
extraction parallel. All results are presented in Table 4.
These results showed a contamination of the semi-automatically pre-treated
sample V0185/2. The result of V0185/1 was in agreement with the known age.
After intense cleaning of all parts of the unit this contamination was removed, as
can be shown by the results for samples V0185/3-4.
After that parallel tests of charcoal were performed. Charcoals which were
known as difficult to handle with the ABA-method. It has been shown, that it is
not possible to treat such samples with the extraction unit. Charcoals with a huge
amount of humic acids are possible to be pre-treated and have shown the results
for V0202/1-2 presented in Table 4.
7
After the charcoal samples, bone samples were tested manually and semiautomatically. V0163 is a critical bone sample, V0166 was known to be easy to
handle. The obtained results are again presented in Table 4.
As next step the unit was assembled completely but without samples to check
the flow in all 24 channels. After this test the flow-rates at different efficiencies
of the pump were measured, see Figure 2.
After that a bone sample (V0138) was divided into 24 parts to test all 24 channels. Most of the samples were measured and showed with two exceptions good
agreement with the known age except for two (V0138/12 and V0138/16), see
again Table 4.
As a last test the usually used standards and the chemistry blank have been
treated in the unit, but are still not measured until now.
Conclusion
Until now the unit has been used for five runs with bone samples. Some are
dated and show good results.
With the new unit it is now possible to handle up to 24 samples within two days
with the ABA-method, while the same amount of bones done manually by a
trained technical assistant would take two weeks time. Not included is time to
pre-clean the samples and to clean the parts of the collagen extraction. With optimal time management it should be possible to work two or three runs a month.
With the help of two new sets of 24 glass tubes and caps etc. it should be possible to increase this throughput still further.
8
The Micromass OPTIMA® Stable-Isotope Mass
Spectrometer
(Eva M. WILD, Walter KUTSCHERA, Vienna)
Introduction
In the course of this project we were fortunate to get the permission to acquire a
stable-isotope mass spectrometer. With this instrument high precision measurements of the stable-isotope ratios of 13C/12C (δ13C), 15N/14N (δ15N), 18O/16O
(δ18O) and 34S/32S (δ34S) can be performed. These δ-values characterise different
natural isotope fractionation processes which occur in the metabolism of humans, plants and animals. Isotope fractionations are subtle shifts in isotope
abundances within an element due to mass-dependent chemical and physical
processes. Fractionation processes may also be caused by climatic variations and
other naturally occurring phenomena. Therefore valuable information concerning our environment at present and in the past may also be obtained with the stable isotope mass spectrometer. In general it is an excellent addition to our accelerator mass spectrometer, which is dedicated to the study of long-lived radionuclides (14C, 10Be, 26Al, 129I, etc.) in the environment.
Purchase
The financial support for the mass spectrometer unit together with peripheral
instruments was given directly by the Austrian Ministry of Science and Transport. We had to go through an EU-conform advertised bidding to acquire the
system, which started in December 1997. The end of the whole procedure with
the final decision to buy a configuration from Micromass was in April 1998. The
chosen system is equipped with a standard dual inlet for high precision measurements of gaseous samples, where e.g. for δ13C a 2σ precision of ≤0.01‰ can
be achieved. An elemental analyser connected to the mass spectrometer via an
open split comprises a second inlet system. With the elemental analyser solid or
liquid samples can automatically be combusted and the produced gases are
cleaned and separated from each other with a gas chromatography column. The
whole system is permanently streamed with a constant flow of He gas and the
purified gas from the sample (CO2, N2 or SO2) is transported to the mass spectrometer with this carrier gas. This mode of operation is called the continuous
flow mode and 1σ errors of ≤0. 15‰ for the δ13C determinations are achieved.
Installation and Acceptance
9
When we got the permission to purchase the mass spectrometer, we had to find a
suitable room for the unit. As the VERA lab is housed in a relatively small – but
nice – building ( the so-called “Kavalierstrakt”), we discussed several possibilities where we could ideally place the instrument. We came to the decision to put
the unit into the room where previously the heating of the whole building was
situated. In summer 1998 this room was incorporated into our institute, because
the heating system was changed to district heat. The former heating room was
connected with our accelerator hall and a lot of refurbishing work had to be done
before the room was ready for use. Therefore the delivery of the system, which
should have been in September 1998, was postponed. In end of November 1998
the delivery of the mass spectrometer was possible although the room did not
have a proper air condition at this time. Nevertheless a technician from Micromass could start the set-up of the apparatus and perform first testing measurements. The final acceptance of the mass spectrometer was in the end of January
1999, when all acceptance tests were made. Results are shown in Table 5 for the
standard dual inlet (high-precision mode) and in Table 6a and 6b for the continuous flow mode.
First measurements
a) δ13C
When we started our FWF project the AMS system was already operational and
radiocarbon determinations could be done from the very beginning of the project. For the high precision determination of stabile isotope ratios some time of
the project period is required to get familiar with the new instrument and the
new method. Therefore in the first year after the delivery of the mass spectrometer we concentrated mainly on acquiring practice in the operation of the machine
and testing the various components of the entire system. In the course of this it
turned out that some repairs where necessary (replacement of a splitting valve
by an open split, repair of nitrogen reference gas line, replacement of the analyser turbo molecular pump, etc.). Although this repairs took a lot of time because it was necessary to check the system after each repair, we are ready to
measure the δ13C of different materials routinely since summer 1999.
We showed that we are able to reach the requirements for the acceptance tests
for carbon ourselves.
Merck® sucrose purchased from a local distributor has been calibrated as an inhouse secondary house internal standard for δ13C, normalised to the standards
available from the IAEA in rather small amounts.
10
We compared the δ13C values measured with the mass spectrometer with the
values of the same samples determined automatically with the AMS system during 14C-measurements. The results agree within the limits of error (1σ error of
the AMS measurement = 1.5‰) and confirm that the 13C/12C ratios measured
with the AMS system may be used for the mass fractionation correction of 14C.
We could also verify with the stable isotope mass spectrometer that a radiocarbon standard sent to our lab as target material ready for 14C measurement (after
graphitisation) showed a large fractionation in the carbon isotopes. If this material would be used as a reference for the δ13C determinations erroneous δ13C
values for the associated samples would be obtained.
b) Elemental analysis (determination of the nitrogen and carbon content)
Another valuable feature of the system is that the content of carbon and nitrogen
of the samples can be determined easily with the thermal conductivity detector
of the elemental analyser or by integrating the mass 44 (12C16O2) or mass 28
peak (14N2) of the mass spectrometer signal. So it is possible to determine the
carbon content of a sample and choose the suitable amount for the radiocarbon
age determination. For radiocarbon dating of bones only the bone collagen (organic component) can be used. Collagen degrades during the burial time of the
bone. The degree of degradation will not only be influenced by the age of the
bone but also by the burial conditions. Sometimes it is not possible to extract
enough organic material from a bone sample to produce a suitable target for the
AMS measurement. The nitrogen content of a fossil bone gives an information
on its collagen content. Therefore nitrogen measurement with the elemental analyser can help to select samples which can be radiocarbon dated and gives also
an information of the amount of bone material necessary for the age determination.
We screened the nitrogen content of a number of bone samples, most of them in
a state of bad preservation, from a certain very important layer of a cave profile.
It was possible by this way to find bone material from this interesting layer with
enough collagen for a radiocarbon age determination.
11
Outlook
At the present state we concentrate on the measurement of δ15N. As for the δ13C
measurement first we tried to reach the acceptance standards for this kind of
measurement. Some instrumental problems were found out in this way and repairs were necessary. Nevertheless the determination of the δ15N values will be
possible in the near future, when all repairs are finished. Afterwards it is planned
to use an option of the system for the simultaneous measurement of the δ15N and
δ13C in collagen samples. In this mode after the measurement of nitrogen the
magnet field is adjusted to the optimal value for carbon. This would be a very
elegant method for the determination of both delta values of a sample with a
single measurement. In practice some timing problems must be solved and the
method file has to be modified to achieve sufficient accuracy for both values.
We think it is worth to invest time and work into this feature because we can
gather additional information of the samples which are radiocarbon dated. As
already said above, the δ15N and δ13C values reflect the nutritional behaviour of
individuals and we hope -besides the age determination- we can also learn something about the palaeo-diet of different populations.
12
14
C Data Base
The already existing data base has been enlarged by Ângela CARNEIRO to about
30.000 radiocarbon dates, beginning in July 1997. Thereby the data base is
world-wide one of the biggest of its kind, the data base of the University of
Lyon consisting now of about "only" 9000 archaeological 14C data.13 In the near
future it is intended to make the results of the group-calibration of more than
500 cultural groups available in the Internet. At the same time a possibility for
scientists to co-operate will be installed, e.g. completing missing data in the
"Microsoft-Access-data base", which allows them to work with certain parts of
the data base.
As an example further below Table 16 is presented with 77 dates of Baden Culture, which are contained in our database of published dates.
The samples
A total of 1555 samples were collected from about 120 sample suppliers. The
samples for the Czech Republic and Slovakia were collected by Inna
MATEICIUCOVA, those for Hungary by Hajnalka HEROLD and those for Austria
by Ângela CARNEIRO, Tomas Bence VIOLA and Friederike GEROLD.
As there are many samples, we decided to set up priorities. Table 7 presents
these priorities.
Priorities were chosen corresponding to our project goals. High priority A have
the samples which belong to the Avar period, priority B are the samples from the
Early Bronze Age cemetery from Franzhausen.14 These together make about
20% of the whole number of samples and they were given such a high priority,
because in our project proposal we wanted to clear two archaeological questions:
a) to improve the existing relative and absolute chronology for the Avar Period.
b) to improve the relative chronology from Franzhausen I.
13
http://www.univ-lyon1.fr/~carbon14/banadora.html.
NEUGEBAUER Christine and NEUGEBAUER Johannes-Wolfgang, 1997, Franzhausen, das
frühbronzezeitliche Gräberfeld I. Fundberichte aus Österreich, Materialheft A5/1-2.
14
13
Priority 1 to 3 correspond to other questions, for example the chronology of the
Baden Culture, the Avar settlement of Brunn/Gebirge etc. Answers to these
questions can be found in this report, because a large part of priority 1 samples
have already been dated. Samples with priority 1 where dated earlier than those
with priority A and B, which are mostly human bones. For these we had to build
first our collagen extraction and had to collect experience with it. As the extraction is working fine now, we want to continue immediately with priority A and
B samples. About 50% of the samples have no priority, but this does not mean,
that the sample suppliers are not waiting nervously for their results.
Most of the samples come from Austria and the neighbouring countries, CZ, SK
and H, see Table 8.
The material of the samples is shown in Table 9. Most material are human
bones, followed by animal bones and charcoals.
Most interesting for archaeologists will be the distribution of the samples to different archaeological cultures and cultural groups. Here most samples come
from Linear Ceramics, Lengyel, Early Bronze-Age (Aunjetitz, Wieselburg) and
the Avar Period, the last two were explicitly announced in our project proposal.
See all cultures in Table 10.
Results
Table 11 presents how many of the measured samples fall within the time span
of the culture, to which the sample was assigned by the archaeologist. Only
about 16 percent lie outside this time range. This result is quite convincing, considering that only a small amount of all radiocarbon dates measured since 1950
fulfilled this condition (and only those were published).
The “false dates” are mostly too young, thus means that younger intrusions often
were not detected during the excavations by archaeologists. Also these intrusions occur more frequently on excavations, where many different cultures lived
at the same place.
The most important of the currently available results of about 270 measurements will be presented in their chronological sequence. Table 12 lists all the
already measured samples with the most important fields of information. All
these results are preliminary and must be discussed with the sample suppliers for
a conclusive publication. The names given in brackets after the sites correspond
to our sample suppliers. Most of them are identical with the excavators and/or
14
scientists preparing a monograph. All evaluations, calibrations, group calibrations, combined calibrations and wiggle matching were done with Oxcal 3.1.15
15
BRONK RAMSEY Christopher, 1994, Analysis of Chronological Information and Radiocarbon Calibration : The Program OxCal, Archaeological Computing Newsletter
41, 11-16.
BRONK RAMSEY Christopher, 1995, Radiocarbon Calibration and Analysis of Stratigraphy: The OxCal Program Radiocarbon, Proceedings of the 15th International Radiocarbon Conference, Radiocarbon 37(2), 425-430.
15
Linear Ceramics (6th millennium BC) from different
sites
Brunn am Gebirge/Wolfholz, District Mödling, Lower Austria
(Peter STADLER, Vienna)16
The sites of Brunn am Gebirge/Wolfholz are most important for understanding
the genesis of Linear Ceramics Culture as the first agricultural society in Central
Europe. At the moment five separate sites have been found, with no connections
between them. Figure 3 shows these five sites. On this map also the reconstructed rectangles of longhouses can be seen. These houses are 20 meters long
and 7 to 8 meters broad. The orientation is South-North with deviations to the
West and also to the East at different sites. At the moment 46 houses have been
excavated completely or partially, another 15 houses have been detected with
geomagnetic prospection. All these sites and houses were not in function at the
same time, so there must be a chronological development of the settlement.
Also the finds – ceramics and stone implements – reflect this development.
From site II we have very primitive ceramics, burnt at low temperatures with
organic temper. The decoration of these ceramics is plastic, the linear incisions,
characteristic for Linear Ceramics is missing. Figure 4-5 show ceramics from
site II. Forms of the pots are biconic, very often with a foot. On the other hand
the stone implements are in the mesolithic tradition of microlithes. Some of
these traits together with the very high number of idols – human Figures of clay
– remind of the late Starčevo17 Culture, found in southern parts of Hungary. So
this site seems to be very old according to archaeological interpretation. After
most recent comparisons with late Starčevo Culture sites from South Western
Hungary, there seems to be a strong late Starčevo influence. A reconstruction of
some of the houses from site II can be seen on Figure 8.
On the opposite chronological time scale there is site I. Here ceramics is of
much better quality, burnt at higher temperature. The coarse ceramics is similar
to site II, but besides there exists a fine ware, which is also rich decorated with
16
STADLER Peter, LENNEIS Eva and WINDl Helmut, 1996, Neue 14C-Daten zum Frühneolithikum in Österreich. Prehistoire Européenne 8, 97-116.
17
I have to thank very much Eszter BÁNNFY, who pointed out these connections to the Hungarian Starčevo-Culture. See also for comparable ceramics and also the so called loom(?)weights: SIMON Katalin H., 1996, Ein neuer Fundort der Starčevo-Kultur bei Gellénháza
(Kom. Zala, Ungarn) und seine südlichen Beziehungen. International Symposium on the
Vinča Culture, its role and cultural connections. Timişoara, Romania, October 1995, 59-92,
loom(?)-weights on Abb.1/4-5,10/5.
16
linear ornaments. This material can be called the classical Linear Ceramics, before the use of „Notenkopf” ornament. The stone implements are very rare and
not of such a good quality as of site II, both concerning raw material and production. Figure 6-7 presents some ceramics from site I. Site I is the youngest one
found.
The other sites III, IV and also V seem to be somewhere between these counter
parts.
So there was a rich field for radiocarbon dating. First analysis where done in
Heidelberg, only with bones from site I. Later charcoals where dated at ETH in
Zürich. In our project 9 charcoals from site IV were analysed. The results from
these 38 dates in total are presented in Figure 9-14. The results are summarised
in Table 13. Our archaeologically obtained relative chronology can be confirmed, although the time spans for the different sites are overlapping in the 1sigma interval. But this overlaps are due to two things: a) the calibration curve
b) the high sigma values for the samples measured in Zürich, high means 70-80
years in comparison to 30-40 years at the VERA laboratory in Vienna. I am
sure, if we measure samples with higher precisions of the other sites, the overlaps will diminish.
The four graves found on the area of site II can be dated by archaeological
means – stratigraphy – younger than the settlement. 14C dates for grave 2 confirm, that the graves are contemporary with the younger sites I, III or IV.
In Table 14 the absolute chronology of the houses is presented. Most radiocarbon samples come from the pits along the houses or from postholes. With the
help of these dates it is possible to date 11 out of 46 excavated houses. The oldest houses are concentrated on site II. The oldest house 20 is situated near the
third oldest house 17, but as for these houses only one date each are analysed,
these very old dates (5730-5470 BC, see Figure 15) must be handled with care.
House 16 is also very old (5640-5510 BC), but only one date has been analysed.
Thus for determining the beginning of Brunn Wolfholz some new measurements
are necessary and will be done in our project.
From site III house 33 was measured at VERA and as the sigma is relatively
small it is much more difficult to pass the x2-Test, see Figure 16. All measurements at ETH passed this test for the houses 3, 10, 11 and 15, but the sigma of
these measurements was much higher. The only reconstructed two houses 1 and
2 on site I give quite different results, but also these dates must be handled with
care as in any case only one measurement was made.
17
Szentgyörgyvölgy, District Zala, Western Hungary (Eszter
BÁNNFY, Budapest)
The excavation in western Hungary was very small, only two houses were unearthed, but much smaller ones than those from Brunn. Hungarian archaeologists thought this site to be contemporary with site II from Brunn, because of
similar ceramics found. The results of our radiocarbon dates in this project in
Figure 17 show that this hypothesis cannot be proved, the time range (1-sigma)
given by the group calibration is 5480-5360 BC, thus a contemporanity with
sites I, III and IV from Wolfholz is suggested, but not with site II. Ceramics may
be similar also with site III.
18
Rosenburg, District Horn, Lower Austria (Eva LENNEIS, Vienna)18
This site in the Waldviertel, the north western part of Lower Austria, at the valley of river Kamp, is also from the oldest phase of Linear Ceramics. Lenneis had
done 10 14C dates at Groningen and 5 dates at VERA. 11 of these dates belong
to phase I after TICHÝ19 and 4 to phase II. Phase I lasts from 5480 to 5200 BC,
phase II from 5250 to 4950 BC (see Figures 18-19), not taking into account
VERA-406 which is apparently too old for phase II. In this case it is important
to note, that the results from Groningen, with exception of GrN-19909 have
much smaller sigma than VERA. This is because these samples were measured
early in our project.
Mold, District Horn, Lower Austria (Eva LENNEIS, Vienna)
The excavation of Mold, again situated in Waldviertel, is the actual work of Eva
Lenneis. She wanted to document here a site of phase II after TICHÝ20. The four
measurements in our project confirm this assignment with a time span of 53205070 BC (see Figure 20).
Bylany, District Kutná Hora, Bohemia, Czech Republic (Ivan
PAVLù, Prague)21
This old excavation unearthed one of the largest settlements of Linear Ceramics,
about 146 long houses were found there. Pavlù now wants to confirm his chronology of houses by means of radiocarbon dating. From his 14 samples, 13 are
already measured. 11 dates belong to the phase Tichý II, thus providing a time
span from 5370 to 5200 BC. See Figure 21.
18
STADLER Peter, LENNEIS Eva and WINDL Helmut, 1996, Neue 14C-Daten zum Frühneolithikum in Österreich. Prehistoire Européenne 8, 97-116.
19
TICHÝ Rudolf, 1960, Osídlení s voloutovo keramikou na Morave. Památky Arch. 53, 245ff.
20
TICHÝ Rudolf, 1960, see above.
21
PAVLŮ Ivan, 1982, Die Entwicklung des Siedlungsareales in Bylany 1. In: Internationales
Kolloquium „Linearbandkeramische Siedlungen in Europa“, Nové Vozokany 1981, Nitra,
193ff.
19
Lengyel-Painted Ceramics (5th millennium BC)
The whole Lengyel period is best described by a group calibration of the total
available data-set coming from our database, see Figure 22, from 4770-4350
BC. More than that, the results for Epi-Lengyel, which from archaeological experience follows the Lengyel Culture immediately is confirmed by radiocarbon
dates after some time span in the 1 sigma ranges from 4230-3940, see Figure 23.
Michelstetten, District Mistelbach, Lower Austria, Phase II of
Lengyel (Ângela CARNEIRO, Vienna)22
On site 6 from Michelstetten (MG. Asparn/Zaya, District Mistelbach) also a
Lengyel Culture settlement among finds of many other periods was unearthed.
The excavated area of 8065 m2 contained 385 pits of Lengyel Culture. These pits
belonged to different objects, rests of two houses and layers of burnt clay. The
latter served maybe as roasting places. The settlement was surrounded by a defensive ditch. The investigation of the ceramics is done by Ângela CARNEIRO,23
who classifies this settlement provisionally within the phase II of Lengyel Culture, which means phase IIa2/3 to IIb after KOSTUŘÍK.24
The samples, 29 fragments of animal bones, were taken from 11 pits of this settlement. The group calibration for the obtained dates give a time span from 4540
to 4350 BC, see Figure 24. These first dates concerning phase II of Lengyel Culture can be very well positioned near the end of the whole Lengyel Culture
(4770-4350 BC) and describe very well the end phase of it.
In Table 15 these results are presented. If one tries the material from Michelstetten can be divided into three phases, from 4620-4450, 4520-4400 and 44604360 BC. One can arrive with some imagination at three phases without overlap:
4620-4520, 4520-4450, 4450-4360 BC.
At the moment this classification can only be assumed and is rather hypothetical,
because the investigation of the ceramics has not yet been finished. The problem
is, that the same features of the ceramics are characteristic for the three phases,
but their frequency of occurrence is changing. So only a quantitative evaluation
will show, if these proposed phases could also be seen within the archaeological
22
LAUERMANN Ernst, 1994-1998, Archäologische Forschungen in Michelstetten.
CARNEIRO Angela, 2000?, Die Keramik der bemaltkeramische Siedlung von Michelstetten.
PhD thesis, in preparation.
