Συνοπτική έκθεση για την αγορά των Επιχειρήσεων

1
Συνοπτική έκθεση για την αγορά των
Επιχειρήσεων Ενεργειακών Υπηρεσιών
Ιούνιος 2011
Συντάκτες
Αργυρώ Γιακουμή ([email protected]) , CRES, Ελλάδα
Γιώργος Μαρκογιαννάκης ([email protected]), CRES, Ελλάδα
Με τη συμμετοχή των
KaijaSaramäki, SimoPaukkunen και AllardVermeulen, NKUAS, Φινλανδία, SimonA. Booth,
UREADSE, ΗΒ, SabinePutz, SOLID, Αυστρία, NikolayVangelov, ERATO, Βουλγαρία,
VeljkoVorkapic, EIHP, Κροατία, HrvojeHucika, HEPESCo, Κροατία, PhilippaHughes, TVE, ΗΒ,
WolfgangHiegl, WIP, Γερμανία, AntonioPantaleo, ChiaraCandelise και AlessandroLeucci,
MedEnerg, Ιταλία, MauroBertini, CS, Ιταλία, PaolaMiglietta, UNI, Ιταλία
2
Το έργο "Expanding biomass and solar heating in public and private buildings via the energy
services approach (Bio-Sol-ESCo)" υποστηρίζεται από την Ευρωπαϊκή Επιτροπή μέσω του
προγράμματος Ευφυής Ενέργειας για την Ευρώπη – Intelligent Energy for Europe - IEE (αρ.
συμβάσεως IEE/07/264).
Η αποκλειστική ευθύνη του περιεχομένου της παρούσας εκθέσεως βαρύνει τους συντάκτες. Δεν
εκπροσωπεί τη γνώμη των Ευρωπαϊκών Κοινοτήτων. Η Ευρωπαϊκή Επιτροπή δεν φέρει ευθύνη για
οιαδήποτε πιθανή χρήση των πληροφοριών που εμπεριέχονται στην παρούσα έκθεση.
3
Πίνακας περιεχομένων
Λίστα συντομεύσεων ................................................................................................................ 4 1 Εισαγωγή .......................................................................................................................... 5 2 Ορισμοί ............................................................................................................................. 9 3 Εθνικό Υπόβαθρο ........................................................................................................... 11 3.1 Νομικό, οικονομικό, συμβατικό και εμπορικό πλαίσιο ................................................. 11 3.1.1
3.1.2
3.1.3
3.1.4
3.2 3.2.1
3.2.2
3.2.3
3.3 Νομικό υπόβαθρο για τις ΕΕΥ και ΧΑΤ ..................................................................... 11
Υπάρχουσες συμβάσεις................................................................................................ 15
Χρηματοπιστωτικοί οργανισμοί και προγράμματα ..................................................... 17
Εμπόδια ........................................................................................................................ 24
Τεχνικό πλαίσιο ........................................................................................................ 27 Ποιότητα και παρακολούθηση ..................................................................................... 27
Κατάλληλη τεχνολογία για τις BioSolESCo................................................................ 30
Διαθέσιμα εργαλεία λογισμικού .................................................................................. 32
Συμπεράσματα ......................................................................................................... 33 4 Παραπομπές ....................................................................................................................... 35
ΠΑΡΑΡΤΗΜΑ Ι Πληροφορίες για την κάθε χώρα
4
1. Αυστρία
2. Χώρες Βαλτικής: Εσθονία – EE, Λετονία – LV, Λιθουανία – LT
3. Βέλγιο – BE
4. Βουλγαρία – BG
5. Κύπρος – CY
6. Τσεχία – CZ
7. Δανία – DK
8. Φιλανδία – FI
9. Γαλλία – FR
10. Γερμανία – DE
11. Ελλάδα – GR
12. Ουγγαρία – HU
13. Ιρλανδία – IE
14. Ιταλία – IT
15. Λουξεμβούργο – LU
16. Μάλτα – MT
17. Ολλανδία – NL
18. Πολωνία - PL
19. Πορτογαλία – PT
20. Ρουμανία – RO
21. Σλοβακία – SK
22. Σλοβενία – SI
23. Ισπανία – ES
24. Σουηδία – SE
25. Ηνωμένο Βασίλειο – UK
26. Κροατία – CR
5
Λίστα συντομεύσεων
BioSolESCo
Biomass and/or Solar ESCo // ESCo βιομάζας ή/και ηλιακής
ενέργειας
ΣΕΑ
ΕΕΥ
ΕΕ
IEE
JI
M&V
NKUAS
Σύμβαση Eνεργειακής Aπόδοσης
Επιχείρηση Ενεργειακών Υπηρεσιών
Ευρωπαϊκή Ένωση
Ευφυής ενέργεια για την Ευρώπη - Intelligent Energy Europe
Joint Implementation // Κοινή εφαρμογή
Monitoring and Verification // Καταμέτρηση και επαλήθευση
North Karelia University of Applied Sciences // Πανεπιστήμιο
Εφηρμοσμένων Επιστημών North Karelia
Netherlands Technical Agreements // Τεχνικές Συμβάσεις Κάτω
Χωρών
Σύμπραξη Δημόσιου & Ιδιωτικού Τομέα
Ανανεώσιμες Πηγές Ενέργειας
Renewable-energy and Energy-efficient Technologies
Χρηματοδότηση Από Τρίτους
Φόρος Προστιθέμενης Αξίας
White Certificates // Λευκά πιστοποιητικά
NTA
ΣΔΙΤ
ΑΠΕ
RETs
ΧΑΤ
ΦΠΑ
WhCs
6
1 Εισαγωγή
Η Ευρωπαϊκή Ένωση έχει ανάγκη τη βελτιωμένη απόδοση της τελικής χρήσης της ενέργειας, τη
διαχειριζόμενη ζήτηση ενέργειας, την προώθηση της παραγωγής Ανανεώσιμων Πηγών Ενέργειας,
(ΑΠΕ) καθώς και τη μείωση των εκπομπών αερίων του θερμοκηπίου. Σε αυτά τα πλαίσια και με
στόχο να απαντηθούν τα ανωτέρω ζητήματα, η πολιτική κλίματος και ενέργειας της ΕΕ θέτει τρεις
φιλόδοξους στόχους για το 2020. Ο πρώτος στόχος είναι η μείωση των αερίων του θερμοκηπίου
κατά 20% τουλάχιστον σε σύγκριση με τα επίπεδα του 1990, ο δεύτερος στόχος είναι η αύξηση της
χρήσης ανανεώσιμων πηγών ενέργειας στο 20% της συνολικής παραγωγής ενέργειας, και ο τρίτος
είναι η μείωση της κατανάλωσης ενέργειας κατά 20% των προβλεπόμενων επιπέδων για το 2020
μέσω της βελτίωσης της αποδοτικότητας της ενέργειας [26].
Το 2006, η Ευρωπαϊκή Επιτροπή κυκλοφόρησε ένα Σχέδιο Δράσης Ενεργειακής Απόδοσης, το
οποίο υπογραμμίζει τις πολιτικές και τα μέτρα που θα πρέπει να εφαρμοστούν για να επιτευχθεί η
δυνατότητα εξοικονόμησης 20% στην ετήσια κατανάλωση κύριων πηγών ενέργειας στην ΕΕ μέχρι
το 2020. Το Πρόγραμμα Δράσης προτείνει επίσης δέκα δράσεις προτεραιότητας που πρέπει να
εφαρμοστούν άμεσα για την επίτευξη των εκτιμώμενων δυνατοτήτων εξοικονόμησης. Οι δράσεις
ενέργειας καλύπτουν όλους τους πιθανούς τομείς όπου μπορεί να εφαρμοστεί η ενεργειακή
απόδοση, π.χ. συσκευές, κτίρια, παραγωγή και διανομή ενέργειας, εξοικονόμηση καυσίμου
αυτοκινήτων, κ.λπ., ενώ περιλαμβάνει επίσης διευκολύνσεις μέσω της κατάλληλης
χρηματοδότησης για επενδύσεις ενεργειακής απόδοσης για μικρές και μεσαίες επιχειρήσεις και για
Επιχειρήσεις Ενεργειακών Υπηρεσιών (ΕΕΥ) ή όπως είναι γνωστές με τον αγγλικό του όρο Energy
Service Companies (ESCos). Ιδιαίτερα στον τομέα χρηματοδότησης της ενεργειακής απόδοσης, το
Σχέδιο Δράσης προτείνει την ταυτοποίηση και άρση όλων των εμποδίων που σχετίζονται με τη
λειτουργία των ΕΕΥ στις Χώρες Μέλη και την ανάπτυξη οργανικών συμβάσεων [2].
Επίσης, για την προώθηση της χρήσης ανανεώσιμων πηγών ενέργειας, η Κοινότητα κυκλοφόρησε
το 2006 τον “Οδηγό Ανανεώσιμων Πηγών Ενέργειας” και το 2008 το “20 20 μέχρι 2020 – Η
ευκαιρία κλιματικής αλλαγής της Ευρώπης”, όπου και στα δύο έγγραφα τεκμηριώνει την
αναγκαιότητα αύξησης της χρήσης ΑΠΕ και την επίτευξη του στόχου του 20% για τη χρήση
ανανεώσιμων πηγών ενέργειας στην μεικτή εγχώρια κατανάλωση μέχρι το 2020.
Πέραν των ανωτέρω εγγράφων, τα οποία περιγράφουν το γενικό πλαίσιο της πολιτικής της ΕΕ,
υπάρχουν επίσης συγκεκριμένες κατευθυντήριες οδηγίες, οι οποίες επιχειρούν ρύθμιση μερικών
από αυτά τα ζητήματα στην πράξη. Η Οδηγία για την ενεργειακή απόδοση κατά την τελική χρήση
και τις ενεργειακές υπηρεσίες (2006/32/EC) σε συνδυασμό με την Οδηγία για την ενεργειακή
απόδοση των κτιρίων (2002/91/EC) ωθούν την αγορά προς έργα ενεργειακής απόδοσης.
Θεωρητικά, η εφαρμογή αυτών των δύο Οδηγιών πρέπει να επιτρέψει την περαιτέρω ανάπτυξη της
αγοράς ΕΕΥ. Τα έργα που εφαρμόζονται συνήθως από ΕΕΥ είναι έργα ενεργειακής απόδοσης αλλά
και έργα ανανεώσιμων πηγών ενέργειας. Τώρα, με τη νέα Οδηγία περί Ανανεώσιμων Πηγών
Ενέργειας (2009/28/EC) η αγορά προσανατολίζεται έντονα προς την προώθηση των ΑΠΕ όχι μόνο
στην ηλεκτροπαραγωγή αλλά και στην παραγωγή θερμότητας και ψύξης. Συνεπώς, είναι
κατανοητό ότι είναι ιδανική ευκαιρία για έργα ESCo που αφορούν στην παροχή θέρμανσης από
7
ανανεώσιμες πηγές ενέργειας (π.χ. εγκαταστάσεις βιομάζας και ηλιακής ενέργειας) να εισαχθούν
σε ευρεία βάση.
Η παρούσα έκθεση έχει σκοπό τη συγκέντρωση περιεκτικών πληροφοριών αναφορικά με την
κατάσταση της αγοράς των ΕΕΥ στις 27 χώρες της ΕΕ και της Κροατίας, δίνοντας ιδιαίτερη
έμφαση σε έργα ESCo που αφορούν συστήματα βιομάζας ή/και ηλιακής ενέργειας (BioSolESCo).
Οι συγκεντρωθείσες πληροφορίες προέρχονται κυρίως από υπάρχουσες πηγές και εκδόσεις,
παλαιότερα ή συνεχιζόμενα Ευρωπαϊκά έργα του προγράμματος Ευφυής ενέργεια για την Ευρώπη
και σε μερικές περιπτώσεις, όπου κατέστη δυνατό, από προσωπική επικοινωνία με τους
αντίστοιχους εταίρους. Σε κάθε μία από τις χώρες εξετάζεται το νομικό, οικονομικό, συμβατικό,
εμπορικό και τεχνικό πλαίσιο των ΕΕΥ και ιδιαίτερα η αγορά έργων ΕΕΥ που αφορούν συστήματα
βιομάζας ή/και ηλιακής ενέργειας.
Συγκεκριμένα, συλλέγονται πληροφορίες για το νομικό υπόβαθρο των ΕΕΥ και τη Χρηματοδότηση
μέσω Τρίτων (ΧΑΤ) για κάθε μία από τις χώρες, καθώς και πληροφορίες για τους τύπους των
υπαρχουσών συμβάσεων και προγραμμάτων χρηματοδότησης που χρησιμοποιούνται συνήθως.
Επιπλέον, περιγράφονται τα υπάρχοντα εμπόδια που δεν επιτρέπουν τη δημιουργία ή περαιτέρω
ανάπτυξη της αγοράς BioSolESCo. Για τις χώρες που διαθέτουν επαρκώς ανεπτυγμένη αγορά ΕΕΥ
και έχουν ιστορικό έργων BioSolESCo, αναφέρεται επίσης η αποκτηθείσα εμπειρία και η γνώση
που αποκτήθηκε από την εφαρμογή τέτοιων έργων.
Συνοψίζοντας μερικά από τα αποτελέσματα από την έρευνα που διεξήχθη στις χώρες, είναι δυνατό
να οριστεί ότι τα έργα ESCo, συμπεριλαμβανομένων των συστημάτων ηλιακής θερμικής ενέργειας
ή/και βιομάζας έχουν εφαρμοστεί σε πολλές χώρες στην Ευρώπη αλλά παρουσιάζουν πολλές
διαφορές σε ότι αφορά στον τύπο των συμβάσεων που χρησιμοποιήθηκαν ή στο κατά πόσο
χρησιμοποιούν και τις δύο τεχνολογίες (ηλιακά και βιομάζα). Για παράδειγμα, η Γερμανία που
είναι μία από τις πλέον ανεπτυγμένες αγορές ESCo στην Ευρώπη, διαθέτει πολύ λίγα έργα που
συνδυάζουν και τις δύο τεχνολογίες ηλιακής θερμικής ενέργειας και βιομάζας και να έχουν
υλοποιηθεί με τη λογική της ESCo. Αυτό οφείλεται στο γεγονός ότι η εγκατάσταση ηλιακών
θερμικών συλλεκτών συχνά αποδεικνύεται οικονομικά ασύμφορη, ακόμη και με την επιχορήγηση
από το δημόσιο. Φυσικά, υπάρχουν πολλοί προμηθευτές που προσφέρουν εργολαβίες βιομάζας
επιπρόσθετα της εργολαβίας με ορυκτά καύσιμα, ενώ άλλοι ειδικεύονται στις εργολαβίες βιομάζας.
Σε άλλες χώρες, όπως η Ισπανία, όπου οι κλιματικές συνθήκες ευνοούν τις ηλιακές θερμικές
τεχνολογίες και όπου η αγορά ESCo είναι πολύ ανεπτυγμένη, τα έργα ESCo που περιλαμβάνουν
ηλιακά συστήματα είναι πιο συνηθισμένα. Υπάρχουν επίσης χώρες, όπως η Ελλάδα, που διαθέτουν
ευνοϊκές κλιματικές συνθήκες για ηλιακά θερμικά συστήματα αλλά δεν διαθέτουν ακόμη
ανεπτυγμένη αγορά ESCo. Οι χώρες της Κεντρικής και Βόρειας Ευρώπης διαθέτουν μεγαλύτερη
εμπειρία σε έργα εφαρμογής συστημάτων θέρμανσης βιομάζας. Η Φινλανδία για παράδειγμα είναι
μία χώρα με μεγάλο αριθμό έργων βιομάζας που έχουν υλοποιηθεί με τη λογική της ESCo.
Σε όλες τις χώρες υπάρχουν πολλά εμπόδια που δυσχεραίνουν την ανάπτυξη της αγοράς των ΕΕΥ.
Τα εμπόδια καλύπτουν ένα μεγάλο εύρος, με τα πλέον συνηθέστερα να είναι τα ακόλουθα:
διαχειριστικά εμπόδια στην εφαρμογή έργων ESCo στο δημόσιο τομέα, έλλειψη ενημέρωσης από
τη μεριά των υποψήφιων πελατών αλλά και από τη μεριά των χρηματοπιστωτικών ιδρυμάτων,
έλλειψη εμπορικά βιώσιμης χρηματοδότησης, ασαφή νομικά ζητήματα που προκαλούν
αβεβαιότητα και τεχνολογικά προβλήματα, όπως η έλλειψη εμπιστοσύνης σε συγκεκριμένα
τεχνολογικά συστήματα. Μερικά από τα προβλήματα είναι κοινά μεταξύ των χωρών, ενώ άλλα
συνδέονται με συγκεκριμένες συνθήκες σε κάθε χώρα.
8
Αναλυτικές πληροφορίες για κάθε χώρα παρέχονται στο Παράρτημα I της παρούσας εκθέσεως. Στο
σημείο αυτό πρέπει να σημειωθεί ότι η πρώτη έκδοση της παρούσας έκθεσης είχε συνταχθεί τον
Ιανουάριο του 2010, αλλά προς το τέλος του έργου (Μάρτιος 2011) έγινε μία προσπάθεια
αναθεώρησης προκειμένου να εντοπιστούν σημαντικές αλλαγές που ενδεχομένως έχουν συμβεί στα
Κράτη Μέλη.
9
2 Ορισμοί
Μια Επιχείρηση Ενεργειακών Υπηρεσιών (EEY) ή με τον αγγλικό όρο Energy Service Company
(ESCo) είναι μια επαγγελματική επιχείρηση που παρέχει στους καταναλωτές, μέσω μιας μεγάλης
ποικιλίας υπηρεσιών ενέργειας, τη δυνατότητα να μειώσουν την κατανάλωση ενέργειας και το
σχετικό κόστος τους. Αυτή η μεγάλη ποικιλία υπηρεσιών ενέργειας μπορεί να περιλαμβάνει
ενεργειακή επιθεώρηση, διαχείριση ενέργειας, σχεδιασμό και εφαρμογή έργου, συντήρηση και
λειτουργία, παραγωγή και παροχή ενέργειας, παρακολούθηση και αξιολόγηση, διαχείριση
εγκαταστάσεων και κινδύνων.
Για να μπορεί μια εταιρεία να διαφοροποιηθεί από άλλες εταιρείες που μπορεί να παρέχουν κάποιες
από τις παραπάνω υπηρεσίες ενέργειας (π.χ. εταιρείες συμβούλων, πάροχους ενέργειας,
κατασκευαστές εξοπλισμού) και για να χαρακτηριστεί ως ΕΕΥ, πρέπει να διαθέτει μερικά
πρόσθετα χαρακτηριστικά, επιπλέον της παροχής υπηρεσιών ενέργειας. Αυτά τα χαρακτηριστικά,
όπως περιγράφηκαν στην έκθεση των Paolo Bertoldi & Silvia Rezessy το 2005 σχετικά με τις
ESCos [17], είναι τα ακόλουθα:
• Μία ΕΕΥ εγγυάται εξοικονόμηση ενέργειας ή/και παροχή του ίδιου επιπέδου υπηρεσιών
ενέργειας με χαμηλότερο κόστος. Μία εγγύηση απόδοσης μπορεί να έχει πολλές μορφές.
Μπορεί να αναπτύσσεται γύρω από την πραγματική ροή εξοικονόμησης ενέργειας ενός
έργου, μπορεί να ορίζει ότι η εξοικονόμηση ενέργειας θα επαρκεί για την αποπληρωμή της
μηνιαίας οφειλής κόστους της υπηρεσίας ή ότι το ίδιο επίπεδο υπηρεσιών ενέργειας
παρέχεται έναντι λιγότερων χρημάτων.
• Η αμοιβή μιας ΕΕΥ συνδέεται άρρηκτα με την εξοικονόμηση ενέργειας που επιτυγχάνεται,
• Μία ΕΕΥ μπορεί να χρηματοδοτήσει ή να εξασφαλίσει την επίτευξη χρηματοδότησης για
τη λειτουργία ενός συστήματος ενέργειας παρέχοντας εγγύηση εξοικονόμησης και
• Μία ΕΕΥ διατηρεί συνεχή ρόλο στη μέτρηση και επαλήθευση της εξοικονομούμενης
ενέργειας καθ’ όλη τη διάρκεια της σύμβασης.
Οι ΕΕΥ περιγράφονται επίσης στην Οδηγία για την ενεργειακή απόδοση κατά την τελική χρήση
και τις ενεργειακές υπηρεσίες (2006/32/EC) μαζί με τις Συμβάσεις Ενεργειακής Απόδοσης (ΣΕΑ)
και τη Χρηματοδότηση από Τρίτους (ΧΑΤ), ως τα κύρια όργανα και μηχανισμοί που διατίθενται
και μπορούν να χρησιμοποιηθούν από τις Χώρες Μέλη για την επίτευξη ενεργειακής απόδοσης και
την κάλυψη του συνολικού ενδεικτικού εθνικού στόχου εξοικονόμησης ενέργειας της τάξεως του
9% (για το ένατο έτος εφαρμογής αυτής της Οδηγίας). Οι ορισμοί που χρησιμοποιούνται στην
Οδηγία για ΕΕΥ, ΣΕΑ και ΧΑΤ παρέχονται κατωτέρω:
Επιχείρηση Ενεργειακών Υπηρεσιών (ΕΕΥ): ένα φυσικό ή νομικό πρόσωπο που παρέχει
υπηρεσίες ενέργειας ή/και άλλα μέτρα βελτίωσης της ενεργειακής απόδοσης σε εγκατάσταση ή
οικία χρήστη και αναλαμβάνει κάποιο επίπεδο οικονομικού κινδύνου κατά την εκτέλεση αυτής της
δραστηριότητας. Η πληρωμή των παρεχόμενων υπηρεσιών βασίζεται (εν όλω ή εν μέρει) στην
επίτευξη των βελτιώσεων απόδοσης ενέργειας και την κάλυψη των συμφωνηθέντων κριτηρίων
απόδοσης.
Σύμβαση Ενεργειακής Απόδοσης (ΣΕΑ): συμβατική συμφωνία μεταξύ του δικαιούχου και του
παρόχου (κατά κανόνα ΕΕΥ) περί μέτρου βελτίωσης της ενεργειακής απόδοσης, σύμφωνα με την
10
οποία πληρωμές για τις επενδύσεις πραγματοποιούνται ανάλογα με το συμβατικώς συμφωνούμενο
επίπεδο βελτίωσης της ενεργειακής απόδοσης.
Χρηματοδότηση Από Τρίτους (ΧΑΤ): συμβατική συμφωνία στην οποία συμμετέχει τρίτος –
επιπλέον του προμηθευτή ενέργειας και του δικαιούχου του μέτρου βελτίωσης της ενεργειακής
απόδοσης– ο οποίος παρέχει το κεφάλαιο για το μέτρο και χρεώνει στον δικαιούχο τέλος
ισοδύναμο προς μέρος της εξοικονόμησης ενέργειας που επιτυγχάνεται βάσει του μέτρου
βελτίωσης της ενεργειακής απόδοσης. Ο εν λόγω τρίτος μπορεί να είναι ήόχι η ΕΕΥ.
Επιπρόσθετα, η έκθεση χρησιμοποιεί τον παρακάτω όρο:
BioSolESCo: Ως BioSolESCo χαρακτηρίζεται μία ΕΕΥ που εκτελεί έργα στον τομέα των
εφαρμογών βιομάζας ή/και ηλιακής ενέργειας. Το έργο μπορεί επίσης να περιλαμβάνει μέτρα
ενεργειακής απόδοσης με στόχο την επίτευξη μεγαλύτερης εξοικονόμησης, γεγονός που το καθιστά
οικονομικά αποδοτικότερο και ελκυστικό. Τα έργα ESCo που αφορούν αποκλειστικά βιομάζα
ή/και ηλιακή ενέργεια είναι λίγα. Στις περισσότερες περιπτώσεις τα έργα αφορούν συμβάσεις
παροχής ενέργειας που μπορούν να χαρακτηριστούν ως έργα ESCo.
Ένας ακόμη ορισμός που μπορεί να θεωρηθεί ως λειτουργία ΕΕΥ είναι:
Επιχειρηματική δράση παροχής θέρμανσης
Η επιχειρηματική δράση παροχής θέρμανσης στη Φινλανδία είναι η κυρίαρχη μορφή εταιρειών που
παρέχουν θέρμανση σε πελάτες. Η επιχειρηματική δράση παροχής θερμότητας στην πλέον
συνηθισμένη μορφή της παρέχει θέρμανση σε έναν ή περισσότερους πελάτες μέσω ενός
συνεργάτη, ομάδας συνεργατών ή συνεργασίας. Η θέρμανση παράγεται συνήθως από δασική
βιομάζα, όπως pellets, ή πριονίδια ξύλου. Το επιχειρηματικό μοντέλο που χρησιμοποιείται από τις
εταιρείες της επιχειρηματικής δράσης παροχής θερμότητας ποικίλει και έχει διάφορες μορφές. Επί
του παρόντος (2009) υπάρχουν περίπου 380 εγκαταστάσεις θέρμανσης που λειτουργούν από
επιχειρηματικές δράσεις παροχής θερμότητας στη Φινλανδία.
11
3 Εθνικό Υπόβαθρο
Σε αυτή την ενότητα παρουσιάζεται μια επισκόπηση του υπόβαθρου των ESCo και ιδιαίτερα της
αγοράς BioSolESCo στις 27 χώρες της ΕΕ και την Κροατία. Ειδικότερα, παρέχονται
πληροφορίες σχετικά με το νομικό, οικονομικό και συμβατικό πλαίσιο, καθώς και για τα κύρια
τεχνικά και μη τεχνικά εμπόδια στην ανάπτυξη των προσεγγίσεων BioSolESCo. Αναλυτικές
πληροφορίες για κάθε χώρα ξεχωριστά παρέχονται στο τέλος της παρούσας εκθέσεως, στο
Παράρτημα I.
3.1 Νομικό, οικονομικό, συμβατικό και εμπορικό πλαίσιο
3.1.1 Νομικό υπόβαθρο για ΕΕΥ και ΧΑΤ
Μια γενική επισκόπηση των αγορών ESCo στις Χώρες Μέλη της Ευρώπης υποδεικνύει ότι υπάρχει
διαφοροποίηση μεταξύ των χωρών σε ό,τι αφορά στην ανάπτυξη, τη δομή και τους κανονισμούς
της αγοράς ESCo. Σε μερικές χώρες (π.χ. UK, IE, GR, FI, PT) τουλάχιστον μέχρι τώρα, δεν
υπάρχει συγκεκριμένη νομική μορφή για τις ΕΕΥ και η σύστασή τους μπορεί να είναι οποιαδήποτε
αναγνωρισμένη μορφή της νομοθεσίας της χώρας. Επίσης, δεν υπάρχουν συγκεκριμένοι κανόνες
σχετικά με την παροχή ιδιωτικής χρηματοδότησης των ΕΕΥ, πέραν των όσων ισχύουν για το
δανεισμό και τις συμβάσεις γενικότερα. Για παράδειγμα, στο Ηνωμένο Βασίλειο και την Ιρλανδία,
η Ιδιωτική Εταιρεία Περιορισμένης Ευθύνης είναι η πιο κατάλληλη μορφή για τις ΕΕΥ, καθώς
είναι η πλέον ευέλικτη.
Με την Οδηγία για την ενεργειακή απόδοση κατά την τελική χρήση και τις ενεργειακές υπηρεσίες
(2006/32/EC), η οποία κατατέθηκε σε όλες τις χώρες μέλη της ΕΕ το 2006, η έλλειψη
συγκεκριμένου νομικού πλαισίου της αγοράς υπηρεσιών ενέργειας αναμένεται να αλλάξει και έτσι
η λειτουργία των ΕΕΥ θα αποσαφηνιστεί και η αγορά υπηρεσιών ενέργειας θα μπορέσει να
προωθηθεί και να αναπτυχθεί. Η Οδηγία 2006/32/EC, η οποία πρέπει να μεταφερθεί στην εθνική
νομοθεσία όλων των χωρών μελών μέχρι το Μάιο του 2008, στοχεύει στην οικονομική βελτίωση
της ενεργειακής απόδοσης στην τελική χρήση, υποδεικνύοντας τιμές στόχους, άρση των εμποδίων
της αγοράς και ενεργοποίηση της αγοράς υπηρεσιών ενέργειας. Όπως αναφέρθηκε το Δεκέμβριο
του 2008 [16] 7 χώρες μέλη ανακοίνωσαν την πλήρη μεταφορά της Οδηγίας στην εθνική
νομοθεσία, 11 χώρες μέλη ανακοίνωσαν μερική μεταφορά, ενώ 9 χώρες μέλη δεν προέβησαν σε
καμία ανακοίνωση.
Σε μερικές από τις χώρες όπου η αγορά υπηρεσιών ενέργειας έχει ήδη αναπτυχθεί, οι όροι ESCo
και Υπηρεσίες Ενέργειας δεν χρησιμοποιούνται απαραίτητα. Για παράδειγμα, στη Γαλλία οι όροι
”Υπηρεσία Ενέργειας” και “ESCo”, οι οποίοι είναι κοινοί στην Ευρώπη, εμφανίστηκαν στη χώρα
μόνο στα τέλη της δεκαετίας του 1990, χάρη στην απελευθέρωση της αγοράς ενέργειας και την
ανάπτυξη της Οδηγίας 2006/32/EC και τις επακόλουθες συζητήσεις [7]. Επίσης, στη Γερμανία ο
όρος ESCo χρησιμοποιείται σπάνια, αντί για αυτόν, το επιχειρηματικό μοντέλο αναφέρεται ως
Εργολαβία (Contracting) και για την αποτροπή της σύγχυσης αναφορικά με τους όρους που
περιγράφουν την εργολαβία, το πρότυπο DIN 8930-5 “Εργολαβία” (2003) καθορίζει τους βασικούς
όρους, εναλλακτικά συμβατικά σχήματα, συνιστώσες υπηρεσιών, τιμές για τις υπηρεσίες, τομείς
εφαρμογής και το νομικό υπόβαθρο.
12
Ένας από τους σημαντικότερους νομικούς περιορισμούς που εμπόδιζαν τη δραστηριότητα ESCo
στο δημόσιο τομέα σε πολλές από τις Χώρες Μέλη της Ευρώπης ήταν το γεγονός ότι η λειτουργία
και ειδικότερα η αγορά εξοπλισμού, καθώς και η παροχή υπηρεσιών, συμπεριλαμβανομένων των
υπηρεσιών ενέργειας στο δημόσιο τομέα, δεν επιτρεπόταν να ανατίθεται σε ιδιωτικούς φορείς. Επί
μακρόν οι ΕΕΥ ισχυρίζονταν ότι η εμπλοκή του ιδιωτικού τομέα στην παροχή σύνθετων λύσεων
για το δημόσιο τομέα θα αποδεικνυόταν επωφελής και θα μπορούσε να παράσχει καινοτόμες
λύσεις. Αυτό το ζήτημα επιλύθηκε εν μέρει σε όλες σχεδόν τις χώρες της ΕΕ (π.χ. FR, IT, DE, UK,
IE, GR, SI, SP, PT, CY, RO, SK) και την Κροατία, όταν καθορίστηκε η νομοθεσία των Συμβάσεων
Δημόσιου & Ιδιωτικού Τομέα (ΣΔΙΤ). Φυσικά το επίπεδο υιοθέτησης των ΣΔΙΤ και οι τομείς που
μπορούν να καλύπτονται από αυτές τις συμφωνίες διαφέρουν πολύ μεταξύ των χωρών-μελών. Ο
όρος ΣΔΙΤ είναι μια “καθολική έννοια” που καλύπτει ένα μεγάλο εύρος συμφωνιών μεταξύ
δημόσιων οργανισμών και του ιδιωτικού τομέα, με στόχο τη λειτουργία δημόσιων υποδομών ή την
παροχή δημόσιων υπηρεσιών [19]. Σε ότι αφορά στην εφαρμογή έργων ESCo στο δημόσιο τομέα,
υπό αυτές τις ειδικές και επίσημες συμφωνίες, είναι θεωρητικά δυνητική η συμβατική πολυετής
ανάθεση που αφορά στην εγκατάσταση, λειτουργία και συντήρηση μισθωμένου/εξωτερικά
ανατεθειμένου εξοπλισμού ενεργειακής απόδοσης σε δημόσια κτίρια. Οι ΣΔΙΤ επιτρέπουν στο
δημόσιο τομέα να καταβάλλει περιοδικά την αμοιβή της ιδιωτικής εταιρείας κατά τη διάρκεια του
έτους και επιτρέπουν στην πληρωμή να βασίζεται σε δείκτες απόδοσης που έχουν οριστεί εκ των
προτέρων στη σύμβαση (αντί να βασίζεται αμιγώς στα έσοδα). Για την περαιτέρω αύξηση της
αποτελεσματικότητας αυτού του κανονισμού, οι λογιστικοί κανόνες του δημοσίου πρέπει επίσης να
αναθεωρηθούν και θα πρέπει να ξεπεραστεί ο διαχωρισμός των προϋπολογισμών λειτουργίας και
επενδύσεων στην περίπτωση των έργων ESCo, όπου είναι πολύ σημαντικό η εξοικονόμηση του
προϋπολογισμού λειτουργίας να μπορεί να χρησιμοποιηθεί ως εισφορά στις επενδύσεις
ενεργειακής απόδοσης. Επιπλέον, οι κανόνες προμηθειών δημοσίου πρέπει να αναθεωρηθούν ώστε
να επιτρέπουν τη συμπερίληψη κριτηρίων ενεργειακής απόδοσης.