24
KOŠTUŘÍK Pavel, 1986, II. Stufe der Kultur mit mährischer bemalter Keramik. A Béri Balogh Ádám Múzeum Évkönyve 13, 233-240.
23
20
material. At least the sequence of the pits, obtained with
checked with seriation of the pit-complexes.
14
C should be cross-
Ground plan of a house from Epi-Lengyel from Münchendorf,
District Mödling, Lower Austria (Peter STADLER, Vienna)
In 1995 in a rescue excavation in a gravel pit a ground plan of a house was
found. The foundations were extended about 30-50 cm deep into the gravel underground. No ceramics or other objects were found. This ground plan is seen in
Figure 25. As the only archaeological finds from this site were till then the Avar
cemetery from Münchendorf, at first it was tried to find parallels for this house
in the Early Medieval, but without success.
In the southern part of the house, near the entrance, very tiny rests of charcoal
had been found, only 90 mg of quercus species (oak tree). This little sample was
enough for a radiocarbon analysis at VERA. The date for this sample VERA204 is 5415 ± 30, calibrated (1 sigma) 4330-4270 and 4260-4245 BC, thus the
house belonged to the Epi-Lengyel Culture.
21
The Baden Culture (4th millennium BC)25
Boleráz and Classical Baden (Elisabeth RUTTKAY, Peter
STADLER, Vienna)26
32 samples archaeologically assigned to the Baden Culture were collected for
our project. 14C measurements of these samples proved them to be indeed from
the Baden Culture. Since prior to our project 43 14C-dates existed, we increased
the available data-set by more than a half. All data are presented together in our
Table 16. These new data with lower errors are expected to improve the knowledge of the chronology of the Baden Culture.
Figure 26 shows the group calibration of the whole Baden Culture. Table 17
shows the results for all different Baden cultural groups.
Figure 27 presents the group calibration for the dates of Boleráz, Figure 28 the
group calibration for the Classical Baden Group.
As Table 17 suggests a separation of 5 different phases of Baden Culture seems
possible, with some restrictions. The Protoboleráz (Figure 29) can not be differentiated in time from Boleráz, these two phases last almost the same from about
3640 to 3370 BC. The oldest phase of the classical Baden, Červeny-Hradok (see
Figure 30), overlaps with Boleráz, but not in the predominant intervals. Ossarn I
(see Figure 31) shows an overlap with Červeny-Hradok, but only starting from
its second interval. Ossarn II (see Figure 32) starts at about the same time as I,
but lasts till 2870 instead of 2930 BC. The conclusion is that Boleráz starts 140
years earlier as compared to the assumption by MARAN.27 Thus all the ideas
about influences from the East must be checked. If one takes into account the
calibration curve (see Figure 33), the big wiggles from about 3550 to 3250 BC
restrict the possibilities of radiocarbon dating and explain the overlaps between
the different phases.
25
This paragraph is in press for the proceedings of the conference Cernavoda-III-Boleráz in
Mangalia, Romania, 1999: STADLER Peter, DRAXLER Susanne, FRIESINGER Herwig,
KUTSCHERA Walter, PRILLER Alfred, ROM Werner, STEIER Peter, WILD Eva M., 2000(?),
Status of the Austrian Science Fund Project: Absolute Chronology for Early Civilisations in
Austria and Central Europe using 14C Dating with Accelerator Mass Spectrometry with special results for the Absolute Chronology of Baden Culture, in press.
26
I have to be very grateful to Elisabeth RUTTKAY for organising the sample collections together with her Hungarian colleague Mária BONDÁR. More than that, she helped with the cultural assignment of the samples.
27
MARAN Joseph 1998, Die Badener Kultur und der ägaisch-anatolische Bereich. Germania
76, 1998/2, 497-525.
22
In Table 18 and Figures 34-36 the cultural groups, which are similar to Baden
from Eastern Europe are presented. Cernavoda I is by means of typology older
than Cernavoda III.28 This sequence Cernavoda I-Cernavoda III must be handled
with care, as long as the find material is not published. If this sequence is correct
and after radiocarbon dates Cernavoda-I goes parallel with Baden-Classical, it
seems impossible that Cernavoda III is contemporary with Baden-Boleráz. Also
the Sitagroi and Ezero groups are only possibly paralleled with Baden-Classical
and late Baden-Classical culture and not with Baden-Boleráz. Thus the direction
of the Baden-Culture development seems to be opposite to what was thought
before, that means from the West to the East, which was pointed out also by
MARAN.29 As there do not exist modern dates for these Eastern groups, this hypothesis must be confirmed by new measurements.
Boleráz of Arbon Bleiche 3, Bodensee, Switzerland (Peter
STADLER, Vienna, Urs LEUZINGER, Trifun SORMAZ, Zürich)30
Arbon Bleiche 3 is a late Neolithic settlement situated near the Bodensee and
thus conserved well by means of humidity. Although no new radiocarbon measurements were done in our project, this excavation seems to be a key site for understanding the development of Boleráz Group of Baden Culture.
The settlement belongs to the transition between Pfyn and Horgen Culture, but
most important for our investigation of the early Baden Culture (Boleráz) is that
ceramics of Boleráz was found together with Pfyn and Horgen. Thus Arbon
Bleiche is the most western settlement in the Boleráz distribution, which has its
centre in the Vienna Basin, Burgenland and in Moravia, Slovakia and Western
Hungary. More than that, Arbon Bleiche is the best dated place with a dendrochronological time span from 3384 to 3370 BC, thus lasting only for 14 years.
Then the settlement burnt down and the remains were preserved under layers of
sea sediments. The archaeological situation is presented in Figures 37-38. Typical ceramics of Pfyn and Horgen are presented in Figures 39-40, ceramics of
Boleráz also in Figures 40-41.
28
This is the opinion of Petre ROMAN, expressed on the congress „Baden-Boleráz-Cernavoda
III, ein Phänomen des Spätneolithikums.
29
See above.
30
CAPITANI Annick de and LEUZINGER Urs, 1998, Arbon Bleiche 3, Siedlungsgeschichte,
einheimische Traditionen und Fremdeinflüsse im Übergangsfeld zwischen Pfyner und Horgener Kultur, Jahrbuch der Schweizerischen Gesellschaft für Urgeschichte 81, 237-249.
23
The absolute chronology by means of radiocarbon dates for Pfyn and Horgen
Culture are presented in Figures 42 and 43.
There exist also 6 radiocarbon dates31 of wood absolutely dated by means of
dendrochronology. Table 19 shows these results, Table 20 demonstrates the necessary Oxcal job-file for wiggle matching and Figure 44 presents the results of a
wiggle matching. The dendro age of the youngest sample of 3384 BC lies within
the 1-sigma time span from 3390 to 3360 BC, which has the higher probability
than the “wrong” interval from 3500 to 3480 BC. Thus the radiocarbon measurement confirms the dendro age. Table 21 gives the comparison between Pfyn,
Horgen, Arbon Bleiche 3 and Boleráz.
Against former ideas32 Elisabeth RUTTKAY now33 believes that it could be possible that the ceramics found in Arbon Bleiche has some elements which can show
that it belongs to the end phase of a developed Boleráz, as suggested by our new
dates concerning the time span of Boleráz and the dates for Arbon Bleiche.
31
With the friendly permission of Urs LEUZINGER and Trivun SORMAZ we can present here
new radiocarbon dates measured in Bern. These dates were measured in the Swiss National
Fund Project (NF Projekt Nr. 1214-3358.92) „Jahrringchronologische Korrelation von
Weichholz- und Weißtannenproben in Verbindung mit Analysen Prähistorischen Siedlungsstrukturen“ , in the years 1992-1995.
32
Cited in CAPITANI Annick de, see above.
33
RUTTKAY Elisabeth, 1999, Siedlungsfunde der Boleráz-Gruppe aus Wien und dem norddanubischen Niederösterreich. FÖ 38, in press.
24
The Iceman (Ötzi), a possibility of dating his death
more exactly34 (Peter STADLER, Vienna)
Since the Iceman was found in 1991 many radiocarbon dates have been determined, samples were analysed in Oxford, Groningen, Upsala, Gif sur Yvette and
also in Vienna at the VERA laboratory35. Although in this project no new dates
for the Iceman were analysed, with the help of our 14C database we propose a
new way for dating the Iceman.
With the combined evaluation of currently 57 dates it is possible to date the
Iceman to seven years, but only in his Radiocarbon Age. Figure 45 presents the
result of all currently available dates in a combined calibration. The Χ2 test fails
to prove, that all samples are coming from one event, what is not astonishing as
objects were found with much older and younger dates.18 But nevertheless the
calibration gives three intervals. In the next Figure 46 only the dates with a
sigma smaller than 60 years are calibrated together. These results also show that
further radiocarbon dates will not narrow down these intervals. So another strategy must be pursued.
Again the method of choice will be “wiggle matching“. As no sampling of a
tree-ring sequence suitable for “wiggle matching“ has yet been done, we can try
to see if a simulation will help us to narrow down the result with “wiggle matching“. Table 22 shows two assumed data sets. In both cases the year 3200 BC was
used for the youngest sample, all other samples are 10 years older than the previous one. A sigma was assumed with 30 years, which should be achievable at
VERA. As every run of these simulations with Oxcal reveals different results,
because the measurements are simulated every time with another random seed,
only two characteristic results shall be shown. Figure 47 shows now this attempt
with simulated 6 samples from 50 year rings. This result is really not good. The
sample from 3200 BC is put predominantly in the wrong interval from 3300 to
34
EGG Markus, GOEDECKER-CIOLEK Roswitha, GROENMAN-VAN WAATERINGE Willy and
SPINDLER Konrad, 1993, Die Gletschermumie vom Ende der Steinzeit aus den Ötztaler Alpen.
Jahrbuch des Römisch Germanischen Zentralmuseums 39, 128p.
35
ROM Werner, GOLSER Robin, KUTSCHERA Walter, PRILLER Alfred, STEIER Peter, WILD Eva
M, 1999, AMS 14C Dating of Equipment from the Iceman and of Spruce Logs from the Prehistoric Salt Mines of Hallstatt. Radiocarbon 41/2, 183-198. JETTMAR Barbara, 2000, Diploma thesis, in preparation. In this investigation many objects found during the excavation
1992 were dated. Some of them belong to other periods. BAGOLINI Bernardo, DAL RI
Lorenzo, LIPPERT Andreas, NOTHDURFTER Hans, 1995, Der Mann im Eis: Die Fundbergung
1992 am Tisenjoch, Gem Schnals, Südtirol. 3-52. In: Editors MOSER H., PLATZER W.,
SEIDLER Horst, SPINDLER Konrad 1995, 320p. Der Mann im Eis. Neue Funde und Ergebnisse.
The Numbers of dates by laboratories: ETH 2, OxA 9, Ua 4, GXA 1, GifA 21 and VERA
20.
25
3220 BC. In our second data set (see Figure 48) we take 7 samples from 60 year
rings, also with the youngest sample from 3200 BC. This random result shows,
that the interval from 3210 to 3184 BC is now clearly dominating for the sample
from year 3200 BC. We learn from these simulations, that more than 60 year
rings and more than seven samples could narrow down the time period substantially in which the Iceman died.
Now arises the question, which wooden object found with the Iceman contains
really more than 60 year rings. This question may be answered positively, although the year rings have not yet been counted. The object in question is the
bow, made from yew tree, with a diameter of 3.2 cm, it may contain enough year
rings for our investigation. It was not yet finished, so we can assume that the
Iceman cut it from the tree only some months or days before his death.
Someone may ask why we have taken the year 3200 BC for the youngest sample
in our simulation experiments. There is some good reason for doing so. This
year occurs as the year of a global event in the listing of most important global
(volcanic) events from the 4th to the 1st millennium BC36. In Table 23 we see five
such events, of which the event from 3200 BC is the oldest. 3200 BC corresponds to one thickest year ring in the Irish oak, followed by narrow rings from
3197 to 3190 BC, the narrowest year ring in 3195 BC. The American bristlecone
pine dendrochronology shows almost the same. These events are the most important signals seen in the dendro records, thus producing a very thin year ring
as results from these events. A volcanic event produced a cloud of ash, which
prevented the sunlight from reaching the earth surface, thus cooling down the
climate world wide. This event was also found in the ice cores, which, however,
cannot be dated as exactly as tree-rings.
It is very astonishing that the year 3200 BC falls in the second solution from
3210 to 3190 BC of the combined calibration. All three solutions together take
only 90 years of a time span of 230 years from 3360 to 3130 BC. The coincidence with the second solution means 30 years out of 230, thus the random coincidence would only occur in 13% or – the other way round - that 87% suggest
that this coincidence is not random.
So why should this event have caused the sudden death of the Iceman? We
know that the Iceman died in spring because of a sudden cold weather.37 His
36
Table after data in BAILLIE M.G.L., 1998, Evidence for climatic in the 12th and 17th centuries BC, in Mensch und Umwelt in der Bronzezeit Europas: Man and Environment in European Bronze Age, Editor HÄNSEL Bernhard, 49-55, completed with help of BAILLIE M.G.L.,
2000, Personal communication by e-mail.
37
OEGGL Klaus, 1999, Die letzte Mahlzeit des Mannes aus dem Eis. In: Die Gletschermumie
aus der Kupferzeit- La mummia dell´età del rame. Neue Forschungsergebnisse zum Mann aus
26
body was preserved by the snow and this snow did not melt away in summer or
in the next years. He was buried under a deep layer of snow and seems to have
been freed from this snow cover only in 1991, shortly before he was found. As
we know from the volcanic events they do not only influence one year but also
the following years. In our Table 23 the event from 3200 BC influenced the 9
following years.
So the event in 3200 BC could explain, why the Iceman died in spring as a result
of cold weather and why he was covered with snow and ice till 1991. This connection between the event in 3200 BC or one of the following years and the
death of the Iceman is still rather hypothetically, but we have the possibility
with the above presented method of “wiggle matching” to find out if his death
falls into the interval of 3210 to 3190 BC, and not in the two other time spans
from 3360 to 3330 or 3160 to 3130 BC.
dem Eis - Nuove ricerche sull’Uomo venuto da ghiaccio. Folio, Schriften des Südtiroler Archäologiemuseums - Collana del Museo Archeologico dell´Alto Adige. 97-110. The timing of
the Ice Man’s death from March till June is argued – on page 106 - with the good condition of
the microgametophyt of the pollen of ostrya carpinifolia (= hop horn beam), which was not
digested and could not have rested too long time in the stomach.
27
Early Middle Ages
Avar Period Settlement (7th century AD) from Brunn, Wolfholz
II, District Mödling, Lower Austria (Peter STADLER, Vienna)38
The Avar settlement from Brunn Wolfholz, site II, is only preserved in three
wells and three other pits. With the exception of Zillingtal39 it is the first Avar
Period settlement known in Austria. Two wells are situated near Wolfholzgasse
in a distance of 10 meters from each other, the third well is 195 m in north-east
direction. Two photos on Figure 49 shows one of these wells under excavation.
See also the map of Figure 50. Some of the pits contained charcoal, which was
dated, as well as wood in form of 20 boards from a well-chamber of well 823.
Board 12 and Board 18 could be dated dendrochronologically by Otto
CICHOCKI. These dates are the first dendro dates for the Avar Period. Table 24
presents these dates.
In total 19 radiocarbon dates were determined. The multiple samples out of the
fill of the pit can be used to determine the end of use of the wells or the time of
filling up the pits. For each object it is also possible to make a combination calibration. For the two boards wiggle matching is possible. All the results of these
calibrations are shown in Table 25.
The wiggle matchings come near the dendrochronological date, although the result for board 12 lies outside the 1-sigma calibration, the difference is more than
28 years. Board 18 lies within the 1-sigma result, the combined boards 12 and
18 are only 3 years apart from the 1- sigma calibration time span.
The fill of well 823 fails the X2-Test, because of sample VERA-682, which is
much too old and dates obviously old wood. If we remove this sample the test
succeeds. The date of the filling may be after 685 till 725 AD, thus at least 14 till
39 years later than the construction. The span from 740-770 AD is doubtful, because in the 8th century we have the problem with the shape of the calibration
curve. Thus the two solutions indicated may be only due to the curve. The same
is true also for the long time span for well 1288, but we have only one date.
It is a pity that from this well-datable well only ceramics of one type, type C after Roman Sauer, are known. This type is defined by means of thin sections and
38
STADLER Peter, HEROLD Hajnalka, 2000 (?), Awarische Siedlungsreste und Brunnen von
Brunn am Gebirge, Flur Wolfholz. Archaeologica Austriaca, in preparation. With contributions from Roman SAUER and Otto CICHOCKI.
39
DISTELBERGER Anton and DAIM Falko, 1996, Die awarische Siedlung von Zillingtal. Die
Grabung 1994-1995. In: Catalogue of the exhibition „Reitervölker aus dem Osten, Hunnen +
Awaren“ , Eisenstadt, 372-378.
28
by microscopical analysis as well as heavy mineral analysis, and also by macroscopic classification. The parallels known from the Middle/Late Avar cemetery
of Mödling, Goldene Stiege, mostly show a distribution in the whole time of the
cemetery. The so called “Baking Bells” were found also in this well and belong
to ceramic type C3, which was not present in the cemetery of Mödling, since it
represents a special settlement ceramic type. This means that the well 823 cannot be dated very well by means of ceramics.
The filling of the pits 1241 and 1242 was much faster, than that of the wells, indicated by a successful X2-Test. Also it is allowed to think that these two pits
were contemporary, still before the end of the 7th century. In pit 1242 all four
types A,B, C and C3 were found together which seems not possible within the
dated time span. But maybe future studies can explain this contradiction.
The dendro dates are mainly confirmed by radiocarbon measurements. Both are
the first available absolute data of the Avar time.
Calibrating the relative chronology in the Avar Age (6th to 9th century) to an absolute chronology (Peter STADLER, Vienna)
Since only a few dates were measured for this interesting subproject, we carried
out only a theoretical investigation. By means of seriation so-called sequence
dates40 (abbreviated SD) for the grave-complexes of the Avar Period are obtained. If this sequence really reflects a chronological development, would it be
possible – further than by using of absolute dates obtained from „solidi“ (Byzantine gold coins in these graves) - to make an absolute chronology from it?41
By 14C-dates we hope to prove the relative chronology. If it can be proved we
can go further on. With the help of radiocarbon dates it should be possible in an
iterative process to determine the ratio of sequence dates per year for different
intervals of the sequence dates (e.g. 1-100, 101-200, 201-300,...901-1000). For
example for the interval from 1-100 it could be that 4 sequence dates correspond to one year, for the interval from 500-600 SD it would be possible that 2
SD correspond to one year. With this information as a starting point, a wiggle
matching will be carried out. Wiggle matching narrows down the dates for every
40
The idea of sequence dates was already given by FLINDERS PETRIE W.M., 1899, Sequences
in prehistoric remains. Journal of the Anthropological Institute 29, 295-301. In my PhD thesis I used sequence dates (SD) to describe and compare seriations of different size. In contrary
to FLINDERS PETRIE I proposed to use SD as numbers from 1 to 1000. In: STADLER Peter,
1985, Die Seriation awarischer Gürtelgarnituren. Unpublished PhD thesis, 270p.
41
In our original project proposal we presented this seriation, the sequence dates and the absolute chronology done with the help of 30 coins in the grave-complexes.
29
radiocarbon analysis involved. These new dates can be used to determine new
ratios of SD to years for the ten intervals. With these ratios new wiggle matching can be done again and so on.
This process will be carried out, until no larger changes will be obtained and the
wiggle matching gives a stable solution.
In our figure 51 we present such a wiggle matching simulation. This simulation
shows, that it would also be possible to date the end of the Avar period, which
now different archaeologists see between 830 and 900. The accuracy of wiggle
matching in our simulation of ±10 years AD (1-sigma), would be enough to decide this controversy finally. Figure 52 shows the wiggle matching for a simulated sample from the hypothetical end of the Avar Age.
Avar and Magyar settlement from Örménykút, County Békés,
Eastern Hungary (Hajnalka HEROLD)
This site is situated in Eastern Hungary in County Békés and was excavated by
Csanád BÁLINT and Dénes JANKOVICH. Hajnalka HEROLD wrote a diploma thesis42 about ceramics from Örménykút and provided the seven samples. The Avar
material was dated archaeologically in the 8th/9th century, the Magyar material in
the 10th/11th century. 26 houses were found in total. 14 from Avar time, 11 from
Magyar period 10th century and two kilns, and from Arpadian Age (11/12th century) 1 house and 3 oven complexes and 9 pits. All samples come from houses,
pottery kilns and pits.
The following results were obtained by radiocarbon dating: See Table 26.
Two dates of Avar context agree with the archaeological dating, but suggest also
a somewhat earlier date. Since the typology and typochronology of Avar settlement ceramics is not yet detailed enough, this could be possible. So maybe these
new dates may give a starting point for an absolute chronology of Avar settlement ceramics. In the case of House B11 (VERA-727) the possibility of a preAvar dating has to be considered and the ceramics must be studied again.
For the Magyar period two samples were lying outside the postulated period.
VERA-726 and VERA-728 should be Magyar (10th century), but the results are
from the 6th and 7th century. Both came from pottery kilns, where the ceramics
belonged definitively to a post Avar period. Thus it cannot easily be explained
why such old wood (charcoal) came into the kilns. The two other samples are in
42
HEROLD Hajnalka, 1999, “Egy tiszántúli koraközépkori település kerámiája – Örménykút
54. lelőhely”. Unpublished diploma thesis, Budapest.
30
agreement with archaeology, but the time span from 1020-1050 and 1090-1120
seems more reasonable than the span from 1130 to 1160.
So in all cases the scientific dating will lead to a new discussion of chronology
of Early medieval settlements in Hungary.