Στις Βαλτικές χώρες (Λεττονία, Εσθονία, Λιθουανία) τα ασταθή και μη σαφώς καθορισμένα
ρυθμιστικά πλαίσια, καθώς και οι δυσμενείς διαδικασίες προμηθειών συνεισφέρουν στην
επιβράδυνση της έναρξης της ανάπτυξης της αγοράς. Στην Πολωνία, οι διαδικασίες προμηθειών το
δημοσίου εμποδίζουν την επιλογή των βέλτιστων προσφορών και δεν είναι κατάλληλες για
μακροχρόνιες συμβάσεις. Οι διαδικασίες λήψης αποφάσεων και οι οικονομικές διαδικασίες εντός
των δημοσίων φορέων είναι ιδιαίτερα πολύπλοκες. Δεδομένου ότι τα προγράμματα και οι
συμβάσεις ESCo είναι σχετικά πολύπλοκα, οι νόμοι που ρυθμίζουν ειδικά την εργολαβία
υπηρεσιών θα βοηθούσαν στην αντιμετώπιση βασικών αβεβαιοτήτων. Επιπλέον, οι διαδικασίες
προμηθειών του δημοσίου πρέπει να προσαρμοστούν ώστε να ανοίξει η αγορά για τις υπηρεσίες
ESCo.
Στη νομοθεσία της Κροατίας, το μοντέλο των ESCo αναφέρεται στην Πράξη περί ενεργειακής
απόδοσης στην άμεση κατανάλωση (OG 152/08). Η πράξη ορίζει την ESCo και καθορίζει ότι τα
κεφάλαια για υπηρεσίες ενέργειας διασφαλίζονται από τον εργολήπτη, ήτοι την ESCo, εν όλω ή εν
μέρει, από ίδιες πηγές ή τρίτα μέρη, ότι ο εργολήπτης ή ένα τρίτο μέρος φέρει τους κινδύνους, στο
σύνολό τους ή εν μέρει και ότι η υπηρεσία ενέργειας αποπληρώνεται μέσω της εξοικονόμησης.
Επιπλέον, η Πράξη προσδιορίζει τη σύμβαση ενεργειακής απόδοσης, η οποία οφείλει να
περιλαμβάνει πληροφορίες για ζητήματα όπως ο πελάτης των υπηρεσιών ενέργειας, η
χρηματοδότηση τρίτων μερών, εάν υπάρχει τέτοια συμμετοχή, η κύρια κατανάλωση ενέργειας, η
εγγυημένη εξοικονόμηση ενέργειας, κ.λπ.
13
Υπάρχει μια διαδικασία για προγράμματα ασφάλισης που πρόκειται να ενσωματωθεί στο έργο
ESCo, ενώ η ασφάλιση του εξοπλισμού ορίζεται επίσης μέσω μίας σύμβασης με τον
παραγωγό/προμηθευτή του εξοπλισμού, ο οποίος εγγυάται τον εξοπλισμό που εγκαθίσταται. Ως
μέσα εξασφάλισης πληρωμής, η HEP ESCO, επί του παρόντος η μοναδική ESCo στην Κροατία,
χρησιμοποιεί διάφορα όργανα, ανάλογα με τον τύπο του πελάτη. Ο τύπος και ο αριθμός των
οργάνων που χρησιμοποιούνται εξαρτάται από την αξιολόγηση της φερεγγυότητας του πελάτη.
Στη Φιλανδία η Motiva παίζει πολύ σημαντικό ρόλο στα ενεργειακά θέματα. Η Motiva Oy είναι
μία κρατική εταιρεία που προωθεί την ενεργειακή αποδοτικότητα και τις ανανεώσιμες πηγές
ενέργειας. Η υλοποίηση έργων μέσω ΕΕΥ αποτελεί εργαλείο εφαρμογής ενεργειακά αποδοτικών
τεχνολογιών. Η Motiva συνεργάζεται με τις εταιρείες για την προώθηση και ανάπτυξη των ΕΕΥ
και της ΣΕΑ στη Φιλανδική αγορά [49].
Η Motiva λειτουργεί σας σύνδεσμος μεταξύ των ΕΕΥ και των πιθανών αγοραστών με την
ανάπτυξη μοντέλων ΕΕΥ και προωθώντας τη λογική των ΕΕΥ. Μία δράση προς αυτή την
κατεύθυνση ήταν η δημιουργία μητρώου έργων ΕΕΥ [50].
Στην Αυστρία το νομικό πλαίσιο για έργα ΧΑΤ είναι το ίδιο με το νομικό πλαίσιο για κάθε άλλο
έργο. Παρόλα αυτά δυσκολίες μπορούν να προκύψουν κατά τη διαδικασία ανάθεσης ενός έργου. Ο
νόμος για τις δημόσιες προμήθειες ρυθμίζει την ανάθεση μίας σύμβασης από τις αναθέτουσες
αρχές βασιζόμενος σε συγκεκριμένη προσέγγιση (model approach). Σε περίπτωση που η
αναθέτουσα αρχή είναι ιδιώτης, μπορεί να γίνει διαπραγμάτευση του έργου και ανάθεση χωρίς να
ακολουθηθεί η διαδικασία που προβλέπει ο νόμος για τις δημόσιες προκηρύξεις. Το γενικό νομικό
πλαίσιο για ανάθεση έργων από δημόσιους φορείς μπορεί να αξιολογηθεί κατά κύριο λόγο ως
θετικό. Καταρχήν, οι κανονισμοί για ανάθεση έργων δεν δημιουργούν στους δημόσιους φορείς
εμπόδια όσον αφορά τη χρήση ενεργειακών υπηρεσιών. Υπάρχουν συγκεκριμένες «προβληματικές
περιοχές», όπως για παράδειγμα η κατηγοριοποίηση έργων ΧΑΤ ώστε να εμπίπτουν σε
συγκεκριμένες διαδικασίες. Για το λόγο αυτό συνίσταται να δίνεται ιδιαίτερη προσοχή στο σχετικό
νομοθετικό πλαίσιο κατά τη φάση οργάνωσης ενός έργου.
Στη Βουλγαρία κατά την αρχική φάση υλοποίησης ενός έργου, η ΕΕΥ επενδύει το εργατικό
δυναμικό της στην διενέργεια του ενεργειακού ελέγχου και στην καταχώρηση όλων των
απαραίτητων δεδομένων. Όλα αυτά τα κόστη συμπεριλαμβάνονται αργότερα στο τελικό κόστος.
Το ρίσκο οποιασδήποτε απροσδόκητης εξέλιξης καθιστά το έργο ακριβό και επίφοβο για την ΕΕΥ.
Σε συνέχεια του Νόμου για την Ενεργειακή Αποδοτικότητα, η κυβέρνηση ανέπτυξε και υιοθέτησε
τον Κανονισμό № RD-16-347, στις 2 Απριλίου 2009, ο οποίος αφορά τις διαδικασίες καθορισμού
του ποσού και του τρόπου πληρωμής έργων που συνάπτονται μέσω ΣΕΑ και οδηγούν σε
εξοικονόμηση ενέργειας σε κρατικά ή δημοτικά κτίρια (ο κανονισμός εκδόθηκε από το Υπουργείο
Οικονομίας και Οικονομικών και είναι σε ισχύ από τις 14/4/2009 – SG. 28, στις 14 Απριλίου 2009).
Στη Ρουμανία η Οδηγία για την ενεργειακή απόδοση κατά την τελική χρήση και τις ενεργειακές
υπηρεσίες (2006/32/EC), ενσωματώθηκε στην εθνική νομοθεσία της χώρας με το Προεδρικό
Διάταγμα Νο 22/2008. Δεν υπάρχει κάποιος άλλος νόμος που να ρυθμίζει την αγορά των ΕΕΥ όπως
π.χ. να παρέχει πρότυπες συμβάσεις ή διαπίστευση για τις ΕΕΥ. Παρόλα αυτά μία πρότυπη
Σύμβαση Ενεργειακής Απόδοσης (ΣΕΑ) πρόκειται να ετοιμαστεί 52].
Στη Σλοβενία η νομοθεσία που είναι σχετική με τις ΕΕΥ είναι ο Νόμος για τις Συμπράξεις
Δημόσιου Ιδιωτικού Τομέα – ΣΔΙΤ (Προεδρικό Διάταγμα 127/2006) και ο νόμος περί Δημόσιων
προκηρύξεων (Προεδρικό Διάταγμα 128/2006).
14
Στη Γαλλία ένα σημαντικό κίνητρο για την ανάπτυξη των ΕΕΥ στον ιδιωτικό τομέα είναι η
εφαρμογή των Λευκών Πιστοποιητικών το 2006 (περισσότερες πληροφορίες σχετικά με το θέμα
παρατίθενται στο Παράρτημα Ι).
Μια ανάλυση του Ιταλικού νομοθετικού πλαισίου δείχνει ότι υπάρχουν αρκετοί ορισμοί για τις
ΕΕΥ και ότι η πιστοποίηση των ΕΕΥ είναι αναγκαία. Συγκεκριμένα, ο ορισμός των ΕΕΥ που
δικαιούνται να εμπορεύονται λευκά πιστοποιητικά στην Ιταλική αγορά ενεργειακής
αποδοτικότητας συμπεριλαμβάνει όλες εκείνες τις εταιρείες που δηλώνουν στην ιδρυτική πράξη
τους ότι επικεντρώνονται σε ενεργειακές υπηρεσίες με την ευρεία έννοια. Αυτό έχει σαν
αποτέλεσμα οι πλειοψηφία αυτών των εταιρειών να μην δρουν με την πραγματική έννοια των
ΕΕΥ. Μέχρι το Νοέμβριο του 2005 η επίσημη λίστα των Αρχών περιείχε 400 ΕΕΥ. Πρόσφατα
ένα νέο κριτήριο (συγκεκριμένα ο έλεγχος και η πιστοποίηση της εξοικονόμησης ενέργειας που
έχει επιτευχθεί) εισήχθηκε στον ορισμό και ο αριθμός των εταιρειών έπεσε σε 56 ΕΕΥ (Ιούνιος
2006). Παρόλα αυτά ο ορισμός παραμένει ευρύς και ασαφής. Στη δεδομένη φάση μόνο μερικές
ΕΕΥ μπορούν να παράσχουν για παράδειγμα ΣΕΑ, ΧΑΤ και ολοκληρωμένες ενεργειακές
υπηρεσίες. Δεδομένης της κατάστασης υπάρχει αναγκαιότητα να καθοριστούν κριτήρια που θα
προσδιορίζουν τις ΕΕΥ και τις ελάχιστες υπηρεσίες που αυτές θα παρέχουν, προκειμένου να
δημιουργηθεί εμπιστοσύνη από τη μεριά των πελατών και τον χρηματοπιστωτικών ιδρυμάτων.
Μία πρώτη προσπάθεια να εισαχθεί ένα ξεκάθαρο νομικό πλαίσιο για ΧΑΤ και ΕΕΥ έγινε με το
Διάταγμα n° 115/08, το οποίο προσδιορίζει τα χαρακτηριστικά και τους κανόνες των
ενεργειακών υπηρεσιών και των ΕΕΥ. Στο μέρος V, άρθρο 16 αυτού του διατάγματος
προβλέπονται εθελοντικές διαδικασίες πιστοποίησης για ΕΕΥ και ενεργειακούς διαχειριστές, τα
οποία θα οριστούν επακριβώς με πρότυπα από το UNI-CTI (Italian termotechnical Commitee,
υπεύθυνο για το συγκεκριμένο θέμα πιστοποίησης). Τέλος, για να εξασφαλιστεί υψηλότερο
επίπεδο αξιοπιστίας σε μετρήσεις ενεργειακής απόδοσης, πρέπει να εκδοθούν επιπλέον
Προεδρικά Διατάγματα (Industry Ministry Decrees) τα οποία να καθορίζουν τη διαδικασία
πιστοποίησης των συστημάτων ενεργειακής διαχείρισης και των ενεργειακών ελέγχων.
Στην Πορτογαλία, στο Εθνικό Σχέδιο Δράσης για την Ενεργειακή Αποδοτικότητα [51] τίθεται η
προώθηση των ΕΕΥ και προβλέπονται κίνητρα για τη δημιουργία ΕΕΥ και σύναψης ΣΕΑ.
Στην Ισπανία, ο Νόμος για τη Βιώσιμη Οικονομία που ψηφίστηκε το Φεβρουάριο του 2011 [53],
έχει ως στόχο τη δημιουργία θετικού κλίματος για την επιχειρηματικότητα στον τομέα των ΕΕΥ.
Το Άρθρο 102 του νόμου παρέχει έναν ορισμό για τις ΕΕΥ, ο οποίος είναι πολύ κοντά στον
ορισμό της Οδηγίας 2006/32/ΕΚ. Σύμφωνα με αυτό τον ορισμό, η επιχείρηση οφείλει να
αναλαμβάνει ένα συγκεκριμένο επίπεδο οικονομικού ρίσκου. Ο νόμος προβλέπει ότι η
κυβέρνηση θα αναπτύξει συγκεκριμένο σχέδιο για την προώθηση των ΕΕΥ, την άρση των
όποιων εμποδίων και την εύρεση χρηματοδότησης [48].
Στην Ελλάδα ένα από τα βασικά εμπόδια που δεν επιτρέπουν την ανάπτυξη της αγοράς των ΕΕΥ
ήταν η απουσία νομοθετικού πλαισίου για τη λειτουργία των ΕΕΥ, το οποίο υπερκεράστηκε τον
Ιούνιο του 2010 με τη ψήφιση του νόμου 3855/2010 (ΦΕΚ Τεύχος Α’ 95/23/06/2010). Ο νόμος
αυτός αποτελεί την ενσωμάτωση στην εθνική νομοθεσία της Οδηγίας 2006/32/ΕΚ, και
διευκρινίζει το νομοθετικό πλαίσιο για τη λειτουργία των ΕΕΥ και επιτρέπει σε αρκετές
εταιρείες που είναι ενεργές στον τομέα τον ΑΠΕ και ΕΞΕ, να ασχοληθούν με την αγορά
ενεργειακών υπηρεσιών. Αναμένεται ότι με το συγκεκριμένο νόμο η αγορά ενεργειακών
υπηρεσιών θα προχωρήσει και θα αναπτυχθεί και ότι πλήθος εταιρειών που δρουν ήδη ως ΕΕΥ
ή είναι πρόθυμες να δράσουν ως ΕΕΥ θα ασχοληθούν με ενεργειακά έργα τόσο στον ιδιωτικό
15
όσο και στον δημόσιο τομέα. Σύμφωνα επίσης με το νόμο 3855/2010 προβλέπεται η δημιουργία
μητρώου ΕΕΥ (ΠΔ Δ6/12380, ΦΕΚ Β’1228/14/06/2011), στο οποίο θα μπορούν να εγγράφονται
και να χαρακτηρίζονται ως ΕΕΥ εταιρείες που πληρούν συγκεκριμένα κριτήρια (π.χ.
οικονομικά, εμπειρίας κτλ).
Στην Κύπρο η Οδηγία 2006/32/ΕΚ έχει ενσωματωθεί στο εθνικό δίκαιο με το Νόμο 31/2009
(3/4/2009) αλλά δεν υπάρχει κάποιος νόμος που να ρυθμίζει τη λειτουργία των ΕΕΥ.
3.1.2 Υπάρχουσες συμβάσεις
Ο τύπος των συμβάσεων που χρησιμοποιούνται σε κάθε χώρα-μέλος για την εφαρμογή έργων
ESCo ποικίλει από τα πλέον γνωστά σχήματα, όπως ΣΕΑ και ΧΑΤ, μέχρι σχήματα συγκεκριμένα
για κάθε χώρα όπως οι συμβάσεις παροχής θέρμανσης και το chauffage contract. Παρακάτω
παρουσιάζονται μερικοί από τους υπάρχοντες τύπους συμβάσεων που χρησιμοποιούνται σε
διάφορες χώρες-μέλη:
Στη Γερμανία, το Γερμανικό Πρότυπο DIN 8930-5 περιγράφει δύο κύρια σχήματα συμβάσεων:
Σύμβαση εγκατάστασης / λειτουργίας
Αυτό το πρόγραμμα αναφέρεται ως Σύμβαση παροχής ενέργειας (Energieliefercontracting). Σε
αυτή την περίπτωση, ο εργολήπτης σχεδιάζει, χρηματοδοτεί και κατασκευάζει νέες συσκευές
παραγωγής θερμότητας ή αναλαμβάνει μια υπάρχουσα συσκευή. Κατά τη διάρκεια της συμβάσεως
(συνήθως 10 – 20 έτη), ο εργολήπτης είναι υπεύθυνος για τη λειτουργία, συντήρηση και εποπτεία
της εγκατάστασης. Αγοράζει την κύρια ενέργεια και πωλεί θέρμανση στον πελάτη. Φυσικά, η
εξοικονόμηση ενέργειας αποτελεί μέρος αυτών των έργων, δεδομένου ότι οι νέοι ή ανακαινισμένοι
λέβητες λειτουργούν πιο αποδοτικά. Ο πελάτης συνήθως καταβάλλει μια βασική τιμή που καλύπτει
το κόστος επένδυσης του εργολήπτη, συμπεριλαμβανομένης της αποπληρωμής του δανείου. Η
βασική τιμή έχει επίσης μια συνιστώσα που καλύπτει τη συντήρηση της εγκατάστασης. Αυτή η
συνιστώσα κόστους είναι ευέλικτη σε ό,τι αφορά στην αύξηση του μέσου μισθού. Το δεύτερο
μέρος της μηνιαίας πληρωμής εξαρτάται από την κατανάλωση ενέργειας.
Στις περισσότερες περιπτώσεις, ο πελάτης έχει υψηλότερο κόστος θέρμανσης μετά το έργο
εργολαβίας, δεδομένου ότι δεν χρειαζόταν να καταβάλλει κόστος επένδυσης πριν την έναρξη του
έργου της εργολαβίας. Παρόλα αυτά, οι περισσότεροι πελάτες εξοικονομούν σημαντικά ποσά όταν
το κόστος των εναλλακτικών λύσεων (π.χ. εφαρμογή έργου από τον πελάτη) υπολογιστεί για
λόγους σύγκρισης. Φυσικά, η πλευρά της εξοικονόμησης ενέργειας αποτελεί μέρος αυτών των
έργων: Ο εργολήπτης δεν μεταθέτει το κόστος παραγωγής θερμότητας στον πελάτη, ο οποίος
πληρώνει μόνο τη θερμότητα που καταναλώνει βάσει τιμής kWh (οι τιμές kWh κυμαίνονται
ανάλογα με τις τιμές καυσίμου). Συνεπώς, ο εργολήπτης επιζητά να παράγει θέρμανση με τον
πλέον αποδοτικό τρόπο. Παρόλα αυτά, τα μέτρα ενεργειακής απόδοσης, πέραν της παραγωγής
θερμότητας ή των εγγυήσεων που αφορούν στην εξοικονόμηση ενέργειας (κόστους), σπανίως
αποτελούν μέρος αυτών των έργων.
Συνεπώς, αυτό το πρόγραμμα συμβάσεων δεν είναι σε απόλυτη συμμόρφωση με τον ορισμό των
ESCO που παρέχεται από τον Bertoldi και συνεργ., 2005 [17]. Επίσης, δεν αποτελεί απλή παροχή
υπηρεσίας ενέργειας, καθώς ο εργολήπτης δεν κατανέμει το σύνολο του κόστους παραγωγής
θερμότητας στον πελάτη και κατά συνέπεια αναλαμβάνει συγκεκριμένους οικονομικούς και
τεχνικούς κινδύνους. Η αποδοτικότητα της παραγωγής θέρμανσης είναι κρίσιμο στοιχείο σε αυτό
το πρόγραμμα, καθώς αυξάνει το οικονομικό όφελος του εργολήπτη.
16
Αυτό το σχήμα είναι σημαντικό στη Γερμανία: περίπου 84 % του συνόλου των συμβεβλημένων
έργων εμπίπτει σε αυτή την κατηγορία [22].
Σύμβαση Ενεργειακής Απόδοσης (ΣΕΑ)
Η ΣΕΑ (Einsparcontracting) εφαρμόζεται στη Γερμανία, σύμφωνα με τα όσα ορίζονται από τον
Bertoldi και συνεργάτες 2005 [16]. Στη Γερμανία, αυτό το πρόγραμμα σπάνια περιλαμβάνει την
εγκατάσταση νέων συσκευών παραγωγής θερμότητας. Παρόλα αυτά, υπάρχουν έργα που
συνδυάζουν χαρακτηριστικά ΣΕΑ και Σύμβασης Εγκατάστασης αλλά σε αυτή την περίπτωση η
επένδυση, π.χ. σε νέους λέβητες βιομάζας, δεν αποπληρώνεται από την εξοικονόμηση κόστους
ενέργειας.
Η ΣΕΑ χρησιμοποιείται επίσης στην Ιταλική αγορά όπου χαρακτηρίζεται από διαμοιραζόμενη ή
εγγυημένη εξοικονόμηση, όπως και η Σύμβαση Υπηρεσιών Ενέργειας (Energy Service
Contracting), όπου η πληρωμή βασίζεται συνήθως στην ποσότητα ενέργειας που καταναλώνεται.
Στη Λεττονία, μόνο δύο εταιρείες προσφέρουν ΣΕΑ, ενώ περισσότερες από 40 εταιρείες
εργάζονται με συμβάσεις παροχής ενέργειας.
Στη Σουηδία υπάρχουν αναφορές τόσο για ΕΕΥ όσο και για ΣΕΑ, αλλά η πλειοψηφία των έργων
γίνεται με ΣΕΑ.
Στη Βουλγαρική αγορά, δύο εταιρείες ΕΕΥ προσέφεραν ΣΕΑ και συμβόλαια προμήθειας
θερμότητας (heating delivery contracts). Η σύμβαση χαρακτηρίζεται από το διαμοιρασμό της
αναμενόμενης εγγυημένης εξοικονόμησης. Η σύμβαση παροχής θερμικής ενέργειας παρέχεται από
μία εταιρεία ΕΕΥ στη Βουλγαρική αγορά. Σύμφωνα με τους όρους της συμβάσεως, οι τελικοί
πελάτες καταβάλουν το αντίτιμο της θερμικής ενέργειας που καταναλώθηκε σε τιμή 30%
χαμηλότερη ανά 1 kWhth σε σύγκριση με την τιμή της 1 kWhth του υπάρχοντος και
χρησιμοποιούμενου καυσίμου.
Στη Σουηδία, εκτιμάται ότι υπάρχουν σχεδόν 27 ESCos που δραστηριοποιούνται στην αγορά
υπηρεσιών ενέργειας και η πλειοψηφία των συμβάσεων που προσφέρουν είναι ΣΕΑ.
Chauffage contract
Η περιώνυμη σύμβαση “chauffage contract” (σύμβαση θέρμανσης) είναι ένας τύπος σύμβασης που
χρησιμοποιείται ευρέως στη Γαλλία και περιλαμβάνει τη λειτουργία χωρίς τη ρητή δέσμευση
εκτέλεσης επένδυσης ενεργειακής απόδοσης. Σύμφωνα με μια σύμβαση chauffage, ο εργολήπτης
διασφαλίζει τη βέλτιστη λειτουργία ενός ήδη υπάρχοντος συστήματος και οφείλει να παράσχει ένα
συμφωνηθέν επίπεδο άνεσης (για παράδειγμα θερμοκρασία, υγρασία) σε μικρότερο κόστος για τον
πελάτη, εφόσον οι συνθήκες παραμένουν αμετάβλητες. Ο εργολήπτης μπορεί να αυξήσει το κέρδος
του, επενδύοντας σε εξοπλισμό που επιτυγχάνει μεγαλύτερη εξοικονόμηση ενέργειας ή παράγοντας
φθηνότερο καύσιμο, μειώνοντας έτσι το κόστος. Αυτοί οι τύποι συμβάσεων στη Γαλλία είναι
συνήθως μακροπρόθεσμες και περιλαμβάνουν την υποχρέωση ανάλυσης προβλημάτων και των
προσδιορισμό των αναγκών βελτίωσης του συστήματος, καθώς και την εκτέλεση της επένδυσης.
Οι Γάλλοι χειριστές έχουν «εξάγει» το μοντέλο της σύμβασης Chauffage σε πολλές άλλες
Ευρωπαϊκές χώρες, συμπεριλαμβανομένων του Βελγίου, της Ιταλίας, Ισπανίας, Η.Β. και Κεντρικής
Ανατολικής Ευρώπης.
17
Στην Ισπανία το μοντέλο σύμβασης Chauffage (CEM) μαζί με το μοντέλο εγγυημένης εξοικονόμησης
είναι οι δύο πιο κοινοί τύποι συμβάσεων [48].
Συμβάσεις παροχής θερμότητας
Οι συμβάσεις παροχής θερμότητας απαντώνται σε πολλές Ευρωπαϊκές χώρες ως υπηρεσία που
προσφέρεται από εταιρείες ESCo ή εταιρείες που επιθυμούν να ενεργήσουν ως ESCo. Σε μερικές
χώρες, όπως η Φινλανδία, οι συμβάσεις παροχής θερμότητας έχουν αναπτυχθεί ευρέως και
υπάρχουν ουσιαστικά πέντε διαφορετικά είδη επιχειρηματικών μοντέλων για την πώληση
θερμότητας, τα οποία περιγράφονται κατωτέρω:
• Επιχειρηματικό μοντέλο, στο οποίο ο πελάτης είναι ιδιοκτήτης της εγκατάστασης
θέρμανσης και η εταιρεία απλώς τη χειρίζεται. Ο πελάτης φέρει το σύνολο του επενδυτικού
κινδύνου. Αυτό είναι το πλέον συνηθισμένο μοντέλο εργασιών θέρμανσης στη Φινλανδία.
• Επιχειρηματικό μοντέλο, στο οποίο η εταιρεία και είναι ιδιοκτήτρια και λειτουργεί την
εγκατάσταση και παρέχει θέρμανση στον πελάτη. Η εταιρεία φέρει το σύνολο του
επενδυτικού κινδύνου. Αυτό εξελίσσεται σε πιο συνηθισμένο μοντέλο εργασιών στη
Φινλανδία.
• Επιχειρηματικό μοντέλο στο οποίο μια μεγαλύτερη εταιρεία είναι ιδιοκτήτρια της
εγκατάστασης θέρμανσης και μια θυγατρική (ή ιδιώτης) χειρίζεται την εγκατάσταση
θερμότητας. Η μεγάλη εταιρεία φέρει το σύνολο του επενδυτικού κινδύνου και το εισόδημα
της θυγατρικής (ή του ιδιώτη) δεν είναι σημαντικό.
• Επιχειρηματικό μοντέλο ESCo – όχι πολύ συνηθισμένο στη Φινλανδία
• Επιχειρηματικό μοντέλο συμβεβλημένων συνεργατών. Μερικές εταιρείες έχουν δοκιμάσει
αυτό το επιχειρηματικό μοντέλο στη Φινλανδία αλλά δεν κατάφεραν να δημιουργήσουν
πραγματική επιχείρηση.
Υπάρχουν κάποια μοντέλα συμβάσεων στη Φινλανδία για τον καθορισμό των ευθυνών ενός
επιχειρηματία παροχής θέρμανσης, του προμηθευτή καυσίμου ξύλου και για την παροχή
θερμότητας. Τα μοντέλα συμβάσεων μπορούν να χρησιμοποιηθούν ως βάση για τον καθορισμό των
ευθυνών της εταιρείας, του πελάτη και του προμηθευτή καύσιμου ξύλου. Τα μοντέλα συμβάσεων
μπορούν επίσης να χρησιμοποιηθούν για τη συμφωνία αναφορικά με τον προσδιορισμό της τιμής
της θερμότητας.
3.1.3 Χρηματοπιστωτικοί οργανισμοί και προγράμματα
Μία από τις κρίσιμες παραμέτρους για την ανάπτυξη της αγοράς ESCo είναι η χρηματοδότηση
έργου. Για την εφαρμογή έργων ESCo, θα πρέπει να υπάρχει ένα ενδιαφερόμενο μέρος με τη
δυνατότητα και τη θέληση να χρηματοδοτήσει τις παρεμβάσεις. Σε μερικές χώρες, όπου υπάρχουν
μεγάλες ESCo (π.χ. FR) η χρηματοδότηση των έργων τελείται με χρήση του κεφαλαίου της ίδιας
της εταιρείας. Για παράδειγμα, οι ESCo στη Γαλλία είναι μεγάλες εταιρείες που έχουν τα
οικονομικά μέσα να χρηματοδοτήσουν έργα, εάν αυτό είναι απαραίτητο, έτσι ο ρόλος των
τραπεζών είναι περιορισμένος [6, 13, 17]. Σε άλλες χώρες όπου είτε δεν έχει αναπτυχθεί ακόμη
αγορά ESCo, είτε υπάρχουν μόνο μικρές ESCo που δραστηριοποιούνται στην αγορά χωρίς την
ικανότητα να χρηματοδοτήσουν μεγάλα έργα, είναι απαραίτητο να υπάρχουν χρηματοπιστωτικοί
οργανισμοί πρόθυμοι να χρηματοδοτήσουν τα έργα. Δυστυχώς, σε μερικές χώρες (π.χ. GR) οι
χρηματοπιστωτικοί οργανισμοί δεν είναι εξοικειωμένοι με την έννοια των έργων ESCo, έτσι
18
παρέχουν συντηρητικές δανειοδοτικές πρακτικές, οδηγώντας με αυτό τον τρόπο στην έλλειψη
εμπορικά βιώσιμης χρηματοδότησης έργων. Ενώ σε άλλες χώρες, όπως η Ουγγαρία, η
χρηματοδότηση τρίτων μερών από τράπεζες δεν αποτελεί ζήτημα, καθώς οι τράπεζες είναι
πρόθυμες να χρηματοδοτήσουν συμβάσεις απόδοσης, τουλάχιστον σε καθιερωμένους παράγοντες
του τομέα των υπηρεσιών ενέργειας. Η ΧΑΤ δεν είναι πολύ συνηθισμένο σχήμα στη Σουηδία,
καθώς η πλειοψηφία των πελατών είναι δημόσιοι οργανισμοί, οι οποίοι μπορούν να παράσχουν τη
χρηματοδότηση από ίδιους πόρους, έτσι δεν υπάρχει ανάγκη δανεισμού από χρηματοπιστωτικούς
οργανισμούς.
Γενικά, οι συμβάσεις εκείνες με αξιόπιστη μακροπρόθεσμη επιστροφή ροής κεφαλαίων είναι
ελκυστικές για τους χρηματοπιστωτικούς οργανισμούς, ιδιαίτερα όταν ο πελάτης ανήκει στο
δημόσιο τομέα. Παρόλα αυτά, οι τράπεζες πρέπει να λάβουν υπόψη έναν αριθμό κινδύνων [15]:
• Δεν αποτελεί κίνδυνο μόνο η φερεγγυότητα του πελάτη (όχι στο δημόσιο τομέα), αλλά η
αξιοπιστία του εργολήπτη θα πρέπει να ληφθεί εξίσου υπόψη. Αυτοί οι κίνδυνοι
ελαχιστοποιούνται όταν οι εργολήπτες μπορούν να αναφερθούν σε έναν αριθμό συμβάσεων και
οι κίνδυνοι διαμοιράζονται,
• Θα πρέπει να εκτιμηθεί η βιωσιμότητα των συμβάσεων, αυτό μπορεί να αποδειχθεί δύσκολο
καθώς οι σχετικές συμβάσεις είναι ιδιαίτερα πολύπλοκες. Θα πρέπει να επιλυθούν ζητήματα
που αφορούν στην προσαρμογή τιμών, τις δομές ιδιοκτησίας, την κατανομή καθηκόντων και
κινδύνων στους συμβεβλημένους συνεργάτες. Οι τράπεζες θα πρέπει να συμπεριληφθούν στη
σύνταξη της συμβάσεως σε πρώιμο στάδιο για την αποτροπή προβλημάτων.
• Ευθύνη, εγγύηση και ασφάλεια
Οι τράπεζες συχνά δεν διαθέτουν την τεχνογνωσία να εκτιμήσουν την τεχνική ανάπτυξη των
εγκαταστάσεων και ειδικότερα η δυνατότητα εξοικονόμησης ενέργειας και οι τεχνικοί κίνδυνοι
είναι δύσκολο να εκτιμηθούν.
Σε πολλές χώρες έχουν αναπτυχθεί οικονομικά προγράμματα και μηχανισμοί για την υποστήριξη
έργων στους τομείς ενεργειακής απόδοσης και ανανεώσιμων πηγών ενέργειας. Αυτά τα οικονομικά
προγράμματα τις περισσότερες φορές έχουν τη μορφή δανείων με χαμηλό επιτόκιο. Πολλοί από
τους μηχανισμούς στήριξης εστιάζουν στην απόδοση ενέργειας, ενώ άλλοι περιλαμβάνουν και τις
ανανεώσιμες πηγές. Παρακάτω παρουσιάζονται μερικά από τα υπάρχοντα οικονομικά
προγράμματα των 27 χωρών της ΕΕ:
Βέλγιο
•
Στο Βέλγιο υπάρχει ένας αριθμός προγραμμάτων στήριξης. Για παράδειγμα η Έκπτωση
Επενδύσεων για Επενδύσεις Εξοικονόμησης Ενέργειας (“Verhoogde Investeringsaftrek voor
Energiebesparende Investeringen”) είναι ένα οικονομικό κίνητρο της Ομοσπονδιακής
Κυβέρνησης (Χρηματοδότηση Ομοσπονδιακών Δημόσιων Υπηρεσιών) για τη βελτίωση της
ανάκτησης υπαρχουσών εγκαταστάσεων και την προώθηση της χρήσης ανανεώσιμων πηγών
ενέργειας. Από το 2009, οι εταιρείες επιτρέπεται να αφαιρούν 15.5% του φορολογητέου
εισοδήματός τους. Οι ενδιαφερόμενοι μπορούν να υποβάλλουν αίτηση για αυτή την
επιχορήγηση στη Flemish Energy Agency (VEA). Υπάρχει επίσης το Πριν Οικολογίας
(“Ecologiepremie”) το οποίο εκχωρείται σε επενδύσεις που μειώνουν τον περιβαλλοντικό
αντίκτυπο των διεργασιών παραγωγής, συμπεριλαμβανομένης της μετατροπής βιομάζας μέσω
καύσης, πυρόλυσης και αεριοποίησης. Το Πριμ Οικολογίας ισχύει μόνο εάν το περιβαλλοντικό
όφελος υπερβαίνει τις απαιτήσεις του κράτους. Η αμοιβή για μικρομεσαίες επιχειρήσεις είναι
19
35% του πρόσθετου κόστους των επενδύσεών τους. Οι μεγάλες επιχειρήσεις λαμβάνουν το
25%
του
πρόσθετου
κόστους
των
επενδύσεών
τους.
Η
Έκπτωση
Επένδυσης(“Investeringsaftrek”) είναι ένα φορολογικό όφελος που εφαρμόζεται στα μέτρα
εξοικονόμησης ενέργειας. Σήμερα, 14.5% (εξαιρουμένου του φόρου προστιθέμενης αξίας ΦΠΑ) μπορεί να αφαιρεθεί από το κέρδος της εταιρείας, γεγονός που οδηγεί σε χαμηλότερο
φόρο εισοδήματος (επί του παρόντος περίπου 33%). Τέλος, υπάρχει και η στήριξη από το
Flemish Agriculture Investment Trust (Vlaams Landbouwinvesteringsfonds - VLIF): 40%
του κόστους επένδυσης μετατροπής βιομάζας των αγροτών μπορεί να καταβάλλεται από το
VLIF και από τα Πιστοποιητικά Πράσινης Ενέργειας (“Groenestroomcertificaten”): Κάθε
χρόνο οι πάροχοι ενέργειας υποχρεώνονται να αποδίδουν ένα συγκεκριμένο μερίδιο πράσινης
ενέργειας. Το Πιστοποιητικό Πράσινης Ενέργειας τεκμηριώνει ότι κάλυψαν τις υποχρεώσεις
τους. Παράγοντας πράσινη ενέργεια, υπάρχει δυνατότητα αίτησης Πιστοποιητικού Πράσινης
Ενέργειας για κάθε MWh που παράχθηκε από τη Φλαμανδική Ρυθμιστική Αρχή της αγοράς
Ηλεκτρισμού και Αερίου (Vlaamse Reguleringsinstantie voor de Elektriciteits- en Gasmarkt VREG). Ακολούθως, το πιστοποιητικό μπορεί να πωληθεί σε έναν πάροχο ενέργειας έναντι
ενός ελάχιστου τιμήματος, εγγυημένου από τη Φλαμανδική Κυβέρνηση, ύψους €80. Τα
Πιστοποιητικά Συμπαραγωγής (“Warmtekrachtcertificaten”) ακολουθούν την ίδια αρχή με τα
Πιστοποιητικά Πράσινης Ενέργειας. Για ένα συγκεκριμένο μερίδιο, οι πάροχοι ενέργειας
οφείλουν να παράσχουν ενέργεια και θερμότητα από συμπαραγωγή, για την οποία λαμβάνουν
ένα Πιστοποιητικό Συμπαραγωγής. Εάν δεν επιτύχουν να το κάνουν αυτό, τους επιβάλλεται
πρόστιμο €45 ανά πιστοποιητικό. Τα Πιστοποιητικά Συμπαραγωγής μπορούν να αιτηθούν στην
VREG. Η αντιστάθμιση κύριας ενέργειας υπολογίζεται αναφορικά με την θερμική και
ηλεκτρική ανάκτηση αναφοράς, η οποία εξαρτάται από τον τύπο καυσίμου.
Γαλλία
•
•
Στη Γαλλία, οι επιχορηγήσεις και τα μερίσματα διατίθενται από τις περιφερειακές υπηρεσίες
της ADEME – της Γαλλικής Υπηρεσίας Διαχείρισης Περιβάλλοντος και Ενέργειας. Επιπλέον,
η ADEME σε συνεργασία με τη Γαλλική τράπεζα ανάπτυξης, δημιούργησε ένα Πιστωτικό
Σύστημα προς Όφελος της Διαχείρισης Ενέργειας (FOGIME -Fonds de Garantie des
Investissements de Matrise de l'Energie), το οποίο αποτελεί ένα κεφάλαιο εγγύησης για δάνεια
επενδύσεων σε αειφόρους και ανανεώσιμες πηγές ενέργειας στον ιδιωτικό τομέα.
Τα τελευταία χρόνια (εξαιτίας της αύξησης του αριθμού των νεοεισαχθέντων εταιρειών στην
αγορά ενέργειας) τα χρηματοπιστωτικά ιδρύματα έχουν αποκτήσει εμπειρία στη
χρηματοδότηση έργων ενεργειακής αποδοτικότητας και στην αξιολόγηση της εγγυημένης
εξοικονόμησης που παρέχει η ΕΕΥ μέσω μίας ΣΕΑ. Για παράδειγμα είναι πλέον πρόθυμα να
καλύψουν το ρίσκο της εγγυημένης εξοικονόμσης [47].
Ουγγαρία
• Το Ουγγρικό Πιστωτικό Ίδρυμα Εξοικονόμησης Ενέργειας/Γερμανικό Ανανεώσιμο Κεφάλαιο
Υποστήριξης Άνθρακα (GCARF), το οποίο αρχικά χρηματοδοτούνταν από την Κυβέρνηση της
Ομοσπονδιακής Δημοκρατίας και ιδρύθηκε από το Ουγγρικό Υπουργείο Οικονομικών,
χρηματοδοτεί έργα ενεργειακής απόδοσης. Το ταμείο εκχωρεί δάνεια τα οποία έχουν ευνοϊκό
επιτόκιο, 1/3 του βασικού επιτοκίου της Ουγγρικής Εθνικής Τράπεζας. Ο χρόνος αποπληρωμής
του δανείου εκτείνεται μέχρι τα 6 έτη. Οι βιομηχανικές επιχειρήσεις, οι δήμοι και οι
περιφερειακές εταιρείες θέρμανσης δικαιούνται να λάβουν αυτά τα δάνεια. Οι κατάλληλες
τεχνολογίες περιλαμβάνουν το μετασχηματισμό ενέργειας, θέρμανση, ηλεκτροδότηση,
20
ανανεώσιμες, κ.λπ. Το μέγιστο ποσοστό δανειοδότησης αγγίζει το 80% της επένδυσης και τα
κριτήρια είναι άρρηκτα συνδεδεμένα με τη συνολική εξοικονόμηση κόστους και ενέργειας. Το
ταμείο το διαχειρίζεται το Ουγγρικό Κέντρο Ενέργειας [24, 30]. Τα προηγούμενα χρόνια, η
Παγκόσμια Τράπεζα και Διεθνής Οργανισμός Χρηματοδότησης έχουν επίσης χρηματοδοτήσει
ESCo στην Ουγγαρία μέσω του Ουγγρικού Προγράμματος Συγχρηματοδότησης Ενεργειακής
Απόδοσης (HEECP), το οποίο παρείχε μερικές πιστωτικές εγγυήσεις. Το πρόγραμμα έληξε το
2001, αλλά κατάφερε να κάνει το μοντέλο ESCo μια πολύ χρήσιμη προσέγγιση για τη βελτίωση
της ενεργειακής απόδοσης[33, 40]. Από το Μάρτιο του 2009, οι εφαρμογές ανανεώσιμης
ενέργειας μπορούν να λαμβάνουν χρηματοδότηση από τα Δομικά κεφάλαια της ΕΕ για το
Επιχειρησιακό Πρόγραμμα Περιβάλλοντος και Ενέργειας (“Környezet és Energia Operatív
Program” - KEOP), Παροχή τοπικής θέρμανσης και ψύξης από ανανεώσιμες πηγές (KEOP
2009/4.2.0) και Παραγωγή θερμότητας ή/και ηλεκτρισμού από ανανεώσιμες πηγές (KEOP
2009/4.4.0) [29]για τη χρήση βιομάζας, βιοαερίου, γεωθερμίας, ηλιακής ενέργειας, υδραυλικής
ενέργειας, αιολικής ενέργειας και συνδυασμούς αυτών. Η χρηματοδότηση διατίθεται για την
προετοιμασία του έργου, τη διαχείριση τα πάγια ενεργητικά και παθητικά στοιχεία. Η
επιχορήγηση μπορεί να αντιστοιχεί στο 10-60% του κόστους μέχρι περίπου €3,3 εκατομμύρια
(1000 εκατομμύρια HUF). Η επιχορήγηση διατίθεται και για δημόσιους και για ιδιωτικούς
φορείς. Το Μάιο του 2009 η Ευρωπαϊκή Τράπεζα Ανασυγκρότησης και Ανάπτυξης (EBRD)
παραχώρησε δάνειο στην Raiffeisen Bank Zrt. για τη χρηματοδότηση του δημοτικού τομέα. Τα
δάνεια θα προωθηθούν στους δήμους, σε δημοτικές επιχειρήσεις και εταιρείες εξοικονόμησης
ενέργειας. Ο στόχος των δανείων είναι η αύξηση της ενεργειακής απόδοσης στο δημόσιο τομέα
στην Ουγγαρία [38].
Μάλτα
•
Το Πρόγραμμα Ενεργειακής Επιχορήγησης (ενταγμένο στην Οδηγία Υπηρεσιών Ενέργειας
2006/32/EC) είναι διαθέσιμο στη Μάλτα, όπου τα έργα χρηματοδοτούνται από την κυβέρνηση
κατά ένα ποσοστό της συνολικής επένδυσης.
Ολλανδία
•
•
Η Έκπτωση Επενδύσεων Ενέργειας (“Energie-InvesteringsAftrek”- EIA) είναι ένας
φορολογικός κανονισμός της Ολλανδίας που παρέχεται ως κίνητρο για τις επενδύσεις στην
εξοικονόμηση ενέργεια και τις βιώσιμες πηγές. Κάθε χρόνο κυκλοφορεί μια νέα Λίστα
Ενέργειας, η οποία ορίζει το πρότυπο εξοικονόμησης ενέργειας και παραδείγματα
εξοικονόμησης ενέργειας και βιώσιμων πηγών. Το 2008, η EIA παρέχει έκπτωση 44% σε όλες
τις εγκεκριμένες επενδύσεις, με ελάχιστο ποσό επένδυσης τα €2,100 και μέγιστο τα
€110,000,000.
Στην Ολλανδία υπάρχει επίσης ο Κανονισμός για την Κινητοποίηση της Παραγωγής
Βιώσιμης Ενέργειας (“Stimuleringsregeling Duurzame Energieproductie” - SDE), ο οποίος
είναι ένας κυβερνητικός κανονισμός για την προώθηση της παραγωγής καθαρής και βιώσιμης
ενέργειας, όπως αιολική, ηλιακά φωτοβολταϊκά, συμπαραγωγή και βιομάζα, ενώ επίσης
διατίθενται οι φορολογικές πολιτικές Έκπτωση Περιβαλλοντικών Επενδύσεων (“MilieuInvesteringsAftrek” - MIA) και Μεταβλητή Έκπτωση Περιβαλλοντικών Επενδύσεων
(“Willekeurige Afschrijving Milieu-investeringen” - Vamil), σύμφωνα με τις οποίες οι
επιχειρηματίες μπορούν να επενδύσουν με όφελος σε φιλικές προς το περιβάλλον τεχνολογίες.
Όλες οι περιβαλλοντικές επενδύσεις που είναι κατάλληλες για MIA ή/και Vamil αναγράφονται
στη συνδυαστική λίστα MIA και Vamil (“Milieulijst”). Το Υπουργείο Στέγασης, Χωροταξίας
21
και Περιβάλλοντος αναπροσαρμόζει αυτή τη λίστα σε ετήσια βάση ώστε να αντιστοιχεί με τις
προτεραιότητες της πολιτικής και τις τρέχουσες εξελίξεις της αγοράς. Τέλος, υπάρχει η
Πράσινη Επένδυση και Χρηματοδότηση (Groen Beleggen en Financieren): που είναι ένα
πρόγραμμα υποστήριξης φιλικών προς το περιβάλλον έργων, διευκολύνοντας τη χορήγηση
φθηνών τραπεζικών δανείων. Ο κανονισμός χρηματοδοτείται από ιδιώτες επενδυτές και
καταθέτες, οι οποίοι λαμβάνουν σε αντάλλαγμα οικονομικά οφέλη. Οι Επιχορηγήσεις
Ερευνών Ενέργειας (“Energie-OnderzoekSubsidies” - EOS): οι οποίες προσφέρουν στις
εταιρείες και στα ερευνητικά και εκπαιδευτικά ιδρύματα οικονομική υποστήριξη. Το
πρόγραμμα υποστηρίζει την ανάπτυξη της γνώσης και των εφαρμογών της με πολλούς ακόμη
τρόπους. Και το Πλαίσιο Περιβαλλοντικής Στήριξης (“MilieuSteunKader”- MSK): Υπάρχει
όριο στο συνολικό ποσό οικονομικής στήριξης που επιτρέπεται να λαμβάνουν οι
περιβαλλοντικές επενδύσεις από την κυβέρνηση. Οι δύο βασικές αρχές είναι: 1) ένα έργο δεν
μπορεί να επιχορηγηθεί για περισσότερο από το 40% του συνολικού κόστους επένδυσής του
(μέγιστη επιχορήγηση επένδυσης), και 2) κατά το χρόνο λειτουργίας, ένα έργο δεν μπορεί να
λάβει περισσότερες επιχορηγήσεις από το συνολικό ποσό επένδυσής του (μέγιστη επιχορήγηση
εκμετάλλευσης).
Σλοβενία
•
Παρόλο που δεν υπάρχει συγκεκριμένο κρατικό πρόγραμμα για τη χρηματοδότηση έργων
ESCo στη Σλοβενία, το Ταμείο Περιβαλλοντικής Ανάπτυξης (Eco Fund) της Δημοκρατίας
της Σλοβενίας ιδρύθηκε σύμφωνα με τους κανονισμούς της Πράξης Προστασίας του
Περιβάλλοντος του Ιουνίου του 1993 ως βασικό όργανο για τη χρηματοδότηση των έργων
περιβαλλοντικών επενδύσεων. Το Eco Fund παρέχει δάνεια για τις επενδύσεις προστασίας του
περιβάλλοντος με ευνοϊκά επιτόκια (ήπια δάνεια), συμπεριλαμβανομένων των δανείων για τις
υπηρεσίες περιβαλλοντικής προστασίας, τον εξοπλισμό και την τεχνολογία περιβαλλοντικής
προστασίας, τις φιλικές προς το περιβάλλον τεχνολογίες και προϊόντα, κ.λπ.
Σουηδία
•
Οι επιχορηγήσεις που παρέχονται από την κυβέρνηση της Σουηδίας, περιλαμβάνουν
επιχορηγήσεις επενδύσεων για ηλιακή θερμότητα και επιχορηγήσεις για τη μετατροπή
συστημάτων θέρμανσης. Η επιχορήγηση ηλιακής θέρμανσης έχει στόχο την κάλυψη οικιακών
κτιρίων και συγκεκριμένων εμπορικών κτιρίων για τη θέρμανση χώρων και την παροχή ζεστού
νερού. Η επιχορήγηση για τη μετατροπή συστημάτων θέρμανσης αφορά στην αλλαγή της
άμεσης ηλεκτρικής θέρμανσης σε άλλες μορφές θέρμανσης (αντλίες θερμότητας, θέρμανση DH
ή βιοκαυσίμου) [23].
Ιταλία
•
Στην Ιταλία τα βασικά κίνητρα για θερμικά ηλιακά συστήματα και συστήματα θέρμανσης με
βιομάζα είναι: οι επιδοτήσεις κεφαλαίου (διαθέσιμες για δεδομένες χρονικές περιόδους βάση
εθνικών, περιφερικών και τοπικών κονδυλίων), τα λευκά πιστοποιητικά, έκπτωση φόρου κατά
55% και μείωση ΦΠΑ κατά 10%. Επιπλέον, δίνονται επιδοτήσεις κεφαλαίου για παραγωγή
θέρμανσης από ΑΠΕ από τo πρόγραμμα POI (Programma Operativo Interregionale,
www.poienergia.it) και από το κονδύλι για το Κιότο (www.cassaddpp.it ), που στόχο έχουν να
αυξήσουν την ανταγωνιστικότητα της βιώσιμης θέρμανσης από ΑΠΕ.
22
Πορτογαλία
•
Στην Πορτογαλία υπάρχουν μερικά προγράμματα χρηματοδότησης που εντάσσονται στο
Πορτογαλικό Πρόγραμμα Ενεργειακής Απόδοσης [8].
Ισπανία
•
•
•
Στην Ισπανία, η χρηματοδότηση τρίτων μερών είναι ένα άρτια προσδιορισμένο σώμα μέσω του
IDEA για την αύξηση της ενεργειακής απόδοσης των κτιρίων. Οι συνθήκες του πλαισίου είναι
κατάλληλες και η ζήτηση και η παροχή υπηρεσιών TPF αναπτύσσεται [45].
Η χρηματοδότηση έργων προέρχεται κυρίως από τις τράπεζες, αλλά το τελευταίο διάστημα
λόγω της οικονομικής κρίσης, τα έργα χρηματοδοτούνται από ίδια κεφάλαια των ΕΕΥ ή αλλά
σχετικά κεφάλαια. Η αγορά των ΕΕΥ ενισχύεται άμεσα ή έμμεσα από διάφορα Εθνικά ή
Περιφερειακά Προγράμματα όπως π.χ. το Estrategia de Ahorro y Eficiencia Energetica E4
(Εθνική Στρατηγική Ενεργειακής Αποδοτικότητας) και το Ε4+ στο οποίο η Ενεργειακοί
Έλεγχοι και οι ενεργειακές παρεμβάσεις χρηματοδοτούνται ως ένα βαθμό [48].
Κάποιες πρόσφατες πρωτοβουλίες, εστιάζουν στη βελτίωση της ενεργειακής αποδοτικότητας
και στη διείσδυση τεχνολογιών ΑΠΕ στον κτιριακό τομέα μέσω των ΕΕΥ, και αναμένονται να
έχουν θετικό αντίκτυπο σε σύντομο χρονικό διάστημα. Τέτοιες πρωτοβουλίες είναι: IDAE's
Financing Lines for Thermal Renewable Energies in Buildings BIOMCASA-SOLCASAGEOTCASA; Plan 330 ESE (Activation Plan in the State’s General Administration Buildings
through ESCOS); Plan 2000 ESE (Plan to Boost Energy Services Contracts) [54].
Ρουμανία
•
Η Ευρωπαϊκή Τράπεζα Ανασυγκρότησης και Ανάπτυξης (European Bank for Reconstruction
and Development -EBRD) υποστηρίζει μέτρα βελτίωσης ενεργειακής αποδοτικότητας στο
δημόσιο τομέα της Ρουμανίας, με τη πρόθεση να επεκταθεί και σε μέτρα εξοικονόμησης
ενέργειας και σε δήμους σε όλη τη Ρουμανία. Ένα εταιρικό δάνειο ύψους 10εκ. € δόθηκε σε
θυγατρική της εταιρείας EnergoBit Group SA, και θα χρησιμοποιηθεί για τη χρηματοδότηση
δράσεων ενεργειακής αποδοτικότητας κυρίως στον τομέα της τοπικής αυτοδιοίκησης της
Ρουμανίας. Τα έργα θα ποικίλου από μελέτες εξοικονόμησης ενέργειας και μηχανολογικές
εκτιμήσεις μέχρι εγκατάσταση ενεργειακά αποδοτικού δημόσιου φωτισμού, έργα
συμπαραγωγής ηλεκτρισμού και θερμότητας καθώς και μικτής κλίμακας συμπαραγωγής για
βιομηχανικούς πελάτες [46].
Κροατία
•
Στην Κροατία, το Ταμείο Περιβαλλοντικής Προστασίας και Ενεργειακής Απόδοσης είναι ο
πρώτος και μοναδικός οργανισμός πρόσθετης χρηματοδότησης για τη χρηματοδότηση έργων,
προγραμμάτων και μέτρων περιβαλλοντικής προστασίας, ενεργειακής απόδοσης και χρήσης
ανανεώσιμων πηγών ενέργειας στην Κροατία. Ο κύριος στόχος του Ταμείου είναι η εφαρμογή
πολιτικής και στρατηγικής προστασίας του περιβάλλοντος. Αυτό επιτυγχάνεται μέσω της
παροχής οικονομικής υποστήριξης σε επενδύσεις περιβαλλοντικής προστασίας και έργα που
αυξάνουν την ενεργειακή απόδοση και τη χρήση ανανεώσιμων πηγών ενέργειας. Το ταμείο
συμμετέχει επίσης σε προγράμματα συγχρηματοδότησης, έργα και παρόμοιες δραστηριότητες
23
•
•
στον τομέα περιβαλλοντικής προστασίας, ενεργειακής απόδοσης και χρήσης ανανεώσιμων
πηγών ενέργειας που οργανώνονται και χρηματοδοτούνται από διεθνείς οργανισμούς,
χρηματοπιστωτικά ιδρύματα και άλλα νομικά πρόσωπα της Κροατίας. Συνεπώς, το ταμείο
αυτοπροσδιορίζεται ως ο πλέον σημαντικός συνεργάτης και πηγή χρηματοδότησης για έργα
ενεργειακής απόδοσης και ανανεώσιμων πηγών ενέργειας στην Κροατία.
Εκτός από το Ταμείο Περιβαλλοντικής Προστασίας και Ενεργειακής Απόδοσης, η Κροατική
Τράπεζα Ανασυγκρότησης και Ανάπτυξης (HBOR) είναι μια σημαντική πηγή πιθανής
χρηματοδότησης. Η HBOR εφάρμοσε ένα πρόγραμμα για τη χρηματοδότηση της
προετοιμασίας έργων ανανεώσιμων πηγών ενέργειας. Οι πιστώσεις αφορούν στην
προετοιμασία του έργου και την ανάπτυξη της τεκμηρίωσης του έργου. Ένας από τους στόχους
του προγράμματος είναι να ενθαρρύνει τη χρήση ανανεώσιμων πηγών ενέργειας.
Η HEP ESCO είναι η εταιρεία εφαρμογής της Energy Efficiency Project Croatia και επί του
παρόντος είναι ο κύριος δημιουργός της αγοράς για τα έργα ενεργειακής απόδοσης. Η Energy
Efficiency Project Croatia ιδρύθηκε από τη Διεθνή Τράπεζα Ανασυγκρότησης και Ανάπτυξης
(IBRD) της Παγκόσμιας Τράπεζας και την Global Environment Facility (GEF) σε συνεργασία
με την Hrvatska Elektroprivreda d.d. (εθνική εταιρεία παροχής ρεύματος) και την Κροατική
Τράπεζα Ανασυγκρότησης και Ανάπτυξης (HBOR). Για αυτό το σκοπό η Hrvatska
Elektroprivreda d.d. ή/και η HEP ESCO έλαβαν δάνειο από την Παγκόσμια Τράπεζα ποσού
€4.4 εκατομμυρίων και μια επιχορήγηση GEF ποσού $5 εκατομμυρίων. Ο κύριος στόχος της
επιχορήγησης είναι η υποστήριξη της ανάπτυξης της αγοράς ανανεώσιμων πηγών ενέργειας
στην Κροατία και η δημιουργία ενθαρρυντικής ατμόσφαιρας για επενδύσεις σε έργα ΑΠΕ. Ένα
άλλο μέρος της επιχορήγησης GEF, ποσού $2 εκατομμυρίων, διαχειρίζεται η HBOR για την
έκδοση μερικών εγγυήσεων για έργα ΕΑ που χρηματοδοτούνται από εμπορικές τράπεζες. Η
συνολική αξία της Energy Efficiency Project Croatia, με τη συμμετοχή διεθνών και εγχώριων
τραπεζών, όπως οι Erste & Steiermarkishe Bank d.d., Privredna Banka Zagreb d.d.,
Raiffeisenbank Austria d.d., Splitska Banka d.d., Zagrebačka Banka d.d. και KfW, υπολογίζεται
στα $40 εκατομμύρια για διάστημα έξι ετών.
Βουλγαρία
•
•
Η Ευρωπαϊκή Τράπεζα Ανασυγκρότησης και Ανάπτυξης (European Bank for Reconstruction
and Development -EBRD), η κυβέρνηση της Βουλγαρίας και η Ευρωπαϊκή Ένωση,
προσφέρουν μέσω του BEERECL (http://beerecl.com) δυνατότητα πίστωσης για έργα
ενεργειακής αποδοτικότητας και ΑΠΕ. Σύμφωνα με τα παραπάνω οι ιδιωτικές εταιρείες
μπορούν να διεκδικήσουν υποστήριξη για τις ανάγκες πραγματοποίησης μίας επένδυσης
ενεργειακής αποδοτικότητας και ανανεώσιμων πηγών. Η γραμμή πίστωσης παρέχει στους
υποψήφιους δανειζόμενους δάνεια μέχρι και 2.5εκ.€, επιχορηγήσεις μέχρι 15% και δωρεάν
συμβουλευτικές υπηρεσίες.
Η τράπεζα ProCredit Bank Bulgaria (http://www.procreditbank.bg) προσφέρει στους πελάτες
της δάνεια για εργασίες ενεργειακής αποδοτικότητας. Το Πρόγραμμα Βιομηχανικής
Ενεργειακής Αποδοτικότητας της τράπεζας υλοποιείται με την υποστήριξη της Ευρωπαϊκής
Ένωσης, του Kreditanstalt für Wiederaufbau – KfW (German development bank), που εδρεύει
στη Φρανκφούρτη (Γερμανία) και της Counsil of Europe Development Bank – CEB που
εδρεύει στο Παρίσι (Γαλλία). Οι σύμβουλοι αυτού του προγράμματος είναι Grontmij, Carl Bro
Group και Bulgarian Consulting Centre.
24
3.1.4 Εμπόδια
Σε αυτό το κεφάλαιο αναφέρονται τα κύρια εμπόδια που συντελούν στη μικρή ανάπτυξη των έργων
ESCo που αφορούν συστήματα βιομάζας ή/ και θερμικά ηλιακά συστήματα. Τα εμπόδια καλύπτουν
μεγάλο εύρος και διακρίνονται σε ζητήματα πολιτικής, διαχείρισης, οικονομικά, συμβατικά ή και
αγοράς. Μερικά από τα προβλήματα είναι κοινά μεταξύ των χωρών, ενώ άλλα συνδέονται με
συγκεκριμένες συνθήκες σε κάθε χώρα. Σε μερικές χώρες, όπου η αγορά ESCo δεν έχει ακόμη
αναπτυχθεί ή βρίσκεται ακόμη σε αρχικό στάδιο, τα εμπόδια BioSolESCo σχετίζονται κυρίως με τα
εμπόδια της αγοράς των ESCo γενικότερα.
Ένα από τα πιο συχνά εμπόδια που αναφέρονται είναι η έλλειψη ενημέρωσης από την πλευρά της
ζήτησης, σε ότι αφορά στον τρόπο λειτουργίας μιας ESCo και στα οφέλη της εφαρμογής έργων
ESCo (π.χ. FR, PL, DE, HU). Στις περισσότερες περιπτώσεις, αυτό συνδυάζεται με την έλλειψη
έργων-παραδειγμάτων και την έλλειψη εμπειρίας και ειδίκευσης. Για να απαντηθεί το ζήτημα της
έλλειψης ενημέρωσης των τελικών χρηστών, μπορούν να οργανωθούν ενημερωτικές
δραστηριότητες, όπως σεμινάρια ή εργαστήρια, από τις εταιρείες ενέργειας ή άλλες αρμόδιες
αρχές, τα οποία θα παρουσιάζουν τα κύρια χαρακτηριστικά ενός έργου ESCo και θα εξηγούν τα
οφέλη, οικονομικά και περιβαλλοντικά, από ένα τέτοιο έργο. Ένας πιο αποτελεσματικός τρόπος
παρουσίασης του θεσμού των ESCo είναι μέσω της παρουσίασης πραγματοποιημένων έργων –
παραδειγμάτων ESCo, όπου ο τελικός χρήστης μπορεί να δει στην πράξη ότι τέτοια έργα υπάρχουν
και λειτουργούν.
Τα ρυθμιστικά εμπόδια, όπως αναφέρθηκε και στις προηγούμενες εκθέσεις [10] είναι το δεύτερο
συχνότερο εμπόδιο για την ανάπτυξη των ESCo σε πολλές Ευρωπαϊκές χώρες. Σε αυτές τις χώρες,
ο δημόσιος τομέας αντιμετωπίζει προβλήματα στην εφαρμογή έργων ESCo. Αυτά τα προβλήματα
περιλαμβάνουν συνήθως τα εξής:
• χρονοβόρες διαδικασίες προμηθειών δημοσίου, όπου η αξιολόγηση μπορεί να μη βασίζεται
σε κριτήρια εξοικονόμησης ενέργειας αλλά αποκλειστικά στην τιμή (π.χ. HU)
• έλλειψη σαφών κανόνων για τον τρόπο αντιμετώπισης των έργων ESCo στα πλαίσια της
δημόσιας χρηματοδότησης (π.χ. CR)
• σύνθετες διαχειριστικές διαδικασίες στο δημόσιο τομέα, με κανονισμούς που δεν είναι
κατάλληλοι για ΣΕΑ (π.χ. IT, IE, GR, ES)
• δυσμενείς διαδικασίες προμηθειών (π.χ. Χώρες της Βαλτικής)
• έλλειψη τυποποιημένων εγγράφων και καθιερωμένων διεργασιών (FR, GR, PT, CY, RO)
Ένα ακόμη σημαντικό εμπόδιο μπορεί να είναι η χρηματοδότηση έργων ESCo. Αυτό το πρόβλημα
εμφανίζεται κυρίως σε χώρες που η αγορά ESCo δεν έχει ακόμη αναπτυχθεί, οδηγώντας σε ένα
συντηρητικό τραπεζικό τομέα που δεν έχει τα κατάλληλα εργαλεία χρηματοδότησης για την
υποστήριξη τέτοιων έργων (π.χ. HU, DK, GR, MT, SI). Σε αυτές τις χώρες, δεδομένου ότι υπάρχει
έλλειψη υπαρχόντων έργων ESCo και προηγούμενης εμπειρίας, οι χρηματοπιστωτικοί οργανισμοί
δεν είναι εξοικειωμένοι με το σύνολο της διαδικασίας ενός έργου ESCo και κατά συνέπεια τα έργα
ESCo θεωρούνται υψηλής επικινδυνότητας και δεν υπάρχουν διαθέσιμες ευνοϊκές δανειοδοτικές
πρακτικές.
Η τραπεζική ικανότητα των εργασιών ESCo είναι το κύριο ζήτημα και σε χώρες με αρκετά
ανεπτυγμένες αγορές ESCo, όπως η Ιταλία, όπου το πιστωτικό σύστημα εμφανίζεται σε γενικές
γραμμές οκνό και με μειωμένο ενδιαφέρον στις επιχειρήσεις ESCo. Για την ακρίβεια, θεωρούνται
υψηλής επικινδυνότητας και πολύ χαμηλού οφέλους, ιδιαίτερα στην περίπτωση μικρών
25
επενδύσεων και ESCos. Πολύ συχνά απαιτούνται πολύ υψηλές εγγυήσεις ή/και αυξημένα ίδια
κεφάλαια των ESCo για την πρόσβαση σε πιστώσεις, ενώ η εγγύηση αποπληρωμής των δανείων
απαιτείται πάντα. Επιπλέον, οι τράπεζες συχνά απαιτούν σύνθετες και δαπανηρές διαδικασίες
(“δέουσα επιμέλεια”) για τη χορήγηση δανείων σε ESCo.
Όπως αναφέρεται σε προηγούμενη μελέτη της Diana Ürge-Vorsatz και συνεργάτες, 2007 [3] t το
ζήτημα χρηματοδότησης περιπλέκεται ακόμη περισσότερο από το γεγονός ότι οι τράπεζες θέλουν
να αξιολογούν την πιστοληπτική ικανότητα των πελατών τους – είτε της ESCo ή του πελάτη. Για
αυτό το λόγο, πολύ συχνά είτε δεν επιθυμούν να δανείσουν χρήματα σε ESCo ή απαιτούν υψηλά
επιτόκια. Οι τράπεζες είναι ιδιαίτερα διστακτικές να χορηγήσουν δάνεια σε μικρές και νέες ESCo,
οι οποίες δεν μπορούν να παράσχουν εγγυήσεις (η εγγύηση αποτελεί σταθερό όρο), ή στους ίδιους
τους πελάτες ESCo την πιστοληπτική ικανότητα των οποίων δεν μπορούν να αξιολογήσουν.