The fortification of Thunau/Kamp, MG. Gars, Lower Austria,
(10th/9th century BC and 8th/9th century AD)
(Herwig FRIESINGER, Vienna)43
From this site, again in the Waldviertel, Otto CICHOCKI was asked to investigate
dendrochronology of all the wooden remains of the fortification from Urn field
Culture (UC) as well as from the Early Middle Ages (MA). He selected two
beams from UC and three from MA for being investigated with wiggle matching. From any beam two to four samples were taken for radiocarbon analysis.
The samples had 104, 51 (UC) and 46, 61 and 62 year rings (MA). All data, also
dendrochronological results, as far as they are ready by now, are summed up in
Table 27. Figure 54 shows the map of the excavation with the locations, the
samples come from.
The two beams from UC come both from section 372 and from two different
plana after planum 6, thus from the same height ± 5cm, but in a distance of
about half a meter. The two beams were evaluated with wiggle matching. Beam
61898 hat 104 year rings, samples were taken from year rings 1-5, 16-25, 60-75
and 95-104. The combined result for the youngest sample, VERA 710, gives a
1-sigma time span from 953 to 922 BC. See also Figure 55.
Beam 61902 had 51 year rings, samples were taken from year rings 1-5, 10-25
and 45-51. The outermost sample VERA-713 gives with wiggle matching a 1sigma interval from 1025-970BC. See also Figure 56.
So one could think there were two construction phases in the UC fortification.
But this idea must be handled with caution: Theoretically the two samples could
come from the same oak tree, one from the inner part, and one from the outer
part. On the other hand the distance of half a meter between these two samples is
in contradiction to this one-tree hypothesis, but they also could originate from
two trees, grown at the same time, one sample from the inner part of the first tree
and one sample from the outer part of another tree. Thus this problem can only
43
STADLER Peter, DRAXLER Susanne, FRIESINGER Herwig, KUTSCHERA Walter, PRILLER Alfred, ROM Werner, STEIER Peter, WILD Eva M., 2000(?), Die Absolutdatierung der urnenfelderzeitlichen und frühmittelalterlichen Wallanlagen von Thunau am Kamp, MG. Gars, mit
Hilfe von 14C-Daten. Archaeologia Austriaca, in press.
31
be solved with the help of dendrochronology. After the friendly personal communication of Erik Szameit the samples do not come from the wood construction of the fortification, but from the filling. Thus the obtained dates give only a
Terminus post quem for the construction.
Because of the very bad shape of the calibration curve in the range of 8th and 9th
century AD, we already knew before doing any radiocarbon measurement for
the MA fortification, that simple calibrations of single dates would yield no
good results. See Figure 57.
These bad results are really obtained if one makes calibrations of single samples.
The ranges were from 675 AD (for the innermost samples) till 900 AD for the
outermost. The only solution is again wiggle matching.
Beam 10006 had 46 year rings, samples were take from year rings 1-3 and 4046. Wiggle matching gave a 1-sigma time span for the outer sample of 815-885
AD. See Figure 58.
The second beam 11859 had 61 year rings, three samples were taken from year
rings 1-4, 30-35 and 54-61. The outermost sample gave with wiggle matching a
1-sigma time span from 825 to 885 AD. See Figure 59.
The 3rd beam 59122 had 62 year rings, samples were taken from year rings 1-3,
30-35 and 55-62. The resulting time span (1-sigma) or the outermost sample is
773 to 801 AD and thus much older than the two other beams. See Figure 60.
CICHOCKI was able to set up a floating dendrochronology for a part of the beams
of the fortification. With the help of it, it is possible to synchronise beams 10006
and 11869, but not yet 59122. Thus it is possible to make a joint wiggle matching for these beams. The more refined result is presented in the next Figure 61.
The dating interval obtained for the outermost sample of beam 11859 is restricted to 840-881 AD.
More than that, CICHOCKI could synchronise this floating chronology with the
middle curve from Mikulčice and could so obtain absolute years AD for the
beams. Thus he got for the middle curve of beam 10006 an end year of 864, for
the youngest year ring of the beam, which was dated with radiocarbon, an end
year of 846. For beam 11859 respectively an end year of 883 AD, the sample for
radiocarbon dating an end year of 873. Taking into account the thickness of the
youngest sample (VERA-0719) with seven years, it means the sample has a
middle dendrochronological age of 869,5 years AD. This result lies in the middle of the radiocarbon time span of 840 to 881 AD. Thus wiggle matching
yielded a – surprising for us – exact result despite the very bad shape of the cali32
bration curve. Nevertheless – the dendrochronology by CICHOCKI could be fully
confirmed.
The radiocarbon result for beam 59122 maybe useful for finding a dendrochronological fit. This sample originates from quite different part of the fortification,
but from the top of the fortification, which seems to have been constructed earlier than that part, from which the two other samples originate. To verify this
also samples from the lower part of the wooden construction should be dated.
Based on these new results it seems possible to prove the existence of at least
one construction phase on the fortification of the Urn Field Culture 953 to 922
BC. A hypothetical earlier phase 1025-970 BC needs a dendrochronological and
archaeological crosscheck.
For the Early Middle Ages fortification two phases can be assumed. One phase
from 773-801 AD, which still has to be confirmed by dendrochronology and by
radiocarbon analysis of parts of the wooden construction - there remain many
not yet synchronised beams. The second phase can be restricted by combining
two beams to 840-881 AD. This result is fully confirmed by the dendro date for
the youngest sample from 879,5 AD. One serious problem may be seen in the
fact, that there is no “Waldkante” for all samples, thus all the given dates may
only be seen as a Terminus post quem for the construction works. All results are
presented together in Table 28.
33
Conclusion and Outlook
So far about 27% of the samples originally planned within this project (1000),
17% of the samples collected (1555) are analysed. As we demonstrated in this
report already interesting results evolved. It seems clear that the original goal of
obtaining better absolute chronology is demonstrated by this subset of available
data.
However, the enthusiasms about the project by the sample suppliers led to an
increased submission of samples. Therefore the total number of samples increased to 1555. In the course of the project it turned out that the bottle neck in
the 14C measurement is the time-consuming preparation of carbon samples from
the original material. We apparently underestimated this step in our original
planning. This is perhaps not too surprising since the present project was the
first major 14C-dating enterprise at VERA.
In order to measure at least the remainder of the original number of samples (~
1000-270 = 730), we plan to increase the throughput for the third year by employing a larger number of people working on sample preparation.
34
Table 1. Database structure for 14C samples.
Fields used in sample database
General information
Date, when sample was received by VERA
Scientist
Priority:A,B,0,1,2,3, highest priority A,B,1, A for Avar subproject, B for Bronze Age
subproject
Sample number in project
Species:
Sample supplier
Number of Species
Culture
Species 2
Laboratory data
Lab
Number of Species 2
Species 3
Lab-Number
Number of Species 3
BP
Scientist
Sigma
Scientist’s comment
Delta 13C
Sigma Delta 13C
Cal.1 Sigma
Site parameters
Name of site
Weight of sample used
Location
Sample parameters
Weight of sample
District
Sample name
Region 2
Date, when sample was taken
Country
Find inventory
Co-ordinates
Name of sample taker
Material
Type of Site: cemetery, settlement
etc.
Type of soil
Object
Possible contamination
Science/Dendrochronology
Dendrochronological info1: number of year rings taken as sample
Context
Dendrochronological info1: number of year rings in total
Region 1
Photo documentation
Number of photo from site
Wood edge
Number of slide from site
Wood from inner/outer part
Number of photo with finds
Dendro date
Number of slide with finds
Science/Human Biology/Zoology
Bone
Cultural assignment
Cultural level
Side: left or right side of skeleton
Cultural level 1
End of bone: distal/proximal
Cultural level 2
Fragmented
Cultural level 3
Number of bones
Fine level 1
Patinated
Fine level 2
Anthropological gender
Diverse
Archaeological gender
Alphanumerical part of complex 1
Age: infans,juvenil,matur,senil
Complex
Age2: under border of age interval
Alphanumerical part of complex 2
Age3: upper border of age interval
Planum
reasons for dating
Literature
Data of sample supplier
35
Table 2. Recipe for collagene extraction from bone.
BONE
time
chemicals efficiency flow-rate amount per tempera(min)
(%)
(ml/min) cell (ml)
ture (°C)
150
45
30
30
6
60
30
30
30
6
30
1N HCl
Bidest.
Bidest.
Bidest.
0,1N NaOH
0,1N NaOH
Bidest.
Bidest.
Bidest.
1N HCl
Bidest.
11
100
0
100
100
15
100
0
100
100
100
0,33
3,33
0,00
3,33
3,33
0,67
3,33
0,00
3,33
3,33
3,33
50
150
0
100
20
40
100
0
100
20
100
20
20
20
20
20
20
20
20
20
20
20
Table 3. Recipe for ABA with charcoal/wood.
CHARCOAL
/ WOOD
time (min)
chemicals efficiency flow-rate
(%)
(ml/min)
60
30
30
30
6
180
30
30
30
30
30
6
60
30
30
30
1N HCl
Bidest.
Bidest.
Bidest.
0,1N NaOH
0,1N NaOH
Bidest.
Bidest.
Bidest.
Bidest.
Bidest.
1N HCl
1N HCl
Bidest.
Bidest.
Bidest.
11
100
0
100
100
15
100
0
100
0
100
100
11
100
0
100
0,33
3,33
0,00
3,33
3,33
0,67
3,33
0,00
3,33
0
3,33
3,33
0,33
3,33
0,00
3,33
amount per temperacell (ml)
ture (°C)
20
100
0
100
20
120
100
0
100
0
100
20
20
100
0
100
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
36
Table 4. Different tests done with samples pretreated on the new collagen
extraction unit.
Sample
δ13C
(‰)
σ
δ13C
pMC σ
pMC
Radiocarbon
Age BP
σ
VERA-0185/1
VERA-0185/2
-26,6
-28,1
1,4
1,3
84,53
88,65
0,54
0,59
1350
970
50
50
VERA-0185/3
VERA-0185/4
-26,3
-26,8
1,0
1,0
84,97
84,57
0,41
0,44
1310
1345
40
40
VERA-0202/1
VERA-0202/2
-23,7
-24,8
1,0
1,0
44,91
44,78
0,23
0,22
6430
6455
40
40
VERA-0163/1
VERA-0163/2
-17,5
-19,1
1,3
1,3
48,64
49,11
0,33
0,33
5790
5710
50
50
VERA-0166/1
VERA-0166/2
-18,0
-19,1
1,4
1,4
38,38
38,55
0,29
0,31
7690
7660
60
70
VERA-0138/1
VERA-0138/2
VERA-0138/3
VERA-0138/4
VERA-0138/5
VERA-0138/6
VERA-0138/7
VERA-0138/8
VERA-0138/9
VERA-0138/10
VERA-0138/11
VERA-0138/12
VERA-0138/13
VERA-0138/14
VERA-0138/15
VERA-0138/16
VERA-0138/17
VERA-0138/18
VERA-0138/19
VERA-0138/20
VERA-0138/21
VERA-0138/22
VERA-0138/23
VERA-0138/24
-23,8
-22,4
-21,3
-22,8
-23,2
-24,1
-22,8
-21,9
-23,3
destroyed
-24,5
-22,7
-24,7
-24,5
-25,1
-23,6
-24,8
-23,9
destroyed
-21,9
destroyed
-22,6
-22,5
-23,7
1,0
1,3
1,3
1,3
1,3
0,9
1,3
0,9
0,9
80,72
80,87
80,70
80,94
80,84
80,92
80,79
80,72
80,86
0,28
0,40
0,40
0,43
0,40
0,29
0,47
0,31
0,31
1720
1705
1725
1700
1745
1700
1715
1720
1705
30
40
40
45
40
30
45
30
30
0,9
0,9
0,9
0,9
0,9
1,3
0,9
0,9
80,80
80,96
80,67
80,67
80,85
79,86
80,60
80,73
0,29
0,31
0,30
0,30
0,30
0,40
0,32
0,29
1715
1695
1725
1725
1710
1805
1730
1720
30
30
30
30
30
40
30
30
0,9
80,81
0,31
1710
30
0,9
1,0
1,0
80,52
80,14
80,59
0,27
0,27
0,27
1740
1780
1735
25
25
25
37
Table 5. Standard Dual Inlet.
Gas
CO2 (13C)
Guaranteed Precision
1σ (‰)
Achieved
≤ 0.010
0.008
CO2 (18O)
≤ 0.016
0.0092
N2 (15N)
≤ 0.010
0.010
SO2 (34S)
≤ 0.010
0.0092
Table 6a. Elemental Analyzer Continuous Flow: 10 natural abundance constant quantity samples (50 µg of C, 100 µg of N, 50 µg S).
Gas
CO2 (13C)
Guaranteed Precision
1σ (‰)
Achieved
≤ 0.15
0.08
N2 (15N)
≤ 0.20
0.16
SO2 (34S)
≤ 0.20
0.13
Table 6b. Elemental Analyzer Continuous Flow: 10 natural abundance differing quantity samples (15-150 µg of C, 20-200 µg of N, 50-150 µg S).
Gas
CO2 (13C)
Guaranteed Precision
1σ (‰)
Achieved
≤ 0.30
0.16
N2 (15N)
≤ 0.30
0.12
SO2 (34S)
≤ 0.40
0.28
38
Table 7. Priority of samples.
Priority
A
B
0
1
2
3
Missing
Total
Number of samples Percent
199
112
36
160
228
47
773
1555
12,8
7,2
2,3
10,3
14,7
3,0
49,7
100,0
Table 8. Origin of samples.
Country
A
BG
CZ
D
GR
H
KIRG
RO
RU
SK
SLO
SY
Gesamt
Number of samples Percent
938
9
247
17
1
163
2
4
6
153
10
5
1555
60,3
0,6
15,9
1,1
0,1
10,5
0,1
0,3
0,4
9,8
0,6
0,3
100,0
39
Table 9. Material of samples.
Material
Cereals
Wood
Charcoal
Burnt human bone
Human bone
Seed
Snail
Animal Bone
Animal Bone/ Burnt bone
Total
Number of
samples
42
115
374
8
532
2
9
469
3
1555
Percent
2,7
7,4
24,1
0,5
34,3
0,1
0,6
30,2
0,2
100,0
40
Table 10. Kultureller Kontext der Proben (nach Kulturen sortiert).
Kultur
10.Jh.
11.Jh.
12.Jh.
13.Jh.
3/4.Jh.
4.Jh
5.Jh.
?
Aunjetitz
Aurignacien
Awaren
Baden
Baden-Boleráz
Baden-Klassisch
Baiern
Bajc-Retz
Barca
Bisamberg-Oberpullendorf
Chlopice-Veselé
Danilo
Epigravettien
Frühbronzezeit
Frühbronzezeit?
Frühmesolithikum
Frühmittelalter
Frühneolithikum
Furchenstich
GBK
Gemeinlebarn
Gepiden
Girla Mare
Gravettien
Gravettien/Pavlovien
HGK
Hallstatt
Hamangia
Hochmittelalter
Jevišovice
Jordanov
Jungpleistozän
KAK
Kosihy-Caka-Mako
LBK
Langobarden
Anzahl der
Proben
Prozent
1
1
4
4
1
4
2
6
125
12
190
2
27
18
9
1
1
6
1
1
1
15
2
1
1
5
1
12
2
1
1
9
3
13
7
7
6
15
1
1
3
20
245
53
0,1
0,1
0,3
0,3
0,1
0,3
0,1
0,4
8,0
0,8
12,2
0,1
1,7
1,2
0,6
0,1
0,1
0,4
0,1
0,1
0,1
1,0
0,1
0,1
0,1
0,3
0,1
0,8
0,1
0,1
0,1
0,6
0,2
0,8
0,5
0,5
0,4
1,0
0,1
0,1
0,2
1,3
15,8
3,4
41
Tab. 10. Continued.
Latène
Lausitz
Lengyel
Lengyel?
LgK
Ludanice
MMK
Madarovce
Magyaren
Maisbirbaum-Zohor
Mesolithikum
Mesolithikum/Frühneolithikum
Mistelbach-Regelsbrunn
Mittel-/Spätbronzezeit
Mittel-/Spätpaläolithisch
Mittelbronzezeit
Mittelneolithikum
Mondsee
Monteoru
Neolithikum
Nitra
Orava
Paläolithikum
Polgár
Protoaunjetitz
Púchov
RKZ
STBK
Schnurkeramik
Slawen
Spätbronzezeit
Späteisenzeit
Späthelladisch
Spätlaténezeit
Spätmesolithikum
Spätneolithikum
Spätpaläolithikum
TRBK
TRBK?
Tiszadob
UK
UK - HA
Unterwölbling
VKWZ
Veterov
Vlaska
Vorpúchov
ÄLBK
Missing
Total
42
11
246
1
2
1
1
8
4
1
7
1
1
5
2
1
4
1
3
4
11
1
1
1
8
8
22
18
16
40
7
22
2
1
5
16
9
34
4
3
50
18
3
8
8
1
12
10
29
1555
2,7
0,7
15,8
0,1
0,1
0,1
0,1
0,5
0,3
0,1
0,5
0,1
0,1
0,3
0,1
0,1
0,3
0,1
0,2
0,3
0,7
0,1
0,1
0,1
0,5
0,5
1,4
1,2
1,0
2,6
0,5
1,4
0,1
0,1
0,3
1,0
0,6
2,2
0,3
0,2
3,2
1,2
0,2
0,5
0,5
0,1
0,8
0,6
1,9
100,0
42
Table 11. Date falls within range of expectation.
Date falls within range of expectation
no
yes
Total
Number Percentage
43
16,0
225
84,0
268
100,0
43
Table 12. All in our project measured data, sorted by sample name (Probenname). Table only in German.
Probenlieferant
Kultur
Lab#
VERA
BP
σ
σa δC13 σ δC13 ok Probenname
Material
Species
Fundort
Flur
Bezirk
Region
Fundortart
Komplex
Ruttkay E.
Baden-Boleráz
838
4645
35
-18,8
1,3
√
Baierdorf _01
Tk
indet.
Baierdorf
„Au“
Hollabrunn
A
Siedlung, Grube
Mateiciucová I.(G.
Nevizánsky)
Mateiciucová I.(G.
Nevizánsky)
Ruttkay E.
LBK
735
1925
35
-28,0
1,5
≠
Bajc_Vlkanovo (1)
Hk
Laubholz indet.
Bajc-Vlkanovo
Vlkanovo
Komárno
SK
BadenKlassisch
BadenKlassisch
MaisbirbaumZohor
736
4530
45
-28,4
1,5
√
Bajc_Vlkanovo (2)
Hk
Laubholz indet.
Bajc-Vlkanovo
Vlkanovo
Komárno
SK
839
1520
40
-17,8
1,3
≠
Balatonmagyaród-1
Tk
Homo
Balatonmagyaród
407
3350
45
-25,7
1,1
√
Baumgarten_01
Hk
Laubholz indet.
Baumgarten
Hídvégpusz Nagykanizsa
ta
Dornparz
Gänserndorf
Siedlung der Zselizerke- Objekt 23
ramik, Siedlungsgrube
Siedlung der Badener
Objekt 22
Kultur, Siedlungsgrube
Grab B/2
NÖ
A
Salaš M.
Veterov
422
3435
35
-23,0
0,8
√
Hk
Salix sp.(Weide)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Salaš M.
Veterov
423
3410
50
√
Blucina Cezavy 1,2.e
Lieferung
Blucina Cezavy 10
Hk
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Salaš M.
UK
424
3090
40
-25,2
1,0
√
Blucina Cezavy 11
Hk
Salix
sp.(Weide)/Populus(Pappel)
Quercus sp.(Eiche)/Cast.
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Salaš M.
Veterov
425
3405
45
-24,8
1,6
√
Blucina Cezavy 12
Hk
Corylus avellana(Haselnuß)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Salaš M.
Veterov
426
3430
45
-25,7
1,6
√
Blucina Cezavy 13
Hk
Quercus sp.(Eiche)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Salaš M.
Aunjetitz
427
3585
45
-22,5
1,6
√
Blucina Cezavy 14
Hk
Quercus sp.(Eiche)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Befestigte Höhensiedlung
befestigte Höhensiedlung
Höhensiedlung
Salaš M.
UK
428
3350
45
-24,8
1,6
√
Blucina Cezavy 15
Hk
Laubholz indet.
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Höhenheiligtum
Salaš M.
Veterov
429
3390
45
-25,4
1,6
√
Blucina Cezavy 2
Hk
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Befestigte Siedlung
Salaš M.
UK
430
3065
45
-22,9
1,6
√
Blucina Cezavy 3
Hk
Salix
sp.(Weide)/Populus(Pappel)
Quercus sp.(Eiche)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Höhenheiligtum
Salaš M.
Aunjetitz
431
3605
30
-26,2
0,9
√
Blucina Cezavy 4
Hk
Fraxinus(Esche)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Höhensiedlung
Salaš M.
Veterov
432
3410
30
-24,4
0,9
√
Blucina Cezavy 5
Hk
Ulmus sp.(Ulme)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Salaš M.
Aunjetitz
433
3630
30
-24,5
0,9
√
Blucina Cezavy 6
Hk
Quercus sp.(Eiche)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Befestigte Höhensiedlung
Höhensiedlung
Salaš M.
UK
434
3040
35
-25,0
0,9
√
Blucina Cezavy 7
Hk
Fagus(Buche)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Höhenheiligtum
Salaš M.
Veterov
435
3205
30
-25,2
0,9
√
Blucina Cezavy 8
Hk
Quercus sp.(Eiche)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Salaš M.