Άλλα αναφερόμενα εμπόδια είναι οι χαμηλές τιμές ενέργειας που οδηγούν σε υψηλό κόστος
επένδυσης, σε σύγκριση με τα ορυκτά καύσιμα (π.χ. SE, HU), τα ζητήματα παρακολούθησης και
επαλήθευσης (π.χ. BG, DK) και η έλλειψη εμπιστοσύνης στις τεχνολογίες (UK).
Τέλος, χώρες όπως η Μάλτα δεν δεσμεύονται από υποχρεώσεις του Πρωτοκόλλου του Κιότο για τη
μείωση των εκπομπών CO2 και αυτό θεωρείται ο κύριος λόγος που εξηγεί τη μη ανεπτυγμένη
δραστηριότητα ΕΕΥ και ΧΑΤ.
26
Πίνακας1 Επισκόπηση των εμποδίων που δυσχεραίνουν την ανάπτυξη έργων ESCo στην ΕΕ των 27
Εμπόδια
Έλλειψη ενημέρωσης
από την πλευρά της
ζήτησης
Προβλήματα στην
εφαρμογή έργων ESCo
στο δημόσιο τομέα
(π.χ. χρονοβόρες
διαδικασίες
προμηθειών δημοσίου,
κ.λπ.)
Χρηματοπιστωτικά
ιδρύματα μη πρόθυμα
να χρηματοδοτήσουν
έργα ESCo ή παρέχουν
κακές πρακτικές
δανεισμού
Έλλειψη
τυποποιημένων
εγγράφων και
διαδικασιών
Έλλειψη υπαρχόντων
έργων ESCo/
ειδίκευσης
Χαμηλές τιμές
ενέργειας
Έλλειψη δεδομένων
κατανάλωσης
ενέργειας
●
(●)
?
AT
(●)
(●)
BE
BG
CY
?
●
●
?
●
●
?
●
●
●
?
●
●
●
?
?
?
υπάρχον πρόβλημα
μερικώς υπάρχον πρόβλημα
δεν υπάρχουν πληροφορίες
Το πρόβλημα δεν υπάρχει
●
●
CZ
DK
EE
●
●
FI
●
●
●
FR
DE
GR
HU
IE
IT
LV
LT
LU
MT
NL
PL
●
●
●
●
●
●
●
●
?
●
●
●
●
●
●
●
●
●
●
?
?
●
(●)
●
(●)
(●)
?
?
●
●
?
●
●
?
(●)
●
●
●
(●)
●
●
●
●
●
●
●
●
?
●
●
PT
RO
SK
●
●
?
●
●
?
●
?
●
●
SI
ES
(●)
SE
●
UK
●
●
●
●
●
●
●
●
?
●
●
●
●
●
?
●
●
?
?
●
?
●
●
?
?
?
●
CR
●
●
●
●
27
3.2 Τεχνικό πλαίσιο
3.2.1 Ποιότητα και παρακολούθηση
Τα έργα ESCo που αφορούν εγκατάσταση συστημάτων βιομάζας και/ ή ηλιακών θερμικών αλλά
και γενικότερα τα έργα ESCo είναι έργα που βασίζονται στην απόδοση και απαιτούν
τυποποιημένες διαδικασίες παρακολούθησης και επαλήθευσης. Για τα έργα που αφορούν στην
ενεργειακή απόδοση, υπάρχει το Διεθνές Πρωτόκολλο Μέτρησης και Επαλήθευσης Απόδοσης
(IPMVP), το οποίο είναι ένα μοντέλο που χρησιμοποιείται σε όλο τον κόσμο για τη μέτρηση και
αξιολόγηση των έργων ενεργειακής απόδοσης. Σύμφωνα με τον Vine και συνεργάτες, 2005 [14] η
τυποποίηση της μέτρησης και επαλήθευσης είναι μία από τις απαραίτητες ενέργειες που πρέπει να
εκτελεστούν για να αναπτυχθεί η αγορά ESCo.
Στις ακόλουθες παραγράφους, περιγράφονται μερικά από τα διαθέσιμα προγράμματα μετρήσεων
και επαλήθευσης που χρησιμοποιούνται σε διάφορες χώρες-μέλη.
Στη Μάλτα δεν εφαρμόζονται τυποποιημένες διαδικασίες ποιότητας και παρακολούθησης από
ιδιωτικούς ή δημόσιους φορείς για την πρόσβαση σε κίνητρα ή πρόγραμμα λευκών
πιστοποιητικών, δεδομένου ότι οι μόνες δράσεις εξοικονόμησης ενέργειας και ενεργειακής
απόδοσης εκτελούνται από την Κυβέρνηση, σύμφωνα με τα προγράμματα Μηχανισμού Καθαρής
Ανάπτυξης (CDM) και Κοινής Εφαρμογής (JI).
Στη Γερμανία, το ευέλικτο μέρος του συμβατικού κόστους εξαρτάται κυρίως από την κατανάλωση
θερμότητας. Σύμφωνα με το AVBFernwärmeV, η κατανάλωση θερμότητας πρέπει να μετριέται με
τη χρήση βαθμονομημένων θερμιδομετρητών. Οι μετρητές πρέπει να βαθμονομούνται κάθε πέντε
χρόνια. Μετρούν τον όγκο ροής νερού, καθώς και τις θερμοκρασίες στη γραμμή ροής και τη ροή
επιστροφής. Δεν επιτρέπεται η εφαρμογή άλλων μέσων μέτρησης και οι αποκλίσεις από αυτή τη
μέθοδο πρέπει να συμφωνούνται ρητώς μεταξύ των μερών της συμβάσεως [4]. Η χρέωση μπορεί
να είναι μηνιαία ή ετήσια και η ένδειξη του μετρητή πρέπει να λαμβάνεται αντίστοιχα και σε
τακτική βάση. Εάν η χρέωση τελείται σε ετήσια βάση, ο εργολήπτης μπορεί να αιτήσει
προκαταβολή, το ποσό της οποίας εξαρτάται από την κατανάλωση της προηγούμενης χρεωστικής
περιόδου [4].
Σε άλλες χώρες, όπως η Ουγγαρία, η έλλειψη κατάλληλης μέτρησης της κατανάλωσης ενέργειας
αποτελεί πρόβλημα. Η επαλήθευση της προηγούμενης και νέας κατανάλωσης είναι απαραίτητη για
την τεκμηρίωση της εξοικονόμησης ενέργειας μετά την εφαρμογή των εργασιών ESCo.
Στο Βέλγιο η παρακολούθηση τελείται ως εξής:
•
•
Οδηγία Ενεργειακής Απόδοσης (“Energieprestatieregelgeving”): Από την 1 Ιανουαρίου
2006 και μετά, όλες οι κατοικίες για τις οποίες έχουν κατατεθεί άδειες οικοδόμησης ή
ανακαίνισης, πρέπει να καλύπτουν ένα συγκεκριμένο επίπεδο θερμικής μόνωσης,
ενεργειακής απόδοσης (μόνωση, εγκατάσταση θέρμανσης εξοικονόμησης ενέργειας,
αερισμός, κ.λπ.) και να διαθέτουν υγιεινό εσωτερικό κλίμα. Αυστηρότεροι όροι θα τεθούν
σε ισχύ την 1 Ιανουαρίου 2010.
Σύμφωνο Ελέγχου: Οι Εταιρείες που υπεισέρχονται στο Σύμφωνο Ελέγχου εκτελούν έλεγχο
ενέργειας για να τεκμηριώσουν τη δυνατότητα εξοικονόμησης ενέργειας που διαθέτουν.
Επίσης, αναλαμβάνουν επικερδή μέτρα εξοικονόμησης ενέργειας. Ως ανταμοιβή, η
28
Φλαμανδική Κυβέρνηση εξαιρεί αυτές τις εταιρείες από τις πρόσθετες απαιτήσεις μείωσης
ενέργειας και CO2.
• Σύμφωνο Συγκριτικής Αξιολόγησης: Για τη συμμετοχή στο Σύμφωνο Συγκριτικής
Αξιολόγησης, μία εταιρεία πρέπει να έχει ετήσια κατανάλωση ενέργειας πάνω από 0.5 PJ.
Αυτές οι εταιρείες συγκρίνουν τα μέτρα ενεργειακής απόδοσής τους με άλλους μεγάλους
καταναλωτές ενέργειας. Από τα ευρήματα, συνάγονται οι νέοι στόχοι ενεργειακής
απόδοσης. Οι εταιρείες λαμβάνουν κρατική αμοιβή για αυτή τη διαδικασία.
Στην Ολλανδία:
• Το Protocol Monitoring Duurzame Energie (Πρωτόκολλο Παρακολούθησης Βιώσιμης
Ενέργειας) παρέχει μια μέθοδο υπολογισμού της απόδοσης όλων των χρησιμοποιούμενων
ανανεώσιμων πηγών ενέργειας και της σχέσης της με τη συνολική απόδοση της ενέργειας
που παράγεται. Αυτό το πρωτόκολλο υπογραμμίζεται από τη SenterNovem και
χρησιμοποιείται από τη CBS (“Centraal Bureau voor Statistiek”: Στατιστική Υπηρεσία
Ολλανδίας). Η CBS παρέχει δεδομένα στο Υπουργείο Οικονομικών, το οποίο με τη σειρά
του χρησιμοποιεί αυτά τα δεδομένα για το σχηματισμό των στόχων της πολιτικής. Η
τελευταία ενημέρωση έγινε το 2006, ενώ μια νέα έκδοση αναμένεται το Νοέμβριο του 2009.
• Επίσης το Protocol Monitoring Energiebesparing (Εξοικονόμηση Ενέργειας
Παρακολούθησης Πρωτοκόλλου) παρασχέθηκε από το SenterNovem σε συνεργασία με το
CPB (“Centraal Planbureau”: Ολλανδική Υπηρεσία Ανάλυσης Οικονομικής Πολιτικής), το
RIVM (“Rijksinstituut voor Volksgezondheid en Milieu”: Εθνικό Ίδρυμα Δημόσιας Υγείας
και Περιβάλλοντος) και το ECN (“Energieonderzoek Centrum Nederland”: Κέντρο Έρευνας
Ενέργειας της Ολλανδίας). Σκοπός είναι η παρακολούθηση της εξοικονόμησης ενέργειας,
δηλαδή πόσο λιγότερη ενέργεια χρησιμοποιείται.
• Τέλος, υπάρχει το Nederlandse Technische Afspraken (Τεχνικές Συμβάσεις Ολλανδίας NTA) από το Υπουργείο Στέγασης, Χωροταξίας και Περιβάλλοντος που εστιάζει στο
ποσοστό βιογενών στοιχείων των δευτερευόντων καυσίμων. NEN (“NEderlandse Norm”:
Ολλανδικό Πρότυπο) που είναι ο Ολλανδικός εθνικός οργανισμός τυποποίησης. Τα
πρότυπα NTA προέρχονται από το NEN. Διατίθενται διάφορα πρότυπα για την εφαρμογή
των ανανεώσιμων πηγών ενέργειας. Τα πρόσφατα επικυρωμένα πρότυπα είναι τα NTA
8080:2009 “Κριτήρια βιωσιμότητας για τη βιομάζα αναφορικά με τους ενεργειακούς
στόχους” και NTA 8003:2008 “Κατηγοριοποίηση βιομάζας για ενεργειακούς σκοπούς”.
Στη Βουλγαρία, οι δραστηριότητες μέτρησης και επαλήθευσης που διαχειρίζονται οι Εταιρείες
Υπηρεσιών Ενέργειας εφαρμόζονται συνήθως σε έργα συμβάσεων παροχής υπηρεσιών ενέργειας
μικρής κλίμακας. Οι ESCo και ο πελάτης συχνά συνάπτουν συμβάσεις που περιλαμβάνουν την
αναμενόμενη εξοικονόμηση ενέργειας, τον τρόπο μέτρησης της εξοικονόμησης, ποιος ευθύνεται
για τη βραχυπρόθεσμη και μακροπρόθεσμη διαχείριση του έργου και τις διαδικασίες αμοιβής. Αυτά
τα έργα μπορεί να έχουν μεγάλους κύκλους ανάπτυξης και κατασκευής. Το προσωπικό ESCo
μπορεί να αφιερώσει σημαντική χρονική διάρκεια σε μια μεμονωμένη εγκατάσταση πριν και μετά
την εγκατάσταση των ECM – Μέτρων Διατήρησης Ενέργειας – για να διασφαλίσει ότι τα
αναμενόμενα αποτελέσματα έχουν μεγάλη πιθανότητα επιτυχίας. Τα έργα στα οποία η ESCo φέρει
την κύρια ευθύνη μέτρησης και επαλήθευσης συχνά δεν αναπαριστούν παρά λίγους μόνο
συμμετέχοντες κάθε έτος, ανάλογα με το μέγεθος του προγράμματος κοινής ωφελείας.
Στη Βουλγαρία επίσης το πρότυπο εξοικονόμησης ενέργειας Παρακολούθησης & Επαλήθευσης (Monitoring & Verification - M&V) είναι ένας κρίσιμος παράγοντας για την ανάπτυξη EMC. Το
πρότυπο M&V καθορίζει τη συγκεκριμένη εξοικονόμηση ενέργειας και για τα δύο μέρη που
συμμετέχουν στην EMC. Για την εφαρμογή της σύμβασης διαχείρισης ενέργειας, αποτελεί
29
προϋπόθεση η δημιουργία προτύπου M&V για την ΕΕ. Αυτό το πρότυπο M&V μπορεί να επιτύχει
τα παρακάτω οφέλη:
ƒ Σαφή γνώση του καθαρού ποσού εξοικονόμησης ενέργειας και του κόστους ενέργειας,
ƒ Διασφάλιση και διατήρηση της λειτουργικής απόδοσης της συντήρησης του εξοπλισμού
βελτίωσης,
ƒ Ενίσχυση της αξιοπιστίας της εγγύησης ESCo για την εξοικονόμηση ενέργειας,
ƒ Οι πελάτες θα μπορούν να εκτιμήσουν κατάλληλα τα οφέλη βελτίωσης όταν δεν θα είναι
δυνατή η δημιουργία εγγύησης για τις ESCo.
Στην Ιταλία οι παράγοντες ποιότητας και παρακολούθησης είναι κρίσιμοι για τα έργα ESCo και
άρα και για τα έργα ESCo που αφορούν βιομάζα και θερμικά ηλιακά συστήματα, λαμβάνοντας
υπόψη ότι τα έσοδα των ESCo βασίζονται στην εξοικονόμηση ενέργειας που επιτεύχθηκε.
Συγκεκριμένα, το Νομικό Διάταγμα (ΝΔ) 115/2008 ορίζει και τις ποσοτικές παραμέτρους που
πρέπει να παρακολουθούνται, αλλά και τα απαραίτητα χαρακτηριστικά των συμβάσεων μεταξύ της
ESCo και του πελάτη.
Ειδικότερα, σύμφωνα με τον ορισμό της σύμβασης ενεργειακής απόδοσης “Plus”, αυτό το ΝΔ
ορίζει ότι οι ESCo πρέπει να ολοκληρώσουν με εθελούσια πιστοποίησης (επί του παρόντος ISO
9001 και πιστοποίηση σύμφωνα με το Νόμο 46/90). Αυτό πρέπει να διασφαλίζει ότι η εταιρεία
διαθέτει την απαραίτητη τεχνική και διαχειριστική τεχνογνωσία. Στο μέλλον, θα πρέπει να
καθιερωθεί ένα διεθνές πρότυπο πιστοποίησης ESCo (ISO 16001).
Τα ζητήματα παρακολούθησης ορίζονται επίσης με σκοπό την πρόσβαση σε λευκά
πιστοποιητικά (WhCs). Όπως παρουσιάστηκε νωρίτερα, κάθε μέτρηση ενεργειακής απόδοσης
τελικού χρήστη πρέπει να αναφέρεται και να πιστοποιείται από την AEEG για να λαμβάνει το
σχετικό WhCs. Συγκεκριμένα, σε ότι αφορά σε έργα ηλιακής θερμικής ενέργειας, μπορεί να
τηρηθεί μια τυποποιημένη διαδικασία ώστε να εκτιμηθεί η εξοικονόμηση ενέργειας που
προκύπτει από την εγκατάσταση των πλαισίων. Αυτή η διαδικασία επιτρέπει την εκτίμηση της
εξοικονόμησης απλά μέσω της μέτρησης των m2 των ηλιακών πλαισίων, της τυπολογίας των
καλοριφέρ, της κλιματικής ζώνης της περιοχής εγκατάστασης και τις αντικαθιστώμενης πηγής
θέρμανσης. Σε ότι αφορά στους λέβητες και ΣΗΘ βιομάζας, υπάρχουν μερικές αναλυτικές
διαδικασίες που ορίζονται από την AEEG για την εκτίμηση της εξοικονόμησης ενέργειας της
βιοθερμότητας, οι οποίες σχετίζονται ιδιαίτερα με μικρά συστήματα συμπαραγωγής και την
τοπική θέρμανση. Παρόλα αυτά, πρέπει να σημειωθεί ότι η αξιολόγηση εξοικονόμησης
ενέργειας, σε αυτή την περίπτωση, είναι πιο σύνθετη και απαιτούνται συγκεκριμένες μετρήσεις.
Επιπλέον, πρέπει να σημειωθεί ότι, επί του παρόντος, οι διαδικασίες πιστοποίησης για την
τοπική θέρμανση βιομάζας και τη συμπαραγωγή βιομάζας δεν αντιστοιχούν [25].
Στην Ιταλία, μέχρι τώρα τα ζητήματα ποιότητας και παρακολούθησης που σχετίζονται με τη
σύμβαση ενεργειακής απόδοσης και που απαιτούνται από το Νομικό Διάταγμα 115/2008 είναι
συγκεκριμένα τα εξής:
•
ενεργειακός χαρακτηρισμός του κτιρίου, όπως ορίζεται από το ΝΔ 192/2005, που
καθορίζει τις ενεργειακές απαιτήσεις του κτιρίου και τις μετρήσεις που πρέπει να
ληφθούν για τη βελτίωση της ενεργειακής απόδοσης. Οι υπολογισμοί του ενεργειακού
χαρακτηρισμού πρέπει να διεξαχθούν σύμφωνα με το UNI TS 11300 και μπορούν να
τελεστούν με τη χρήση εμπορικά διαθέσιμου λογισμικού που φέρει πιστοποίηση από τη
CTI (Comitato termotecnico Italiano) ή τη UNI (Ente nazionale Italiano di Unificazione)
30
•
(εθνικός οργανισμός τεχνικής ενοποίησης) με μέγιστη ανοχή σφάλματος +/- 5% στην
εκτίμηση των ενεργειακών απαιτήσεων,
οι ποσοτικές παράμετροι που χρησιμοποιούνται για τον υπολογισμό της
αποτελεσματικότητας των υπηρεσιών ενέργειας πρέπει να προσδιοριστούν με σαφήνεια.
Επιπλέον, ο συσχετισμός μεταξύ των μετρώμενων παραμέτρων και της ποσότητας
θερμικής ενέργειας που παρέχεται θα πρέπει επίσης να καθοριστεί. Η ενέργεια που
παρέχεται στον τελικό καταναλωτή πρέπει να αναφέρεται τουλάχιστον σε ετήσια βάση
με μία μονή μέτρηση για κάθε καταναλωτή.
Στην Κροατία, η HEP ESCO δεν παρέχει εγγύηση απόδοσης στα έργα της επειδή συνήθως αυτό το
μοντέλο έχει μεγάλο κόστος για έναν πελάτη, συμπεριλαμβανομένης της παρακολούθησης,
συντήρησης, των υπηρεσιών IT κ.λπ. Συνεπώς, οι δραστηριότητες παρακολούθησης μετά την
εφαρμογή του έργου δεν διεξάγονται. Στα έργα τους, παρακολουθούν συνήθως τους λογαριασμούς
ηλεκτρικού ρεύματος των πελατών για λόγους πληροφόρησής τους.
3.2.2 Κατάλληλη τεχνολογία για έργα ESCo με βιομάζα και θερμικά ηλιακά
Το ποια τεχνολογία χαρακτηρίζεται ως κατάλληλη για την εφαρμογή έργων ESCo που αφορούν
συστήματα βιομάζας και θερμικών ηλιακών σχετίζεται με το επίπεδο της τεχνολογικής και
εμπορικής ωριμότητας που έχει επιτευχθεί από το σύστημα ενέργειας στις διάφορες χώρες. Στις
περισσότερες χώρες τα συστήματα βιομάζας και ηλιακής ενέργειας έχουν επιτύχει ικανοποιητική
τεχνολογική ωριμότητα αλλά, η εμπορική ωριμότητα διαφέρει πολύ μεταξύ των διαφόρων χωρώνμελών.
Στη Φινλανδία, η τεχνολογία δεν αποτελεί ζήτημα για τις BioSolESCo. Υπάρχουν τεχνικές λύσεις
διαθέσιμες και για τα ηλιακά συστήματα και για συστήματα που χρησιμοποιούν στερεά
βιοκαύσιμα. Η Φινλανδία διαθέτει κατάλληλη τεχνολογία, ειδικά για συστήματα θέρμανσης που
βασίζονται στη βιομάζα και έχει αρκετούς κατασκευαστές. Η διαφορά μεταξύ της Φινλανδικής και
Ευρωπαϊκής αγοράς λεβήτων βιομάζας έγκειται στο ότι τα Ευρωπαϊκά συστήματα είναι
ενοποιημένα. Συνήθως στη Φινλανδία ο λέβητας και ο καυστήρας και ο λοιπός εξοπλισμός είναι
ξεχωριστές συσκευές, ενώ στην κεντρική Ευρώπη είναι συνήθως ενοποιημένα. Παρά το ανωτέρω,
οι Φινλανδικές λύσεις χρησιμοποιούνται ευρέως στη Φινλανδία και λειτουργούν ικανοποιητικά. Τα
ηλιακά συστήματα δεν έχουν εφαρμοστεί σε αντίστοιχη έκταση λόγω των κλιματικών συνθηκών. Η
περίοδος θέρμανσης είναι συχνά περίπου εννέα μήνες από τα τέλη Αυγούστου αρχές Σεπτεμβρίου
μέχρι τον Απρίλιο-Μάιο περίπου. Σε αυτό το διάστημα, η ηλιακή ακτινοβολία δεν επαρκή ώστε η
ηλιακή θέρμανση να είναι η μοναδική μορφή θέρμανσης. Μπορεί να χρησιμοποιηθεί κατά τους
θερινούς μήνες για τη θέρμανση νερού οικιακής χρήσης αλλά ως αποκλειστική πηγή θέρμανσης,
δεν επαρκεί.
Αναφορικά με το τεχνολογικό πλαίσιο στη Μάλτα, η κατάσταση σχετικά με τη βιομάζα και τις
ηλιακές θερμικές εγκαταστάσεις βρίσκεται σε αρχικό στάδιο και ο εξοπλισμός και τα όργανα
εισάγονται από άλλες χώρες κατά κύριο λόγο.
Τα έργα που συνδυάζουν τεχνολογίες βιομάζας και ηλιακής θερμικής ενέργειας είναι σπάνια στη
Γερμανία. Η εγκατάσταση ηλιακών θερμικών συλλεκτών συχνά αποδεικνύεται οικονομικά
ασύμφορη, ακόμη και με την επιχορήγηση από το δημόσιο. Επιπλέον, οι εργολήπτες συχνά
ειδικεύονται είτε σε τεχνολογίες λεβήτων, είτε σε τεχνολογίες συλλεκτών. Μόνο λίγες ESCo
χρησιμοποιούν εξίσου και τις δύο τεχνολογίες. Πολλά εργοληπτικά μέρη δηλώνουν ότι
προσφέρουν συμβάσεις βιομάζας επιπρόσθετα των συμβάσεων ορυκτών καυσίμων, ενώ άλλοι
31
ειδικεύονται στις συμβάσεις βιομάζας. Η θέρμανση βιομάζας που τροφοδοτείται με πριονίδι ή
pellets ξύλου έχει αποδειχθεί οικονομικά ελκυστική, όταν τα μέρη της συμβάσεως συμφωνούν για
μεγάλη χρονική διάρκεια σύμβασης (20 έτη). Οι μεγάλοι χρόνοι απόσβεσης είναι απαραίτητοι για
την εξισορρόπηση του υψηλότερου κόστους επένδυσης για τους λέβητες βιομάζας. Μετά από 20
έτη, το χαμηλότερο κόστος καυσίμων ξύλου παρέχει σημαντικά οικονομικά πλεονεκτήματα σε
σύγκριση με τις τεχνολογίες ορυκτών καυσίμων. Τέλος, οι λέβητες βιομάζας συχνά είναι
σχεδιασμένοι να καλύπτουν το βασικό φορτίο θερμότητας ενώ οι αποδοτικοί λέβητες αερίου (ή οι
ανακαινισμένοι υπάρχοντες λέβητες ορυκτών καυσίμων) καλύπτουν τα φορτία αιχμής.
Οι τεχνολογίες βιομάζας και ηλιακής ενέργειας που χρησιμοποιούνται στη Σουηδία είναι κυρίως
πριονίδι ή pellets ξύλου για τη θέρμανση χώρων και νερού και χρήση ηλιακών συλλεκτών για τη
θέρμανση νερού.
Το 2005 οι πλειοψηφία των εργασιών ESCo στην Ουγγαρία εστίαζε στις εφαρμογές θέρμανσης και
ζεστού νερού και οι ανανεώσιμες πηγές αντιστοιχούσαν μόλις στο 9%. Υπάρχει δυνατότητα για τον
τομέα ανανεώσιμης ενέργειας να αυξήσει το μερίδιό του στις εργασίες ESCo.
Στην Ελλάδα τα ηλιακά θερμικά συστήματα χρησιμοποιούνται ευρέως στον οικιστικό και
τριτογενή τομέα και είναι μια πολύ γνωστή και εμπορικά βιώσιμη τεχνολογία που μπορεί εύκολα
να συμπεριληφθεί στα έργα ενεργειακής απόδοσης ESCo. Αντίθετα, τα συστήματα βιομάζας δεν
είναι εξίσου διαδεδομένα και δεν υπάρχουν αρκετές διαθέσιμες εφαρμογές.
Στη Βουλγαρία έχει σημειωθεί διαφορετικός τεχνολογικός προσανατολισμός (ηλιακά, βιομάζα,
υβριδικά). Προκαταρκτικές έρευνες μερικών ζητημάτων όπως οι τεχνολογίες βιομάζας και ηλιακής
ενέργειας που είναι οι πλέον κατάλληλες για τις εγκαταστάσεις BioSolESCo, η καταλληλότητα των
τεχνικών ηλιακής ενέργειας και βιομάζας που υιοθετούνται στις εγκαταστάσεις BioSolESCo, οι
απλές τεχνικές απομακρυσμένης παρακολούθησης και ελέγχου, οι διαθέσιμοι οδηγοί για τη
λειτουργία και συντήρηση, κ.λπ.
Στην Κροατία, σε ότι αφορά στα ηλιακά συστήματα θέρμανσης, οι συλλέκτες κενού είναι πιο
αποτελεσματικοί από τους συλλέκτες επίπεδης πλάκας αλλά, είναι και πιο ακριβοί περίπου κατά
40%. Για αυτό το λόγο, χρησιμοποιούνται συνήθως επίπεδοι συλλέκτες. Στην Κροατία, οι ηλιακοί
συλλέκτες μπορούν να καλύψουν περίπου 90% των αναγκών θέρμανσης του πελάτη κατά τη
θερινή περίοδο και το 10% κατά τη χειμερινή περίοδο. Εκτιμάται ότι οι ηλιακοί συλλέκτες μπορούν
να παράγουν 60-70% περισσότερη θερμότητα στο παραλιακό τμήμα της Κροατίας από ό,τι στο
ηπειρωτικό. Συνεπώς, η πλέον κατάλληλη τοποθεσία για την εγκατάσταση ηλιακών συλλεκτών
είναι το παραλιακό τμήμα της Κροατίας, σε κτίρια που χρησιμοποιούνται καθ’ όλη τη διάρκεια του
έτους αλλά τα οποία έχουν επίσης αυξημένες ανάγκες θέρμανσης κατά τη θερινή περίοδο, όπως
ξενοδοχεία και νοσοκομεία.
Η αγορά βιομάζας στην Κροατία δεν έχει αναπτυχθεί ακόμη. Μόνο η βιομάζα ξύλου μπορεί να
ληφθεί υπόψη για σκοπούς θέρμανσης επί του παρόντος. Η πλειοψηφία των Κροατικών δασών
βρίσκεται στο ηπειρωτικό, κεντρικό τμήμα της Κροατίας που θα ήταν το πλέον κατάλληλο για τη
χρήση ξυλώδους βιομάζας. Επιπλέον, η πλειοψηφία της υλοτομικής βιομηχανίας, τα ξυλώδη
υπολείμματα της οποίας μπορούν να χρησιμοποιηθούν για λόγους θέρμανσης, βρίσκεται στην ίδια
περιοχή. Πρέπει να ληφθούν υπόψη τρεις τύποι υλικού τροφοδοσίας, πριονίδι, pellets και κομμάτια
ξύλου. Στην Κροατία υπάρχουν επτά μεγάλοι παραγωγοί pellets και όλοι εξάγουν την πλειοψηφία
της παραγωγής τους. Τα pellets ξύλου πωλούνται από την Croatia forest Ltd., μια εθνική εταιρεία
32
διαχείρισης δασών, αλλά απαιτείται σύμβαση μεγάλης χρονικής διάρκειας. Τα κομμάτια ξύλου
πωλούνται και αυτά από την Croatian forests Ltd αλλά δημιουργούν πρόβλημα στην αυτόματη
τροφοδοσία. Έτσι, η βέλτιστη περίπτωση για έργο βιομάζας θα ήταν μια εταιρεία του τομέα
υλοτομίας που χρησιμοποιεί ξυλώδη υπολείμματα της παραγωγής της ή ένα έργο θα έπρεπε να
βρίσκεται κοντά σε υλοτομική βιομηχανία ή να αναπτυχθεί σε συνεργασία με την Croatian forests
Ltd.
3.2.3 Διαθέσιμα εργαλεία λογισμικού
Σε όλες τις Ευρωπαϊκές χώρες έχει αναπτυχθεί ένας αριθμός εργαλείων λογισμικού στους τομείς
προσομοίωσης και παρακολούθησης – αξιολόγησης, οικονομικής αξιολόγησης και ευέλικτης
βελτιστοποίησης εγκαταστάσεων ηλιακής ενέργειας και βιομάζας. Μερικά από τα εργαλεία είναι
κοινά για κάποιες χώρες, όπως για παράδειγμα το εργαλείο λογισμικού που αναπτύχθηκε στα
πλαίσια έργου με χρηματοδότηση από το IEE: “Ανάπτυξη πιλοτικών Εταιρειών Υπηρεσιών
Ηλιακής Θερμικής Ενέργειας (ST-ESCos) με δυνατότητα αναπαραγωγής” (AT, GR, IT, SP).
Το εργαλείο λογισμικού ST-ESCo αναπτύχθηκε για τη γρήγορη τεχνική και οικονομική
αξιολόγηση των πιθανών εφαρμογών ηλιακής θερμικής ενέργειας ESCO. Περιλαμβάνει το
Energetic Module (Ενεργειακό μοντέλο), ένα εργαλείο προσομοίωσης βασισμένο στο λογισμικό
TRNSYS, με φιλικό περιβάλλον προς το χρήστη, στο οποίο ο χρήστης μπορεί να καταχωρήσει όλα
τα τεχνικά δεδομένα που αναφέρονται στο ηλιακό θερμικό σύστημα και να υπολογίσει την
παραγωγή ενέργειας και το Economic Module (Οικονομικό μοντέλο), που διεξάγει την οικονομική,
χρηματοοικονομική και συμβατική ανάλυση βάσει των αποτελεσμάτων ή της αξιολόγησης της
ενεργειακής απόδοσης. Το εργαλείο λογισμικού ST-ESCO διατίθεται στην ιστοσελίδα του έργου
[34]. Παρακάτω παρουσιάζονται κάποια από τα εργαλεία λογισμικού που διατίθενται στις διάφορες
χώρες. Πολλά από αυτά τα εργαλεία είναι παρόμοια σε ότι αφορά στο αντικείμενο και τους τομείς
ενδιαφέροντος.
•
•
Στη Βουλγαρία διατίθενται τα ERATO-2005, ειδικευμένο λογισμικό για ελέγχους ενέργειας
βιομάζας [43], μελέτες επιτευξιμότητας και παρακολούθησης και το εργαλείο λογισμικού
ENSI – Energy Saving International - Economic [44].
Στη Γερμανία παρέχεται πληθώρα εργαλείων βασικής οικονομικής αξιολόγησης από τις
εταιρείες και τους οργανισμούς ενέργειας. Ένα παράδειγμα είναι το εργαλείο συμβάσεων
που παρέχεται από την υπηρεσία ενέργειας στο Nordrhein-Westfalen [39].
•
Στην Πορτογαλία, διατίθεται το εργαλείο λογισμικού SOLTHERM για την αξιολόγηση της
τεχνικής και οικονομικής ανάλυσης ηλιακών θερμικών εφαρμογών [8].