UK
436
3160
35
-25,8
0,9
√
Blucina Cezavy 9
Hk
Abies alba (Tanne)
Blucina
Cezavy
Brno-venkov
Mähren
CZ
Befestigte Höhensiedlung
Höhenheiligtum
Stadler P.
Hallstatt
183
2490
45
-25,7
1,1
√
Brunn_01
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
Stadler P.
Hallstatt
184
2500
100
-20,9
1,7
√
Brunn_02
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
854
Stadler P.
Awaren
185
1330
45
-23,6
0,8
√
Brunn_03
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1242
Stadler P.
Awaren
186
1435
45
-25,3
1,2
√
Brunn_04
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1242
Stadler P.
Awaren
187
1430
45
-25,0
1,2
√
Brunn_05
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1241
Stadler P.
Awaren
188
1370
60
-26,6
0,7
√
Brunn_06
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1241
Stadler P.
Awaren
189
1310
45
-23,5
0,8
√
Brunn_07
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1241
Lindinger V.
-25,0
1,3
NÖ
Land
H
Einzelgrube innerhalb
einer frühbronzezeitlichen Siedlung
Befestigte Siedlung
Befestigte Höhensiedlung
Höhenheiligtum
Grube 2
Fundstelle 2
Graben 1A
Obj. 11
Obj. K2 (Fundanhäufung)
Grube 12
Grube 16
Grube 33A
Obj. K4 (Fundanhäufung)
Graben 1A
Objekt K1 (Fundanhäufung)
Grube 6A
Grube 3A
Grube 5
Obj. K2 (Fundanhäufung)
Grube 9A
Obj. 7A (Fundanhäufung)
854
44
Table 12. Continued (page2).
Stadler P.
Awaren
190
1290
Stadler P.
LBK
191
modern
50
-25,1
0,9
√
Brunn_08
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1241
-20,8
0,8
≠
Brunn_09
Hk
Ulmus sp.(Ulme)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1423
1413
Stadler P.
LBK
192
6410
60
-22,5
0,8
√
Brunn_10
Hk
Fraxinus(Esche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
Stadler P.
LBK
193
6370
30
-23,6
0,6
√
Brunn_11
Hk
Fraxinus(Esche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1401
Stadler P.
LBK
194
11870
40
-23,8
0,6
≠
Brunn_12
Hk
Nadelholz indet.
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1409
Stadler P.
LBK
195
6385
30
-26,0
0,6
√
Brunn_13
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1417
Stadler P.
LBK
196
6215
40
-22,4
0,7
√
Brunn_14
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
1423
Stadler P.
LBK
197
6370
35
-21,7
1,0
√
Brunn_15
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
Stadler P.
Langobarden
198
1640
50
-28,5
1,6
√
Brunn_16
Hk
Acer sp.(Ahorn)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Gräberfeld
Stadler P.
LBK
199
6395
30
-23,4
0,6
√
Brunn_17
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
123
Stadler P.
LBK
200
6385
35
-22,9
0,7
√
Brunn_18
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
100
Stadler P.
LBK
201
6405
30
-25,2
0,7
√
Brunn_19
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
54
Stadler P.
LBK
202
6430
30
-22,0
0,7
√
Brunn_20
Hk
Fraxinus(Esche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Siedlung
145
Stadler P.
Awaren
262
1485
35
-28,0
1,2
√
Brunn_27
H
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
263
1410
35
-26,4
1,2
√
Brunn_28
H
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
264
1275
35
-26,8
1,2
√
Brunn_29
H
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
265
1485
40
-24,6
1,2
√
Brunn_30
H
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
266
1425
35
-24,9
1,2
√
Brunn_31
H
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
267
1350
35
-26,2
1,2
√
Brunn_32
H
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
680
1245
40
-26,2
1,3
√
Brunn_34
Hk
Fraxinus(Esche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
681
1295
40
-25,1
1,3
√
Brunn_35
Hk
Fagus(Buche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
682
1450
45
-29,4
1,3
√
Brunn_36
Hk
Quercus sp.(Eiche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
683
1315
40
-26,6
1,3
√
Brunn_37
Hk
Fagus(Buche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
684
1285
40
-27,8
1,3
√
Brunn_38
Hk
Fagus(Buche)
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
823
Stadler P.
Awaren
685
1255
40
-27,8
1,3
√
Brunn_39
Hk
indet.
Brunn am Gebirge
Wolfholz
Mödling
NÖ
A
Brunnen
1288
Pavlu I.
LBK
686
6230
30
-25,4
0,7
√
Bylany_01
Hk
Quercus sp.(Eiche)
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
H.0041,Pf.4170
Pavlu I.
LBK
687
6215
30
-26,9
0,7
√
Bylany_02
Hk
Quercus sp.(Eiche)
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
H.0041,Pf.4187
Pavlu I.
LBK
688
6335
40
-24,3
0,8
√
Bylany_03
Hk
indet.
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
H.0041,Pf.4205
Pavlu I.
LBK
689
6210
35
-23,7
0,8
√
Bylany_04
Hk
indet.
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
Pavlu I.
LBK
690
5825
35
-24,6
0,8
√
Bylany_05
Hk
Quercus sp.(Eiche)
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
Pavlu I.
LBK
692
6370
40
-25,7
0,8
√
Bylany_07
Hk
indet.
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
H.0096,Gr.93,T.c,Sch
.3
H.0096,Gr.93,T.c,Sch
.2-3
H.0306,Pf.1030
Pavlu I.
LBK
693
6330
35
-26,0
0,9
√
Bylany_08
Hk
Quercus sp.(Eiche)
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
H.0306,Pf.1031
Pavlu I.
LBK
694
6300
35
-23,9
0,9
√
Bylany_09
Hk
Quercus sp.(Eiche)
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
H.0306,Pf.1054
Pavlu I.
LBK
695
6290
40
-26,2
0,9
√
Bylany_10
Hk
Quercus sp.(Eiche)
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
H.0912,Pf.5329
Pavlu I.
LBK
696
6305
45
-25,9
0,9
√
Bylany_11
Hk
Quercus sp.(Eiche)
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
H.0912,Pf.5335
Pavlu I.
LBK
697
6090
35
-24,3
0,9
√
Bylany_12
Hk
indet.
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
H.0912,Pf.5355
Pavlu I.
LBK
698
6320
50
√
Bylany_13
Hk
Quercus sp.(Eiche)
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
Pavlu I.
LBK
699
250
40
≠
Bylany_14
Hk
Abies alba (Tanne)
Bylany
Kutná Hora
Böhmen
CZ
Siedlung
H.2197,Gr.2168,T.a,S
ch.3
H.2197,Gr.2168,Sch.
1
-24,6
-24,1
1,3
1,3
1423
1515/Grab 13
45
Table 12. Continued (page 3).
Kaus K.
867
4430
40
Mateiciucová I.(J. Bartík) Madarovce
737
3380
35
-26,0
1,5
√
Dvorníky-Posádka _04
Hk
Quercus sp.(Eiche)
Dvorníky
Weide ober Eisenstadtder Trift
Umgebung
Posádka
Hlohovec
Mateiciucová I.(J. Bartík) Madarovce
738
3400
50
-23,9
1,4
√
Dvorníky-Posádka _05
Hk
Acer sp.(Ahorn)
Dvorníky
Posádka
Hlohovec
SK
Mateiciucová I.(J. Bartík) Madarovce
739
3485
40
-27,5
1,5
√
Dvorníky-Posádka _06
Hk
Quercus sp.(Eiche)
Dvorníky
Posádka
Hlohovec
SK
Mateiciucová I.(J. Bartík) Madarovce
740
3395
45
-26,0
1,5
√
Dvorníky-Posádka _09
Hk
Quercus sp.(Eiche)
Dvorníky
Posádka
Hlohovec
SK
Stadler P.
868
4510
40
√
Franzhausen_038
Mk
Homo
Franzhausen
732
2930
50
1,6
√
Franzhausen_Kokoron_01
Hk
Kiefer
Franzhausen
Lochner M.
LBK
BadenKlassisch
UK
-20,0
-18,9
-27,3
1,2
1,2
Donnerskirchen_1
Tk
indet.
Donnerskirchen
Bgld
A
Siedlung, Grube
SK
Siedlung der Madarovce
KulturBrandschicht
Siedlung der Madarovce
KulturInnere Rine-Sohle
Siedlung der Madarovce
KulturPfostengrube
Grube
NÖ
A
Sektor B-C, m. 44.746.8, Brandschicht
Sektor D, m. 35-45,
Innere Rine-Sohle
Sektor F, m. 75,
Pfostengrube
Nr.16/96
Siedlung der Madarovce Sektor H, m. 63-64,5,
Kultur Siedlungsgrube
Siedlungsgrube
Nr.19B/96
Gräberfeld
206
S33
Kokoron
S33
Kokoron
S33
Kokoron
Göllnergasse/Hotterwe
g (Gartenwiesen)
Göllnergasse/Hotterwe
g (Gartenwiesen)
Kranawetberg
St.Pölten
NÖ
A
Gräberfeld
Verf.65
St.Pölten
NÖ
A
Gräberfeld
Verf.267
St.Pölten
NÖ
A
Gräberfeld
Verf.336
Oberpullendorf
Bgld
A
Siedlung
Grube 9
Oberpullendorf
Bgld
A
Siedlung
Grube 12
Gänserndorf
NÖ
A
Eiszeitlicher Lagerplatz
Kulturschicht an
dieser Stelle 2m 20
im Löß n. N einfallend, südlicher
Bereich durch
Erosion und Pflug
erfaßt (etwa 20m
weiter südlich)
Schicht1,1m unter
Gravettienschicht im
Löß
Objekt 21/NWHälfte/Sig. 97
Lochner M.
UK
733
2870
45
-25,1
1,6
√
Franzhausen_Kokoron_02
Hk
Kiefer
Franzhausen
Lochner M.
UK
734
2825
35
-27,8
1,5
√
Franzhausen_Kokoron_03
Hk
Quercus sp.(Eiche)
Franzhausen
Böhm H.
BadenKlassisch
869
4530
50
-20,8
1,2
√
Girm_01
Tk
Bos(Rind)
Girm
Böhm H.
BadenKlassisch
875
4565
45
-20,8
1,2
√
Girm_02
Tk
Bos(Rind)
Girm
Antl-Weiser W.
Gravettien
364
25300
90
-25,4
0,9
√
Grub_03
Hk
Pinus sp. (Föhre)
Grub
Antl-Weiser W.
Jungpleistozän
365
26700
120
-23,8
0,9
√
Grub_04
Hk
Picea abies(Fichte)/Larix
sp.(Lärche)
Grub
Kranawetberg
Gänserndorf
NÖ
A
Eiszeitlicher Lagerplatz
Krenn-Leeb A.
Baden-Boleráz
876
4770
55
-19,1
1,2
√
Grub_KL_03
Tk
Bos p. f. taurus
Grub an der March
Gänserndorf
NÖ
A
Siedlung/Grube
Krenn-Leeb A.
Baden-Boleráz
877
4760
50
-21,7
1,2
√
Grub_KL_04
Tk
Bos p. f. taurus
Grub an der March
Gänserndorf
NÖ
A
Siedlung/Grube
Objekt 28/Sig. 53
Krenn-Leeb A.
Baden-Boleráz
878
4790
55
-21,9
1,3
√
Grub_KL_05
Tk
Bos p. f. taurus
Grub an der March
Unterhaspel, Parz.
364/3
Unterhaspel, Parz.
364/3
Unterhaspel, Parz.
364/3
Gänserndorf
NÖ
A
Siedlung/Grube
Objekt 50/NWHälfte/Sig. 94
46
Table 12. Continued (page 4).
Bichler M.
?
675
modern
-26,9
1,6
≠
Gyali_01
Hk
Halme
Gyali
Herold H.
Awaren
879
1220
40
-19,6
1,2
√
Gyenesdias_01
Mk
Homo
Gyenesdias
Wewerka B.
BadenKlassisch
BadenKlassisch
Baden
880
4510
45
-20,6
1,2
√
Hadersdorf_02
Tk
indet.
Hadersdorf
881
4485
40
-21,6
1,2
√
Hadersdorf_05
Tk
Bos(Rind)?
Hadersdorf
730
4210
50
√
Hatzenbach_4
Hk
Fagus(Buche)
Hatzenbach
394
8910
45
-24,9
0,8
√
Hohler Stein_1
Hk
Pinus sp. (Föhre)
Vent
220
6640
50
-25,6
1,6
√
Hohler Stein_2
Hk
Abies alba (Tanne)
Vent
221
4980
50
-29,0
1,6
≠
Hohler Stein_3
Hk
Pinus sp. (Föhre)
Vent
Einwögerer Th.
Spätmesolithikum
Spätmesolithikum
Spätmesolithikum
Aurignacien
670
27000
150
-24,4
1,0
√
Hundsteig_01
Hk
Pinus sp. (Föhre)
Khafizov D.
Hochmittelalter
672
850
40
-26,0
1,1
√
Kazan_01
Hk
Khafizov D.
Hochmittelalter
673
555
40
-28,0
1,0
√
Kazan_02
Hk
Khafizov D.
Hochmittelalter
674
535
40
-26,5
1,1
√
Kazan_03
Khafizov D.
Hochmittelalter
882
770
40
-22,1
1,2
≠
Herold H.
Awaren
883
1440
45
-17,1
1,2
Mateiciucová I.(L.
Kaminská)
Tiszadob
749
6260
35
Herold H.
Awaren
884
790
40
-20,2
Herold H.
Awaren
885
1460
40
-20,2
Pertlwieser M.
Lengyel
770
5860
60
-25,5
Lauermann E.
Frühbronzezeit
809
1145
40
-24,2
Lauermann E.
Frühbronzezeit
810
1110
45
-25,6
1,6
≠
Michelberg_11
Carneiro Â.
Lengyel
153
5600
40
-19,7
1,5
√
Michelstetten_01
Carneiro Â.
Lengyel
154
5630
45
-18,6
0,4
√
Michelstetten_02
Carneiro Â.
Lengyel
155
5820
50
-17,4
1,8
√
Carneiro Â.
Lengyel
156
5770
35
-19,5
0,9
√
Carneiro Â.
Lengyel
157
5680
45
-21,8
0,2
Carneiro Â.
Lengyel
158
5760
45
-18,1
Carneiro Â.
Lengyel
159
5720
40
Carneiro Â.
Lengyel
160
5540
Carneiro Â.
Lengyel
161
5765
Wewerka B.
Lauermann E.
Leitner W.
Leitner W.
Leitner W.
-26,8
Bimsabbau, Gyali
Gipfelbereich
Krems
(beim
Bahnhof)
(beim
Bahnhof)
Schottergrube
Malllebarnfeld
Hohler
Stein
Hohler
Stein
Hohler
Stein
Hundsteig
indet.
Kazan
indet.
Kazan
Hk
indet.
Kazan_04
Hk
√
Kecskemét-Sallai_1
√
1,2
1,2
1,6
Ägäis
GR
unter Tephraschicht
Zala
H
Gräberfeld
Grab 82/5
Krems
NÖ
A
Siedlung, Grube
Objekt 46
Krems
NÖ
A
Siedlung, Grube
Objekt 68
Korneuburg
NÖ
A
Siedlung
Haus V5
Imst
Tirol
A
Siedlung
Holzpfostenabdruck
Quadrant I 15,
Feuerstelle
Quadrant H 18 a,
Feuerstelle
Kulturschicht
Imst
Tirol
A
Siedlung
Imst
Tirol
A
Siedlung
Krems
NÖ
A
Kremlin
Kazan
Tatarstan RU
Siedlung,sekundäre
Sedimentation
Siedlung
Kremlin
Kazan
Tatarstan RU
Siedlung
älteste Schicht
Kazan
Kremlin
Kazan
Tatarstan RU
Siedlung
älteste Schicht
Quercus sp.(Eiche)
Kazan
Kremlin
Kazan
Tatarstan RU
Siedlung
älteste Schicht
Mk
Homo
Kecskemét
Sallai utca
BácsKiskun
H
Gräberfeld
Košice_Galgovec III (3)
Hk
Quercus sp.(Eiche)
Košice-Galgovec
SK
≠
Kunbábony_01
Tk
Ovis(Schaf)
Kunbábony
H
Siedlung der östliche
Linearkeramik, Siedlungsgrube
Gräberfeld
√
Kunbábony_02
Tk
Ovis(Schaf)
Kunbábony
1,4
√
Leonding_1
Hk
Quercus sp.(Eiche)
Leonding
1,6
≠
Michelberg_06
Hk
Quercus sp.(Eiche)
Haselbach
Michelberg Korneuburg
Hk
Fagus(Buche)
Haselbach
Michelberg Korneuburg
NÖ
Tk
Gr.Wiederkäuer
Michelstetten
Hintaus
Mistelbach
NÖ
Tk
Bos p. f. taurus?
Michelstetten
Hintaus
Mistelbach
NÖ
Michelstetten_03
Tk
Gr.Wiederkäuer
Michelstetten
Hintaus
Mistelbach
Michelstetten_04
Tk
Gr.Wiederkäuer
Michelstetten
Hintaus
Mistelbach
√
Michelstetten_05
Tk
Gr.Wiederkäuer
Michelstetten
Hintaus
1,1
√
Michelstetten_06
Tk
Gr.Wiederkäuer
Michelstetten
-22,3
0,6
√
Michelstetten_07
Tk
Gr.Wiederkäuer
40
-21,1
1,5
√
Michelstetten_08
Tk
40
-21,0
1,3
√
Michelstetten_09
Tk
-22,9
1,3
Košice-mesto
älteste Schicht
Objekt 2/97
BácsKiskun
BácsKiskun
OÖ
H
Gräberfeld
A
Gräberfeld
Grab N1
NÖ
A
Höhensiedlung
Kulturschicht
A
Höhensiedlung
Kulturschicht
A
Siedlung, Grube
27
A
Siedlung, Grube
31
NÖ
A
Siedlung, Graben
43
NÖ
A
Siedlung, Graben
43
Mistelbach
NÖ
A
Siedlung, Graben
43
Hintaus
Mistelbach
NÖ
A
Siedlung, Graben
43
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Graben
50
Gr.Wiederkäuer
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Graben
50
Gr.Wiederkäuer
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Graben
50
Linz-Land
47
Table 12. Continued (page 5).
Carneiro Â.
Lengyel
162
5705
35
-20,3
1,2
√
Michelstetten_10
Tk
Gr.Wiederkäuer
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Graben
Carneiro Â.
Lengyel
163
5730
45
-20,6
1,1
√
Michelstetten_11
Tk
Gr.Wiederkäuer
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Graben
50
Carneiro Â.
Lengyel
164
5595
30
-20,7
1,0
√
Michelstetten_12
Tk
Bos(Rind)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Herdstelle?
151
Carneiro Â.
Lengyel
165
5610
35
-22,1
1,2
√
Michelstetten_13
Tk
Gr.Wiederkäuer
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Herdstelle?
151
Carneiro Â.
Lengyel
166
7740
35
-20,9
1,0
≠
Michelstetten_14
Tk
Gr.Wiederkäuer
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
790
Carneiro Â.
Lengyel
167
5625
45
-20,1
1,2
√
Michelstetten_15
Tk
Gr.Wiederkäuer
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
946
Carneiro Â.
Lengyel
168
5620
50
-19,6
0,7
√
Michelstetten_16
Tk
Gr.Wiederkäuer (?)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
946
Carneiro Â.
Lengyel
169
5740
60
-21,0
0,3
√
Michelstetten_17
Tk
Gr.Wiederkäuer (?)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
946
Carneiro Â.
Lengyel
170
5555
50
-28,6
1,2
√
Michelstetten_18
Tk
Gr.Wiederkäuer (?)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
946
Carneiro Â.
Lengyel
171
5550
40
-20,5
0,8
√
Michelstetten_19
Tk
indet.
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
973
Carneiro Â.
Lengyel
172
5605
50
-21,2
1,3
√
Michelstetten_20
Tk
Gr.Wiederkäuer (?)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
973
Carneiro Â.
Lengyel
173
5590
50
-21,1
1,4
√
Michelstetten_21
Tk
Capra(Ziege)/Ovis(Schaf)?
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
973
Carneiro Â.
Lengyel
174
5665
45
-19,5
1,4
√
Michelstetten_22
Tk
Kl. Wiederkäuer
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
994
Carneiro Â.
Lengyel
175
5710
50
-19,5
1,6
√
Michelstetten_23
Tk
Sus scrofa (Wildschwein)?
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
994
50
Carneiro Â.
Lengyel
176
5610
80
-20,8
1,0
√
Michelstetten_24
Tk
Bos(Rind)?
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
1016
Carneiro Â.
Lengyel
177
5615
40
-20,9
0,2
√
Michelstetten_25
Tk
indet.
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
1016
Carneiro Â.
Lengyel
178
5670
45
-21,4
0,9
√
Michelstetten_26
Tk
Bos(Rind)?
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
1065
Carneiro Â.
Lengyel
179
5575
40
-23,3
0,1
√
Michelstetten_27
Tk
Gr.Wiederkäuer (?)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
1105
Carneiro Â.
Lengyel
180
5615
35
-20,5
1,3
√
Michelstetten_28
Tk
Gr.Wiederkäuer (?)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
1105
Carneiro Â.
Lengyel
181
5630
45
-22,2
0,5
√
Michelstetten_29
Tk
Bos primigenius(Ur)?
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
1107
Carneiro Â.
Lengyel
182
5615
40
-22,9
0,7
√
Michelstetten_30
Tk
indet.
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung, Grube
1107
Lauermann E.
RKZ
380
1735
40
-24,2
1,0
√
Michelstetten_35
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
eingetiefte Hütte 10
Lauermann E.