•
Στη Φινλανδία όλες οι εκθέσεις, τα εργαλεία και το πλέον σημαντικό υλικό που
δημιουργείται στο έργο Cubenet / Eurocontract μπορεί να ληφθεί από την ιστοσελίδα της
Motiva [35]. Τα πλέον σημαντικά αποτελέσματα στα πλαίσια του προγράμματος του
εθνικού Φινλανδικού έργου και οι στόχοι στο έργο Eurocontract είναι ο “Οδηγός ESCO”
(ESCO-opas) για τους δήμους και η έκθεση report “Υπηρεσία ESCO για τους Δήμους”
(Kunnallinen ESCO-menettely) καθώς και τα υπόλοιπα παραδοτέα του έργου τα οποία είναι
διαθέσιμα στην ιστοσελίδα του έργου.
Το υλικό χρησιμοποιήθηκε επίσης σε ένα έργο όπου τέσσερις Φινλανδικές ESCo ανέλαβαν
συμβάσεις με δήμους σχετικά με την παροχή υπηρεσιών και την εκπαίδευση προσωπικού
στην κατανόηση της ευελιξίας των υπηρεσιών ESCO για παράδειγμα σε έργα ανακαίνισης.
Το έργο συντονίζεται από την Motiva και έχει λάβει επίσης χρηματοδότηση από το
33
Υπουργείο Εμπορίου και Βιομηχανίας. Η Motiva εκτιμά ότι η ESCO επισκέφθηκε 40-50
δήμους μέχρι το τέλος του έτους 2007, οπότε και ολοκληρώθηκε το έργο.
Επίσης διατίθεται λογισμικό, το οποίο αναπτύχθηκε για την προσομοίωση της δράσης
εγκατάστασης θέρμανσης [36].
Στο έργο Biohousing αναπτύχθηκε μια διάταξη υπολογισμού για την προσομοίωση μικρής
κλίμακας συστήματος οικιακής θέρμανσης [37].
•
Στην Ιταλία, μεταξύ άλλων εργαλείων λογισμικού για τις ανανεώσιμες πηγές και
συγκεκριμένα για τις BioSolESCo, περιλαμβάνονται τα εξής: Το RETScreen Clean
Energy Project Analysis Software [41], το οποίο είναι ένα μοναδικό εργαλείο
υποστήριξης λήψης αποφάσεων που αναπτύχθηκε με τη συμμετοχή μεγάλου αριθμού
ειδικών από την κυβέρνηση, τη βιομηχανία και τον πανεπιστημιακό τομέα. Το λογισμικό,
το οποίο παρέχεται δωρεάν, μπορεί να χρησιμοποιηθεί σε παγκόσμια κλίμακα για την
αξιολόγηση της παραγωγής και εξοικονόμησης ενέργειας, του κόστους, της μείωσης
εκπομπών, της οικονομικής βιωσιμότητας και των κινδύνων των διάφορων τύπων
ανανεώσιμων πηγών ενέργειας και των τεχνολογιών ενεργειακής απόδοσης (RETs). Το
λογισμικό (το οποίο διατίθεται σε πολλές γλώσσες) περιλαμβάνει επίσης βάσεις δεδομένων
προϊόντων, έργων, υδρολογίας και κλίματος, ένα περιεκτικό εγχειρίδιο χρήστη, ένα
εκπαιδευτικό πρόγραμμα κολεγιακού/πανεπιστημιακού επιπέδου βασισμένο σε
παραδείγματα, συμπεριλαμβανομένου ενός ηλεκτρονικού βιβλίου μηχανολογίας. Το
Polysun Solar thermal Simulation [42], το οποίο επιτρέπει την εκτίμηση της παραγωγής
ενέργειας και της οικονομικής επιτευξιμότητας των ηλιακών συστημάτων. Παρέχει στους
χρήστες ευελιξία στο σχεδιασμό ηλιακών θερμικών συστημάτων. Το Polysun επιτρέπει τον
υπολογισμό αποδόσεων και εξοικονόμησης ενέργειας και τη λήψη ακριβούς ανάλυσης
κόστους.
•
Στην Κροατία, η HEP ESCO χρησιμοποιεί οικονομετρικά προγράμματα για τον υπολογισμό
του κόστους προετοιμασίας και εκτέλεσης ενός έργου. Επιπλέον, έχουν εγκαταστήσει ένα
Κεντρικό Εποπτικό Λειτουργικό σύστημα (Centralni-Nadzorni-Upravljački system –
SNUS) σε τέσσερις σχολές. Αποτελείται από λογισμικό SCADA, το οποίο συμπληρώνεται
από μια λειτουργική μονάδα για την παρακολούθηση, αναφορά και επαλήθευση της
εξοικονόμησης. Οι δείκτες λειτουργίας εγκαθίστανται σε εξοπλισμό που επιτρέπει τη λήψη
δεδομένων σε πραγματικό χρόνο.
3.3 Συμπεράσματα
Τα συμπεράσματα που λήφθηκαν από μερικές από τις πιο έμπειρες χώρες (π.χ. DE, BE)
συνοψίζονται κατωτέρω:
• Σημαντική παράμετρος για την ανάπτυξη της αγοράς των ΕΕΥ αποτελεί η παροχή βοήθειας και
τεχνογνωσίας από ενεργειακά κέντρα ή άλλους σχετικούς οργανισμούς προς τα κτίρια του
δημόσιου τομέα.
•
Είναι απαραίτητη η ύπαρξη ενός καλά οργανωμένου τομέα ΕΕΥ (π.χ. ύπαρξη συνδέσμου ΕΕΥ)
που θα είναι σε θέση να παρέχει πληροφορίες σχετικά με τις συμβάσεις ενεργειακής απόδοσης,
να πιέζει για τη διαμόρφωση του κατάλληλου θεσμικού πλαισίου, να συνεισφέρει στην
34
τυποποίηση ορισμών και διαδικασιών, να παρέχει πληροφορίες και απαραίτητα εργαλεία
υπολογισμών. Στη Γερμανία, αυτές οι εργασίες τελούνται από τέσσερις οργανισμούς.1
•
Η καθιέρωση ενός ξεκάθαρου θεσμικού πλαισίου ικανού να ρυθμίζει όλες τις λεπτομέρειες των
συμβάσεων, θεωρείται απαραίτητη καθώς οι διάφορες αβεβαιότητες που προκύπτουν σαν
αποτέλεσμα του θολού νομικού πλαισίου είναι ένα από τα βασικά εμπόδια στην ανάπτυξη της
αγοράς των ΕΕΥ.
•
Οι εργολήπτες που προσφέρουν ολόκληρο το εύρος των τεχνολογιών και καυσίμων μπορούν να
παράσχουν τον πλέον αποτελεσματικό σχεδιασμό, ανάλογα με την κατάσταση του έργου,
•
Είναι σημαντικό οι ΕΕΥ να είναι σε θέση να προσφέρουν ευρεία γκάμα τεχνολογιών και
υπηρεσιών έτσι ώστε να παρέχουν την καλύτερη δυνατή λύση κάθε φορά.
•
Τυποποιημένες διαδικασίες μέτρησης και επιβεβαίωσης των αποτελεσμάτων θεωρούνται
απαραίτητες.
•
Είναι απαραίτητο να γίνεται ανάλυση όλων των ρίσκων (τεχνικό, οικονομικό) για μία τέτοια
επένδυση
•
Αύξηση της ενημέρωσης από τη μεριά των υποψήφιων πελατών, για το μηχανισμό των ΕΕΥ
και τα οικονομικά και περιβαλλοντικά οφέλη από την εφαρμογή τέτοιων έργων.
1
VfW (www.energiecontracting.de); ESCO Forum im ZVEI (www.zvei.org); PECU (www.pecu.de); Forum
Contracting (www.forum-contracting.de).
35
4 Παραπομπές
[1]
“20 20 by 2020 – Europe’s climate change opportunity”, Communication from the
Commission, COM(2008) 30 final.
[2]
“Action Plan for Energy Efficiency: Realising the Potential”, Communication from the
Commission, COM(2006) 545 final.
[3]
“An Assessment of on Energy Service Companies (ESCOs) Worldwide”, WEC ADEME
project on energy efficiency policies, Diana Ürge-Vorsatz, Sonja Köppel, Chunyu Liang,
Benigna Kiss, Gireesh Goopalan Nair, Gamze Celikyilmaz, Central European University, 2007
[4]
Alter, M., Contracting-Verträge richtig gestalten – Messung und Abrechnung; Rechtsanwälte
Strunz, Winkler, Alter
“Renewable Energy Road Map – Renewable energies in the 21st century: building a more
sustainable future”, Communication from the Commission, COM(2006) 848 final.
[5]
[6]
ADEME 2003.
[7]
ADEME 2006.
[8]
ADENE 2009, personal contact with Marco Correia and Pedro Mateus.
[9]
Andrea Renda and Lorna Schrefler, “Public – Private Partnerships National Experiences in the
European Union”, Centre for European Policy Studies, Brussels 2006.
[10]
Asko Puhakka, North Karelia University of Applied Sciences: “Business models of heat
entrepreneurship” available at:
http://www.northernwoodheat.net/htm/news/Scotland/tomintoulconf/askopuhakka.pdf
[11]
Benigna Kiss, Paolo Bertoldi and Silvia Rezessy: “Latest developments of the ESCo industry
across Europe”, Conference proceedings, eceee Summer Studies 2007
http://www.eceee.org/conference_proceedings/eceee/2007/Panel_2/2.225/
[12]
Business models of heat entrepreneurship, Asko Puhakka, North Karelia University of Applied
Sciences,
http://www.northernwoodheat.net/htm/news/Scotland/tomintoulconf/askopuhakka.pdf
[13]
Dupont and Adnot, 2004.
[14]
Edward Vine, “An international survey of the energy service company (ESCo) industry”,
Energy Policy 33, 691-704, 2005.
[15]
Herter, Contracting aus Bankensicht,SAB Sächsische AufbauBank, 2006.
36
[16]
Implementing the Energy Services Directive 2006/32/EC: State of Play, Anita Eide, Energy
Efficiency Unit, Expert Workshop, Dena, Berlin, 10 December 2008.
[17]
Paolo Bertoldi, Silvia Rezessy, European Commission, DG JRC, Institute for Environment and
Sustainability, renewable Energies Unit, “Energy Service Companies in Europe”, Status Report
2005.
[18]
Paolo Bertoldi, Benigna Boza-Kiss, Silvia Rezessy, Institute for Environment and
Sustainability, JRS Scientific and Technical Reports: “Latest Development of Energy Service
Companies across Europe – A European ESCO Update”, 2007.
[19]
“Public – Private Partnerships National Experiences in the European Union”, Andrea Renda
and Lorna Schrefler, Centre for European Policy Studies, Brussels 2006.
[20]
REACT – Renewable Energy Action – Altener 2002-157,
http://www.senternovem.nl/mmfiles/Biomass%20Heat%20Entrepreneurship_tcm24116958.pdf
[21]
REACT – Renewable Energy Action – Altener 2002-157,
http://www.senternovem.nl/mmfiles/Biomass%20Heat%20Entrepreneurship_tcm24116958.pdf
[22]
Stoppa, F., Wärmecontracting, Verband für Wärmelieferung (VfW), 2009.
[23]
Swedish Energy Agency, Energy in Sweden 2008.
[24]
http://ase.org/contenct/aticle/detail/1292
[25]
http://www.autorita.energia.it/ee/schede.htm
[26]
http://ec.europa.eu/climateaction/docs/climate-energy_summary_en.pdf
[27]
http://ec.europa.eu/climateaction/docs/climate-energy_summary_en.pdf
[28]
http://europeandcis.undp.org/.../SLF%20Loan%20Guarantee%20Note%20Draft%20v1.5.doc
[29]
http://www.business2hungary.hu/engine.aspx?page=Itdh_Priority_Sectors_Renewable_Energy
[30]
http://www.energiakozpont.hu/index.php?p=181
[31]
http://www.energiateolisuus.fi
[32]
http://www.esd-ca.eu/CA-ESD/CA-ESD-Introduction
37
[33]
http://www.sefi.unep.org/fileadmin/media/sefi/docs/publications/RiskMgt_full.pdf
[34]
http://www.stescos.org/
[35]
http://www.motiva.fi/fi/toiminta/escotoiminta/cubenet/
[36]
http://www.knowenergy.net/lampokeskus/
[37]
http://www.biohousing.eu.com/heatingtool/Default.asp?lang=eng
[38]
http://www.ebrd.com/new/pressrel/2009/090604.htm
[39]
http://www.energieagentur.nrw.de/contracting/
page.asp?InfoID=6368&rubrik=&termin=&TopCatID=&RubrikID=
[40]
europeandcis.undp.org/.../SLF%20Loan%20Guarantee%20Note%20Draft%20v1.5.doc,
[41]
www.retscreen.net
[42]
www.solarenergy.ch
[43]
www.erato.bg
[44]
http://www.ensi.no/software
[45]
http://www.st-escos.info/short_report_st/short_es.pdf
[46]
http://www.ebrd.com/pages/news/press/2011/110721.shtml
[47]
Marino A., Bertoldi P., Rezessy S., Boza-Kiss B.‘A snapshot of the European energy service
market in 2010 and policy recommendations to foster a further market development’ Energy
Policy39 (2011) 6190–6198.
[48]
[49]
Angelica Marino, Paolo Bertoldi, Silvia Rezessy, “Energy Service Companies Market in
Europe – Status Report 2010”, Institute for Energy, Joint Research Centre.
EPC markets and ESCO business in Finland. 2007. Motiva
[50]
http://www.motiva.fi/julkinen_sektori/tuet_ja_rahoitus/esco-palvelu/esco-hankerekisteri/
[51]
Portugal Efficiency 2015” version for public consultation- February 2008 available at:
http://www.adene.pt/NR/rdonlyres/1A510789-1032-4180-8A7B798B0DDA2F92/828/Portugal_EnergyEfficiencyPlan2015Support.pdf
38
[52]
personal contact: Corneliu Rotaru, Romanian Agency for Energy Conservation – ARCE, 2009
[53]
http://www.mondaq.com/unitedstates/article.asp?articleid=124286
[54]
Energy Efficiency Profile: Spain, Odyssee, June 2011
http://www.odyssee-indicators.org/publications/country_profiles_PDF/esp.pdf
Annex I
1 Austria
1.1
Legislative, financial, contractual and marketing framework
The Austrian TPF/EPC-market can be characterised as a market which has already passed the startup phase, grows gast but still has to grow and to develop in order to become a standard market with
standard procedures.
1.1.1 Legal background for TPF and ESCos
In order to attain the ambitious goal to reduce emissions of the six "Kyoto-greenhouse gases" by 13
% by the target period 2008 to 2012 as compared to the 1990 values, the National Council adopted
an "Austrian Climate Strategy 2008/2012" (http://www.accc.gv.at/englisch/e-strategie.htm),
combining the efforts on the part of
the Federal Government and the Laender into a co-ordinated strategy. The Climate Strategy is the
basis for different special programmes.
In Austria the legal framework conditions for TPF projects are the same as for every other legal
contract. However, difficulties can occur by awarding performance contracts. The law of public
procurement regulates the award of contracts by contracting authorities on the basis of a ”model
approach”. In case of a private purchaser, the project in question can be negotiated and awarded
without the obligation to observe the provisions of the law of public procurement.
The measures taken in connection with a more efficient supply and utilisation of energy are various
and diverse. This results in a variety of different implementation "models" and consequently leads
to a range of different goods and services offered. This in turn determines the type and number of
the parties involved, the required contracts and the types thereof, the financing terms, equipment
ownership and future purchase options etc.
The general legal framework for contract awarding by public clients can be assessed as
“predominantly positive”. On principle, the regulations for awarding contracts do not provide any
obstructions for the use of energy services by public clients. There are certain “problem areas”,
however, such as classifying Third Party Financing projects within certain categories of orders. It is
therefore recommended that attention is paid to the relevant legal framework during the
organisation of the project.
The law of public procurement is the dominating law within the legal framework conditions for
Energy Performance Contracting (EPC) and Third Party Financing (TPF). At least public
authorities, who want to increase the energy efficiency of their buildings and who were the main
target group for EPC and TPF until now, have to follow this Law.
However, among public authorities the phenomenon of legal uncertainty frequently occurs with
regard to the award of performance contracts. The law of public procurement regulates the award of
contracts by public authorities on the basis of a “model approach”. In case of a private purchaser,
the project in question can be negotiated and awarded without the obligation to observe the
provisions of the law of public procurement.
The framework conditions for a broad application of the concept of TPF/EPC in the public building
sectors are comparably favourable: On the one hand nearly all public authorities face the problem
that only very limited and by far not sufficient means of financing are available for the necessary
replacement, modernisation and optimisation investments – even when they are cost-effective. The
target of the Maastricht criteria puts increasingly narrow limits on public budgets. On the other hand
a number of studies and realised projects show that energy services could be provided in a much
more efficient way by means of modern heating systems, energy management systems, thermal
insulation, efficient lighting etc. Energy saving potentials in public buildings are up to 50% and
more and a considerable share of it can be implemented cost-effectively. However, these energy
saving potentials are only put into practice to a small extent. TPF/EPC offers a promising solution
to this dilemma.
This background given a broad set of information and marketing initiatives – starting in about 1996
and done by a lot of different players, i.e. energy agencies, ministries, consumer associations,
banks, associations of building owners etc. – the concept of TPF/EPC was presented to a relatively
large share of building owners, where a mjor focus has been on municipalities. For example: Each
municipality in Austria received a 20- pages-brochure indicating the general concept and
opportunities of TPF/EPC and also describing successful projects in Austria.
Furthermore various activities have been developed, which target towards setting up resources for
advising potential TPF/EPC-customers that are interested in the application of TPF/EPC for the
energetic improvement of their buildings. Only to give some examples:
– E.V.A., the Austrian Energy Agency, worked out TPF/EPC-guidelines, that deal with the issues
of project design, building selection, tender procedures, design of TPF/EPC-contracts etc. in detail.
These guidelines are targeted mainly at the use of consultants that are en gaged in advising
interested (public) building owners;
– From the Internet-Website of E.V.A. a list of ESCOs can be downloaded. This list, which
includes priority activities of the ESCOs as well as references, is aimed at improving the market
transparency and at making easier the access of potential TPF/EPC-customers to suppliers. At the
moment the list includes about 35 companies, of which, however, only 8 to 12 offer TPF/EPC in a
comprehensive way (integration of energy supply and demand). The other companies offer their
services only in the field of heat delivery and energy supply contracting.
– Advice and direct consultancy in concrete projects has turned out to be even more important than
written guidelines and other supporting material. This is also true for public building authorities,
which usually lack time and sometimes also expertise to busy themselves with TPF/EPC in theory
and practice. This background given, in Austria a – so far small but existing – network of
consultants, that are able to support potential and interested TPF/EPC-clients, has developed during
the last 3 to 4 years. The core of this network consists of energy agencies at the national as well as
at the regional and local level, but includes also some departments of public administrations (e.g. in
Styria and in Vienna).
Legal Background Austria
As refers to EPC in public buildings there exist still some uncertainties regarding the
question of how to award energy performance contracts correctly according to the legal norms of
public tendering. It is important to stress that although there are some national and sometimes also
regional differences concerning this issue, it is most important to comply with Community Law, i.e.
the European Directive on Public Tendering.
In 1999 E.V.A., the Austrian Energy Agency, has called for a legal opinion7 on the compatibility of
energy performance contracting models with the general legal framework for awarding contracts in
the field of public administration with special focus on Community Law.
As the results show, the general legal framework for contract awarding by public clients can be
assessed as "predominantly positive." On principle, the regulations for awarding contracts do not
provide any obstructions for the use of energy performance contracting by public clients. There are
certain "problem areas", however, such as classifying energy performance contracting projects
within certain categories of orders. It is therefore recommended that attention is paid to the relevant
legal framework during the organisation of the project.
In order to be able to take advantage of a competition of prices and ideas, it is suggested, in
particular for larger projects, that a "two-step procedure" is applied when awarding energy
performance contracts.
Step 1: To publicly assess the field of potential applicants before starting the actual awarding
procedure. In this way, the client will both get to know the tenderers on the
market and be able to eliminate non-suitable tenderers at the same time. This helps to reduce the
work regarding the assessment of in-coming offers (Step 2).
Step 2: Inviting suitable companies to submit a tender and subsequent start of contract negotiations.
Financial institutions and schemes
The very first biomass tri-generation plant in Austria was built in Ried/Upper Austria for the
companies Fischer GmbH and FACC GmbH and produces heat, cooling and electricity from
biomass for the companies' production of ski and aeroplane components. About 26,000 MWh heat,
1,000 MWh cooling and 2,500 MWh electricity are generated from biomass annually. Financing
was done by a third party financing scheme, the total investment amounted to 3,634,000 €.
Project in Graz:
The pilot project realised in the City of Graz can be classified as a medium scale project, where the
building owner shifted the major part of responsibilities with respect to energy management to an
outside company (“outsourcing intensity”). The final output of the project is a completely “new”
building which is operated and maintained by the ESCo under the aspect of high energy efficiency.
The ESCo has to guarantee the saving effect, which it promises in its offer during the whole
duration of the contract.
Due to the high share of necessary refurbishment measures it is clear, that energy savings can
refinance only a part of the necessary investments, which have been to a considerable part
predefined by the building owner himself. The approach chosen, however, ensures an optimal costbenefit relation with respect to investment cost and their effects on the running (energy) costs.
Figure 1.1 TPF-Model of the Webling/ Jaegergrund schools, Graz.
Figure 1.2 Contractual relationships.
Calculation of Energy Savings
In order to avoid later discussions, the tariff conversion from electrical to district heating had been
anticipated in the baseline setting. Thus, much of the saving potential was already accounted for in
the baseline, which was set to 58,939 Euro (original energy cost on the basis of electrical heating
was 84,000 Euro, 20% VAT included). Energy savings are later calculated from the invoices of the
heat and power providers. The energy quantities of the heating invoices undergo a correction for
climate changes (climate correction). The quantities are then multiplied by the reference prices of
the baseline year (price correction). Changes in the usage of the building (e.g. changes in opening
times, evening classes etc.) are taken into consideration on a negotiation basis, if their estimated
influence on energy costs exceeds 700 Euro.
Figure 1.3 Calculation of energy savings.
1.1.2 Barriers
Insurance Schemes in Austria
One typical insurance package includes all damages by windstorm, fire and hailstorm. This package
is usually always included in an ESCO insurance model. It is not very expensive and covers a high
damage event. Another typical type of insurance is an insurance against vandalism (malicious
destruction of the solar plant or its components).
The insurance value of these two packages should be equal to the nominal value of the system, i.e.
equal to the total investment cost of the solar plant.
Usually, solar thermal plants are also insured against lightning. This type of insurance is often a first
loss insurance, so the cost of a claim can be defined between the insurance holder (the ESCo) and
the insurer. For first-loss covers, no underinsurance is possible in the case of damage (waiver of
underinsurance on part of the insurer).
For the lightning insurance, it is particularly important for the ESCo to assert that the solar system
supplier has provided all necessary electrical and / or electronically means of protection for the
solar system!
An insurance against flood damages is only needed in areas which are easily affected by
inundations, but in those cases it generally makes sense to sign such insurance, so this can be an
insurance type often signed by an ESCo.
As every company will probably already have, a public liability insurance is important also for solar
thermal ESCos. This insurance covers all damages to a third party.
However, it might be worth also including insurance coverage against environmental damage or
loss (some environmental damage done directly to air, water, soil,…), roof damage (in case the
solar system is placed on top of some building roof) and gradual loss (i.e. all damages by long-term
action of some detrimental event on the system leading to gradual or also sudden failure).
Usually, public liability insurances can be easily included in an insurance pool that contains this
same type of insurance for more than one solar plant. Of course, in this case, the insurance sum has
to be adapted to the new situation.
In other cases, it results to be cheaper to sign a separate insurance policy for every single plant, and
not for a whole bunch of plants. This might be the case for the windstorm, fire and hailstorm
insurance.
A type of insurance which can be quite important for an ESCo is a loss-of-use insurance, in the case
no energy can be delivered by the solar plant due to some system malfunction of failure. This type
of insurance covers all ongoing costs of the company or the solar plant. But – more important – it
also covers the loss of profit for not being able to sell energy.
In the occurrence of the event insured, most insurances cover the additional work and expense (and
financial outlay) that the ESCo has to bear in order to supply energy to the customer. The
importance of this fact depends on the contents of the energy supply contract. Thus, a loss-of-useinsurance is much more important if the ESCo is committed to deliver a certain amount of energy to
the customer, i.e. the ESCo has a delivery obligation. The loss-of-use-insurance is less important if
the ESCo has only agreed upon a right to deliver the solar energy to the customer.
In the former case (commitment of delivery), in the damage event, the ESCo would have to take
over all the additional costs for supplying the amount of energy to the customer which has been
agreed upon in the energy supply contract. In the latter case (right to deliver), the ESCo damage is
limited to a loss of earnings and maybe to some technical disadvantage due to the collector
stagnation, but the ESCo does not need taking over the costs for the energy supply to the customer.
1.2
Technical framework
1.2.1 Quality and monitoring
The contracting partner is bound to four contractual guarantees, explained in the following:
1. Quality
2. Comfort (Heating)
3. Cost reduction
4. On investment in worth and structure
1. Guaranty on quality
Quality is essential to the conception of Thermoprofit®. Quality checks are present at several stages
of the contract. In a first stage, during the bidding procedure, the tendering documents contain
detailed engineering plans and descriptions of the most sensible parts of the project, of which the
building owner deems necessary to define the execution standards by himself. These execution
standards are not left to the free choice of the contractor.
In addition, the contractor provides information about the products he will use and the subcontractors he intends to work with. In a second stage, the way in which the construction works
become part of contract negotiations and is fixed by protocols. In a third stage, after signing the
contract, the contractor submits detailed engineering plans for every construction measure, which
have to be approved by the building owner before going into execution. The building owner agrees
to the plans by countersigning them. They later become annexed to the contract. The building
owner has a veto option if the plans or quality standards do not match the descriptions fixed in the
tendering documents or during contract negotiation. In a last stage, construction quality is checked
by the building owner during site visits and a formal hand-over is done.
2. Guaranty on comfort
Comfort standards are guaranteed by the contract. Penalties ensure that prescribed room
temperatures are kept and emergency services are provided in cases of breakdowns.
3. Guaranty on cost reduction
A financially guaranteed cost reduction is a key element in the Thermoprofit® contract. By signing
the contract, the contractor guarantees a certain amount of energy costs to be saved. The guaranty is
fixed with reference to the baseline. The baseline resumes the original energy costs during a
representative year and contains the reference energy prices for the contract time.
Besides the height of the annual contracting rate, the financial guaranty on energy cost reduction is
the second most important selection criterion for the offers..
After completion of all construction works, the contractor must reach the cost reduction he had
guaranteed. If he fails to do so, his contracting rate is lowered by a penalty. The penalty corresponds
to the amount of energy costs he failed to save (see Figure 6 below).
In turn, if the contractor surpasses his energy saving guaranty, he is rewarded by a bonus- share on
the extra amount saved.
4. Guaranty on investment in worth and structure
At the moment the contract is signed, detailed plans do not exist for every construction measure the
partners have negotiated. However, the result of negotiations should be a clear conception of the
construction works and the desired products, sub-contractors and quality standards. Thus, it is
possible to the contractor to assess his investment by costs and structure.
The contractor now gives a guaranty on the amount he intends to invest in each of the following
categories:
• for hardware (e.g. material, machines, buildings)
• engineering services
• other services (e.g. motivation measures like classes on energy saving, emergency services,
etc.)
The investment amount is later audited by the building owner by checking the plans for each
measure (as stated above, the engineering plans have to pass his approval before coming to
execution). The engineering plans contain all necessary detailed cost and price information,
allowing the building owner to asses the worth of the investment9. If the building owner should
come to the conclusion that investment cost of the measure is not corresponding, in value or quality,
to what was initially agreed upon, he may check the detailed prices and refuse to countersign the
plans as long as the matter has not been cleared. It is also possible to the building owner to refuse to
sign the hand-over after completion of the investment in cases the execution is not achieved with
the predefined quality standards.
As long as the engineering plans/drawings and hand-over documents are not countersigned, the
investment does not count as contract fulfilment. In consequence, the contracting rate is lowered by
the share of hardware investments the contractor fails to fulfil (see example in the Figure below).
Figure 1.4 Contractual Investment guaranty.
Methodology for billing the solar yield
In Austria, the solar yield of solar thermal plants is measured with the aid of ultrasonic heat meters
installed in the systems. To actually measure the solar energy delivered to the customer, the heat
meter is installed in the secondary circuit (i.e. after the heat exchanger solar to the customer). The
ultrasonic heat meters are the technical state of-the-art today: they contain no moving parts, are
therefore non-wearing and have long durability, and that means little maintenance costs for the
ESCo.
In district heating solar plants, the energy delivered to the customer is automatically measured by
means of a tele-monitoring system. Then, it is charged to the customer by means of an energy bill
about once every month (in summertime) or once every 2 months (in wintertime). A fully-automatic
billing program would be a desirable development.
There are three different schemes for billing the solar energy between the customer and the ESCo.
Most schemes which are implemented in real projects follow one of these schemes or a mix of
these:
Energy price only: the customer pays a certain energy price per kWh of solar thermal energy. The
energy is usually billed once every month or once every two months. This means that the payback
for the ESCo works only by means of the energy sold, and a big share of the customer’s payments
arrive in summertime. Usually, for domestic hot water the ESCo and the customer agree for a
different summer and winter price (summer price higher, as conventional boiler systems have lower
efficiency in summertime, thus specific end energy prices are higher). Usually for space heating the
energy price is every month the same. This scheme is generally favourable for the customer.
Monthly amount charged to customer2: MA = SEm × SEPh
Energy price and basic price: Additionally to the cost per kWh, the customer is also charged a basic
monthly price which he is asked to pay regardless of the energy delivered. In return, the energy
price for the kWh of solar energy is lower. This model
provides some more security for the ESCO as it will get the monthly payments in any case.
Moreover, the ESCO gets some money out of the system also in wintertime, when the earnings
based on the solar energy output are close to zero.
Monthly amount charged to customer3: MA = BP + SEm × SEPl
Energy price and connection fee: Similar to the installation fees which a customer is charged for
being connected to a district heating net, in this scheme the customer pays (some share or 100% of)
the installation cost of the system. This amount of money is often denominated a connection fee and
may be calculated based on the kWh delivered per year or based on the installed collector area and
system design. In return, the energy price for the customer is reduced, so the ESCO needs to
perform a very thorough economic feasibility calculation.
Monthly amount charged to customer: MA = SEm × SEPl
Connection fee has to be paid once at the delivery of the solar plant. The solar energy price is
usually linked to the consumer price index (general index which reflects the course of the inflation);
this does generally not create any problems in the financial negotiations. With the current
development of the world’s primary energy prices in mind, it is also a good idea to link the solar
energy price to the price of oil or gas. Here is one possible model: the oil price of a defined date is
taken as reference, and every month (or every year) the oil price increase is measured relating to the
reference date. The solar energy price may be increased by a certain percentage
of this oil price increase.
1.2.2 Software tools available
Programmes like PolySun, TSOL or TRNSYS allow to produce more refined correlations between
the expected system yield, the radiation, the load and other relevant quantities. Such correlation
allows better assessing the actual efficiency of solar heating systems. This kind of verification can
be automated and implemented into the controller software.
1.3
Lessons learned
One practical technical aspect learned is the following: the person responsible for the maintenance
(from the ESCo’s side) should have relatively easy access to the plant (e.g. up to 100 km distance).
Delegate this responsibility to a third person is possible only if he is an expert on solar thermal
plants. The same is valid for the operational responsibility: count on a third person (e.g. a technician
from the End-user’s side) for crucial technical operational aspects, could generally create problems.
One “lesson learned” concerning formal aspects is that there must be a guarantee in an ESCo
contract in the case the End-User is unable to pay (e.g. bankrupted). This problem could be
overtaken with a “Bank Guarantee” initially provided by the End- User. From a technical point of
view, the most common example of failure is an incorrect freezing protection. This is, most often,
strongly connected with the stagnation protection of solar thermal plants. What happens during
stagnation (i.e. the condition of available solar radiation but no thermal load), in brief, is that the
antifreeze primary loop liquid becomes a vapor and, consequently, the pressure increases. If the
system is not designed properly, some relief valves may open (due to the high pressure), thus
resulting to some loss of antifreeze liquid. If there is an automatic refill valve (as unfortunately
happens in many solar systems), this will cause the introduction of water into the primary circuit,
thus decreasing dramatically its antifreezing properties. The correct dimensioning of the solar plant
components in order to face stagnation, the absence of any automatic refill valve in the primary
circuit and the use of the correct antifreeze liquid are the measures to take in order to avoid the
above problem.
2 Baltic countries: Estonia, Latvia, Lithuania
ESCO markets in the Baltic Countries are hardly developed and information therefore is hard to
come by. The JRC reports1,2 basically are the only published source of information.
The number of active ESCOs and the level of activity in these countries are hard to estimate
because of confusion concerning different definitions of ESCO concepts and a trend to call a wide
range of companies “ESCO”. Many companies offer energy audits or other consultancy services
and are characterized as ESCO.
According to the JRC reports (2005 and 2007) there were:
•
•
•
3-5 companies offering ESCO-related services in Lithuania (2005). In 2007, 6 ESCOS or
ESCO-type companies were working in Lithuania;
20 companies offering general energy services in Estonia (2005). In 2007, 2 companies
offering ESCO services as a minor business area. These two companies are the only entries
available in the JRC ESCO database3;
More than 40 companies working with energy delivery contracts and two companies
offering EPC in Latvia (2007).