Latène
381
2195
35
-26,5
1,1
√
Michelstetten_36
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Grubenhaus 1139
Lauermann E.
Latène
382
2190
40
-25,5
1,0
√
Michelstetten_37
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Grubenhaus 16
Lauermann E.
RKZ
383
1690
40
-26,4
1,1
√
Michelstetten_38
Hk
Laubholz indet.
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Grube 198
Lauermann E.
RKZ
384
1680
35
-25,2
1,0
√
Michelstetten_39
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Grube 200
Lauermann E.
RKZ
385
2000
40
-25,2
1,1
√
Michelstetten_40
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Grube 212
Lauermann E.
Latène
386
2455
35
-25,6
1,1
√
Michelstetten_41
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Grubenhaus 229
Lauermann E.
Latène
387
1645
35
-26,6
1,1
≠
Michelstetten_42
Hk
Fagus(Buche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Gruben 240
Lauermann E.
RKZ
388
2445
35
-26,2
0,8
≠
Michelstetten_43
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Grube 373
Lauermann E.
RKZ
389
2065
40
-24,6
1,0
≠
Michelstetten_44
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Hütte 374
Lauermann E.
RKZ
390
2080
40
-24,3
1,0
≠
Michelstetten_45
Hk
Acer sp.(Ahorn)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Grube 375
Lauermann E.
RKZ
391
1770
40
-23,8
1,0
√
Michelstetten_46
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Grube 650
Lauermann E.
Latène
392
1345
45
-24,9
1,1
≠
Michelstetten_47
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Grube 874
Lauermann E.
RKZ
393
1530
40
-24,0
1,0
≠
Michelstetten_48
Hk
Quercus sp.(Eiche)
Michelstetten
Hintaus
Mistelbach
NÖ
A
Siedlung
Pertlwieser M.
Lengyel
771
1350
50
≠
Mitterkirchen_4
Hk
Quercus sp.(Eiche)
Mitterkirchen,
Lehen
Perg
OÖ
A
Siedlung
Stadler P.
Latène
203
2175
45
√
MödlingLein_01
Hk
Acer sp.(Ahorn)
Mödling
Leinerinnen Mödling
NÖ
A
Siedlung
Eisenschmelzofen
875
Pfostengrube am SEnde des Bohlensteges
Grube3
-24,9
-25,4
1,4
1,0
48
Table 12. Continued (page 6).
Lenneis E.
LBK
395
6210
45
-23,8
1,0
√
Mold_01
Hk
Quercus sp.(Eiche)
Mold 1
Horn
NÖ
A
Siedlung
Grube 125, Quadrat 4
Lenneis E.
LBK
396
6240
45
-25,9
1,1
√
Mold_02
Hk
Quercus sp.(Eiche)
Mold 1
Horn
NÖ
A
Siedlung
Grube 125, Quadrat 4
Lenneis E.
LBK
397
6250
70
-22,6
1,4
√
Mold_03
Hk
Quercus sp.(Eiche)
Mold 1
Horn
NÖ
A
Siedlung
Grube 125, Quadrat 3
Lenneis E.
LBK
398
3660
50
-24,5
1,4
≠
Mold_04
Hk
Nadelholz indet.
Mold 1
Horn
NÖ
A
Siedlung
Grube 177, Quadrat 3
Lenneis E.
LBK
399
1500
60
-26,8
1,5
≠
Mold_05
Hk
Quercus sp.(Eiche)
Mold 1
Im Doppel
Horn
NÖ
A
Siedlung
56 Quadrat 4
Lenneis E.
LBK
400
6360
60
-21,8
1,4
√
Mold_06
Hk
Quercus sp.(Eiche)
Mold 1
Im Doppel
Horn
NÖ
A
Siedlung
56 Quadrat 1
1,4
≠
Mold_07
Hk
Quercus sp.(Eiche)
Mold 1
Im Doppel
Horn
≠
Mondsee_01
H
Quercus sp.(Eiche)
See am Mondsee
Mondsee
Lenneis E.
LBK
401
1160
50
Ruttkay E.
Mondsee
421
660
40
Stadler P.
Lengyel
204
5415
30
-23,7
0,1
√
Münchendorf_01
Hk
Quercus sp.(Eiche)?
Münchendorf
Mateiciucová (Peška)
RKZ
889
1850
35
-20,2
1,0
√
Mušov - Königsgrab_1
Mk
Homo
Mušov
Mateiciucová I.(O.Šedo)
Latène
750
2425
35
-24,7
1,3
√
Mušov_Neurissen (1)
Hk
Quercus sp.(Eiche)
Mušov
Neurissen
Mateiciucová I.(O.Šedo)
RKZ
751
3610
35
-23,7
1,3
≠
Mušov_Neurissen (2)
Hk
Fraxinus(Esche)
Mušov
Mateiciucová I.(O.Šedo)
RKZ
752
2010
30
-27,3
1,3
√
Mušov_Neurissen (3)
Hk
Ulmus sp.(Ulme)
Mušov
Mateiciucová I.(O.Šedo)
RKZ
753
2010
35
-22,7
1,3
√
Mušov_Neurissen (4)
Hk
Quercus sp.(Eiche)
Mateiciucová I.(O.Šedo)
RKZ
754
2060
35
-26,2
1,3
≠
Mušov_Neurissen (5)
Hk
Mateiciucová I.(O.Šedo)
RKZ
755
3070
40
-23,4
1,3
≠
Mušov_Neurissen (6)
Hk
Mateiciucová I.(O.Šedo)
Slawen
756
1330
35
-9,9
1,4
√
Mušov_Neurissen (7)
Ruttkay E.
BadenKlassisch
BadenKlassisch
BadenKlassisch
BadenKlassisch
BadenKlassisch
BadenKlassisch
BadenKlassisch
Lengyel
840
4455
50
-20,7
√
841
4425
40
Antl-Weiser W.
Peška J.
Ruttkay E.
Ruttkay E.
Ruttkay E.
Ruttkay E.
Ruttkay E.
Ruttkay E.
Pertlwieser M.
842 > modern
-24,5
-24,8
1,1
1,2
NÖ
A
Siedlung
56 Quadrat 4
OÖ
A
Uferrandsiedlung
Grundschwelle des
Hauses S5922
Mödling
NÖ
A
Siedlung
Breclav
Mähren
CZ
Körpergrab
Breclav
Mähren
CZ
Neurissen
Breclav
Mähren
CZ
Kont. 922, eingetiefte
Hütte
Kont. 902, Graben
Neurissen
Breclav
Mähren
CZ
Kont. 901, Spitzgraben
Mušov
Neurissen
Breclav
Mähren
CZ
Quercus sp.(Eiche)
Mušov
Neurissen
Breclav
Mähren
CZ
Quercus sp.(Eiche)
Mušov
Neurissen
Breclav
Mähren
CZ
Hk
kein Holz
Mušov
Neurissen
Breclav
Mähren
CZ
Kont. 1000/e/3, Bau mit
Apsis-vrekohlte Pfoste
Kont. 534, FeuerherdTore des Militärlagers
Kont. 929, FeuerherdTürme des Militärlagers
Kont. 406, Eingetiefte
Hütte
Nagykanizsa-1
Tk
indet.
Nagykanizsa
Billa
Nagykanizsa
H
1
Königsgrab
Obj. 8
-20,5
1,3
√
Nagykanizsa-2
Tk
Ovis(Schaf)/Capra(Ziege)
Nagykanizsa
Billa
Nagykanizsa
H
Obj. 10
-23,3
1,3
≠
Nagykanizsa-3
Tk
Bos p. f. taurus
Nagykanizsa
Billa
Nagykanizsa
H
Obj. 12
843
4400
40
-19,2
1,3
√
Nagykanizsa-4
Tk
Ovis(Schaf)/Capra(Ziege)
Nagykanizsa
Billa
Nagykanizsa
H
Obj. 15
844
4425
35
-20,8
1,3
√
Nagykanizsa-5
Tk
indet.
Nagykanizsa
Billa
Nagykanizsa
H
Obj. 20
845 > modern
-11,1
1,3
≠
Nagykanizsa-6
Tk
Hühnervogel
Nagykanizsa
Billa
Nagykanizsa
H
Obj. 27
846
4080
40
-20,5
1,3
√
Nagykanizsa-7
Tk
Nagykanizsa
Billa
Nagykanizsa
H
Obj. 30
773
5800
50
-28,2
1,4
√
Ölkam_02
Hk
Sus scrofa f. domestica?
(Hausschwein)
Quercus sp.(Eiche)
Spätpaläolithikum
366
25450
90
-25,5
0,9
√
Ollersdorf_02
Hk
indet.
Ollersdorf
HGK
414
3080
45
-26,9
1,6
√
Olomouc_Slavonín,Horní
lán (14)
Hk
Ulmus sp.(Ulme)
Olomouc-Slavonín
Ölkam, St. Florian
Linz-Land
Heidenberg, Gänserndorf
OMV
Schnitt
Horní lán
Olomouc
OÖ
A
A
Siedlung, äußerer
Kreisgraben
Eiszeitlicher Lagerplatz
NÖ
Mähren
Graben A, W 1
Kulturschicht
CZ
Siedlung
Grube 845
49
Table 12. Continued (page 7).
Dohnal V.
12.Jh.
700
995
30
-24,1
0,9
√
Olomouc-Hrad_01
H
Quercus sp.(Eiche)
Olomouc
Hrad
Mähren
CZ
Burg
Dohnal V.
13.Jh.
701
905
40
-22,7
1,3
√
Olomouc-Hrad_02
H
Quercus sp.(Eiche)
Olomouc
Hrad
Mähren
CZ
Burg
Dohnal V.
13.Jh.
702
925
40
-25,7
1,3
√
Olomouc-Hrad_03
H
Quercus sp.(Eiche)
Olomouc
Hrad
Mähren
CZ
Burg
Dohnal V.
13.Jh.
703
965
40
-25,9
1,3
√
Olomouc-Hrad_04
H
Quercus sp.(Eiche)
Olomouc
Hrad
Mähren
CZ
Burg
Dohnal V.
13.Jh.
704
800
40
-23,3
1,3
√
Olomouc-Hrad_05
H
Quercus sp.(Eiche)
Olomouc
Hrad
Mähren
CZ
Burg
Herold H.
Magyaren
723
940
30
-23,4
1,3
√
Örménykút_01
Hk
Tilia(Linde)
Örménykút
Békés
H
Herold H.
Awaren
724
1345
35
-22,9
1,3
√
Örménykút_02
Hk
Holz indet.
Örménykút
Békés
H
Haus A13ab
Herold H.
Awaren
725
1315
30
-18,8
1,3
√
Örménykút_03
Hk
indet.
Örménykút
Békés
H
Haus A21b, ofen
Herold H.
Magyaren
726
1450
35
-23,4
1,3
≠
Örménykút_04
Hk
Quercus sp.(Eiche)
Örménykút
Békés
H
Haus B8
Herold H.
Awaren
727
1615
35
-26,1
1,3
√
Örménykút_05
Hk
Quercus sp.(Eiche)
Örménykút
Békés
H
Haus B11
Herold H.
Magyaren
728
1495
35
-26,7
1,3
≠
Örménykút_06
Hk
Quercus sp.(Eiche)
Örménykút
Békés
H
Ofen B2
-24,8
1,3
Herold H.
Magyaren
729
975
35
√
Örménykút_07
Hk
Laubh-Wurzel
Örménykút
Ramsl P.
Latène
417
2235
45
-27,4
1,6
√
Pottenbrunn_01
Hk
Quercus sp.(Eiche)
Pottenbrunn
Steinfeld
St.Pölten
NÖ
A
Ramsl P.
Latène
418
2280
80
-24,9
1,2
√
Pottenbrunn_02
Hk
Quercus sp.(Eiche)
Pottenbrunn
Steinfeld
St.Pölten
NÖ
A
Gräberfeld
Grab 520 (Sargreste)
Ramsl P.
Latène
419
2340
70
-23,6
1,2
√
Pottenbrunn_03
Hk
Quercus sp.(Eiche)
Pottenbrunn
Steinfeld
St.Pölten
NÖ
A
Gräberfeld
Grab 565
Vitula P.
808
3175
45
-25,9
1,6
√
Quercus sp.(Eiche)
Práslavice 1
Mähren
CZ
Siedlung
Grube 386
45
-26,7
1,3
√
Hk
Acer sp.(Ahorn)
Práslavice 1
Olomouc
Mähren
CZ
Brandgrab
588
2990
40
-29,7
1,3
√
Hk
Fagus(Buche)
Práslavice 1
Olomouc
Mähren
CZ
Brandgrab
402
6370
70
-23,2
1,5
√
Hk
indet.
Rosenburg 1
Díly pod
dedinou
Díly pod
dedinou
Díly pod
dedinou
Hofmühle
Olomouc
2955
Práslavice 1, Díly pod
Dedinou (08)
Práslavice 1, Díly pod
Dedinou (6)
Práslavice 1, Díly pod
Dedinou (7)
Rosenburg_01
Hk
587
Lenneis E.
Mittel/Spätbronzezeit
Mittel/Spätbronzezeit
Mittel/Spätbronzezeit
LBK
Horn
NÖ
A
Siedlung
Lenneis E.
LBK
403
6550
80
-23,0
1,2
√
Rosenburg_02
Hk
Laubholz indet.
Rosenburg 1
Hofmühle
Horn
NÖ
A
Siedlung
Lenneis E.
LBK
404
6410
70
-24,5
1,5
√
Rosenburg_03
Hk
indet.
Rosenburg 1
Hofmühle
Horn
NÖ
A
Siedlung
Lenneis E.
LBK
405
6650
60
-25,0
1,4
√
Rosenburg_04
Hk
Laubholz indet.
Rosenburg 1
Hofmühle
Horn
NÖ
A
Siedlung
Lenneis E.
LBK
406
6540
70
-23,2
1,4
√
Rosenburg_05
Hk
Salix sp.(Weide)
Rosenburg 1
Hofmühle
Horn
NÖ
A
Siedlung
Mateiciucová I.(S. Šiška) LBK
765
6180
45
-27,1
1,4
√
Šarišské Michalany (5)
Hk
Quercus sp.(Eiche)
Šarišské Michalany
Fedelemka
Sabinov
SK
Mateiciucová I.(S. Šiška) LBK
766
6140
50
-25,7
1,4
√
Šarišské Michalany (6)
Hk
Quercus sp.(Eiche)
Šarišské Michalany
Fedelemka
Sabinov
SK
Mateiciucová I.(S. Šiška) LBK
767
6145
45
-26,7
1,4
√
Šarišské Michalany (7)
Hk
Quercus sp.(Eiche)
Šarišské Michalany
Fedelemka
Sabinov
SK
Siedlung der Bükker
Kultur, Siedlungsgrube
Siedlung der Bükker
Kultur, Siedlungsrube
Siedlung der Bükker
Kultur, Vorofengrube
Brandgrab 1,
Schüttung 800
Brandgrab 14,
Schüttung 813
385 Quadrat 4
Längsgrube unter
Schlitzgrube
385 Quadrat 4
Längsgrube unter
Schlitzgrube
385 Quadrat 4
Längsgrube unterhalb
Schlitzgrube
385 Quadrat 4
Längsgrube unterhalb
Schlitzgrube
385 Quadrat 5 =
Schlitzgrube oberhalb
Längsgrube
Objekt 214/85
Vitula P.
Vitula P.
Békés
Grube A2
H
Grube B6
Gräberfeld
Grab 1005
Objekt 212/85
Objekt 101/83
50
Table 12. Continued (page 8).
Mateiciucová I.(S. Šiška) LBK
768
6210
50
-24,8
1,4
√
Šarišské Michalany (8)
Hk
Quercus sp.(Eiche)
Šarišské Michalany
Fedelemka
Sabinov
SK
Mateiciucová I.(S. Šiška) BadenKlassisch
Ruttkay E.
Baden-Boleráz
769
4385
35
-25,4
1,2
√
Šarišské Michalany (9)
Hk
Fraxinus(Esche)
Šarišské Michalany
Fedelemka
Sabinov
SK
Siedlung der Bükker
Objekt 123/83
Kultur, Hütte, Fussboden
unter dem Hüttenlehm
SiedlungSpeichergrube Objekt 241/85
848
3880
45
≠
Schwechat_01
Tk
indet.
Schwechat
A
Siedlung, Grube
A
Siedlung, Grube
Grube 14
A
Kirche
Gerüstholz
Ruttkay E.
Baden-Boleráz
849
4935
45
√
Schwechat_02
Tk
indet.
Schwechat
Stadler H.
12.Jh.
676
855
40
-25,2
1,5
√
St.Justina_01
H
Picea abies(Fichte)
St.Justina
Ölraffine- Wien-Umgebung NÖ
rie-Gelände
Ölraffine- Wien-Umgebung NÖ
rie-Gelände
Tirol
Stadler H.
11.Jh.
677
880
40
-23,2
1,6
√
St.Justina_02
Hk
St.Justina
Tirol
A
Kirche
Gehhorizont
Stadler H.
12.Jh.
678
970
30
-26,1
0,9
√
St.Justina_03
Hk
St.Justina
Tirol
A
Kirche
Gerüstholz
Stadler H.
12.Jh.
679
975
30
-24,5
0,9
√
St.Justina_04
Hk
St.Justina
Tirol
A
Kirche
Gerüstholz
Ruttkay E.
850
4605
35
-19,9
1,3
√
Stillfried_Auhagen-08
Tk
Stillfried
Auhagen
Gänserndorf
NÖ
A
Objekt 10
851
4645
35
-21,3
1,3
√
Stillfried_Auhagen-09
Tk
Canis lupus familiaris(Hund)
Stillfried
Auhagen
Gänserndorf
NÖ
A
Objekt 21
893
4515
45
1,2
√
Straß_WB_02
Tk
Straß im Straßertale
Straßfeld
Krems
NÖ
A
Neugebauer Chr.
BadenKlassisch
BadenKlassisch
BadenKlassisch
Aurignacien
Picea abies(Fichte)/Larix
sp.(Lärche)
Picea abies(Fichte)/Larix
sp.(Lärche)
Picea abies(Fichte)/Larix
sp.(Lärche)
indet.
961
32970
420
Neugebauer Chr.
Aurignacien
962
22685
180
Neugebauer Chr.
Aurignacien
963
32580
450
Neugebauer Chr.
Aurignacien
964
31210
340
Neugebauer Chr.
Aurignacien
965
33285
440
Lenneis E.
LBK
731
6510
60
Bánffy E.
LBK
208
1575
30
-24,3
0,6
≠
Bánffy E.
LBK
209
6420
35
-26,4
0,6
√
Bánffy E.
LBK
210
6425
35
-25,5
0,6
Bánffy E.
LBK
211
1610
30
-24,9
Bánffy E.
LBK
212
6475
40
Bánffy E.
LBK
213
6415
Bánffy E.
LBK
214
Bánffy E.
LBK
Bánffy E.
LBK
Ruttkay E.
Wewerka B.
-20,4
-21,1
-22,4
1,2
1,3
-25,2
1,2
√
Stratzing 01
Hk
Sus scrofa f. domestica (Hausschwein)
Pinus sp. (Föhre)
Stratzing
Galgenberg Krems-Land
NÖ
A
Siedlung
S1/Qu4
-22,4
1,2
√
Stratzing 04
Hk
Kohle
Stratzing
Galgenberg Krems-Land
NÖ
A
Siedlung
U1
430
-23,5
1,2
√
Stratzing 05
Hk
Pinus sp. (Föhre)
Stratzing
Galgenberg Krems-Land
NÖ
A
Siedlung
Z72/10/2
330
-23,4
1,2
√
Stratzing 06
Hk
Pinus sp. (Föhre)
Stratzing
Galgenberg Krems-Land
NÖ
A
Siedlung
I/2/41/1
410
-22,6
1,2
√
Stratzing 07
Hk
Nadelholz indet.
Stratzing
Galgenberg Krems-Land
NÖ
A
Siedlung
G3
√
Strögen_01
Strögen
Böhmertal
NÖ
A
Siedlung
5 Quadrat 4
Szentgyörgyvölgy_01
Cerealia
Hk
Quercus sp.(Eiche)
Szentgyörgyvölgy
Pityerdomb Lenti
Zala
H
Siedlung
Grube 19
Szentgyörgyvölgy_04
Hk
Quercus sp.(Eiche)
Szentgyörgyvölgy
Pityerdomb Lenti
Zala
H
Siedlung
Grube 17
√
Szentgyörgyvölgy_05
Hk
Quercus sp.(Eiche)
Szentgyörgyvölgy
Pityerdomb Lenti
Zala
H
Siedlung
Grube 21
0,6
≠
Szentgyörgyvölgy_08
Hk
Quercus sp.(Eiche)
Szentgyörgyvölgy
Pityerdomb Lenti
Zala
H
Siedlung
Grube 8
-25,2
0,6
√
Szentgyörgyvölgy_09
Hk
Fagus(Buche)
Szentgyörgyvölgy
Pityerdomb Lenti
Zala
H
Siedlung
Grube 9
40
-25,0
0,6
√
Szentgyörgyvölgy_12
Hk
Fagus(Buche)
Szentgyörgyvölgy
Pityerdomb Lenti
Zala
H
Siedlung
Grube 19
6380
35
-25,4
0,6
√
Szentgyörgyvölgy_14
Hk
Ulmus sp.(Ulme)
Szentgyörgyvölgy
Pityerdomb Lenti
Zala
H
Siedlung
Grube 19
215
6475
40
-29,9
0,6
√
Szentgyörgyvölgy_16
Hk
Quercus sp.(Eiche)
Szentgyörgyvölgy
Pityerdomb Lenti
Zala
H
Siedlung
Grube 18
216
6420
40
-26,1
0,6
√
Szentgyörgyvölgy_17
Hk
Fagus(Buche)
Szentgyörgyvölgy
Pityerdomb Lenti
Zala
H
Siedlung
Grube 17
400
-28,2
1,6
Horn
Siedlung, Grube
Grube 13
Objekt 17
51
Table 12. Continued (page 9).