The ESCO and DH sectors are often mixed in terms of definition. There are several international
companies present in the markets but they are mainly involved in DH projects. Especially Dalkia is
present in all three countries with a number of subsidiaries. Litesko is one of these subsidiaries in
Lithuania, having signed long-term DH leasing contracts with 7 towns and a total investment of
€ 8.7 million4.
Another publication5 lists several companies with “a certain experience” in Delivery Contracting or
EPC:
•
•
Energiasäästubüroo (www.energiaaudit.ee) and SEIT (www.seit.ee) in Estonia;
SIA Wesemann, SIA Sinhro (www.sinhro.lv) and SIA Ekodoma (www.ekodoma.lv) in
Latvia;
• UAB E-energija (www.e-energija.lt) and UAB Naujoji siluma (www.newheat.lt) in
Lithuania.
However, comprehensive descriptions of relevant reference projects are not available and therefore
the achieved level of ESCO experience remains unclear.
The overall background is similar in the three countries: There is a basic awareness of energy
efficiency issues and Governmental support programmes are in place. On the other hand,
knowledge concerning the rather complicated ESCO schemes is limited at the customers´side.
Especially in Estonia ESCOs face the additional problem that low-interest loans are available to
1
Bertoldi, P. & Rezessy, S.; Energy service companies in Europe – Status report 2005; JRC; 2005.
Bertoldi, P. et al.; Latest Development of Energy Service Companies across Europe - A European ESCO Update; JRC;
2007.
3
http://sunbird.jrc.it/energyefficiency/ (accessed June 2009).
4
Štreimikienė, D et al.; Review of instruments for promotion of energy efficiency in Lithuania; Lithuanian Energy
Institute; 2007.
5
Herdová, B. et al.; Financial resources manual; IEE project CF-SEP (Commercial Finance for Sustainable Energy
Projects);
2
housing associations and that municipalities are able to finance efficiency project with e.g.
structural funds.
Banks in these countries are basically interested in financing ESCO projects so that financing is not
the major barrier to further uptake of ESCO schemes. It is more the lack of example projects and
therefore established processes that hinder the market development. Unstable and not well defined
regulatory frameworks as well as unfavourable procurement procedures contribute to slowing the
initialisation of market growth.
3 Belgium
3.1
Legislative, financial, contractual and marketing framework
3.1.1 Legal background for TPF and ESCos
Belgium’s Kyoto Protocol objective states a greenhouse gases emission decrease of 7.5% between
2008 and 2012 compared with their 1990 levels. The Flemish Government have decided that by
2010, 6% of all gross energy consumption should be generated from renewable energy sources. No
objective concerning heat from renewables has been outlined, neither by the Federal Government,
nor the Flemish Government.
In 2004, Flanders has translated its Kyoto Protocol emission targets into the REG Decree. The REG
Decree creates a framework for the promotion of sensible energy use, the use of renewable energy
sources and so-called flexibility mechanisms. A result of the REG Decree is the Energy Plan,
which contains a list of measures to reduce energy use of organisations with an annual energy use
exceeding 0.1 PJ.
3.1.2 Financial institutions and schemes
The VEA (Flemish Energy Agency) carry out the Flemish government’s sustainable energy
policies. Their most important tasks are stimulating sensible energy use and contributing in the
execution and support of policy. The VEA are an independent agency cooperating with the Flemish
Department of Environment, Nature and Energy (LNE).
The VREG (Flemish Regulation Entity for the Electricity and Gas market) are a Flemish
government entity that take care of the regulation, control and promotion of the transparency of the
electricity and natural gas market in the Flemish Region. The VREG are connected to the Flemish
Department of Environment, Nature and Energy (LNE) as well.
For biomass and solar heat related enterprising, there are a number of financial support
mechanisms. The VEA web site contains a very practical search engine for grants:
http://www.energiesparen.be/subsidies/subsidiemodule. Unfortunately, the web site is in Dutch
only.
The Raised Investment Deduction for Energy Saving Investments (“Verhoogde Investeringsaftrek
voor Energiebesparende Investeringen”) is a financial incentive from the Federal Government
(Federal Public Service Finance) to improve the recovery of existing installations and to promote
the use of renewable energy sources. For 2009, companies are allowed to deduct 15.5% from their
taxable profit. One can apply for this grant at the VEA.
The Ecology Premium (“Ecologiepremie”) is remitted to investments that reduce the environmental
burden on production processes, also biomass conversion by incineration, pyrolysis and
gasification. The Ecology Premium applies only if the environmental benefit exceeds the
government requirements. The remuneration for small and medium-sized enterprises is 35% of the
extra costs of their investments. Large enterprises receive 25% of the extra costs of their
investments.
Investment Deduction (“Investeringsaftrek”) is a tax benefit that applies to energy saving measures.
To date, 14.5% (excluding VAT) can be deducted from the company’s profit, which yields a lower
profit tax (currently around 33%).
Support of the Flemish Agriculture Investment Trust (VLIF): Farmers can have 40% of their
biomass conversion investment costs remitted by the VLIF.
Green Energy Certificates (“Groenestroomcertificaten”): Every year energy suppliers are obliged to
deliver a certain share of green energy. A Green Energy Certificate proves that they have met their
obligations. By generating green energy, one can request a Green Energy Certificate for every
generated MWh at the VREG. One can sell the certificate to an energy supplier against a minimum
price, guaranteed by the Flemish Government, of €80.
Cogeneration Certificates (“Warmtekrachtcertificaten”) are of the same principle as Green Energy
Certificates. For a certain share, energy suppliers are obliged to deliver energy and heat from
cogeneration, for which they receive a Cogeneration Certificate. If they fail to do so, they receive a
€45 fine per certificate. Cogeneration Certificates are to be requested at the VREG. The primary
energy offset is calculated with regard to a thermal and electric reference recovery, which depends
on the type of fuel.
3.2
Technical framework
3.2.1 Quality and monitoring
Energy Performance Directive (“Energieprestatieregelgeving”): From 1 January 2006 onwards, all
dwellings for which building or renovating requests are filed, have to meet a certain level of thermal
isolation, energy performance (isolation, energy-saving heating installation, ventilation, etc.) and a
healthy indoor climate. Tightened conditions will come into force on 1 January 2010.
Audit Convenant: Companies that join the Audit Convenant accept an energy audit to indicate their
energy-saving potential. They also engage in profitable energy-saving measures. As a
compensation, the Flemish Government exempts these companies from additional energy and CO2
reduction requirements.
Benchmarking Convenant: To join the Benchmarking Convenant, a company has to have an annual
energy consumption over 0.5 PJ. These companies benchmark their energy efficiency measures to
other big energy consumers. From the findings, new energy efficiency objectives will be drawn.
Companies receive compensation from the government for this procedure.
3.2.2 Appropriate technology for Bio-Sol-ESCos
The next statistics should give an indication of recent use of thermal energy from biomass and solar
panels in Flanders. In a 2009 research on sustainable energy in Flanders in 2007, conducted by
VITO (Flemish Institute for Technological Research), the following numbers regarding green heat
production have come forth:
warmte
Thermal energy (GJ)
With regard to total heat
production (%)
Green heat production by
3,073,847
8.2
cogeneration installations
Energy and heat sector
1,131,454
5.8
DIY producers
1,942,393
10.8
• Industry
1,736,518
10.5
• Tertiary sector
92,566
47.5
• Agriculture
113,309
9.6
Green heat production by
6,653,940
1.6
thermal installations only
Biomass installations in
6,338,044
1.5
industry/tertiary
sector/households/agriculture
• Industry
3,042,267
1.6
• Tertiary sector
40,859
0.1
• Households
2,848,707
1.7
• Agriculture
406,212
1.7
Heat pumps
277,890
100
Heat pump boilers
339
100
Solar boilers
37,667
100
Total green heat production
9,727,787
2.1
Table 3.1 Green heat production – Flanders, 2007
Table 1 displays the amount of thermal energy produced by different ways of production, and their
shares with regard to the total heat production per production type in Flanders in 2007. A large
share, 47.5%, of all thermal energy produced by cogeneration installations in the tertiary sector, is
generated from biomass. The amount of thermal energy produced in absolute terms, 92,566 GJ, is
rather small (3%) compared tot the total amount of green heat production by cogeneration
installations, 3,073,847 GJ. Solar boilers, for instance, produce 37,667 GJ. This barely amounts to
0.01% of Flanders’ total heat production (all fuels, also non-renewables), which is 436,006 TJ,
displayed in table 2. It also shows that in Flanders most of the heat is generated by conventional
fuels like gas (46%) and petroleum products (27%). Biomass, which practically all green heat is
generated from, takes a marginal position of 2%. 32% of all green heat is produced by cogeneration
installations. The remaining 68% is produced by installations that produce heat only from biomass,
heat pumps, heat pump boilers, and solar boilers. Because of large waste incineration plants, 8.2%
of all heat produced is green heat.
Fuels
Heat production
TJ
%
Solid fuels
55,599
Petroleum products
126,107
Gas
214,843
Other fuels
53,892
Biomass
9,412
Waste recuperation
2,837
Total
463,006
Table 3.2 Total heat production – Flanders, 2007.
12
27
46
12
2
1
100
Table 3 displays the important positions of waste and wood as fuels of green heat production by
cogeneration. Together, they comprise more than half of all heat production.
Fuel
Heat production
GJ
%
Bio-oil
418,538
14
Biogas
372,465
12
Sludge
534,365
17
Wood
661,066
22
Waste
1,087,413
35
Total
3,073,847
100
Table 3.3 Fuels of green heat production by cogeneration – Flanders, 2007.
1.6% of all installations that produce heat only deliver green heat. Most of this share comprises
wood incineration (hence table 4).
Fuel
Heat production
GJ
%
Biogas
64,243
1
Wood
6,022,688
90
Waste
251,113
4
Heat pumps
277,890
4
Heat pump boilers
339
0
Solar boilers
37,667
1
Total
6,653,940
100
Table 3.4 Fuels of green heat production by thermal installations only – Flanders, 2007
However, none of the statistics above shows the number of production units installed. This, and
their recent years’ trends could indicate what technologies are gaining popularity and might be
clever to invest in. The development of green energy production influences green heat production if
cogeneration is applied. From the same VITO report, it is made clear that especially the use of
biomass has spiked up in Flanders. Table 5 shows that energy production from biomass has risen
from 11,300 MWh in 2001 to 842,487 MWh in 2007. The number of production units has increased
from 20 in 2004 to 49 in 2007. Solar energy production has grown from 300 MWh to 5,560 MWh
over the same timespan. 438 solar units were present in 2001, while this number has risen to 3,876
in 2007. How many of these units are cogeneration installations is not mentioned.
Green energy production in Flanders
1800000
1600000
1400000
MWh
1200000
biogas
biomass
1000000
waste incineration
800000
solar energy (pv)
wind energy
600000
hydropower
400000
200000
0
2001
2002
2003
2004
2005
2006
2007
Figure 3.1 (VREG, ODE Flanders, VEA)
MWh
Hydropower
Wind energy
Solar energy (pv*)
Waste incineration
Biomass
Biogas
Total
2001
3,000
34,700
300
133,600
11,300
41,600
224,500
2002
2,700
56,300
500
139,800
71,600
58,200
329,100
2003
1,900
58,900
400
131,300
110,100
133,900
436,500
2004
1,926
95,044
656
135,268
194,885
199,179
626,958
2005
2,283
154,443
1,300
159,523
427,080
222,406
967,035
Table 3.5 Green energy production in Flanders (*pv: photovoltaics).
Hydropower
Wind energy
Solar energy (pv)
Waste incineration
2004
7
26
438
7
2005
7
31
620
8
2006
11
34
1,153
9
2007
12
38
3,876
9
2006
2,079
237,492
3,122
208,184
806,807
173,375
1,431,059
2007
2,740
281,376
5,560
256,120
842,487
252,094
1,640,377
Biomass
20
25
35
Biogas
22
22
27
Table 3.6 Number of production units in Flanders.
49
27
Although heat from renewable energy sources is generated on a very small scale (2.1%) compared
to Flanders’ total heat production, this number is on the rise as Flanders has emission targets to
fulfil. Biomass is by far the most prominent renewable energy source, and waste and wood
incineration are the most abundant technologies. The number of solar panels has been increasing
rapidly over the last years. These are small units however; the amounts of solar energy and heat
production take only slight shares of the entire renewable energy sources production, both
electricity and heat.
(All data provided by VITO, 2009).
3.3
Lessons learned
According to the managing director of a Flemish ESCo, there are a few conditions for a successful
biomass project in Belgium:
•
•
The third party must be able to secure the biomass influx. Without a sufficient amount of
resources, there will be no project.
The location of the project must have enough working hours. If the resources are not used,
there will be no project either.
Projects are successful from 100 kWth, but preferably from 1 MWth, and rather with an installation
that generates both energy and heat. In Belgium, there’s always third party financing for such
projects.
Sources
VEA (Flemish Energy Agency), Flemish Department of Environment, Nature and Energy (LNE),
ODE Flanders (Organisation for Sustainable Energy), VITO (Flemish Institute for Technological
Reearch)
http://www.ond.vlaanderen.be/ENERGIE/pdf/Brochure%20Duurzame%20Energie%202007.pdf
http://www.bapdriver.org/doku.php/national_actions_plans
http://www.erec.org/fileadmin/erec_docs/Projcet_Documents/RES_in_EU_and_CC/Belgium.pdf
http://www.energiesparen.be
http://www2.vlaanderen.be/economie/energiesparen/doc/brochure_bioenergie.pdf
http://publicaties.vlaanderen.be/docfolder/14103/brochure%20premies%202009%20mei%20lage%
20kwaliteit%20(2).pdf
http://www.emis.vito.be/EMIS/Media/Rapport_inventaris_duurzame_energie_2007_FINAAL_04_
09.pdf
4 Bulgaria
4.1
Legislative, Financial, contractual and marketing framework
4.1.1 Legal background for TPF and ESCos
Related legal background in the public and the private sector for TPF and ESCos. Insurance
schemes required.
The legal framework in Bulgaria especially for public and private sectors (strategies, legislation,
regulations, available grants or other financial sources) related to the Deliverable D2.2 is presented
bellow.
Energy efficiency (EE) has been among the Government priorities in the last 8-10 years, while
renewable energy sources (RES) and ESCo’s are becoming a priority only since January 2007,
when Bulgaria joined EU. The current Energy Strategy of Bulgaria gives high priority to EE, but
not to RES and ESCo’s. The new Energy Strategy of Bulgaria, expected to be adopted by the
Parliament in the next couple of months, gives high priority to both energy efficiency and
renewable energy.
The Government has adopted the following programmes on the development of EE and RES:
•
National Long-term Programme for Promotion of Renewable Energy 2005-2015
• National Long-term Programme for Energy Efficiency till 2015
• First National Action plan for Energy Efficiency 2008-2010
• National Short-term Programme for Energy Efficiency
• Biomass Action Plan
Unfortunately, the implementation of these programmes (judging from the previous experience) is
quite poor.
A Law on Energy Efficiency was adopted in 2004. The Law regulates mainly EE in buildings in
relation to the Buildings Directive (EPBD).
A National Action Plan for renewable energy by 2020 has prepared and presented to the EU
Commission in June 2010 as a part of common requirements to the all EU member states. The next
ordinances, regulations and additional legislation initiatives in the field of RES policy
implementation are expected.
A Law on renewable energy was adopted in May, 2011 by the government of Bulgaria. In this low
are presented the rules for using RES including solid biomass, liquid biofuels for heating, domestic
hot water preparation and combined heat and power generation. But this low does not provide any
benefits and subsidizing schemes for RES-heating and solar energy in residential, public and
industrial sector in the country. The missing legislation promoting RES for heating is the main
problem related to RES promotion in Bulgaria. The most likely reason for ignoring RES-heating is
the lack of strict EU requirements (i.e. Directives) in this regard.
A Law on RES, Alternative Fuels and Biofuels was adopted in 2007 and it regulates satisfactory
RES-electricity and biofuels, but it does not provide any stimuli to RES-heating and solar energy.
The missing legislation promoting RES-heating is the main problem related to RES promotion in
the country. The most likely reason for ignoring RES-heating is the lack of strict EU requirements
(i.e. Directives) in this regard.
Generally, the competition on the Bulgarian ESCo’c market is chaotic. The ESCo’s business
models implementation have serious competition in comparisons with natural gas, electricity and
heavy fuel oil project for hot water production by reason of National policy absence .
For the purpose of encouraging the use of ESCO’s services in the design, supply, and installation of
this heating system, it is recommended to develop a model of a standard contract for provision of
such type of services. That is in conformity with Art. 9, it. 2 of the Directive on Energy End- Use
Efficiency and Energy Services. The requirements to the energy providers of the same Directive are
expected to boost the demand for ESCO’s services related to increased energy efficiency.
The regulatory framework in Bulgaria is poorly developed. Regarding the biomass heating
technologies, there are no standards concerning the combustion process scheme. The standards
regulate the parameters of exhaust gases and the system overall efficiency. The following standards
are enforced:
•
BDS EN 303-1:1999. Heating boilers. Heating boilers with forced draught burners.
Terminology, general requirements, testing and marking
• BDS EN 303-5:1999. Heating boilers. Heating boilers with forced draught burners. Heating
boilers for solid fuels, hand and automatically fired, nominal heat output of up to 300 kW.
Terminology, requirements, testing and marking
• BDS 17396 – 1997 – Technical requirements and test methods for furnaces used for heating
(burning solid fuels)
• BDS 3872 – 1999 – Requirements, marking, and testing methods for cooking stoves
(burning solid fuels).
Regarding the biomass fuels, the only national standard is BDS ISO 1928:2000 Solid mineral fuels
- Determination of gross calorific value by the bomb calorimetric method and calculation of net
calorific value. As the name indicates, this standard is designed for mineral fuels, but due to the
absence of a specific standard is used for biomass fuels too. The Bulgarian producers of biomass
fuels use the following foreign standards:
•
•
•
•
•
•
•
•
•
ASTM 1288 – Standard test method for the durability of biomass pellets
CEN/TS 15210-1:2005 – Solid biofuels - Methods for the determination of mechanical
durability of pellets and briquettes - Part 1: Pellets
CEN/TS 15210-2:2005 – Solid biofuels - Methods for the determination of mechanical
durability of pellets and briquettes - Part 2: Briquettes
DIN 51731 – Testing of solid fuels – compressed untreated wood – requirements and testing
DIN 51731:1996. Testing of solid fuels - Compressed untreated wood - Requirements and
testing
DIN 51749 – Determination of the fuel carbon content
ONORM M 7135:2000: Compressed wood or compressed bark in natural state - Pellets and
briquettes - Requirements and test specifications
SN 166000:2001. Testing of solid fuels - Compressed untreated wood - Requirements and
testing
SS 187120:1998. Biofuels and peat – Pellets – Classification.
In Bulgaria there are actual BDS standards for solid biofuels which are accepted and presented by
the Bulgarian institute for standardization in 2010 as follows:
ƒ
БДС EN 14961-1:2010 – Solid biofuels. Specifications and categories of fuels. Part 1:
General Requirements.
ƒ БДС EN 14961- 2:2011 – Solid biofuels. Specifications and categories of fuels. Part 2:
Wooden pellets for non-industrial needs.
ƒ БДС EN 14961- 3:2011 – Solid biofuels. Specifications and categories of fuels. Part 3:
Wooden briquettes for non-industrial needs
ƒ БДС EN 14961-4:2011 – Solid biofuels. Specifications and categories of fuels. Part 4:
Wooden shavings for non-industrial needs.
БДС EN 14961-5:2011 – Solid biofuels. Specifications and categories of fuels. Part 5: Fire wood
for non-industrial needs.
In the future, development of new standards and normative methods will be required, thus revealing
opportunities for the development of new technologies and a methodology for biomass analysis and
development of databases for the proximate and ultimate analysis. Such steps are already taken by
some of the European countries. Austria, Sweden, and Germany have developed national standards
for analysis and evaluation of the properties of biomass pellets and other biomass fuels. These
standards are well defined and could be enforced in Bulgaria. This opinion is also shared by the
companies that produce wood pellets, because the pellets should cover specific requirements and
only through such standards their production could be on the market without causing problems and
client complains
The Government of Bulgaria (and perhaps most measures apply to the rest of the EU Member
States) shall implement the following measures:
•
•
•
•
•
•
Offer State and/or local subsidy programmes (as mentioned in the above section)
Develop standards for biomass fuels (there are no such at the moment).
Develop standards and quality labels for biomass utilization technologies.
Better education on biomass fuel production, biomass energy utilization technologies, and
heat pumps, through inclusion of these subjects in the curriculum of students in relevant
subjects in State Universities.
Set higher requirements for the heating/cooling technologies (in terms of energy efficiency
and renewable energy utilization) in new buildings and the refurbished ones, in relation to
EC Buildings Directive.
Introduce more sustainable forestry practices and limit the biomass fuel outside EU, so that
the wood fuel price remains predictable and competitive.
Research in the field of biomass wood fuels and combustion technologies
The application of biomass boilers utilizing biomass fuels is economically viable in Bulgaria and
the other EU Member States. These technologies are mature and competitive for decades already.
On the other hand, the research is still ongoing in the fields of automation, efficiency improvement,
and emissions reduction. In Bulgaria, research in these directions is done primarily by the respective
research departments of the companies engaged with the design and manufacturing of these
technologies. The largest such company is Erato Holding. Additionally, technological research is
carried out by the Technical Universities in the country.
At EU level, research in this area is funded by the Seventh Framework Programme (FP7), where
Area Energy.4.2 Biomass focuses, among the others, on improving the performances of small scale
biomass boilers/stoves and their exhaust systems in order to achieve very low levels of pollutants
emissions at highest efficiencies and low cost. Additionally, cross-cutting issues include the
adjustment of combination biomass energy boiler for heating and heat pumps for heating and
cooling for ever reduced energy demand of passive or even plus-energy houses and thermal storage
4.1.2 Existing contracts
Different ESCo business models are presented in this section.
A. Energy Performance Contracting
It is a contract scheme between three partners:
• ESCo;
• Customer;
• Financial Institution - Bank.
The Customer is obliged to pay the project costs as typically, it borrows from a third party, which
most often is a bank or a leasing company and due to the energy savings guaranteed by the ESCo,
repays the cost of the borrowed capital. The ESCo undertakes a responsibility for ensuring a
minimum energy savings achieving and if a certain minimum turns out to be exceeded by the
Customer, and then the former compensates the latter for the surplus margin effect. In case the
opposite happens, i.e., the Customer reaches extra economies in comparison with the initially
stipulated, and then it pays to the ESCo the sum of the shortage margin. Thus, the ESCo takes on
the risks related to the project fulfillment instead of the Customer. But the funding institution
evaluates the credit risk with the Customer. This kind of Contract is suitable for Customers, which
have better opportunities to borrow than the ESCo.
B. Energy Contracting
These Contracts have two parties:
• ESCo;
• Customer.
The ESCo funds the project completion and the customer repays it by means of monthly
installments, which include also the cost of the consumed energy. This energy is measured through
a certified gauge. Once the purchasing price is repaid, the customer becomes owner of the
contracted equipment.
C. Public-private partnership
These Contracts have two parties:
• ESCo;
• Municipality.
First of all both ESCo and municipality are signed contract for the Public-private partnership. The
municipality participate with your own contribution for guarantee of the land of thermal plant
construction. The ESCo invests all costs (excluding costs for land) for the project implementation.
The municipality buildings pay on monthly base the consumed energy.
Payment schemes:
1. The thermal energy paid by the energy users (customers) in the objects for 1 kWh supplied
thermal energy is by 30% lower, compared to the average price of 1 kWh day tariffs of the
electricity by low voltage, according to the current bulletin of the electricity distribution companies
in Bulgaria.
2. The thermal energy paid by the customers in the objects for 1 kWh supplied thermal energy is by
30% lower, compared to the price of 1 kWh of the light fuel oil, according to the current bulletin of
the Bulgarian petroleum company Lucoil Jsc.
4.1.3 Financial institutions and schemes
Preliminary identification of appropriate financial institutions. Related financial schemes usually
adopted and requirements (conditions, guarantees etc) from the financial institutions.
The most popular financial institutions are commercial banks. The related financial scheme is debt
financing to the ESCo borrower. The main conditions are as follows:
• The project to be eligible (according to the bank). For example EBRD facility in Bulgaria
through BEERECL – Bulgarian energy efficiency and renewable energy credit line. The
BEERECL has requirement for the projects eligibility.
• Grant component which the borrower will get from EBRD - 20% of the total project costs to
be include in the loan disbursement after the project completion. The received Grant shall be
used for repayment of the loan and will be taken as own equity in the project
• Minimize of project risk.
• Small scale project financing with the total loan value of 2 million EUR.
• Loan maturity – up to 7 years from the signing of the financial documents
Pledge in the amount of 150% from the project loan;
4.1.4 Barriers
Identification of the reasons for the weak development of BioSolESCos operations up to now, as
well as remaining barriers:
•
•
•
•
•
•
4.2
Access to the capital;
Weak awareness and experience;
M&V issues - problems
Conflict with the conventional procurement process;
Complex legal and contractual terms;
Conflict in the public sector between ESCo’s and conventional fuels suppliers;
Technical framework
4.2.1 Quality and monitoring
Quality and monitoring certifications needed in each participating country. Examine those aspects
of measurement and verification (M&V) that are crucial for BioSolESCos
Energy Services Companies managed measurement and verification activities typically apply to
small scale energy service contract projects. The ESCo’s and participant will often enter into
contractual agreements that include expected energy savings, how savings are measured, who is
responsible for near term and long-term project management, and compensation procedures. These
projects may have long development and construction cycles.
ESCo’s personnel may spend a considerable amount of time on an individual site before and after
ECM installation to ensure that expected outcomes have a high likelihood of success. Projects in
which the ESCo’s has primary responsibility for measurement and verification often represent no
more than a few score of participants per year, depending on the utility program size.
The M&V – energy savings standard is one crucial factor to develop EMC. M&V standard
determines the specific energy savings of both participated parties in EMC. For the implementation
of the energy management contract, it is prerequisite to create EU M&V standard. This M&V
standard can achieve the following benefits:
• Clearly knowing to the net amount of the energy saving and energy costs;
• Guaranteeing and keeping operational performance of the improvement equipment
maintenance;
• Enhancing the reliability of ESCo’s guarantee to the energy savings;
• The customers can appropriately appraise the improvement benefits when it is unable to
make the guarantee for ESCo’s.
Thermal energy delivered to the customers under energy contracting. A measuring device (heat
meter), which has been duly certified and metrologically licensed, is used to measure the total
amount of consumed energy. The actually supplied quantity of thermal power are measured and
invoiced to the energy consumers.
4.2.2 Appropriate technology for BioSolESCos
Bio-ESCo’s plants – appropriate technology
The biomass boiler plant use wood chips as a fuel. The wood chips are stored in a separate
warehouse, located next to the biomass boiler. The wood chips are fed automatically from the
warehouse to the boiler hopper by a screw conveyor with different length. From the boiler hopper
the biomass is transported in the boiler chamber by an internal screw. The combustion of wood
chips takes place in the burning chamber. The generated hot water is fed into insulated heat
accumulator. The boiler is equipped with a primary combustion air system, dimensioned for a full
cauterization in the primary combustion. For combustion of the flue gases a secondary combustion
air system is foreseen. On the display of the control panel it is possible to read the current boiler
output, load and all other relevant parameters. The control panel is fitted with PLC control. The
system consists of a temperature sensor and flow meter in the forward flow pipe from the boiler,
temperature sensor in the return flow pipe to the boiler, O2-probe (as an option) in the flue gas
channel, frequency converter for the feeding screw gear motor, frequency converters for motors on
all combustion air fans, frequency converter for the flue gas fan and the required programming in
the control panel. The system works in the following way: the desired forward flow temperature is
pre-set on the control panel. If the actual forward flow temperature is lower than the pre-set value,
the fuel supply and the amount of combustion air are automatically regulated upwards. If the actual
forward flow temperature is higher than the pre-set value, the fuel supply and the amount of
combustion air are automatically regulated downwards. The dampers and frequency regulators
receive a signal from the control panel about the optimum settings allowing the adjustment to take
place automatically. The fuel supply is automatically adjusted using the frequency regulated gear
motor, which receives a signal from the control panel for the optimum speed of the transport screw.
The primary side is supplied with circulation pumps, fittings and a heat accumulator. The hot water
by the heat accumulator with a temperature of 75о С is transported to the distributing water collector
by means of circulating pump. The heating units in the rooms are supplied with hot water from the
distributing water collector. A returned water collector collects the water used by the heating units
that has a temperature of 60о С. The water is fed from the returned collector into the water heating
boiler by means of a circulating pump. All facilities of the boiler station are equipped with control
and safety valves as well as with control, measuring and automated devices.
Bio-Sol-ESCo’s plants – energy cabin
The biomass energy boiler and the auxiliary process equipment are situated in a 20-foot metal
container – energy cabin with thermal insulation. The hot water boiler is compact one, made of
steel, with cast iron burner and panel with control devices, and is equipped with an automated fuel
feeding device for wood chips or wood pellets and fire safety system. A system for automated
regulation of the heat supply is also implemented. New thermal insulation of the water pipe network
will be installed. An additional pipe connecting the energy cabin with the existing pipe network of
the internal heating installation of the building will be built. Furthermore, a chimney for the
separation of the exhausted gases will be constructed.
Completed solar installation for generation of hot water for everyday necessities on the roof of
energy cabin will be constructed. The system has automatic regulation and control for parallel work
with the biomass boiler.
ESCo’s shall be encouraged to promote more actively this technology. It is recommended to
develop for them a model of a standard contract for provision of such type of services. The
Directive on Energy End- Use Efficiency and Energy Services gives strong incentives to energy
providers to contract ESCo’s to implement appropriate technologies.
4.2.3 Software tools available
There are two software tools available. These tools comprise to:
1. ERATO-2005 specialised software for biomass energy audits, feasibility studies and
monitoring
2. ENSI – Energy Saving International - Economic software
These tools cover the following areas:
• Solar and Biomass plants simulation and monitoring –evaluation
• Economic evaluation tools
• Flexible optimisation tools
4.3
Lessons learned
Lessons learned from successful experiences and frequent faults of the past attempts. List of traps to
be avoided
•
•
•
•
•
Organisational and managing process improvement;
Improvement of the ESCo’s project management methodology;
Additional mechanisms and tools for project development;
Project risk forecast and clear risk analysis;
Deep project monitoring.
5 Cyprus
In Cyprus the ESCo market has not been yet developed. Nevertheless there are a few energy
advisors and consultant companies offering advice for energy savings in buildings and industry
[Bertoldi, 2010]. Some of these companies offer within their range of activities ESCo projects
(http://www.nec-group.com/ ), while by internet search one ESCo appears as the first ESCo
established in Cyprus, but no projects appear in the website yet (www.atiraenergy.com).
Solar thermal applications is a promising sector for Cyprus due to the favourable climatic
conditions and the already developed market.
The Energy Performance Directive (ESD) has been transposed into national legislation with Law
31/2009 (3/4/2009) but up until now there is no separate Law dealing with the operation of an
ESCo. The identified barriers are low awareness among end users and lack of standardized
documents and procedures, especially for projects in the public sector.
[personal contact: Kyriakos Kitsios, Cyprus Energy Agency – CEA, 2009, 2011]
Sources
Paolo Bertoldi, Benigna Boza-Kiss, Silvia Rezessy, Institute for Environment and Sustainability,
JRS Scientific and Technical Reports: “Latest Development of Energy Service Companies across
Europe – A European ESCO Update”, 2007.
http://www.nec-group.com/
www.atiraenergy.com
Personal contact: Kyriakos Kitsios, Cyprus Energy Agency – CEA, 2009, 2011
6 Czech Republic
The last Population and housing census from 2001 shows the key numbers of the housing and
dwellings stock in the Czech republic. Total number of residential dwellings is 4 366 293, from
which are 3 827 678 permanently occupied. Total number of houses is 1 969 568, from which are 1
630 705 permanently occupied.
The rate of family houses from the total sum is 1 407 248, the rest of the housing stock – 223 457 represents permanently occupied multi-family houses.
The share of dwellings in multi-family houses represents about 60%, i.e. 2,3 mio of dwellings. The
panel (prefabricated) building stock represents 31% of the total, i.e. 1 165 000 dwellings in the
Czech Republic.
The structure of the ownership of the permanently occupied dwellings in the Czech Republic is
shown in the figure:
Figure 6.1 Ownership of the permanently occupied dwellings in the Czech Republic.
Rental dwellings - percentage of:
•
•
•
•
municipal buildings: 76%
buildings of private enterprises: 6%
personally owned rental buildings: 14%
combined and other: 4%
The average age of the rental buildings is about 32 years. Between 1959 and 1969 have been
annually built about 40 000 dwellings, in the period of 1970 – 1980 there have been built 60 000
dwellings per year, the next decade the number came down back to 40 000 and the last decade is the
number of finished dwellings rather small – from 4 000 till 12 000!
In the period of 1960 – 1990 there have been discarded about 1 million of old flats! The net increase
of the dwellings was quite low!
The average living floor area of one flat in the residential building block is 39 m², the average living
floor area per capita is less than 16 m ².
Specific heating energy consumption of the residential building blocks range from 55 to 400
kWh/m²a. The value depends on the construction period of the building as well as the behaviour of
the tenants in relation to the possibility to influence the payment for the space heating. The worst
conditions represents the construction period between 1960 – 1983 (prefabricated blocks with the
low thermal insulation, pure quality of the construction as well). All payments for the heating based
on the real energy consumption represent very strong incentive and decrease the heat consumption
even if the building (envelope) construction shows high thermal losses.
Average cost for the space heating depends on the:
•
•
price of the heat ca €25/MWh to €65/MWh (average price is €43/MWh)
energy consumption ca 55 to 400 kWh/m²a (average cons. 200 kWh/m²a)
and range from 1,5 to 11,0 €/m²a. Average heating cost is €8,6/ m²a.
6.1
Legislative, financial, contractual and marketing framework
The following graph shows the Czech part of the European Energy consumption.
Figure 6.2 Chech percentage in the European Energy Consumption.
6.1.1 Legal background for TPF and ESCos
Privately owned rental households have the state regulation rents. Tenants of these households have
no incentive to invest into the building improvement as well \as the owner. This segment of the
building sector represents old building before the 1948 and does not relate to the framework project
anymore.
The municipal household sector, which is rapidly decreasing by the privatization, has quite bad
position in relation to the long term investment decisions. New owners of the privatized flats must
at first establish common legal person (mostly it is co-operative or so called consortium of coowners of the building) and only the whole building (block of flats) can be privatized. This creates
unpleasant situation because of different interests and different view on the future of the property,
which fact is given by the different structure of the current occupants of privatised flats. There is not
very much willingness for the movement in the Czech Republic, if its not necessary for serious
reason. Therefore the structure of the tenants and consequent owners is very mixed.
Management of apartment buildings is governed by several different laws and act, depending on
dwelling type and ownership.
The management and decision framework for the co-operatives is established by the Co-operative
Law, which describes the roles of the individual dwelling owners (=shareholders), co-operative
board and co-operative members meetings. In most cases, the building manager (the specialized
maintenance and service company) is hired for the “daily management” of the property inclusive
accounting of the co-operative.
The final decision is taken by the members meeting, the top body of the co-operative. This meeting
charges the board (or directly the chairman which can be in the position of the board if the legal
person / co-operative is rather small) to execute the conclusions. The board delegate the work to the
real manager of the property, which is in most cases the specialized maintenance and service
company. The board is responsible for the quality of the service and maintenance, but the
qualification of the board members mostly does not comply with the professional level needed for
decision. Technical regulations concerning the space heating and the thermal conditions and
characteristics of buildings are specified in the National Building Standard. The building code
applies primarily to newly constructed buildings as well for reconstructed buildings.
Czech Energy Agency (CEA) presentation to legal situation for contracting (CEA has gone to bust,
therefore only a copy of internet presentation)
Figure 6.3 Czech Energy Agency (CEA) presentation – slide1.
Figure 6.4 Czech Energy Agency (CEA) presentation – slide 2.
Figure 6.5 Czech Energy Agency (CEA) presentation – slide 3.
Figure 6.6 Czech Energy Agency (CEA) presentation – slide 4.
6.1.2 Financial institutions and schemes
For usual maintenance expenses, a budget is allocated by the tenants to the company.
For major investments the approval, mostly of the 2/3 of the owners is required (the percentage can
vary and it is defined in the co-operative statutes).
Both long and short term budgeting in co-operative is prepared by the co-operative board and
approved by the annual meeting of members (i.e. households living in the building). In practice all
major refurbishment require a decision buy the members meeting. Minor refurbishment within an
approved maintenance budget can be decided by the board.
Major refurbishment is decided separately and financed either through direct payments by the
owner-occupiers or through bank loans. In case of bank loan financing the owner-occupiers pay
their share back through a special “financing fee”, defined similarly to the maintenance fee in
€/m²/month. The willingness to take a bank loan is very low and is not favourite among the building
owners.
Co-operative refurbishment financing relies mainly on their own financing sources: saved money,
banks or other commercial finance institutions.
Governmental financing and support for housing production and refurbishment is administrated by
the State Fund for the Household Development under the Government Act No.299/2001 of the
Ministry of the Local Development and represents decreasing the interest rate of the commercial
loan for the reconstruction of the prefabricated residential buildings.
Two possibilities for energy feeding:
•
•
energy rates
certificatess
Figure 6.7 Czech Energy Agency (CEA) presentation – slide 5.
6.1.3 Barriers
Access to financing of energy efficiency is a major barrier in Czech Republic and specific support
mechanisms have to be developed.
Co-financing is especially important at the beginning of ESCOs' activities, since at that stage the
ESCO industry is largely unknown, but subjected to similar, or even stricter treatment when seeking
financing than other customer. Since ESCOs in developing countries often are not set up by utilities
or other large companies, but independently, they need guarantees enabling them to receive credits
from banks as well as financial support. Other financial support mechanisms may include partial
risk guarantees, loan loss reserve funds, special purpose funds or interest credits.
Because of limited budgets Czech is not able on their own to create guarantee funds and other
support mechanisms for ESCOs. Grants are widely used as a mechanism for supporting ESCOs as
well as, more rarely, loans. They may be issued as unsecured interest-free loans for SMEs.
Since international or national funds are usually not granted for a long term, it is of crucial
importance to create a local banking system open for EPC financing.
As presented above, the major problems for banks in Czech is lack of knowledge about EPC, high
initial costs and uncertainty about the credit-worthiness of ESCOs and their clients, limited
understanding of the logic of ESCO projects.
The transition from public funding through subsidies or loans to commercial financing is however
not easy since the former can usually give better conditions than the latter, and they might even
compete with each other. For this reason, withdrawing public loans or funds as soon as the
commercial banks are able and willing to engage in EPC is very important otherwise, the support
programmes will only finance less profitable projects, which banks do not want to take on. One
option would be not to give loans or grants not ESCOs, but to set up guarantee facilities for (local
or national) banks and financial institutions.
Main barriers summarized:
•
•
•
•
•
•
Less experience in financing and funding of projects
Liberalisation of the electricity market
Lack of knowledge of EPC to banks and investors
Energy exclusive rights
Determined deeding fees
Funding conditions
Minimum requirements for existing buildings (Article 6): Minimum requirements for the thermal
quality of building components are defined in the building codes by U-values (CSN 73 0540).
These requirements apply in reconstruction and modernization of buildings or their components.
The methodology for calculating the energy performance of buildings in terms of the heating energy
demand includes the thermal characteristics, the position and orientation of buildings, the outdoor
and indoor climate, passive solar systems and natural ventilation.
Energy performance certification (Article 7): There is no obligatory certificate for the building
stock in the Czech Republic. Activities and results related to the mandatory energy auditing belongs
to the Energy law, seems to be the useful basement for the process of development the obligatory
certification methodology leading to the „labeling“ of buildings in near future.
Inspection of boilers (Article 8): Regulations about the obligatory inspection of boilers have been
adopted from the EU directive.
For the better and faster implementation of the framework conditions the following activities and
needs should be accelerated:
•
•
•
definition and wide awareness of the energy certificate of buildings (households);
relationship between the existing network of the state certified ernergy auditors and required
independent authorized experts to carry out energy certification;
legal framework development in order to incorporate energy performance requirements for
refurbishment projects, energy certification as part of dwelling/property sales.
7 Denmark
7.1
Legislative, Financial, contractual and marketing framework
7.1.1 Legal background for TPF and ESCos
The Green Tax Package, introduced in 1996 includes an additional tax on space heating and hot
water in the industry. If the company has made an agreement about energy efficiency the tax is
smaller. Heat and power produced with biomass or renewable energy sources receives a surcharge
from the client. 6
No electrical heating is allowed to be installed in new buildings, only central heating is allowed.
7.1.2 Existing contracts
There are only a few ESCo in the Danish market 7. A network of ESCos was formed in early 2009
in Denmark, to improve the general public’s knowledge of ESCOs in Denmark.
The few ESCo operations in Denmark have mostly been financed by the customer, and there was no
information available on biomass/solar ESCos.
Four different business models in Denmark were found 8:
ESCO is responsible for whole operation, where the ESCo is responsible for all parts of the
operations, from financing, to operation
ESCO responsible for energy renovation and operation, where the ESCo does not finance the
project, but only makes the necessary adjustments to the building and/or equipment or renovates the
building and operates the project
ESCO responsible for operation, where the client finances and performs the necessary changes or
renovation, and the ESCo only operates the heat plant
ESCO as consultant, where the ESCo is in the role of an advisor in the project
7.1.3 Financial institutions and schemes
Did not find any.
7.1.4 Barriers
General knowledge of ESCos, lack of monitoring and verification, financing institutions are
unaware of appropriate financing tools.
6
http://www.sparenergi.dk/graphics/publikationer/energibesparelser_uk/EnergyEfficiency/Green_taxes.pdf
Bertoldi, S. et al, Latest Development of Energy Service Companies across Europe - A European ESCO Update. JRC.
2007
8
http://www.savingtrust.dk/public-and-commerce/are-you-responsible-for/energy-in-a-municipality/energyservices/types-of-energy-service-agreement
7
8 Finland
8.1
Legislative, Financial, contractual and marketing framework
8.1.1 Legal background for TPF and ESCos
In Finland Motiva has very significant role in energy issues. Motiva Oy is a state owned company
promoting energy efficiency and renewable energy sources. ESCO concept is a tool to get energy
efficient technology and solutions implemented. Motiva works together with market actors for
promoting and developing ESCO and Energy Performance Contracting (EPC) concepts in Finnish
energy markets.9
Motiva’s national work package in the Eurocontract project is linked to the national study:
”Lifecycle Models for Indoor Environment and Building Services - CUBENet”.10 A number of
market actors, engineering companies, municipalities, public bodies, private companies and
organisations etc. are committed to the CUBENet project funding. The target of that project is to
create new service models for new buildings and renovation projects where the contractors would
be responsible for the building engineering solutions and systems for a longer period than normally
in building projects and would take responsibility of the management, maintenance and indoor
quality (including energy costs) of the building.
11
Motiva acts as a link between ESCOs and their potential clients by developing ESCO models and
tools and marketing the ESCO concept. One action to support that was the creation of an ESCO
project register12. In that register seven companies are now listed having utilized the ESCO concept
in Finland in their business. Apart from those six companies two energy utilities have applied the
ESCO procedure in projects dealing with secondary heat recovery from an industrial plant to a
municipal district heating system in one case and replacing oil with wood fuel in heating a building
complex in the other case.13
8.1.2 Existing contracts
In Finland there are basically five different kinds of business models for selling heat:
1. Business model where the client owns the heating plant and the company only runs the
heating plant. The client carries themselves whole investment risk. This is the most common
heat business model in Finland.
2. Business model where the company owns the heating plant and the company runs the
heating plant. The company carries themselves whole investment risk. This is coming more
common business model in Finland.
3. Business model where the very big company owns the heating plants and the sister company
(or private person) runs the heating plant. The big company carries themselves whole
investment risk and the income of the sister company (or private person) is not very big.
9
EPC markets and ESCO business in Finland. 2007. Motiva
http://www.motiva.fi/julkinen_sektori/tuet_ja_rahoitus/esco-palvelu/cubenet
11
EPC markets and ESCO business in Finland. 2007. Motiva
12
http://www.motiva.fi/julkinen_sektori/tuet_ja_rahoitus/esco-palvelu/esco-hankerekisteri/
13
EPC markets and ESCO business in Finland. 2007. Motiva
10
4. ESCO – business model, not very common in Finland
5. Franchising – business model. Few companies has tried this business model in Finland, but
they have not succeeded to create a real business.
In North Karelia University of Applied Sciences (NKUAS) has developed a contract model for
cases where company (who owns the heat plant) sells heat to the customer. There is also a heat
selling contract model made in Energiateollisuus ry.14
In Finland ESCO company and customer can use general “Conditions for sale”.15
8.1.3 Financial institutions and schemes
When starting the introduction of the ESCO concept In Finland it was considered, more or less, as a
tool for the implementation of energy saving measures identified and reported in connection with
energy auditing. This is a consequence of the fact that a lot of energy audits in different client
categories have been carried out in Finland during the past ten years. Most of the audits have been
actions in implementing the Voluntary Energy Conservation Agreements. Energy auditing is
supported by the Finnish government and is linked to the national energy and climate strategy. In
the public sector about 50 % of the whole building volume has this far been audited this far and the
total number of the audited public and commercial buildings was 4300 at the end of the year 2005.
The average economic energy saving potential of 17 % in heat and fuels and 7 % in electricity has
been reported in the auditing reports. About two thirds of the saving measures proposed in the
reports have been implemented according to Motiva’s separate studies and clients response. The
high implementation rate is easy to believe because the average pay back time of all reported energy
saving measures is relatively short: about 80 % of the energy saving potential reported is possible to
achieve within a shorter than 2 years pay back time in municipalities and in the public sector (see
picture 1 below). This means that most clients normally prefer to implement the saving measures by
themselves rather than by utilising an ESCO service.16 This point is can act like a barrier to the
broading of BioSol Esco`s (or ordinary ESCO`s).
BioSolEsco`s can apply financial support from the ministry of employment and economy. Normally
support is 20 % from the investment cost of the ESCO.
8.1.4 Barriers
In 2009 in Finland we have only one BioSolEsco client (city of Jämsä, two cases) and one
BioSolEsco (Enespa Oy).
ESCO business has been growing in Finland but not to meet the expectations following the early
information from foreign ESCO and EPC markets and the growth of this business. Lately we have
noticed that our expectations have been unrealistic in our country probably because:
• The energy auditing program subsidized by the government and combined to the Voluntary
Energy Conservation Agreements has been one of the most important tools to improve
energy efficiency in the county. As far as the energy auditing program and the ESCO
concept work as complementary tools to each other both concepts can be expected to have
growing markets.17
14
www.energiateolisuus.fi
For example YSE 98, NLM 94, KSE 95
16 16
EPC markets and ESCO business in Finland. 2007. Motiva
17
EPC markets and ESCO business in Finland. 2007. Motiva
15
•
•
•
•
Until now the ESCO concept has been strictly focused on improving energy efficiency in
Finland. In many other countries EPC projects tie energy efficiency activities and renovation
needs closely together. In some countries energy projects or energy related activities are
called ESCO activities much more deliberately than the practise is in Finland and this is why
much higher growth rates can be shown there in this business area.18
The energy saving potential in foreign countries seems to be much higher than in Finland.
To create EPC business in the markets, where the expected saving potential is relatively low
is challenging and leads to tough requirements in verification and utilisation correction.19
In the Finnish renovation projects the driving forces are normally the needs to modernize the
spaces suitable for new or increased services in the building or to replace old architectural or
technical systems by new ones which would normally bring about improvements in comfort
levels etc. In general the insulation of building envelope is already good or it is not normally
economical to improve that in existing buildings only for energy saving reasons. Normally
only relatively few remarkably inefficient technical systems or structural deficiencies can be
found in the buildings.20
Combining the ESCO/EPC concept with renovation needs in Finland seems to mean that
indoor climate conditions, building services etc. will be often improved compared with the
reference situation and that the consumption of energy (heat and especially electric energy)
and the consequent costs decrease only marginally or might even increase. A common
tendency in the Finnish building renovation projects today is that when replacing old HVAC
systems with new ones, at the same time indoor air cooling systems are installed. This again
increases consumption of electric energy - even if new energy efficient control were
installed in the same time in order to regulation of the supply air flow into some spaces in
the building. All this means that new ESCO/EPC concepts and solutions should be created
for renovation projects, where energy efficiency (not necessarily energy cost saving) would
be guaranteed and verified.21
We believe that the EPC markets, as exist abroad, are limited in our country and there are not major
barriers to that - if we do not accept a relatively high level of energy efficiency as a barrier. Our
understanding of the high efficiency is partly based on the statistical results of the energy auditing
program where energy auditors report the proposed economical energy saving measures in auditing
reports to the clients. The results reported especially for the service sector show relatively small
saving potential over a 2-year pay-back time. This has naturally raised some questions and has been
openly discussed in Finland for some years. The ESCO business has been marketed widely in
Finland and the government gives financial support to the ESCO investment projects. There is room
also for ESCO business focusing strictly on energy efficiency improvements (as we have seen
especially in our industrial success projects) but e.g. the lack of knowledge and slowness in
adapting new methods are hindering the growth of applying the concept in areas where it could be
utilized more widely. Unlike in some countries where EPC is applied, we in Finland often face the
needs for verifying the annual energy savings not by comparing the annual energy costs of the
whole building or plant but of the systems to be included in the individual ESCO project. And this
we do not regard as a minor issue in ESCO concept marketing.22
18
EPC markets and ESCO business in Finland. 2007. Motiva
EPC markets and ESCO business in Finland. 2007. Motiva
20
EPC markets and ESCO business in Finland. 2007. Motiva
21
EPC markets and ESCO business in Finland. 2007. Motiva
22
EPC markets and ESCO business in Finland. 2007. Motiva
19
We have to remember that in 2008 there was about 400 BioSolEsco-like companies in Finland.
BioSolEsco-like company means companies, who are selling wood or/and peat base heat to the
customers.23
8.2
Technical framework
8.2.1 Quality and monitoring
8.2.2 Appropriate technology for BioSolESCos
Our opinion is that technology is not a problem in Finland for BioSolEsco`s. There are technical
solutions available for solar systems and for systems which uses soli fuels. It is totally different
issues are the prises of the Bioheating systems and bio fuels competitive to the other solutions.
8.2.3 Software tools available
All the reports, tools and the most important material created in Cubenet / Eurocontract –project can
be downloaded in Motiva web page.24 . The most important results in the view of Finnish national
project plan and targets in Eucontract project are the “ESCO-guide” (ESCO-opas) for municipalities
and the report “ESCO Service for Municipalities” (Kunnallinen ESCO-menettely).
• ESCO-opas (pdf, 437 KB) (= ESCO guide)
• Kunnallinen ESCO-menettely (pdf, 618 KB) (= ESCO service for municipalities)
• ESCOn sopimusohjelmamalli (pdf, 155 KB) (= tendering documents)
• Puhallinenergiansäästön laskenta (xls, 30 KB) (= Energy saving calcultion for fans)
• Riskinjako Makro-Meso-Mikro (xls, 30 KB) (=risk handling)
• Säästölaskelma (xls, 30 KB) (= calculation for energy savings)
• Success Factors (xls, 36 KB) (in Finnish)
The material has been also utilized in a project where four Finnish ESCO’s have contacted
municipalities marketing the service and training the staff to understand the ESCO service
flexibility e.g. in renovation projects. The project is coordinated by Motiva and it has got funding
also from the Ministry of Trade and Industry. Motiva expects that the ESCO’s have visited dozens
(40-50) of municipalities till the end of the year 2007, when the project is scheduled to end.
There is also available a software which is developed for simulation of action of heat plant.25
In Biohousing – project is developed a calculator for simulating small scale house heating system.26
8.3
Lessons learned
For municipalities the new Energy Efficiency Agreement, the agreement period starting in the year
2008 (it has started already), will state in the agreement documents e.g that the municipality (the
quotation below freely translated from Finnish):
23
Työtehoseura 2009. Unpublished database.
http://www.motiva.fi/fi/toiminta/escotoiminta/cubenet/
25
http://www.knowenergy.net/lampokeskus/
26
http://www.biohousing.eu.com/heatingtool/Default.asp?lang=eng
24
•
•
•
•
“will use new procedures to get energy efficient solution to be implemented in renovation
projects and in new building contracts and if necessary, independent on its own investment
budget
will find the necessary knowledge and understanding to be able to utilize ESCO service in
investments
finds out the possible obstacles in energy efficiency decisions in its own administrative and
decision making processes and tries to solve the revealed problems
when beginning new investments takes into account the option to utilize ESCO service
when the scarce financing sources will hinder cost effective investments to come true”27
Referring to the previous quotation in the Energy Conservation Agreement there will become still a
great call for information and training about ESCO service among municipalities, despite the fact
that Motiva has already started a focused and intensified info dissemination work like described
previously in this text.
After Eurocontract project Motiva will continue its work to enhance the penetration of energy
services to the energy markets depending on the future resources and our clients commitments
focused on ESCO service.28
27
28
EPC markets and ESCO business in Finland. 2007. Motiva
EPC markets and ESCO business in Finland. 2007. Motiva
9 France
Energy services (public lighting, gas and electricity distribution, district heating) in the form of
outsourcing public services in France dates back into the 19th century (Dupont and Adnot 2004).
The success of these and other “delegated management” services (waste and water management,
transport, telecommunication) financially strengthened the private companies involved in these
businesses, thus creating the basis of the French ESCO model (Dupont and Adnot 2004).
The French market is well developed and among the most developed markets in Europe (although
based on the peculiar, but long established French ESCO model – as discussed below and in next
sections) and it experienced a stable market growth between 2007 and early 2011. It is quite
concentrated market, as is it largely dominated by about 10 very large companies, generally
subsidiaries of main energy utilities though working independently from them. Earlier they were
referred to as “expolitant de chauffage” while they are now more often defined as ESCOs. New
actors have been entering the market and currently approximately other 100 smaller ESCOs
companies operate in the energy market (Marino et al 2011). The new actors which are mainly large
facility management and operation companies who provide financing in addition to traditional heat
ventilation and air conditioning (HVAC) services, manufacturers of building automation & control
systems (mainly multinational) who provide the EPC services found in other European countries and
local consultancies (Marino et al 2011, Bertoldi et al 2007). The most common ESCOs operations are
district heating, CHP, public buildings, facility management and private non residential buildings
(Marino et al 2011). French ESCOs mostly provide complex solutions, in contrast to ESCOs in
other European countries.
9.1
Legislative, Financial, contractual and marketing framework
9.1.1 Legal background for TPF and ESCos
In France, the action plan ‘‘Le Grenelle de l’environnement’’ has created an ESCo market in the
public sector with public–private partnerships and private investments. France National Renewable
Energy Action Plan sets a target of the share of renewable energies to be 27 % in electricity sector,
33 % in heating/cooling sector and 10,5 % in transport sector by 2020. The “Grenelle de
l’Environnement” is the basis for the action plan of renewable energies in France. The Grenelle de
l'environnement is an open multi-party debate in France that brings together representatives of
national and local government and organizations (industry, labour, professional associations, nongovernmental organizations) to define the key points of public policy on ecological and sustainable
development issues for the coming five years. The "Loi Grenelle 1" (implemented in August 2009)
is the resulting framework policy and introduced the following main commitments, in relation to
ESCOs activities here targeted29:
• Building and housing: generalization of standards of low consumption in new housing and
public building, plus setting up incentives for the renovation of housing and building
heating.
• Energy: development of renewable energy to achieve 20% of total energy consumption by
2020, ban on incandescent lamps by 2010, project of a tax based on goods and services
energy consumption ("carbon tax").
29
http://www.legrenelle-environnement.fr, http://www.iea.org/textbase/pm/index.html
The funding and the detailed rules for the implementation of the provisions of the Loi Grenelle 1
were specified in the Finance Law of the 2009. The Finance Law 2009 contains various provisions
to increase support of renewable energy. Some of the primary measures are:
• Eco-loans (0% loan for energy-efficient renovation (Art. 99)
• The creation of a zero-interest loan programme for major renovation activities. The aim is
for energy savings to allow repayment of the loan's capital. Activities that can be covered
under the loan include:
-Thermal insulation for roofs, exterior walls, and exterior glass surfaces;
-Installation, regulation or replacement of heating or hot water systems;
-Installation of heating or hot water systems using renewable energy.
The loan amount is limited to EUR 30 000.
In 2010 the Parliament adopted ‘Le Grenelle 2’ which further regulated the implementation of the
‘Grenelle de l’environment’, presents the concrete actions needed to reach the defined 2020 targets
in six main sectors: buildings and urbanisation, transport, energy and climate, biodiversity, health
and governance. Measures specific to buildings and energy efficiency include: thermal regulations
for the 2012 (implemented by end of 2011 in public buildings), the provision of the eco-loans and
the obligation of display of energy certificates on buildings and the definition of the second WCS
obligation period (up to December 2013 – see below). ADEME (French environment and energy
management agency) is the national agency in charge of implementing renewable energy and
sustainable development policy.
An important driver for uptake of ESCOs operation in private sector has been the implementation of
a White Certificate scheme (WCS) in 2006 (more detailed description of the scheme is provided in
section 9.1.1). Under the WCS energy savings obligations are imposed on energy suppliers in the
residential and service sectors. They comply with these obligations by returning an equivalent
number of certificates. End use energy saving actions are rewarded with certificates (under certain
eligibility requirements). End-use actions are eligible for all energy carriers and all sectors except
for the installations already covered by the European Emission Trading Scheme (ETS). So far 139
types of standardized actions were defined and validated covering all sectors (industry, residential,
transport and tertiary) and many end-uses or technologies (insulation, efficient boilers, etc.).
The 1st period of the WCS run from 2006 to 2009 and delivered more than 65 TWh of energy
savings (above the previously set target of 54 TWh). 550 000 high-performance heating systems
(condensing boilers, heat pumps) and 340 000 thermal insulation of buildings have been
implemented totalling in 3.9 billion euros invested in energy saving operations and a reduction of
GHG emissions of 1,83 Mt CO2 per year (Leinekugel T. 2012). The second WCS obligation period
started in January 2011 and is due to end in December 2013.
The building sector is the sector where white certificates are easiest to obtain, and since the
beginning of the scheme, most action has been seen in residential buildings (over 80% of energy
savings within the scheme30); the sector is also encouraged to reach certain goals for low-income
households. The Energy efficiency in the industrial sector is almost neglected, apart from the ETS.
The ADEME, together with TOTAL, launched in 2011 the 6th tender for research projects on
energy efficiency in industry31.
30
31
http://www.climatepolicytracker.eu/france
http://www.climatepolicytracker.eu/france
The terms ”energy service” and “energy service company”, common in Europe, appeared in France
only in late 1990s thanks to the liberalization of energy markets and due to the development of the
European Directive on Energy End-use Efficiency and Energy Services and the subsequent debates
(ADEME 2006). Energy service provision has developed in France since, but one of the most
important legislative restrictions that has impeded complex ESCO activity in the public sector is
that operation and particularly purchase of equipment in the public sector is not allowed to be
designated to private entities, only in the scope of very special and formal public-privatepartnership (PPP) agreements. Therefore, the Government Order of 17 July 2004 on PPP creates
the possibility to draw up PPP contracts where a concession scheme is not available and where
traditional procurement contracts (marchés publics) cannot be implemented because of the legal
restriction to have separate contracts for each phase of the design, construction and operation of a
project. The new Order also allows the public sector paying the private company’s remuneration
periodically during the project, and allows that payment being based on performance indicators
previously set out in the contract (instead of being purely revenue based).
French energy policy is based on a strong tradition of public service and specialization in a given
sector. As an example, EDF was not authorized to manage activities that are not directly and
naturally linked to its main fields. It was not allowed selling a mix of energy and services, which
therefore led to the very early introduction of the logic of unbundling and thus to the creation of
companies able to bear the financial risk of operations, and this is a key factor in the ESCO industry’s
development.
Previous and current sector specific policy initiatives and regulations are as follow.
Biomass
Some important programs related to biomass-to-energy routes are discussed in the following.
•
•
•
•
1995- 1999: le Programme Bois Energie et Développement Local (PBEDL) was focused on
11 selected regions and concentrated on the promotion of collective/ industrial bio-heating
systems, and on the support of wood supply companies.
2000- 2006: le Programme Bois Energie (PBE), was launched by ADEME with the view of
developing industrial and district heating by encouraging the rational utilization of wood
wastes. It covered all France.
Measures to raise awareness, promote best practices and provide information on collective/
industrial heating as well as integration of domestic wood heating have been introduced
overtime.
Financial support for Collective/Industrial biomass plants:
– Investment subsidy
– ADEME (selection on energetic efficiency by euro/ tep ratio). Collective/ industrial :
max 30 % of investment cost. Wood supply companies: max 30 % of investment cost.
– Others publics subsidies:
– FOGIME : garanty fund for loans concerning investment in rational use of energy,
– FIDEME : investment fund to support companies involved in rational use of energy
projects,
– FCPR 3E (Emertec Energie Environnement) : risk capital fund for innovative companies
in energy/ environment fields
In 2010, France tendered 250 MW of biomass installed capacity, distributed between 32 Combined
Heat and Power (CHP) plants and another 200 MW for plants no smaller than 12 MW was closed in
February 2011. France targets a total installed capacity of 2,300 MW by 2020 (IEA/IRENA 2012).
It should be noted that the biomass wood fuel market in France is one of the more successful
examples of exploitation of renewable energy sources in the country over the past decade, with
biomass used mostly for heating apartment blocks.
Solar thermal
In 1999, for the metropolitan areas of France, ADEME has launched “Helios 2006 ” or “Plan
Soleil”.This medium-term solar thermal development plan (six years), aimed to the installation of
50.000 domestic solar thermal systems by 2006. The ADEME subsidies were available everywhere
in metropolitan areas and were sometimes complemented by regional or local funding (30 to
100%). The ADEME subsidies vary for a SDHW system from 690 to 1.150 Euro, depending on the
size of the system. In metropolitan areas, 100 SDHW systems were installed in 1999, 800 in 2000
and 2.600 in 2001.The area of newly installed collectors rose from 3.600 in 2000 to 12.000 in
2001.The industry target for 2010 is more than 100.000 newly installed systems, equalling 480.000
m2.
Besides DHW, a promising market for solar thermal in metropolitan areas is active solar space
heating (Combined system). So far, only one company (Clipsol) sold its combi-systems with
ADEME funding in 5 regions. 250 systems were sold in 2001 (about 4.500 m2 of collector areas).
The incentive scheme changed in 2002, and the market for combined systems increased. At least 5
companies offer combined systems in France. The industry target for combined systems in 2010 is
more than 12.000 systems installed, equivalent to 180.000 m2 of collector area.
Building sector
The main programmes and legislation in force for energy efficiency and renewable energy in
buildings are as follows:
• Thermal Regulations on new buildings in the residential sector – these have been revised
regularly since a 1974
• Thermal Regulations on new buildings in new commercial buildings – these have become
more stringent since 1989.
The aim of both regulations is to reduce energy consaumption by 40% for the commercial and
tertiary sector and by 15% for the residential sector. As regards households and tertiary sector, the
thermal building code was reinforced as of July 2005 for both households and the service sectors.
This should determinate average energy savings of 15%, compared to 2000 standards. In 2006,
6456 buildings have been audited for a total of 49.000 buildings since 2000. This measure has been
completed by demonstration projects and by OPATB program (energy efficiency of residential and
tertiary building). The total subsidies dedicated to these measures reached 19 M Euros in 2006.
Policy measures aimed at houses built before 1975 has been put in place since 1975. There are
many programmes in place to support retrofitting of housing. On 25 April 2006, France announced
a series of public-private research partnerships, including three to reduce dependence on petroleum
products and mitigate climate change. Projects slated to receive substantial public funding from the
Agency for Industrial Innovation (AII), included a €88 million programme to improve energy
efficiency in buildings through improvements in insulation, heating, lighting and ventilation. Since
2006-2007, the energy performance audit of household or building is mandatory for sale hiring and
construction.
New buildings in the tertiary sector and new public buildings may not use more than 50 kWh/m²
after mid-2011. For privately-owned new homes, this limit will become effective by the end of
2012.
In March 2011, the ministry published 16 recommendations to help reach the target for the building
sector of reducing energy demand by 38% by 2020 and realising the thermal renovation of 400,000
flats per year from 2013 onwards. How these measures will be achieved cannot be judged yet.
Plans for the future include making energy audits mandatory, strengthening thermal insulation
guidelines and increasing the levels of information available to owners, buyers and all categories of
professionals involved in the building sector.
Biomass district heating status
There are several examples of biomass heating applications in various regions around France:
•
•
•
Dole, in the Jura Mountains in eastern France, has a 3.2-MW biomass-fired boiler delivering
hot water and heating to 1 800 dwellings and various larger public and private buildings.
This supplies more than one third of the energy required by the area, and uses 12 000 tonnes
of wood residues annually.
In Normandy, a 2-MW wood-fired boiler plant supplies heating to 470 houses, a college, a
school and a sports centre. The project involved the construction of a heating network,
which was developed by a heating company.
In Bourgogne, a district heating system due for renovation was refurbished with an 8-MW
wood-fuelled boiler. This provides heat for up to 3 500 homes, and also provides a market
for waste wood from local sawmills.
9.1.2 Existing contracts
The current contracts of facility management are concentrated primarily in the tertiary sector.
However the deregulation of the electricity market has created a new market of the offer of service
in France while making it possible for new actors to offer a service of advice focused on the energy
provisioning at the upstream of the meter.
Traditionally, the “contract of operation” model dominated the French ESCO market. It should be
emphasized that the French market cannot be fully associated with the definitions usually applied
elsewhere in Europe. Originally it was based on the combined operation and maintenance contract of
heating ventilation and air conditioning (HVAC) systems and differentiated four basic elements
(ADEME 2006, Dupont and Adnot 2004):
• P1: purchasing of fuel;
• P2: daily operation;
• P3: complete and complex maintenance;
• P4: funding for new (energy efficient) equipments.
It was necessary to separate the 4 items in the public sector in order to be able to contract separate
companies for the different tasks, to apply different VAT rates, and to be able to keep the elements
separated in the bookkeeping (Dupont and Adnot 2004). This coding and the demand of public
accounting for fixed results for a fixed price largely determined the features of energy performance
contracting (EPC) in France. For all the P1 contracts presented, a clause of profit sharing can be
integrated e.g., the sharing of energy savings, based on a previously defined heating consumption (the
market central commission in the register of the general technical specifications (Collection Marchés
Publics n°2008) defines the formulas of profit sharing). Profit sharing involves all actors but, as opposed
to a fixed price operation, decreases the payback time for the operator when he decides to invest his own
money in the facilities of the customer.