Bánffy E.
LBK
217
6450
45
-25,7
0,6
√
Szentgyörgyvölgy_19
Hk
Cornus mas(Kornelkirsche) Szentgyörgyvölgy
Bánffy E.
LBK
218
6610
40
-32,2
0,6
√
Szentgyörgyvölgy_20
Hk
Cornus mas(Kornelkirsche) Szentgyörgyvölgy
Bánffy E.
LBK
219
6390
50
-29,7
1,6
√
Szentgyörgyvölgy_21
Hk
Fagus(Buche)
Szentgyörgyvölgy
Ruttkay E.
862
4735
35
-26,4
1,3
√
Szihalom-1
Hk
Quercus sp.(Eiche)
Szihalom
863
4745
35
-25,4
1,3
√
Szihalom-2
Hk
Fraxinus(Esche)
Szihalom
Sóhajtó
H
852
4785
40
-21,1
1,3
√
Szihalom-3
Tk
indet.
Szihalom
Sóhajtó
H
Obj. 161, Südwestteil
Obj. 161, Südwestteil
Obj. 43, Südhälfte
853
4740
40
-21,1
1,3
√
Szihalom-4
Tk
indet.
Szihalom
Sóhajtó
H
Obj. 44
854
4830
40
-20,9
1,4
√
Szihalom-5
Tk
indet.
Szihalom
Sóhajtó
H
Obj. 72
855
4850
60
-20,4
√
Szihalom-6
Tk
indet.
Szihalom
Sóhajtó
H
Obj. 149
856
4785
35
-20,5
1,4
√
Szihalom-7
Tk
indet.
Szihalom
Sóhajtó
H
Obj. 161
857
4755
35
-21,8
1,3
√
Szihalom-8
Tk
indet.
Szihalom
Sóhajtó
H
Friesinger H.
BadenBoleráz
BadenBoleráz
BadenBoleráz
BadenBoleráz
BadenBoleráz
BadenBoleráz
BadenBoleráz
BadenBoleráz
UK
Pityerdomb
Pityerdomb
Pityerdomb
Sóhajtó
378
1630
60
-24,9
1,2
≠
Thunau_02
Friesinger H.
UK
379
2690
70
-28,4
1,2
√
Thunau_03
Friesinger H.
UK
705
2805
30
-27,7
0,8
√
Thunau_04
CeSecale cereale(Roggen)
Thunau
realia
CeVicia ervilia(Linsenwicke) Thunau
realia
H
Abies alba (Tanne)
Thunau
Friesinger H.
UK
706
2810
40
-29,2
1,2
√
Thunau_05
H
Nadelholz indet.
Thunau
Friesinger H.
UK
707
2870
35
-28,2
0,9
√
Thunau_06
Hk
Abies alba (Tanne)
Thunau
Friesinger H.
UK
708
2855
35
-27,6
0,9
√
Thunau_07
Hk
Abies alba (Tanne)
Thunau
Friesinger H.
UK
709
2800
30
-26,0
1,0
√
Thunau_08
Hk
Abies alba (Tanne)
Thunau
Friesinger H.
UK
710
2825
25
-26,6
1,0
√
Thunau_09
Hk
Abies alba (Tanne)
Thunau
Friesinger H.
UK
711
2875
30
-25,7
1,0
√
Thunau_10
Hk
Abies alba (Tanne)
Thunau
Friesinger H.
UK
712
2870
30
-25,4
1,0
√
Thunau_11
Hk
Abies alba (Tanne)
Thunau
Friesinger H.
UK
713
2840
40
-25,1
1,4
√
Thunau_12
Hk
Abies alba (Tanne)
Thunau
Friesinger H.
Slawen
714
2120
40
-25,7
1,4
≠
Thunau_13
Hk
Quercus sp.(Eiche)
Thunau
Friesinger H.
Slawen
715
1185
40
-25,8
1,4
√
Thunau_14
Hk
Quercus sp.(Eiche)
Thunau
Friesinger H.
Slawen
716
1245
45
-25,1
1,4
√
Thunau_15
Hk
Quercus sp.(Eiche)
Thunau
Friesinger H.
Slawen
717
1215
45
-24,7
1,4
√
Thunau_16
Hk
Quercus sp.(Eiche)
Thunau
Friesinger H.
Slawen
718
1210
45
-23,0
1,4
√
Thunau_17
Hk
Quercus sp.(Eiche)
Thunau
Friesinger H.
Slawen
719
1225
35
-24,8
1,4
√
Thunau_18
Hk
Quercus sp.(Eiche)
Thunau
Ruttkay E.
Ruttkay E.
Ruttkay E.
Ruttkay E.
Ruttkay E.
Ruttkay E.
Ruttkay E.
1,2
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Lenti
Zala
H
Siedlung
Grube 20
Lenti
Zala
H
Siedlung
Grube 18
Lenti
Zala
H
Siedlung
Grube 20
H
Horn
NÖ
A
Siedlung
Obj. 224, Südhälfte, auf Sohle
Grube Sig. 72
Horn
NÖ
A
Siedlung
Grube Sig. 72
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Hügelgräberfeld
Hügelgrab 1H1
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
52
53
Table 12. Continued (page 10).
Friesinger H.
Slawen
720
1245
35
-23,6
1,4
√
Thunau_19
Hk
Quercus sp.(Eiche)
Thunau
Friesinger H.
Slawen
721
1295
35
-25,9
1,4
√
Thunau_20
Hk
Quercus sp.(Eiche)
Thunau
Friesinger H.
Slawen
722
1220
40
-27,4
1,4
√
Thunau_21
Hk
Quercus sp.(Eiche)
Thunau
Friesinger H.
UK
831
2160
60
-30,1
≠
Thunau_23
Lens culinaris+ vicia ervilia Thunau
Ruttkay E.
BadenBoleráz
BadenBoleráz
864
385
30
-25,0
1,4
≠
Vác-Vár-2
Samen
Hk
Alnus (Erle)
Vác
865
2450
35
-24,3
1,4
≠
Vámosgyörk_1
Hk
Quercus sp.(Eiche)
Vámosgyörk
Ruttkay E.
BadenBoleráz
866
2420
35
-24,2
1,4
≠
Vámosgyörk_2
Hk
Quercus sp.(Eiche)
Vámosgyörk
Ruttkay E.
BadenBoleráz
858
5210
40
-21,8
1,3
≠
Vámosgyörk_3
Mk
Homo
Vámosgyörk
Ruttkay E.
BadenBoleráz
859
5230
35
-23,3
1,3
≠
Vámosgyörk_4
Mk
Homo
Vámosgyörk
Ruttkay E.
BadenBoleráz
902
5245
45
-21,1
1,2
≠
Vámosgyörk_5
Mk
Homo
Vámosgyörk
Ruttkay E.
BadenBoleráz
903
4475
45
-19,9
1,2
≠
Vámosgyörk_6
Mk
Homo
Vámosgyörk
Ruttkay E.
BadenBoleráz
904
4400
45
-21,0
1,2
≠
Vámosgyörk_7
Mk
Homo
Vámosgyörk
Einwögerer Th.
Gravettien
669
27700
200
-22,7
1,3
√
Wachtberg_01
Hk
Pinus sp. (Föhre)
Krems
Einwögerer Th.
Gravettien
671
27100
170
-26,0
1,3
√
Wachtberg_02
Hk
Abies alba (Tanne)
Krems
Wachtberg
Kaus K.
BadenBoleráz
BadenBoleráz
860
4625
35
-22,0
√
Zillingtal_Kaus_1
Tk
Ovis(Schaf)/Capra(Ziege)
Zillingtal
Ortsried
861
4700
45
-22,1
√
Zillingtal_Kaus_2
Tk
Ovis(Schaf)/Capra(Ziege)
Zillingtal
Ortsried
Ruttkay E.
Kaus K.
1,4
1,3
1,2
Holzwiese
Holzwiese
Holzwiese
Holzwiese
Vár
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Wall
Horn
NÖ
A
Siedlung
Grube +
Motorhajtóanyag
telep
Motorhajtóanyag
telep
Motorhajtóanyag
telep
Motorhajtóanyag
telep
Motorhajtóanyag
telep
Motorhajtóanyag
telep
Motorhajtóanyag
telep
WachtKrems
berg
H
Grube 2
H
Objekt 2/A
H
Objekt 2/A
H
Grab 2
H
Grab 2
H
Grab 3
H
Grab 12
H
Grab 13
Kulturschicht
A
Graben in Siedlung,sekundäre
Sedimentation
Graben in Siedlung,sekundäre
Sedimentation
Siedlung, Grube
A
Siedlung, Grube
Grube 4
NÖ
A
Krems
NÖ
A
EisenstadtUmgebung
EisenstadtUmgebung
Bgld
Bgld
Kulturschicht
Grube 1
54
Table 13.
14
C-group calibrations from Brunn/Wolfholz.
Site
II
III
I
IV
Total
Grave 3
Grave 3,
comb.
Number of samples
9
7
7
9
32
4
4
1 σ range
BC
5630-5300
5490-5250
5480-5200
5470-5310
5490-5210
5380-5250
5365-5295
2 σ range
BC
5750-5050
5650-5050
5650-4950
5480-5290
5700-5050
5480-5200
5470-5440
5420-5400
5390-5230
5220-5210
55
Table 14. Chronology of houses from Brunn Wolfholz, after radiocarbon
dates.
House Site # of sam- BP single/ Sigma sinples
combined gle/ combined
BC
Probability
Χ2Test
%
1
I
1
6150
75 5230-5220
5210-5160
5150-4950
1,2
15,1
51,9
-
2
I
1
6520
55 5600-5590
5540-5460
5450-5380
1,6
41,4
25,2
-
3
III
3
6460
31 5475-5460
5450-5415
5405-5375
10,1
29,8
28,3
ok
7
II
1
6325
70 5470-5450
5420-5400
5380-5210
5160-5150
2,6
2,7
60,9
2,0
-
10
II
2
6423
27 5470-5360
68,2
ok
11
II
3
6386
29 5460-5450
5420-5400
5380-5310
7,2
6,2
54,8
ok
15
II
2
6382
27 5460-5450
5420-5400
5380-5310
6,1
5,0
57,1
ok
16
II
1
6660
75 5640-5510
5500-5480
66,2
2,0
-
17
II
1
6605
85 5620-5470
68,2
-
20
II
1
6785
75 5730-5620
68,2
33
IV
3
6333
20 5338-5332
5322-5298
7,2
61,0
fails
56
Table 15. Chronological sequence of pits from Michelstetten, after 14CDates.
Object Kind Number of
dates
Calibration/
Combination calibration, 1 Sigma
(years BC)
43 Pit
4
50 Pit
5
994 Pit
2
1065 Pit
1
31 Pit
946 Pit
Probability
(%)
X2-Test Phase
4670-4660
4650-4640
4620-4550
4545-4495
4470-4460
4550-4485
4480-4460
4550-4450
4420-4400
5,5 Ok
7,5
55,2
62,2 Ok
6,0
52,4 Ok
15,8
65,8
2,4
I
1
4
4520-4360
4500-4440
4420-4390
4380-4360
40,3 Ok
22,4
5,5
II
II
27 Pit
1107 Pit
1
2
1016 Pit
2
151 Pit
2
1105 Pit
2
973 Pit
3
4460-4360
4500-4440
4430-4360
4500-4440
4430-4360
4460-4440
4425-4395
4390-4360
4460-4440
4425-4360
4455-4430
4425-4415
4405-4360
33,1
35,1
25,9
42,3
14,5
30,1
23,6
14,2
54,0
21,3
4,2
42,7
I
I
I
Ok
III
III
Ok
III
Ok
III
Ok
III
Ok
III
57
Table 16. Currently available data for Baden culture (database in German), together with new dates measured in our project.
Land Fundort Labor Nr Funddetails Art d. Material Radio- σ Kultur Species
Ausgräber Literatur
Fundortes
carbon
AgeBP
YU
Gomolova
GrN
A
Hatzenbach
VERA
13168
H
Ószentiván
Bln
476 VIII
Hk
4515
80 Baden
Bojadziev 1992
SK
Podolie
Bln
556 Obj.3/63
Hk
4455
80 Baden
Forenbaher 1993
H
Sümeg
A
246
4520
60 Baden
Forenbaher 1993
H
Szigetcsép
Bln
1637
4350
45 Baden
Forenbaher 1993
BG
Ezero
Bln
421 Qu. D 8, T. 1.30 m
Tellsiedlung
S
4335
80 Baden-Analogie
Görsdorf 1996
BG
Ezero
Bln
422 Qu. A 7, T. 1.30 m
Tellsiedlung
Hk
4310
80 Baden-Analogie
Görsdorf 1996
BG
Ezero
Bln
427 Qu. D 10, T. 0.85 m Tellsiedlung
Hk
4365
80 Baden-Analogie
Görsdorf 1996
BG
Ezero
Bln
428 Qu. D 10, T. 0.80 m Tellsiedlung
S
4260
80 Baden-Analogie
Görsdorf 1996
BG
Ezero
Bln
429 Qu. C 10, T. 0.70 m Tellsiedlung
S
4130
100 Baden-Analogie
Görsdorf 1996
BG
Ezero
Bln
1822 Qu. A 7, T. 1.30 m
Hk
4275
65 Baden-Analogie
Görsdorf 1996
BG
Ezero
Bln
1824 Qu. C 10, T. 0.70 m Tellsiedlung
G
4135
65 Baden-Analogie
Görsdorf 1996
GR
Sitagroi
Bln
773
G
4390
100 Baden-Analogie
Breunig 1987
GR
Sitagroi
Bln
782
Hk
4310
100 Baden-Analogie
Breunig 1987
GR
Sitagroi
Bln
878
Hk
4395
100 Baden-Analogie
Breunig 1987
GR
Sitagroi
Bln
879
Hk
4550
100 Baden-Analogie
Breunig 1987
GR
Sitagroi
Bln
880
G
4510
100 Baden-Analogie
Breunig 1987
GR
Sitagroi
BM
650a
Hk
4363
56 Baden-Analogie
Breunig 1987
651
G
730 Haus V5
Siedlung
Tellsiedlung
Hk
4380
70 Baden
Hk
4210
50 Baden
Forenbaher 1993
Fagus(Buche)
Stadler 1999
GR
Sitagroi
BM
4332
79 Baden-Analogie
Breunig 1987
CH
Arbon Bleiche
B
6360
4710
30 Baden-Boleraz
Capitani 1998
CH
Arbon Bleiche
B
6361
4700
30 Baden-Boleraz
Capitani 1998
CH
Arbon Bleiche
B
6362
4640
30 Baden-Boleraz
Capitani 1998
CH
Arbon Bleiche
B
6363
4690
30 Baden-Boleraz
Capitani 1998
CH
Arbon Bleiche
B
6364
4620
40 Baden-Boleraz
Capitani 1998
CH
Arbon Bleiche
B
6365
4660
40 Baden-Boleraz
A
Baierdorf
VERA
838 Grube 2
Siedlung, Grube
Tk
4645
35 Baden-Boleraz
indet.
Stadler 1999
A
Grub an der March
VERA
876 Objekt 21/NWHälfte/Sig. 97
877 Objekt 28/Sig. 53
Siedlung/Grube
Tk
4770
55 Baden-Boleraz
Bos p. f. taurus
Stadler 1999
Siedlung/Grube
Tk
4760
50 Baden-Boleraz
Bos p. f. taurus
Stadler 1999
Siedlung/Grube
Tk
4790
55 Baden-Boleraz
Bos p. f. taurus
Stadler 1999
A
Grub an der March
VERA
A
Grub an der March
VERA
878 Objekt 50/NWHälfte/Sig. 94
Capitani 1998
58
Table. 16. Continued.
H
Gyöngyöshalász
Bln
2589 Gru.
CZ
Hlinsko
Bln
3232 Obj.246-6/1975
CZ
Hlinsko
Bln
Hk
4790
50 Baden-Boleraz
Szabó 1983
4780
70 Baden-Boleraz
Pavelčík 1992
CZ
Hlinsko
GrN
3233 Obj.319-20/197726/1978
13149 Objekt 443-21/1984
4750
60 Baden-Boleraz
CZ
Hlinsko
GrN
16728 Objekt 525B-1/1988
4650
40 Baden-Boleraz
Pavelčík 1992
CZ
Hlinsko
GrN
16729 Objekt 443-21/1984
4605
40 Baden-Boleraz
Pavelčík 1992
A
Schwechat
VERA
Tk
4935
45 Baden-Boleraz
indet.
Stadler 1999
A
Niederhollabrunn
ETH
Mk
4710
95 Baden?
Menschenknochen
Lauermann, unpubl.
H
Szihalom
VERA
852 Obj. 43, Südhälfte
Tk
4785
40 Baden-Boleraz
indet.
Szabó J.J 1997
Stadler 1999
H
Szihalom
VERA
853 Obj. 44
Tk
4740
40 Baden-Boleraz
indet.
Szabó J.J 1997
Stadler 1999
H
Szihalom
VERA
854 Obj. 72
Tk
4830
40 Baden-Boleraz
indet.
Szabó J.J 1996
Stadler 1999
H
Szihalom
VERA
855 Obj. 149
Tk
4850
60 Baden-Boleraz
indet.
Szabó J.J 1996
Stadler 1999
H
Szihalom
VERA
856 Obj. 161
Tk
4785
35 Baden-Boleraz
indet.
Szabó J.J 1996
Stadler 1999
H
Szihalom
VERA
Tk
4755
35 Baden-Boleraz
indet.
Szabó J.J 1996
Stadler 1999
H
Szihalom
VERA
Hk
4735
35 Baden-Boleraz
Quercus sp.(Eiche)
Szabó J.J 1997
Stadler 1999
H
Szihalom
VERA
Hk
4745
35 Baden-Boleraz
Fraxinus(Esche)
Szabó J.J 1997
Stadler 1999
A
Zillingtal
VERA
857 Obj. 224, Südhälfte,
auf Sohle
862 Obj. 161, Südwestteil
863 Obj. 161, Südwestteil
860 Grube 1
Siedlung, Grube
Tk
4625
35 Baden-Boleraz
A
Zillingtal
VERA
861 Grube 4
Siedlung, Grube
Tk
4700
SK
Bajc-Vlkanovo
VERA
736 Objekt 22
Siedlung der
Badener Kultur,
Siedlungsgrube
Hk
4530
SK
Červený Hrádok
GrN
A
Ossarn Stickelberger GrN
A
Stillfried
VERA
850 Objekt 10
Hk
4605
A
Stillfried
VERA
851 Objekt 21
Hk
4645
CZ
Beladice
Bln
PL
Iwanowice
Bln
352
PL
Iwanowice
M
2166
H
Nagykanizsa
VERA
840 Obj. 8
H
Nagykanizsa
VERA
841 Obj. 10
849 Grube 14
Siedlung, Grube
15241 Grab, Skelett 1
11994 Obj.7W/70
4680
60 Baden-Boleraz
Pavelčík 1992
Pavelčík 1992
4390
6940
4520
2171 Obj.3/70
4420
Ovis(Schaf)/Capra(Zie
ge)
45 Baden-Boleraz
Ovis(Schaf)/Capra(Zie
ge)
45 Baden-Klassisch- Laubholz indet.
Cerveny Hradok
70 Baden-KlassischČerveny Hradok
40 Baden-KlassischČerveny Hradok
35 Baden-Klassisch- indet.
Červeny Hradok
35 Baden-Klassisch- Canis lupus familiaČerveny Hradok ris(Hund)
60 Baden-Ossarn I
4200
100 Baden-Ossarn I
Hk
4300
200 Baden-Ossarn I
Tk
4455
50 Baden-Ossarn I
Tk
4425
40 Baden-Ossarn I
Stadler 1999
Stadler 1999
Stadler 1999
NĕmejcováPavúková 1985
Mayer 1995
Stadler 1999
Stadler 1999
Forenbaher 1993
Bogucki 1992
Breunig 1987
indet.
Horváth L, Barna J.
1996
OHorváth L, Barna J.
vis(Schaf)/Capra(Zie 1996
ge)
Stadler 1999
Stadler 1999
59
Table. 16. Continued.
H
Nagykanizsa
VERA
843 Obj. 15
Tk
4400
40 Baden-Ossarn I
H
Nagykanizsa
VERA
844 Obj. 20
Tk
4425
35 Baden-Ossarn I
H
Nagykanizsa
VERA
846 Obj. 30
Tk
4080
40 Baden-Ossarn I
A
Pottenbrunn
GrN
SK
Šarišské Michalany
VERA
A
Straß im Straßertale VERA
SK
Svodín
Bln
H
Vámosgyörk
VERA
14016 Gru.212
769 Objekt 241/85
893 Objekt 17
SiedlungSpeichergrube
Siedlung, Grube
H
Vámosgyörk
VERA
YU
VuČedol
Z
1446
904 Grab 13
YU
VuČedol
Z
1466
YU
VuČedol
Z
1617
YU
VuČedol
Z
YU
VuČedol
Z
YU
VuČedol
Z
A
Franzhausen
VERA
868
A
Girm
VERA
869 Grube 9
A
Girm
VERA
875 Grube 12
A
Hadersdorf
VERA
880 Objekt 46
A
Hadersdorf
VERA
881 Objekt 68
A
Lichtenwörth
Bln
2069
A
Lichtenwörth
Bln
A
Lichtenwörth
Bln
SK
Svodín
SK
Stadler 1999
Stadler 1999
Stadler 1999
Hk?
4560
40 Baden-Ossarn I
Hk
4385
35 Baden-Ossarn I
Fraxinus(Esche)
Stadler 1999
Tk
4515
45 Baden-Ossarn I
Sus scrofa f. domestica (Hausschwein)
Stadler 1999
4460
60 Baden-Ossarn I
Mk
4475
45 Baden-Ossarn I
Homo
Farkas Cs. 1997
Stadler 1999
Homo
Farkas Cs. 1997
Stadler 1999
2173 Ob.498/78
903 Grab 12
OHorváth L, Barna J.
vis(Schaf)/Capra(Zie 1996
ge)
indet.
Horváth L, Barna J.
1996
Sus scrofa f. doHorváth L, Barna J.
mestica? (Haus1996
schwein)
Mayer 1996
Forenbaher 1993
Mk
4400
45 Baden-Ossarn I
Hk
4540
86 Baden-Ossarn I
4540
130 Baden-Ossarn I
Ehrich 1992
Hk
4500
100 Baden-Ossarn I
Bojadziev 1992
1618
Hk
4300
100 Baden-Ossarn I
Bojadziev 1992
1619
Hk
4400
100 Baden-Ossarn I
Bojadziev 1992
1864
Kn
4626
100 Baden-Ossarn I
Mk
4510
40 Baden-Ossarn-I
Homo
Stadler 1999
Siedlung
Tk
4530
50 Baden-Ossarn-I
Bos(Rind)
Stadler 1999
Siedlung
Tk
4565
45 Baden-Ossarn-I
Bos(Rind)
Stadler 1999
Siedlung, Grube
Tk
4510
45 Baden-Ossarn-I
indet.
Stadler 1999
Siedlung, Grube
Tk
4485
40 Baden-Ossarn-I
Bos(Rind)?
4540
45 Baden-Ossarn-II
Mayer 1995
2070
4530
70 Baden-Ossarn-II
Mayer 1995
2071
4410
60 Baden-Ossarn-II
Mayer 1995
Bln
2169
4270
50 Baden-Ossarn-II
Bojadziev 1992
Svodín
Bln
2174
4390
60 Baden-Ossarn-II
Bojadziev 1992
SK
Červený Hrádok
GrN
11992 Obj.7D/70
4820
SK
Červený Hrádok
GrN
11993 Obj.7D/70
4710
CZ
Hlinsko
Bln
1165 Obj.141-4/1972
4670
NĕmejcováPavúková 1985
NĕmejcováPavúková 1985
Pavelčík 1992
CZ
Hlinsko
Bln
1166 Obj.156-19/1972
4670
70 Baden-ŠturovoProtoboleráz
100 Baden-ŠturovoProtoboleráz
80 Baden-ŠturovoProtoboleráz
80 Baden-ŠturovoProtoboleráz
206 Gräberfeld
Hk
Forenbaher 1993
Forenbaher 1993
Stadler 1999
Pavelčík 1992
60
Table. 16. Continued.
CZ
Hlinsko
Bln
1396
4775
CZ
Hlinsko
GrN
6941 Obj.156-19/1972
4670
CZ
Hlinsko
GrN
6942 Objekt 141-4/1972
4670
60 Baden-ŠturovoProtoboleráz
40 Baden-ŠturovoProtoboleráz
45 Baden-ŠturovoProtoboleráz
Forenbaher 1993
Pavelčík 1992
Pavelčík 1992
61
Table 17. Absolute chronology of groups of Baden Culture.
Groupname
Number Phase of
of sam- Badenples
Culture
Interval 1Sigma
Probability
%
ŠturovoProtoboleráz
8
Ia
Boleráz
ČervenyHradok
26
5
Ib-Ic-IIa
IIb
Ossarn I
25
III
Ossarn II
5
IV
3640-3550
3540-3490
3470-3370
3640-3370
3510-3430
3380-3300
3240-3100
3350-3010
2980-2960
2950-2930
3350-3310
3240-3170
3160-2870
24.3
13.8
30.2
68.2
22.1
19.8
26.3
64.4
1.6
2.2
6.9
11.6
49.6
Table 18. Absolute chronology of eastern parallels of Baden Culture.
Groupname
Number Interval 1of sam- Sigma
ples
Probability
%
Cernavoda I
3
Sitagroi
7
Ezero
7
19.6
5.2
43.4
12.5
1.8
53.9
2.1
41.8
24.3
3340-3210
3190-3150
3130-2880
3330-3230
3180-3150
3120-2880
3090-3060
3030-2840
2820-2670
62
Table 19. 14C-Dates for six samples of wood, which were dated also by
means of dendrochronology, from Arbon Bleiche.44 Gap is the distance in
years between two consecutive samples (middle years).
Lab #
B-6364
B-6360
B-6363
B-6365
B-6361
B-6362
Radiocarbon
Age BP
4620
4710
4690
4660
4700
4640
σ
40
30
30
40
30
30
Dendro1
BC
3439
3432
3403
3413
3406
3392
Dendro2
BC
3414
3407
3393
3382
3381
3376
Middle GAP
year
years
BC
3426,5
3419,5
3398,0
3397,5
3393,5
3384,0
7,0
21,5
0,5
4,0
9,5
Table 20. Job-File for Wiggle-Matching in Oxcal 3.1. Compare Table 19 for
units.
D_SEQ "Boleraz in Arbon Bleiche, 6 Daten"
{
LAST "last"
DATE "B-6364" 4620 40; GAP 7.0;
DATE "B-6360" 4710 30; GAP 21.5;
DATE "B-6363" 4690 30; GAP 0.5;
DATE "B-6365" 4660 40; GAP 4.0;
DATE "B-6361" 4700 30; GAP 9.5;
DATE "B-6362" 4640 30;
44
Data used with friendly permission by Urs Leuzinger und Trivun Sormaz.
}
63
Table 21. Absolute Chronology of Pfyn, Horgen and Arbon Bleiche 3,
Boleráz and Classical Baden.
Groupname
Number of
samples
Pfyn
36
Arbon Bleiche 3
Horgen
Boleráz
Classical
Baden
Dendro
24
26
24
Phase of BadenCulture
Late Pfyn, Early Horgen,
Late Boleráz
Ib-Ic-IIa
IIb-IV
Intervall 1- Probasigma BC bility
in %
4000-3500
68.2
3384-3370
100.0
3500-2850
3640-3370
3360-3010
2980-2960
2950-2930
68.2
68.2
64.1
1.7
2.5
64
Table 22. Oxcal-Job-File for simulation of radiocarbon dating of the Iceman by
Wiggle Matching with 6 samples/50 year rings or 7 samples/60 year-rings.
Negative numbers correspond to BC values, and are used to simulate a radiocarbon measurement of a sample with a given age.
D_SEQ "Ice Man Wiggle Matching 6 Samples/50yr."
{
LAST "last";
R_Simulate "VERA-xxx1" -3250 30; GAP 10;
R_Simulate "VERA-xxx2" -3240 30; GAP 10;
R_Simulate "VERA-xxx3" -3230 30; GAP 10;
R_Simulate "VERA-xxx4" -3220 30; GAP 10;
R_Simulate "VERA-xxx5" -3210 30; GAP 10;
R_Simulate "VERA-xxx6" -3200 30;
}
D_SEQ " Ice Man Wiggle Matching 7 Samples/60yr."
{
LAST "last";
R_Simulate "VERA-xxx1" -3260 30; GAP 10;
R_Simulate "VERA-xxx2" -3250 30; GAP 10;
R_Simulate "VERA-xxx3" -3240 30; GAP 10;
R_Simulate "VERA-xxx4" -3230 30; GAP 10;
R_Simulate "VERA-xxx5" -3220 30; GAP 10;
R_Simulate "VERA-xxx6" -3210 30; GAP 10;
R_Simulate "VERA-xxx7" -3200 30;
}
65
Table 23. Global Events in Dendro Data and Ice core drillings from 4th to 2nd millennium bc, after Baillie.45
Vulcano Event Narrowest
Interval of Acid layer Sigma of
BC
year-ring BC narrow
in ice core ice dating
year-rings BC
BC
3200
3195 3197-3190
3150
Hekla 4
2354
2345 2354-2345
not yet
found
Thera?
1628
1628 1628-1623
1645
1159
1159 1159-1141
1120
430
430
80
20
30
Table after data in BAILLIE M.G.L., 1998, Evidence for climatic in the 12th and 17th centuries BC, in Mensch und Umwelt
in der Bronzezeit Europas: Man and Environment in European Bronze Age, Ed. HÄNSEL Bernhard, 49-55, completed with
help of BAILLIE M.G.L., 2000, Personal communication by e-mail.
45
66
Table 24. 14C samples and dendrochronological dates for the Avar settlement from Brunn am Gebirge, Wolfholz II.
Type Object Kind Labor- Nr. BP
atory
pit
pit
pit
pit
pit
pit
well
well
well
well
well
well
well
well
well
well
well
well
1241 fill
1241 fill
1241 fill
1241 fill
1242 fill
1242 fill
823 Br.12
823 Br.12
823 Br.12
823 Br.18
823 Br.18
823 Br.18
823 fill
823 fill
823 fill
823 fill
823 fill
1288 fill
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
VERA
187
188
189
190
185
186
262
263
264
265
266
267
680
681
682
683
684
685
δ13C
σ
1430
1370
1310
1290
1330
1435
1485
1410
1275
1485
1425
1350
1245
1295
1450
1315
1285
1255
45
60
45
50
45
45
35
35
35
40
35
35
40
40
45
40
40
40
Sigma Year rings ab- year
δ13C
solute
rings
-25,0
-26,6
-23,5
-25,1
-23,6
-25,3
-28,0
-26,4
-26,8
-24,6
-24,9
-26,2
-26,2
-25,1
-29,4
-26,6
-27,8
-27,8
1,2
0,7
0,8
0,9
0,8
1,2
1,2 541-551
1,2 591-601
1,2 651-671
1,2 593-608
1,2 623-643
1,2 650-663
1,3
1,3
1,3
1,3
1,3
1,3
End absolute
130
130
130
73
73
73
671
671
671
666
666
666
Table 25. Group and Combination calibrations for the Avar settlement
from Brunn am Gebirge, Wolfholz II.
Object Kind
823
823
823
823
Number of
dates
Wiggle
Matching 1
Sigma
for youngest
sample
(years AD)
Pl.12
Pl.18
Pl.12+18
Fill
3
3
6
5
823 Fill
without
VERA-682
823 Fill+Planks
1288 Fill
1241 Fill
4
1242 Fill
1241 Fill
1242
11
1
4
2
6
Combination
calibration 1
Sigma
(years AD)
689-723
654-680
664-694
Dendro Date X2-Test
for youngest
sample
(years AD)
661,0
656,5
661,0
665-695
700-715
750-765
685-725
740-770
652-672
680-810
680-720
745-770
644-675
660-695
Fails
Ok
Fails
Ok
Ok
Ok
67
Table 26.
nykút.
14
C Results for the Avar and Magyar settlement from Örmé-
Context Century
Complex Type
dated by
Archaeologist
Lab.#
Avar
8
A13ab
House
VERA-724
Avar
8/9
A21b
House
VERA-725
Avar
8
B11
House
VERA-727
Avar
8/9
A13ab
A21b
Houses
VERA-724
VERA-725
Magyar
11
A2
Pit
VERA-723
Magyar
11
B6
Pit
VERA-729
Magyar
11
A2+B6
Pits
VERA-723
VERA-729
Magyar
10
B8
VERA-726
Magyar
10
B2
Magyar
10
B8+B2
Pottery
kiln
Pottery
kiln
Pottery
kilns
VERA-728
VERA-726
VERA-728
Single/Sum
calibration
AD
CombinaΧ2tion calibra- Test
tion AD
650-720
750-760
660-720
740-770
400-470
480-540
660-695 ok
700-710
750-760
1030-1070
1080-1160
1010-1050
1090-1160
1020-1050 ok
1090-1120
1130-1160
560-590
595-650
535-620
560-590 ok
595-640
68
Table 27. Radiocarbon dates and Dendrochronology for the fortifications
of Thunau/Kamp.
Lab #
VERA
VERA
VERA
VERA
BP σ
δ- Inv
13
C nr.
Inner
yearring
of
sample
Outer
yearring
of
sample
Year
-ring
in
the
mids
t
Total
number of
yearrings
Inner
Year
-ring
AD
Oute
r
year
-ring
AD
Yearring
in the
middle
AD
Outmost
year
-ring
of
bea
m
707
708
709
710
2870
2855
2800
2825
35
35
30
25
-28,2
-27,6
-26,0
-26,6
61898
61898
61898
61898
1
16
60
95
5
25
75
104
3,00
20,50
67,50
99,50
104
104
104
104
VERA 711
VERA 712
VERA 713
2875
2870
2840
30
30
40
-25,7
-25,4
-25,1
61902
61902
61902
1
20
45
5
25
51
3,00
22,50
48,00
51
51
51
VERA 715
VERA 716
1185
1245
40
45
-25,8
-25,1
10006
10006
1
40
3
46
2,0
43,0
46
46
818
858
820
864
819,0
861,0
864
864
VERA 717
VERA 718
VERA 719
1215
1210
1225
45
45
35
-24,7
-23,0
-24,8
11859
11859
11859
1
30
54
4
35
61
2,5
32,5
57,5
61
61
61
822
853
876
825
858
883
823,5
855,5
879,5
883
883
883
VERA 720
VERA 721
VERA 722
1245
1295
1220
35
35
40
-23,6
-25,9
-27,4
59122
59122
59122
1
30
55
3
35
62
2,0
32,5
58,5
62
62
62
Table 28. Wiggle matching calibration and dendrochronology for fortifications of Thunau/Kamp.
Samples
Invnr. Wiggle matching 1σ AD Wiggle matching 2σ AD Dendro
date
VERA 707-710 61898
-953
-922
68,2%
-970
-900
95,4%
VERA 711-713 61902
-1025
-970
68,2%
-1090
-940
95,4%
VERA 715-716 10006
820
885
68,2%
VERA 717-719 11859
825
890
68,2%
730
800
920
770
790
900
940
900
13,4%
79,8%
2,1%
95,4%
VERA 715-719 10006+
11859
VERA 720-722 59122
840
881
68,2%
773
801
68,2%
780
820
720
810
900
840
4,2%
91,2%
95,4%
861,0
879,5
879,5
69
Figure 1. Scheme of Collagen extraction.
Aqua
bidest.
1N
HCl
0,1N
NaOH
E-valve
distributor
24-channel-pump
PC
waste
sample
heater
70
Figure 2. Flow-rates at different efficiencies of the pump.
F
l
o
w
r
a
t
e
(
m
l
/
71
Figure 3. Map of the excavation of the Oldest Linear Ceramics settlement
from Brunn am Gebirge/Wolfholz. Till now five sites (I-V) have been identified. The houses are symbolized by the rectangle put over the pits belonging
to one house.
72
Figure 4, Ceramics from the oldest site II of the Oldest Linear Ceramics settlement from Brunn am Gebirge/Wolfholz.
73
Figure 5, Ceramics from the oldest site II of the Oldest Linear Ceramics settlement from Brunn am Gebirge/Wolfholz.
74
Figure 6, Ceramics from the youngest site I of the Oldest Linear Ceramics
settlement from Brunn am Gebirge/Wolfholz.
75
Figure 7, Ceramics from the youngest site I of the Oldest Linear Ceramics
settlement from Brunn am Gebirge/Wolfholz.
76
Figure 8, Reconstruction of eight long-houses above their foundations on the air-photo of the excavation 1992 on site
II from Brunn Wolfholz.
77
Figure 9. Group calibration of Brunn am Gebirge/Wolfholz, site I.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum Brunn Wolfholz I,1989, 7 Daten
SUM Brunn/Wolfholz I, 7 Dates
68.2% confidence
Relative probability
5480BC (60.0%) 5200BC
5170BC ( 4.7%) 5140BC
5120BC ( 3.4%) 5080BC
95.4% confidence
5650BC (95.4%) 4950BC
0.8
0.6
0.4
0.2
0.0
5800BC
5600BC
5400BC
5200BC
5000BC
4800BC
4600BC
4400BC
Calendar date
78
Figure 10. Group calibration of Brunn am Gebirge Wolfholz, site II.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum Brunn Wolfholz II, 9 Daten
SUM Brunn/Wolfholz II, 9 Dates
Relative probability
68.2% confidence
5630BC (68.2%) 5300BC
95.4% confidence
5750BC (95.4%) 5050BC
0.8
0.6
0.4
0.2
0.0
6200BC
6000BC
5800BC
5600BC
5400BC
5200BC
Calendar date
5000BC
4800BC
4600BC
79
Figure 11. Group calibration of Brunn am Gebirge Wolfholz, site III.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum Brunn Wolfholz III, 7 Daten
SUM Brunn/Wolfholz III, 7 68.2%
Dates confidence
Relative probability
5490BC (65.5%) 5250BC
5240BC ( 1.4%) 5230BC
5220BC ( 1.3%) 5210BC
95.4% confidence
5650BC (95.4%) 5050BC
0.8
0.6
0.4
0.2
0.0
5800BC
5600BC
5400BC
5200BC
5000BC
4800BC
4600BC
Calendar date
80
Figure 12. Group calibration of Brunn am Gebirge Wolfholz, site IV.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum Brunn Wolfholz IV, 1997, 9 Daten
SUM Brunn/Wolfholz IV, 68.2%
9
confidence
Relative probability
5470BC (13.0%) 5440BC
5420BC (10.9%) 5400BC
5390BC (44.3%) 5310BC
95.4% confidence
5480BC (87.4%) 5290BC
5270BC ( 3.1%) 5200BC
5180BC ( 2.1%) 5140BC
5130BC ( 2.8%) 5070BC
0.8
0.6
0.4
0.2
0.0
5800BC
5600BC
5400BC
5200BC
5000BC
4800BC
Calendar date
81
Figure 13. Combined Calibration of Brunn am Gebirge Wolfholz, Grave 3.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
6700BP
R_Combine
Combine Brunn/Wolfholz
Brunn WolfholzGrave
Grab 3,
3, 44 Daten
Dates :: 6344±35BP
6344±35BP
68.2% confidence
5365BC (68.2%) 5295BC
95.4% confidence
5470BC ( 4.9%) 5440BC
5420BC ( 4.9%) 5400BC
5390BC (84.5%) 5230BC
5220BC ( 1.1%) 5210BC
X2-Test: df=3 T=0.3(5% 7.8)
Radiocarbon determination
6600BP
6500BP
6400BP
6300BP
6200BP
6100BP
6000BP
5700CalBC
5600CalBC
5500CalBC
5400CalBC
5300CalBC
5200CalBC
5100CalBC
5000CalBC
4900CalBC
Calibrated date
82
Figure 14. Group calibration of Brunn am Gebirge Wolfholz, all sites together.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Brunn/Wolfholz,
I-IV,
Dates
SumSUM
Brunn
Wolfholz, I-IV,
3131Daten
Relative probability
68.2% confidence
5510BC ( 0.8%) 5500BC
5490BC (66.8%) 5210BC
5160BC ( 0.7%) 5150BC
95.4% confidence
5750BC (95.4%) 5050BC
0.8
0.6
0.4
0.2
0.0
6200BC 6000BC 5800BC 5600BC 5400BC 5200BC 5000BC 4800BC 4600BC 4400BC
Calendar date
83
Figure 15. Calibration for oldest house 20, to handle with care, as there exists currently only one date.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Radiocarbon determination
7200BP
Brunn Wolfholz,
20, Haus
1 Date,
R_Combine
BrunnHouse
Wolfholz
20,6785±75BP
1 Datum : 6785±75BP
68.2% confidence
5730BC (68.2%) 5620BC
95.4% confidence
5840BC ( 1.4%) 5820BC
5810BC (94.0%) 5530BC
7000BP
6800BP
6600BP
6400BP
6000CalBC
5800CalBC
5600CalBC
Calibrated date
5400CalBC
84
Figure 16. Combined calibration for three dates from house 33, but x2-Test fails.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Radiocarbon determination
6600BP
6500BP
6400BP
House 33, three
combined
to 6333±20BP
R_Combine
Brunndates
Wolfholz
Haus 33,
3 Daten : 6333±20BP
68.2% confidence
5338BC ( 7.2%) 5332BC
5322BC (61.0%) 5298BC
95.4% confidence
5370BC (95.4%) 5250BC
X2-Test: df=2 T=11.2(5% 6.0)
6300BP
6200BP
6100BP
5600CalBC5500CalBC5400CalBC5300CalBC5200CalBC5100CalBC5000CalBC
Calibrated date
85
Figure 17. Group calibration of Szentgyörgyvölgy.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum
SUMSzentgyörgyvölgy,
Szentgyörgyvölgy, 10
10 Daten
Dates
Relative probability
68.2% confidence
5480BC (66.6%) 5360BC
5350BC ( 1.6%) 5340BC
95.4% confidence
5610BC ( 1.4%) 5590BC
5560BC (94.0%) 5300BC
0.5
0.0
5800BC
5600BC
5400BC
5200BC
5000BC
4800BC
Calendar date
86
Figure 18. Group calibration of Rosenburg, phase I.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum
Rosenburg
Phase
I, 10 Daten
SUM
Rosenburg
Phase
I, 10
Relative probability
68.2% confidence
5470BC ( 5.8%) 5440BC
5430BC (59.6%) 5210BC
5170BC ( 2.7%) 5140BC
95.4% confidence
5650BC (95.4%) 5050BC
0.8
0.6
0.4
0.2
0.0
6000BC
5800BC
5600BC
5400BC
5200BC
5000BC
4800BC
Calendar date
87
Figure 19. Group calibration of Rosenburg, phase II.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
SUMRosenburg
RosenburgPhase
PhaseII,II,4 4Daten
Dates
Sum
Relative probability
68.2% confidence
5550BC ( 6.9%) 5450BC
5250BC (61.3%) 4950BC
95.4% confidence
5650BC (22.9%) 5350BC
5300BC (72.5%) 4850BC
0.8
0.6
0.4
0.2
0.0
5800BC
5600BC
5400BC
5200BC
5000BC
4800BC
4600BC
4400BC
Calendar date
88
Figure 20. Group calibration of Mold 1.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum
SUMMold
Mold1,
1,44 Daten
Dates
Relative probability
68.2% confidence
5320BC(38.1%) 5200BC
5180BC(30.1%) 5070BC
95.4% confidence
5470BC( 3.0%) 5440BC
5430BC(92.4%) 5040BC
0.5
0.0
5600BC
5400BC
5200BC
5000BC
4800BC
4600BC
Calendar date
89
Figure 21. Group calibration of Bylany.
A tmospheric data from S tuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 B ronk Ramsey (1999); cub r:4 sd:12 prob[chron]
SUM Bylany, 11 Dates
Sum Bylany, 11 Daten
Relative probability
68.2% confidence
5370BC (60.6%) 5200BC
5170BC ( 5.5%) 5140BC
5110BC ( 1.1%) 5100BC
5090BC ( 1.1%) 5080BC
95.4% confidence
5500BC (95.4%) 4900BC
0.8
0.6
0.4
0.2
0.0
5600BC
5400BC
5200BC
5000BC
4800BC
4600BC
Calendar date
90
Figure 22. Group calibration of Lengyel Culture, 93 dates with sigma <=100.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
SUM Lengyel, 93 Dates, sigma <= 100
Sum Lengyel, 93 Daten, Sigma<=100
Relative probability
68.2% confidence
4770BC ( 0.8%) 4750BC
4720BC (67.4%) 4350BC
95.4% confidence
4950BC (95.4%) 4050BC
0.8
0.6
0.4
0.2
0.0
5500BC
5000BC
4500BC
4000BC
3500BC
Calendar date
91
Figure 23. Group calibration of Epi-Lengyel Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum EpiLengy
SUM Epi-Lengyel,
13 Da-
Relative probability
68.2% confidence
4230BC (65.9%) 3940BC
3840BC ( 2.3%) 3820BC
95.4% confidence
4350BC (95.4%) 3650BC
0.8
0.6
0.4
0.2
0.0
4500BC
4000BC
3500BC
3000BC
Calendar date
92
Figure 24. Group Calibration of Lengyel II (in Michelstetten).
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
SUM Michelstetten,
Lengyel
II, 29
Dates
Sum Michelstetten
Lengyel
II (?)
Relative probability
68.2% confidence
4540BC (68.2%) 4350BC
95.4% confidence
4690BC (95.4%) 4340BC
0.8
0.6
0.4
0.2
0.0
5000BC
4800BC
4600BC
4400BC
4200BC
4000BC
Calendar date
93
Figure 25. Map of an Epi-Lengyel long house from Münchendorf.
94
Figure 26. Group calibration of Baden Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
SUM
Baden,75
75 Daten
Dates
Sum
Baden,
Relative probability
68.2% confidence
3650BC (68.2%) 3100BC
95.4% confidence
3750BC (95.4%) 2750BC
0.8
0.6
0.4
0.2
0.0
4000BC
3500BC
3000BC
Calendar date
2500BC
2000BC
95
Figure 27. Group calibration of Boleráz phase of Baden Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum Baden Boleráz, 26 Daten
SUM Baden-Boleráz, 26 Dates
Relative probability
68.2% confidence
3640BC (68.2%) 3370BC
95.4% confidence
3700BC (95.4%) 3350BC
0.8
0.6
0.4
0.2
0.0
4000BC
3800BC
3600BC
3400BC
Calendar date
3200BC
3000BC
2800BC
96
Figure 28. Group calibration of Classical phase of Baden Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum
35Dates
Daten
SUMBaden-Classical,
Baden Classical, 35
Relative probability
68.2% confidence
3360BC (64.1%) 3010BC
2980BC ( 1.7%) 2960BC
2950BC ( 2.5%) 2930BC
95.4% confidence
3550BC (95.4%) 2550BC
0.8
0.6
0.4
0.2
0.0
4000BC
3500BC
3000BC
2500BC
2000BC
Calendar date
97
Figure 29. Group Calibration of Protoboleráz-Šturovo Phase of Early Baden Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
SumSum
Baden-Šturovo,
8 Dates
Baden-Sturovo,
8 Daten
Relative probability
68.2% confidence
3640BC (24.2%) 3550BC
3540BC (13.8%) 3490BC
3470BC (30.2%) 3370BC
95.4% confidence
3750BC (95.4%) 3300BC
0.8
0.6
0.4
0.2
0.0
4000BC 3800BC 3600BC 3400BC 3200BC 3000BC 2800BC
Calendar date
98
Figure 30. Group Calibration of Červeny-Hradok Phase of Classical Baden Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum Baden-Červeny-Hradok, 5 Dates
Sum Baden-Cerveny-H. 5 Daten
Relative probability
68.2% confidence
3510BC (22.1%) 3430BC
3380BC (19.8%) 3300BC
3240BC (26.3%) 3100BC
95.4% confidence
3550BC (95.4%) 2900BC
0.8
0.6
0.4
0.2
0.0
3800BC 3600BC 3400BC 3200BC 3000BC 2800BC 2600BC 2400BC
Calendar date
99
Figure 31. Group Calibration of Ossarn I Phase of Classical Baden Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum
Sum Baden-Ossarn
Baden-OssarnI,I,25
25Daten
Da-
Relative probability
68.2% confidence
3350BC (64.4%) 3010BC
2980BC ( 1.6%) 2960BC
2950BC ( 2.2%) 2930BC
95.4% confidence
3500BC (95.4%) 2500BC
0.8
0.6
0.4
0.2
0.0
4000BC
3500BC
3000BC
2500BC
2000BC
Calendar date
100
Figure 32. Ossarn II Phase of Classical Baden Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum
SumBaden-Ossarn
Baden-OssarnII,II,5 5Daten
Dates
Relative probability
68.2% confidence
3350BC ( 6.9%) 3310BC
3240BC (11.6%) 3170BC
3160BC (49.6%) 2870BC
95.4% confidence
3400BC (95.4%) 2700BC
0.8
0.6
0.4
0.2
0.0
3800BC
3600BC
3400BC
3200BC
3000BC
2800BC
2600BC
2400BC
Calendar date
101
Figure 33. Calibration curve from 4200 to 3200 bc, Atmospheric data after Stuiver et al. 1998.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Radiocarbon determination
5400BP
5200BP
5000BP
4800BP
4600BP
4400BP
4000CalBC
3800CalBC
3600CalBC
3400CalBC
3200CalBC
Calibrated date
102
Figure 34. Group Calibration of Cernavoda I.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum
SumCernavoda
CernavodaI,I, 34 Dates
Daten
Relative probability
68.2% confidence
3340BC (19.6%) 3210BC
3190BC ( 5.2%) 3150BC
3130BC (43.4%) 2880BC
95.4% confidence
3500BC ( 1.0%) 3450BC
3400BC (94.4%) 2600BC
0.8
0.6
0.4
0.2
0.0
3500BC
3000BC
2500BC
2000BC
Calendar date
103
Figure 35. Group Calibration of Sitagroi Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum
Sum
Sitagroi,
Sitagroi,
7 Dates
7 Daten
Relative probability
68.2% confidence
3330BC (12.5%) 3230BC
3180BC ( 1.8%) 3150BC
3120BC (53.9%) 2880BC
95.4% confidence
3550BC (95.4%) 2650BC
0.8
0.6
0.4
0.2
0.0
4000BC
3500BC
3000BC
2500BC
Calendar date
104
Figure 36. Group Calibration of Ezero, Level 1-6/1-4.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); c ub r:4 sd:12 prob[chron]
SumEzero
Ezero,
Level H1-6/H1-4,
1-6/1-4, 7 7Dates
Sum
Horizont
Daten
Relative probability
68.2% confidence
3090BC ( 2.1%) 3060BC
3030BC (41.8%) 2840BC
2820BC (24.3%) 2670BC
95.4% confidence
3350BC (95.4%) 2450BC
0.8
0.6
0.4
0.2
0.0
3500BC
3000BC
2500BC
2000BC
Calendar date
105
Figure 37. Arbon Bleiche 3, The posts mark the outlines of the houses. 46
46
CAPITANI Annick and LEUZINGER Urs, 1998, Arbon Bleiche 3, Siedlungsgeschichte,
einheimische Traditionen und Fremdeinflüsse im Übergangsfeld zwischen Pfyner und Horgener Kultur. Jahrbuch der Schweizerischen Gesellschaft für Ur- und Frühgeschichte 81, 1998,
237-249, Fig.3.
DE
106
Figure 38. Arbon Bleiche 3, Map of posts and houses. Different shading
corresponds to different construction phases, dated by dendrochronology. 47
47
DE CAPITANI Annick
and LEUZINGER Urs, 1998, same as above, Abb.4.
107
Figure 39. Arbon Bleiche 3, Typical Pfyn and Horgen Culture Pots from
excavation 1993.48
48
DE CAPITANI Annick
and LEUZINGER Urs, 1998, same as above, Taf.1.
108
Figure 40. Arbon Bleiche 3, 1-4 Typical Pfyn and Horgen Culture Pots, 5-8
Typical Boleráz Pots.49
49
DE CAPITANI Annick
and LEUZINGER Urs, 1998, same as above, Taf.2.
109
Figure 41. Typical Boleráz Pot.50
50
DE CAPITANI Annick
and LEUZINGER Urs, 1998, same as above, Abb. 7.
110
Figure 42. Group Calibration of Pfyn Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum Pfyn,
Pfyn, 36
Sum
36 Daten
Dates
Relative probability
68.2% confidence
4000BC (68.2%) 3500BC
95.4% confidence
4350BC (95.4%) 3350BC
0.8
0.6
0.4
0.2
0.0
5000BC
4500BC
4000BC
3500BC
3000BC
2500BC
Calendar date
111
Figure 43. Group Calibration of Horgen Culture.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sum
Sum Horgen,
Horgen,2424Daten
Dates
Relative probability
68.2% confidence
3500BC (68.2%) 2850BC
95.4% confidence
3700BC (95.4%) 2400BC
0.8
0.6
0.4
0.2
0.0
4000BC
3500BC
3000BC
2500BC
2000BC
Calendar date
112
Figure 44. Wiggle matching calibration (dark shaded area) of youngest sample of dendro-dated wood from Arbon Bleiche 3. The unshaded area is the calibrated time range before wiggle matching.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Wiggle Matching,
sample B-6326:
Sampledyoungest
B-6362 : 4640±30
Relative probability
68.2% confidence
3500BC (31.5%) 3480BC
3390BC (36.7%) 3360BC
95.4% confidence
3510BC (35.2%) 3470BC
3440BC (60.2%) 3350BC
Agreement 98.6%
0.8
0.6
0.4
0.2
0.0
3700BC
3600BC
3500BC
3400BC
3300BC
Calendar date
3200BC
3100BC
3000BC
113
Figure 45. Combined calibration of 57 dates from the Iceman.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Radiocarbon determination
4700BP
R_Combine Eismann, 57 Daten : 4523±7BP
Combined Calibration Ice Man, 57 Dates: 4523±7BP
68.2% confidence
3350BC (13.3%) 3330BC
3220BC (30.0%) 3180BC
3160BC (24.9%) 3120BC
95.4% confidence
3350BC (17.9%) 3320BC
3230BC (40.2%) 3170BC
3160BC (37.3%) 3100BC
X2-Test: df=56 T=148.2(5% 73.4)
4650BP
4600BP
4550BP
4500BP
4450BP
4400BP
3500CalBC
3400CalBC
3300CalBC
3200CalBC
3100CalBC
3000CalBC
Calibrated date
114
Figure 46. Combined calibration of 22 dates from the Iceman, data reduced by eliminating all dates with sigma < 60.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Radiocarbon determination
4700BP
Combined
Calibration,
<60, :22
Dates: 4524±9BP
R_Combine
Eismann,Ice
22 Man,
Daten,Sigma
Sigma<60
4524±9BP
68.2% confidence
3350BC (13.3%) 3330BC
3220BC (28.3%) 3180BC
3160BC (26.5%) 3120BC
95.4% confidence
3350BC (19.1%) 3310BC
3230BC (39.7%) 3170BC
3160BC (36.6%) 3100BC
X2-Test: df=21 T=62.1(5% 32.7)
4650BP
4600BP
4550BP
4500BP
4450BP
4400BP
3500CalBC
3400CalBC
3300CalBC
3200CalBC
3100CalBC
3000CalBC
Calibrated date
115
Figure 47. Iceman, wiggle matching simulation with 6 samples and 50 yearrings.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); c ub r:4 sd:12 prob[chron]
Wiggle Matching, 6 samples,
year rings,
youngest sample:
Sampled50
VERA-xxx6
: 4564.05±30
Relative probability
68.2% confidence
3215BC (46.0%) 3190BC
3150BC (22.2%) 3135BC
95.4% confidence
3290BC ( 2.3%) 3260BC
3240BC (61.6%) 3180BC
3160BC (31.4%) 3110BC
Agreement 97.0%
0.8
0.6
0.4
0.2
0.0
3700BC 3600BC 3500BC 3400BC 3300BC 3200BC 3100BC 3000BC 2900BC 2800BC
Calendar date
116
Figure 48. Iceman, wiggle matching simulation with 7 samples and 60 yearrings.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
: 4515.5±30
Wiggle Matching, 7 Sampled
samples, VERA-xxx7
60 year rings,
youngest sample: 4516±30BP
Relative probability
68.2% confidence
3220BC (68.2%) 3192BC
95.4% confidence
3280BC ( 5.1%) 3250BC
3240BC (89.1%) 3170BC
3140BC ( 1.2%) 3120BC
Agreement 113.6%
0.8
0.6
0.4
0.2
0.0
3700BC 3600BC 3500BC 3400BC 3300BC 3200BC 3100BC 3000BC 2900BC 2800BC
Calendar date
117
Figure 49. Avar time well from Brunn am Gebirge, Obj.823, the well chamber of oak boards was preserved in a depth
of 4 m, views from ahead and above.
118
Figure 50. Map of the excavation of the Avar settlement within site II of the Oldest Linear Ceramics settlement from
Brunn am Gebirge/Wolfholz. Avar objects in blue.
119
Figure 51. Simulation of wiggle matching for Avar Time.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
D_Sequence Awaren Wiggle Matching Simulation
Avar wiggle matching simulation
D_Sequence Awaren Wiggle Matching Simulation
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
200BC
VERA-xxx1 127.9%
VERA-xxx2 137.1%
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
D_Sequence
Awaren
Wiggle Matching
Simulation
Avar
wiggle
matching
simulation
VERA-xxx3 128.6%
D_Sequence Awaren Wiggle Matching Simulation
VERA-xxx4 120.2%
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
Gap 10
R_Simulate
VERA-xxx5 103.0%
VERA-xxx6 67.5%
VERA-xxx7 127.9%
VERA-xxx8 133.7%
VERA-xxx9 148.7%
VERA-xx10 106.9%
VERA-xx11 149.8%
VERA-xx12 127.3%
VERA-xx13 110.6%
VERA-xx14 124.2%
VERA-xx15 83.8%
BC/AD
VERA-xx16 104.2%
200AD
VERA-xx20 117.5%
VERA-xx21 114.3%
VERA-xx22 95.7%
VERA-xx23 110.7%
VERA-xx24 102.3%
VERA-xx25 37.8%
VERA-xx26 43.1%
VERA-xx27 83.9%
VERA-xx28 123.6%
VERA-xx29 125.3%
VERA-xx30 125.3%
400AD
600AD
800AD
1000AD
1200AD
Calendar date
VERA-xx17 95.9%
VERA-xx18 116.2%
VERA-xx19 120.3%
BC/AD
200AD
400AD
600AD
Calendar date
800AD 1000AD 1200AD
120
Figure 52. Simulation of wiggle matching of Avar Time. The sample from about the end of Avar Time can very well be
narrowed down to 824-839.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Wiggle
matching,
last sample:
1239.42±40
Sampled
VERA-xx27
: 1239.42±40
Relative probability
68.2% confidence
824AD (68.2%) 839AD
95.4% confidence
818AD (95.4%) 846AD
Agreement 83.9%
0.8
0.6
0.4
0.2
0.0
500AD
600AD
700AD
800AD
900AD 1000AD 1100AD 1200AD
Calendar date
121
Figure 53. Combined calibration of Magyar dates from Örménykút.
Atmospheric data fromStuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Radiocarbon determination
1100BP
R_Combine
Örmenykut,Magyarisch
2 D. : 956±22BP
Combined
Calibration
Örménykút, Magyar,
2 Dates:
68.2% confidence
1020AD (20.5%) 1050AD
1090AD (29.9%) 1120AD
1130AD (17.8%) 1160AD
95.4% confidence
1020AD (95.4%) 1160AD
X2-Test: df=1 T=0.7(5% 3.8)
1000BP
900BP
800BP
700BP
900CalAD
1000CalAD
1100CalAD
1200CalAD
1300CalAD
Calibrated date
122
Figure 54. Map of Thunau am Kamp, with all the sections, from which the samples come from.
123
Figure 55. Wiggle matching calibration, beam 61898, youngest sample VERA-710 from Thunau/Kamp, UC fortification.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sampled
VERAsample
710 VERA-710:2825±25BP
: 2825±25
Wiggle Matching,
youngest
Relative probability
68.2% confidence
953BC (68.2%) 922BC
95.4% confidence
970BC (95.4%) 900BC
Agreement 101.8%
0.8
0.6
0.4
0.2
0.0
1400BC 1300BC 1200BC 1100BC 1000BC 900BC 800BC 700BC
Calendar date
124
Figure 56. Wiggle matching calibration, beam 61902, youngest sample VERA-713 from Thunau/Kamp, UC fortification.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 BronkRamsey (1999); cub r:4 sd:12 prob[chron]
Wiggle Matching,
youngest
sample
Sampled
VERA
713VERA-713:
: 2840±40 2840±40BP
Relative probability
68.2% confidence
1025BC (68.2%) 970BC
95.4% confidence
1090BC (95.4%) 940BC
Agreement 123.0%
0.8
0.6
0.4
0.2
0.0
1500BC 1400BC 1300BC 1200BC 1100BC 1000BC 900BC 800BC 700BC
Calendar date
125
Figure 57. Calibration curve from 650 to 950 AD, Atmospheric data after Stuiver et al. 1998.
Atmospheric data fromStuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Radiocarbon determination
1400BP
1350BP
1300BP
1250BP
1200BP
1150BP
1100BP
650CalAD 700CalAD 750CalAD 800CalAD 850CalAD 900CalAD 950CalAD
Calibrated date
126
Figure 58. Wiggle matching calibration, beam 10006, youngest sample VERA-716 from Thunau/Kamp, MA fortification.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Relative probability
Sampledyoungest
VERA-0716
: 1245±45
Wiggle Matching,
sample
VERA-0716:
68.2% confidence
815AD (68.2%) 885AD
95.4% confidence
730AD (13.5%) 790AD
800AD (79.9%) 900AD
920AD ( 2.1%) 940AD
Agreement 85.8%
0.8
0.6
0.4
0.2
0.0
400AD 500AD 600AD 700AD 800AD 900AD 1000AD1100AD1200AD
Calendar date
127
Figure 59. Wiggle matching calibration, beam 11859, youngest sample VERA-719 from Thunau/Kamp, MA fortification.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 BronkRamsey (1999); cub r:4 sd:12 prob[chron]
Sampled VERA-0719 : 1225±35
Wiggle Matching, youngest sample VERA-0719: 1225±35BP
Relative probability
68.2% confidence
825AD (68.2%) 885AD
95.4% confidence
760AD (95.4%) 900AD
Agreement 106.0%
0.8
0.6
0.4
0.2
0.0
500AD 600AD 700AD 800AD 900AD 1000AD 1100AD 1200AD
Calendar date
128
Figure 60. Wiggle matching calibration, beam 59122, youngest sample VERA-722 from Thunau/Kamp, MA fortification.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Sampled VERA-0722 : 1220±40
Relative probability
Wiggle Matching, youngest sample VERA-0722: 1220±40BP
68.2% confidence
773AD (68.2%) 801AD
95.4% confidence
720AD (95.4%) 840AD
Agreement 111.2%
0.8
0.6
0.4
0.2
0.0
500AD
600AD
700AD
800AD
900AD
1000AD 1100AD
Calendar date
129
Figure 61. Wiggle matching calibration, beams 10006 and 11859 together, youngest sample VERA-719 from Thunau/Kamp, MA fortification.
Atmospheric data from Stuiver et al. Radiocarbon 40 1041-1083 (1998); OxCal v3.1 Bronk Ramsey (1999); cub r:4 sd:12 prob[chron]
Wiggle Matching,
youngest
sample VERA-0719:
Sampled
VERA-0719
: 1225±35 1225±35BP
Relative probability
68.2% confidence
840AD (68.2%) 881AD
95.4% confidence
780AD ( 4.2%) 810AD
820AD (91.2%) 900AD
Agreement 104.9%
0.8
0.6
0.4
0.2
0.0
500AD
600AD
700AD
800AD
900AD 1000AD 1100AD 1200AD
Calendar date
130