The so called “Chauffage contract” is a contract widely applied in France, which includes operation
without explicitly committment to carrying out energy efficiency investment. Under a Chauffage
contract, the contractor ensures optimal operation of an already existing system and must provide an
agreed comfort level (for instance temperature, humidity) at a lower cost for the client if conditions
remain unchanged. The contractor can increase its profits by investing in more energy saving equipment
or by procuring cheaper fuel, thus reducing the costs. These types of contracts in France are usually
long-term and include the obligation to analyse problems and identify needs for improvement in the
system, and to carry out the investment. The French operators have ‘exported’ the Chauffage contract
model to several other European countries, including Belgium, Italy, Spain, the UK, and CentralEastern Europe.
The first formalized contract including third-party financing (TPF) in France was signed in 1983.
This was primarily designed for financing energy saving investments in order to overcome clients’
aversion to high perceived risk of improvements that in reality were cost-effective, but not
acknowledged as such by the clients (Dupont and Adnot 2004). However, TPF model did not
particularly spread in France due to the strength of the traditional “contract of operation” model. In
presence of TPF, the ESCO provides the financing and carries out investments aiming at cutting
running costs. The investment is reimbursed through the savings obtained and the company offers a
threefold service:
• The financing
• The technical realization
• A guarantee of results
The essential clause allowing TPF in the public Markets is the clause of "Control of energy savings
with guarantee of result" (GR-ME): if the operator proposes actions reducing energy use, it can
finance them on the future benefits. The contracts with obligation of results put strong responsibility
onto the company which must fulfill successfully the conditions agreed in the contract. Thus, the
company gives its estimate on operational budgets, its guarantee on the quality of service and wellbeing in the buildings, on the availability of steam or compressed air in the industry, on the
maintenance of the materials, and the compliance with the code of practice. Indeed the guarantee of
the results implies a perfect knowledge of the installations but also, very often, significant
investments in time for the knowledge, commissioning and adjustment of the installations. The
contract of results can be only a contract of long duration.
9.1.3 Financial institutions and schemes
The strength of the traditional “contract of operation” model and the regulatory constraints that do
not facilitate ESCOs activities in the public sector have slowed down the development of TPF in
France. Moreover, as previously introduced, France ESCOs marjet is dominated by few large
companies that have the financial means to finance projects if necessary, thus the role of banks is
limited (ESCO Status Report 2005,EC DG JRC 2005; Dupont and Adnot, 2004; ADEME, 2003).
As of 2006, 60% of the ESCO projects are financed by ESCOs themselves, 30% of the projects
using TPF, while 10% of the projects are paid for by the clients.
Therefore, the high concentration of the ESCOs market and the size of the major ESCOs companies
operating in France had led to the prevalence of an ESCO model in which the financier and the
operational company coincide.
In the recent years (partly due to the increase number of new actors operating in the France energy
market) financial institutions have acquired experience in financing energy efficiency projects and
in taking into consideration the guaranteed savings offered by some ESCos and energy performance
contracting, for example they now can offer to cover the risk of the guaranteed savings by insuring
the savings (Marino et al 2011).
Grants and subsidies are available from the regional bodies of ADEME. Furthermore, ADEME, in
cooperation with the French development bank, created a Crediting System in Favour of Energy
Management (FOGIME), which is a guarantee fund for loans for investments in sustainable energy
and renewables in the private sector..
9.1.4 Barriers
Public procurement regulations are a significant barrier to ESCOs development in France. As
discussed in previous sections the legally regulated contractual agreements for project development
in the public sector are seen as a major hurdle for the introduction of energy performance
contracting (Marino et al 2011). It has long been claimed by ESCOs that the engagement of the
private sector to provide complex solutions for the public sector would be beneficial and could
determinate innovative solutions.
The Government Order of 17 July 2004 on PPP has helped in this respect, but in order to further
increase the effectiveness of the new regulation, public accounting rules should also be revised and
the separation of operation and investment budgets should be overcome in case of ESCO projects,
where it is very important that the savings in operation budgets could be used as a levy for
investments in energy efficiency. Moreover, public procurement rules should be revised to allow
including energy performance criteria. The public sector should be required by law to improve its
energy performance in order to increase energy savings significantly on the one hand, and to serve
as a guideline to the other sectors on the other hand.
For a long time, while the market of CHP has increased very quickly in Europe, centralized
electricity production and administrative authorisations in France have slown down the
development of co-generation by independent producers and by Electricité de France. CHP units
were authorised in only a very few cases. In 1994, only 570 CHP units (3,000 MW) were operated,
mainly in industries, while the CHP potential was estimated between 5,000 and 10,000 MW by
officials, and over 15,000 MW by equipment suppliers. However, such barriers have been removed
and CHP have grown considerably in France. The main line of expansion is out-sourced cogeneration where HVAC operators provide full service and guarantees to the host company at
reduced price for heat. The case of co-generation is now exemplary of EPC in France : 1) cogeneration is becoming the dominant ‘Trojan horse’ used by new independent producers for
obtaining some market shares in France; 2) its development has led to the development of a series
of new services for sizing, financing, building and operating CHP units.
Other common barriers identified are:
• Trust and skepticism on the clients’ side and little understanding of the opportunities of ESCO
projects and EPC offer;
•
•
•
•
•
•
•
•
9.2
High perceived risk of the ESCO investment, lack of expertise and experience on the financial
market;
Non-supportive procurement rules;
Accounting problems (investment vs. operating costs);
Lack of ”off-balance sheet” solutions;
Public budgeting rules (”pressure to spend”);
Reluctance to outsource;
Administrative hurdles, high transaction costs;
Split incentives.
Technical framework
9.2.1 Quality and monitoring
As in other countries, measurement and verification (M&V) is the key for effective tradable
certificates mechanism applied to the promotion of energy efficiency in end-use sectors. If savings
cannot be measured they need to be calculated by comparing measurements of energy use and/or
demand before (i.e. the baseline energy use) and after implementation of the saving measure.
However, baseline conditions can change after the energy efficiency measure has been
implemented. Such changes could include changes of baseline conditions, equipment performances,
and external conditions (e.g. weather conditions). Clearly a methodology to verify and certify the
projects and their savings is a requirement for an effective M&V system. Various systems are in
place; each with different levels of accuracy and costs. These range from engineering methods
based on detailed calculations that are calibrated with onsite data to end-use metering where energy
use is actively measured with specialized equipment and expertise. The more sophisticated the
method, the higher the costs. There is no overall preferred method for all projects.
Clearly extensive and complicated M&V can be too costly for the small and medium-size projects.
Parties have therefore developed ex-ante M&V protocols that pre-define saving factors for each
type of project. Using these methods the costs of M&V – and therewith total certification costs – are
significantly lowered. Three countries have successfully developed and tested a number of ex ante
formulae covering most of small and medium size projects. All calculations have been dealt with in
statistical manner.
No matter whether ex-ante or ex-post methods are used, harmonisation of the verification process is
crucial to avoid uncertainty, duplication of effort and a potential loss of credibility in the market.
9.2.2 Software tools available
French energy efficiency (Ee) system achieved significative results:
• Industry sector most successful in reducing its energy consumption, transport and housing
sectors lags behind;
• EE efforts voluntarily implemented for decades by industry
• New energy price surge accelerating EE investment.
• ETS and PNAQ carbon markets : strong incentive effect on EE initiatives
• New French government highly committed to sustainable development. French public
opinion and financial institutions now very sensitive to Sustainable Development.
• SD is now a significant part of business development and reporting to stock exchange
From these assumptions, best practice list can be developed, in order to identify success causes of
French system and to diffuse them in other countries:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Large political “dialogue” (Grenelle) on sustainable development launched for 3 months
with support of high level personalities (Nobel prizes MM. Stern & Al Gore) to finalize
government action program.
Financial institutions very keen to purchase firms with high tech energy efficiency or RE
technologies.
French banks setting up special guichetsand loan facilities for energy efficiency investment
in industry and housing.
Importance of a clear political commitment towards energy efficiency (carrot & stick).
Key role of a suitable legal, fiscal and regulatory framework encouraging energy efficiency
with field verification of enforcement.
High energy prices and competition essential to motivate energy efficiency investment.
Specialized energy service companies and financial packages needed to guarantee by
contract the expected savings.
Suitable legal frameworks and sophisticated energy performance contracts needed to protect
business partners in ESCOs contracts.
Corporate image and internal ethics play a decisive role for environment protection and
energy efficiency investment in large industries.
National and regional energy efficiency centers play a decisive role especially for small &
medium size companies.
International climate debate and issues regarding long term world energy supply key
elements to move large companies towards energy efficiency
Importance of professional associations to promote EE among participants and dialogue
with government.
Financing of good energy efficiency projects or renewable energy not a problem, all large
banks have developed special departments to provide services.
Energy efficiency services becoming a major business sector with a large growth potential.
Annex: French white certificate trading system
In France a national policy based on White Certificates trading was put in practice, mainly focused
on household and tertiary sectors, with a complementary role to other existing instruments, such as
regulations, tax credit, etc, and which could be based on encouraging the market parties towards
mobilization of their demand/supply, with no involvement of subsidies.
The main drivers which underlie White Certificates policy instrument in France are essentially:
• Need to reach e important energy savings, in particular in residential and tertiary sectors
• Limits of traditional public instruments, which are very often not adapted
• Lack of public money to implement energy savings programmes
•
•
•
•
•
•
The expected advantages are :
Economic efficiency
Direct relationship between obliged parts, the energy suppliers, and the energy end-users
Open scheme: the energy suppliers can propose measures not planned yet
New means of financing energy efficiency projects : between 500 and 1000 M€ over three
years
Instrument adapted into liberalized energy markets
The mandatory targets of the herein considered French scheme involve for the first three years
period some 54 TWh of energy consumed. The saving actions must be performed in the three years
period 2006-2008. Within this period, there are no annual deadlines to be respected, and the targets
will be verified only at the end.
The overall target will be shared among the different energy sources covered, and among the
obliged actors, depending on their market share. Obligation concerns a very wide collection of
subjects: energy suppliers in the fields of electricity, natural gas, LGP, domestic fuel (not for
transports), cooling and heating.
As a rule, the total energy savings targets are shared among suppliers on the basis of annual sales
beyond a fixed threshold.
This threshold depends on the kind of supplied energy:
• in case of suppliers of electricity, natural gas and heating or cooling, the threshold proposed
t is 0.4 TWh in the year and for LPG 0,1TWh ;
•
in case of domestic fuel suppliers, there is no threshold: the obligation occurs “from the first
litre”, according to a specific request of the professional organization.
The amount of the targets over an obliged entity is proportional to its assessed sales volume.
An annual adjustment system is considered to account for variations in market shares (increase,
decrease, new entries). All the domestic fuel suppliers are entrusted with individual obligation;
chance will be granted to transfer these obligations to a professional consortium structure. The
collective structure will be in charge of the implementation of the sum of the obligations of the
components.
All end-use sectors are eligible. Energy substitution of fossil energies with renewable energies is
eligible, but only in few selected cases, such as heat production and sanitary hot water production.
Pre-approval for the eligibility of a technology is not mandatory but possible. Standardized projects
are encouraged, since they are considered eligible by default.
There are some definitely not eligible technologies, such as installations implied in the CO2
abatement UE Directive, savings from only substitution between fossil fuels, installations required
to fulfill the regulations in force.
Any operator can make savings projects and get certificates. A threshold of savings exists for an
operator to be eligible. At present, the threshold is 1 GWh. Residential fuel suppliers can cope with
difficulties in reaching the threshold: possibility (not obligation) exists for them of gathering
together into a collective professional structure. Operators must show that they comply with criteria
for additionality. These criteria depend on the obliged/non-obliged features of the operator
performing the energy saving project:
The kind of the eligible projects is as open as possible to allow for compliance with target in the
widest and most concurrent way. As an illustration, here’s a list of potential actions:
• substitution with low energy light bulbs
• loft insulation
• use of double glazing
• installation of heating control mechanisms
• replacement of domestic appliances with more efficient equipment
• replacement of boilers or water heaters by more efficient equipment or thermal renewable
energy equipments
• fitting of insulating jackets to water heaters
• boiler maintenance
• creation of wood-fired heating systems for district heating or in industry
The White Certificates are negotiable property titles (White Certificate = n saved kWh, according to
the standard evaluation procedures described above). They are delivered by a National Public Body
(DRIRE - Directions Régionales de l'Industrie de la Recherche et de l'Environnement).
The White Certificates must be returned by the obligated parties to the delivering Body (Minister of
industry) at the end of the compliance period, according to the relevant apportionments; after
returning, clearance of these titles will occur. Before this date, the market will reconcile possible
lack and excess of titles through a gradual and continuous exchange. Price of transactions will
depend on the market but an upper limit is given by the value of the penalty for non-compliance
(2c€/kWh : payment of the penalty cancels the obligation). The Responsible of the National
Certificates Registry will publish the yearly average price of transaction for Certificates.
Elementary Energy Efficiency actions involving products or widely exploited services are pointed
in each sector (residential/tertiary sectors, industry, transport). Standardized methodologies are
being set up for saving calculation. These methodologies are based on fast and straightforward userfriendly procedures without complex details. Lump evaluation of energy savings are established for
each action, expressed in kWh of final energy, cumulated and present-worthed over the life of the
product (the so called CUMAC) :
CUMAC = EE * DV *Ca
where :
EE = annual energy savings, DV = lifetime of the action, Ca = discount factor.
The savings are cumulated over the time life of an equipment by actualizing the annual savings with
a discount rate of 4 %.
Sources
•
•
Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME). 2006. Current situation
of the Energy Efficiency Services market in France. Country Overview. EUROCONTRACT
project.
Bertoldi P., Berrutto V., De Renzio M, Adnot J.,Vine E. ‘How are EU ESCOs behaving and
how to create a real ESCO market?’ Proceedings ECEEE conference 2003
•
•
•
•
•
Bertoldi P., Boza-Kiss B., RezessyLatest S. ‘Development of Energy Service Companies
across Europe- A European ESCO Update’ Institute for Environment and Sustainability,
JRC. EUR 22927 EN - 2007
Dupont, M.,Adnot,J.,2004.’Investigation of actual energy efficiency content of ‘‘energy
services’’ in France .In: Bertoldi,P., Atanasiu,B.(Eds.), Proceedings of International
Conference on Improving Energy Efficiency in Commercial Buildings
IEECB’04),Frankfurt(Germany),21–22April2004.OfficeforOfficial Publications of the
European Communities, Luxembourg.
IEA/IRENA (2012) ‘Global renewable energy policy and measures database’ available at:
http://www.iea.org/textbase/pm/index.html Accessed: March 2012
Leinekugel, T. 2012 ‘The French white certificates scheme. Second target period: key issues
and expectations’Presentation of the Ministère de l'Écologie, du Développement durable,
des
Transports
et
du
Logement.
Available
at:
http://www.iea.org/work/2012/pepdee/Leinekugel%20Session%204A%20.pdf
Marino A., Bertoldi P., Rezessy S., Boza-Kiss B.‘A snapshot of the European energy
service market in 2010 and policy recommendations to foster a further market development’
Energy Policy39 (2011) 6190–6198
10 Germany
10.1 Legislative, Financial, contractual and marketing framework
10.1.1 Legal background for TPF and ESCos
The term ESCo is hardly used in Germany. Instead, this business model is referred to as
Contracting. In order to prevent confusion concerning the terms describing contracting, the
DIN 8930-5 “Contracting” (2003) defines the basic terms, several alternative contracting schemes,
service components, pricing for services, application areas and the legal background.
Heat contracting is legally equal to district heating, as long as the heat producing device is owned
and maintained by a party (in this case: contractor) different than the building owner.32 Along the
BGB, the general regulations on district heating apply (AVBFernwärmeV).33
Furthermore, laws regulating service contracting and heat delivery have to be considered.
In the residential sector the regulations on heat cost allocation to tenants (HeizkostenV34) is of
relevance while public bodies have to follow the regulations on the commissioning of public
contracts (VGV35).
10.1.2 Existing contracts
Several reports (e.g. 36) state that more than 500 ESCO´s are active in the German market. Only a
fraction of these companies, however, is relevant to this project. Some companies are basically
utilities providing district heating and others are specialized in industrial customers. Most
companies state that they are also providing heat from biomass or solar thermal but reference
projects are not published. Many companies are clearly specialized on natural gas technologies.
The German Norm DIN 8930-5 describes two main contracting schemes:
Plant / Operation contracting
This scheme is referred to as Energieliefercontracting (Energy supply contracting). In this case, the
contractor plans, finances and constructs new heat production devices or takes over an existing
device. Over the contract duration (typically 10 – 20 years) the contractor is responsible for plant
operation, maintenance and attendance. He buys primary energy and sells heat to the customer.
Energy savings of course are part of these projects since new or refurbished boilers work more
efficiently. The customer usually pays a basic price that covers the contractor’s investment costs,
including loan repayment. The basic price also has a component covering plant maintenance. This
cost component is flexible regarding the increase of average salaries. The second part of the
monthly payment depends on energy consumption.
In most cases, the customer has higher total heating costs after the contracting project, since no
investment had to be paid for before the contracting project. However, most customers save
significant amounts when the costs of alternative solutions (i.e. project implementation by the
32
Kramer, D.R.; Energieeinsparung im Mietwohnsektor durch Wärme-Contracting; ZUR 6/2007.
AVBFernwärmeV: Verordnung über allgemeine Bedingungen für die Versorgung mit Fernwärme; available at:
http://www.gesetze-im-internet.de/bundesrecht/avbfernw_rmev/gesamt.pdf
34
HeizkostenV: Verordnung über die verbrauchsabhängige Abrechnung der Heiz- und Warmwasserkosten; available
at: http://www.gesetze-im-internet.de/heizkostenv/index.html
35
VGV: Verordnung über die Vergabe öffentlicher Aufträge; available at:
http://www.gesetze-im-internet.de/vgv_2001/index.html
36
Bertoldi, P. et al.; Latest Development of Energy Service Companies across Europe; JRC; 2007.
33
customer) are calculated for comparison. The energy saving aspect of course is part of these
projects: The contractor does not allocate his heat production costs to the customer who pays only
the heat consumed on a kWh price basis (kWh prices are flexible depending on fuel prices). The
contractor therefore will see to produce heat in the most efficient way. However, energy efficiency
measures beyond heat production or guarantees regarding energy (cost) savings are rarely part of
these projects.
This contracting scheme therefore is not in absolute compliance with the ESCO definition given by
Bertoldi et al. (2005).37 It is also not mere energy service provision, since the contractor does not
allocate all heat production costs to the customer and therefore takes certain financial and technical
risks. The efficiency of heat production is a crucial aspect in this scheme as it increases the financial
benefit of the contractor.
The significance of this scheme is significant in Germany: Around 84 % of all contracting projects
fall into this category.38
Energy Performance Contracting (EPC)
EPC (Einsparcontracting) is implemented in Germany as defined by Bertoldi et al. (2005).36 In
Germany, this scheme rarely includes the installation of new heat production devices. However,
there are projects that combine EPC characteristics and Plant Contracting but then the investment,
e.g. in new biomass boilers, is usually not repaid by energy cost savings.
Heat supply contracts need to address the following issues39,40,41,42:
• Contractual partners and object of agreement
• Definition of contractual partners; Description of buildings to be supplied (including layout
of boiler room and property borders); Definition of the duties of each partner;
• Reference to AVBFernwärmeV
• Serves as the basis for the contract; Limits contract duration to 10 years; Longer contract
durations must be agreed upon separately;
• Heat delivery
• Minimum heat delivery; Heat output; Hand-over point; Quality of heat medium;
• The right to use the property or installation room; Accession rights;
• Ownership
• Ownership of installations during contract duration; Securities for the contractor;
• Accountability
• In case of interruption of heat delivery; General liability insurance; Warranties;
• Energy monitoring
• Number and quality of heat counters;
• Contract duration;
• Including contract extensions and legal succession; Termination rights;
• End of contract
• Deconstruction of installations; Transfer of installations to the customer;
• Pricing and payment
• Basic prices and kWh prices; Price adjustment; Starting prices; Payment schedule; Payment
method; Contract violations; Billing modalities;
37
Bertoldi, P & Rezessy, S.; Energy Service Companies in Europe; JRC; 2005.
Stoppa, F.; Wärmecontracting; Verband für Wärmelieferung (VfW); 2009.
39
VfW; Leitfaden für die Ausschreibung von Energielieferung; 2000.
40
Fricke, N.; Gestaltung von Wärmelieferungsverträgen; AGFW.
41
Kralemann, M.; Wärme aus Holz als Dienstleistung; 3N.
42
Neusinger, U.; Energie-Contracting für Kommunen; Rödl & Partner.
38
•
Necessary insurances
10.1.3 Financial institutions and schemes
In general, contracting schemes with reliable long-term backflow of funds are attractive for
financing institutions, especially when the customer belongs to the public sector.
However, banks have to consider a number of risks:43
• Not only the customer’s solvency poses a risk (not in the public sector); The contractor’s
reliability has to be considered as well; These risks are minimized when contractors can
refer to a large number of contracts and risks are divided;
• The viability of contracts has to be assessed; This can be difficult since the related contracts
are very complicated; Issues concerning price adjustment, ownership structures, distribution
of duties and risks to the contract partners have to be solved; Banks should be included in
the contract design at an early stage in order to prevent problems;
• Liability, warranty and insurance;
• Banks often do not have the know-how to assess the technical setup of installations,
especially energy saving potentials and technical risks can hardly be verified;
“Forfaiting” is one way to increase the security for the bank: The contractor sells future receivables
to the bank. Risks in the public sector can be further minimized by “non-recourse forfaiting”,
meaning that the municipality pays the bank independently from e.g. the contractor’s
malperformance. In doing so, loan conditions can be improved significantly.
In principle, all banks are potential partners for contracting projects. Especially (semi-) public banks
have a lot of experience in financing RE projects, including energy efficiency and contracting
projects. Examples would be the banks owned by the federal states (Landesbanken) or banks with a
social or environmental background (Aufbau- und Umweltbanken).
It is important to note that contracting projects with RE technologies are also eligible in RE
promotion programmes granting subsidies or low-interest loan. The KfW credit programmes are the
most prominent examples.44
10.1.4 Barriers
•
•
•
•
•
•
43
44
The concept of contracting is not well known; Especially insecurities concerning long
contract durations and complicated contracts intimidate potential customers;
Contracting costs are seen as additional costs and potential customers prefer
implementing their projects themselves;
One main barrier in the residential sector is that all tenants have to agree with the
implementation of contracting projects unless this option was already foreseen by the
initial rent contract;
Complicated commissioning procedures in the public sector: bidding process; contractor
has to deal with a number of different contacts (several authorities and hierarchy levels);
Bid invitations often do not state exactly what the customer needs / wants; Customers
expectations often are too high; In other cases the bid invitations give too many
specifications;
Evaluation and comparison of bids can be a problem;
Herter; Contracting aus Bankensicht; SAB Sächsische AufbauBank; 2006.
www.kfw-foerderbank.de
•
Not all contracting related details are clearly regulated by law.
10.2 Technical framework
10.2.1 Quality and monitoring
The flexible portion of the contracting costs depends mainly on the consumption of heat. According
to AVBFernwärmeV, heat consumption has to be measured using calibrated heat counters. The
counters have to be calibrated every five years. They measure the volume of flowing water as well
as temperatures in the flow line and the backflow. Other means of measurement are not to be
applied and deviations from this method have to be agreed upon explicitly by the contract
partners.45
Billing can be done monthly or annually and meter-reading needs to be done accordingly and on a
regular basis. If billing is done annually the contractor can claim advance payments whose amount
depends on the consumption in the previous billing period.
10.2.2 Appropriate technology for BioSolESCos
Contracting projects combining biomass and solar thermal technologies are rare in Germany. The
installation of solar thermal collectors often proofs to be financially disadvantageous even when
public subsidies are granted. Furthermore, contractors are often specialized in boiler or collector
technologies. Only few equally use both technologies.
Many contracting actors state that they offer biomass contracting in addition to contracting with
fossil fuels, while others are specialized in biomass contracting. Biomass heating fuelled with wood
chips or wood pellets have shown to be financially attractive when the contract partners agree on
long contract durations (20 years). Long amortisation times are necessary to balance higher
investment costs for biomass boilers. After 20 years the lower costs for wood fuels provides
significant financial advantages compared to fossil fuel technologies.
Biomass boilers often are designed to cover the basic heat load while efficient gas boilers (or
refurbished existing fossil fuel boilers) cover the peak loads.
10.2.3 Software tools available
Several basic economic evaluation tools are provided by energy agencies and associations. One
example is the contracting-tool provided by the energy agency in Nordrhein-Westfalen.46
10.3 Lessons learned
•
•
•
45
According to several studies the potential for contracting and energy saving is huge in
Germany and widely un-tapped;
A well organized contracting business sector is necessary to provide information on
contracting scheme, to do lobbying in order to adapt laws, to standardize definitions and
procedures, to provide advice and to provide tools to the sector. In Germany, four
associations are performing these tasks;47
Energy agencies (and other organisations) providing expertise and assistance to e.g.
municipalities in implementing contracting projects are crucial for increasing the uptake
of contracting schemes;
Alter, M.; Contracting-Verträge richtig gestalten - Messung und Abrechnung; Rechtsanwälte Strunz, Winkler, Alter.
Available at: http://www.energieagentur.nrw.de/contracting/page.asp?InfoID=6368&rubrik=&termin=&TopCatID=&RubrikID=
47
VfW (www.energiecontracting.de); ESCO Forum im ZVEI (www.zvei.org); PECU (www.pecu.de); Forum
Contracting (www.forum-contracting.de).
46
•
•
•
•
Many contract related details remain to be clearly regulated by law; Uncertainties
resulting from unclear legal status are a main barrier to contracting uptake;
The eligibility of contractors in national and regional support programmes (subsidies;
loans) is important to boost the development of the RE contracting sector;
Contractors offering the whole array of technologies and fuels can provide the most
efficient concept depending on the project situation;
Contracting is often not applicable in smaller projects with low investments; The
pooling of buildings is an appropriate tool to increase project volumes;
11 Greece
11.1
Legislative, financial, contractual and marketing framework
11.1.1 Legal background for TPF and ESCos
The status of the Greek ESCo market is still considered to be negligible and has not been deployed
yet either in the public, or in the private sector; although there is a large energy conservation
potential mainly in the building sector (public administrative buildings, hospitals, hotels, sports
centres etc), as well as in other sectors such as the industrial.
In June 2010 one of the main barriers of the stagnation of the ESCO market development, which
was the absence of a law for the ESCO business operation, was overcome with the voting of Law
3855/2011 (GOG Issue A’95/23/06/2020). This law is the transposition of the EU Directive
2006/32/EC – “Energy Service Directive - ESD” into Greek legislation, and it clarifies the
legislative framework for the operation of an ESCO and allows to many companies, active in the
RE/SE field, to enter without doubts into the energy services market. It is expected that with this
law the energy service market will move forward and be developed and that a number of companies
that already act as ESCOs or are willing to act as ESCOs, will be involved in energy projects both
in the public and private sector.
According to Law 3855/2010 an ESCo registry was also created (MD D6/13280, GOG Issue
B’1228/14/06/2011), where companies that fulfil certain criteria (financial, expertise etc) can be
registered and act as ESCos.
Besides the voting of Law 3855/2010, there has been a former development in 2005, when the
Greek government issued the Law 3389/2005 on Public Private Partnerships (PPPs) which includes
multi-year concession contracting regarding the installation, operation and maintenance of
leased/outsourced energy efficient equipment in buildings. The new provision of PPP framework
provides a field to boost, through further implementing acts and administrative mandates, the
ESCOs business activity in the public sector. With this Law, Public Authorities are set free to
cooperate (“Partnership Contracts”) with Private Bodies for the construction of works or the
provision of services in areas of their jurisdiction. The Law applies to the construction of hospitals,
schools, even road networks and also to the provision of services, including energy services [Market
Analysis - Greece, reported by CRES, 2007 Eurocontract IEE project].
In February 2011, a national program with the title: “Performing EPC in the public sector” was
launched. This program is implemented by CRES and is co-financed under the NSRF 2007-2013.
In the framework of this program, CRES will support the preparation and the implementation
procedure of selected EPC pilot projects in buildings of the Public and the Broader Public Sector.
This program, aims at accelerating the development of the Energy Service market in Greece, by
applying rules of healthy competition, for the implementation of pilot projects, that will highlight/
bring forward the benefits of such a cooperation, and will set an example for the implementation of
future EPC projects in other buildings of the Public Sector, which present high Energy saving
potential.
More specifically, in the framework of this program, the implementation of energy saving measures
is foreseen, through EPC pilot projects in five (5) buildings of the Public Sector, with the technical
and scientific support of CRES towards the participating Parties. The outcomes of this program will
prescribe the operation framework of the ESCO market as far as the implementation of energy
projects in the Public Sector is concerned, and will contribute in identifying the technical,
procedural and legislative parameters and conditions for implementing this type of Contracts and
Projects
11.1.2 Existing contracts.
Practically speaking, the ESCo applications in Greece are very few and there are only few
companies in the Greek market, which occasionally act as Energy Service Companies.
As of 2009 there are two companies active in the Greek energy service market, Helesco SA and
COFELY Hellas SA. The first one is an engineering consulting company with its core business
focused on the provision of energy services, while the second one is a small national facility and
energy management company (subsidiary of GDF Suez) providing facility management of
installations and working with the ESCo concept as a side business (Bertoldi, 2010).
In the past only a few ESCo attempts have been made where mainly solar thermal projects were
involved. Apart from CRES, only two companies (SOLE LTD and SOL ENERGY HELLAS Inc.)
have made efforts in order to act as ESCos, in applications which regarded a mixture of energy
efficiency and solar systems, thus resulting more attractive financially. [Market Analysis - Greece,
reported by CRES, 2007 Eurocontract IEE project].
The record of ESCo projects in Greece up to now consists of only few attempts that have been made
from some companies in order to play the role of an ESCO for the application of TPF schemes:
st
• 1 case (Achaia Claus - winery): CRES was responsible for the tele-monitoring equipment
design / procurement, as well as for issuing the «solar bills». For this project the role of the
ESCo was played by the solar system manufacturer (SOLE LTD).
•
nd
2 case (Mevgal- dairy): CRES played the role of the ESCO.
SOL ENERGY HELLAS Inc. has performed only one project (in a hotel) with the TPF method and
several others with the GRS method (Guaranteed Solar Results).
The contracts of the first two projects (industrial) were in the form of Build, Own, Operate and
Transfer (BOOT) while the third one (hotel) was in the form of Build, Operate and Transfer (BOT).
In the case of GRS the supplier of the solar installations provides the user with a bank guarantee
linked with the monitored performance of the systems.
The structure of the existing contracts is the following:
•
For the two installations (winery and hotel) for which the System providers / manufacturers
played the role of the ESCo, the user paid no money for the installation of the systems, but
paid the manufacturer the amount of energy supplied by the system, based on a fixed rate
per kWh decided upon before the installation of the system. For the industrial project, the
Centre for Renewable Energy Sources (CRES), undertook the monitoring of the system,
which determined the energy supplied by the system, while for the hotel the system
performance was monitored by the installer. When the user paid the initial investment of the
system back, the system became the exclusive property of the user.
•
For the industrial project (dairy industry), where CRES played the role of the ESCo, the
structure of the contract was based on the provisions of the draft law "TPF of Energy
Investments for Energy Saving, Cogeneration & Independent Generation of Electrical
or/and Thermal Energy from RES".
In the framework of the ST-ESCOs IEE project, in which CRES also participated, there has been an
effort to implement solar thermal applications through ESCo projects.
Aiming at this direction, two calls for interest, one for end-users and one for ST-ESCO developers,
were published. More than 24 end-users (industries, hospitals, hotels, sport centers, etc) as well as
20 possible ST-ESCOs developers have expressed their interest to further investigate the possibility
of realizing relevant projects. Some of the first lessons learned from this procedure were that
developers were somehow reluctant to proceed since several issues related to the financing of the
projects were vague, while at the same time it seemed more feasible that ST-ESCO projects should
better be accompanied by other measures.
Eight pre-feasibility studies were prepared, where all the main parameters from the technical side
(plant components and energy yield) as well as from the economic one (terms of contract and
benefits) were examined. The highest obstacle for the realization of the studies was the fact that the
40% National subsidy mechanism has been interrupted and has not been reactivated since then.
However, for two of the studies (Papageorgiou Hospital in Thessaloniki and Theotokos Elderly
house in Konitsa) it was estimated that the realization phase could start even without the subsidies.
For the Papageorgiou hospital case study, a simplified call for tenders was prepared in order to
accelerate the procedure for an ST-ESCO agreement, while at least one company (AXIMA) was
seriously evaluating the possibility to undertake the role of the ESCO before the reactivation of the
National subsidies procedure. Unfortunately in the end the two parties were not able to reach an
agreement, so the project was not implemented.
In what concerns the study of Konitsa, it was examined to implement a combination of solar and
biomass applications. Unfortunately neither this study was implemented.
In general in Greece till now there is no model contract available for ESCo projects.
11.1.3 Financial institutions and schemes
The financial institutions are not familiar with energy efficiency and ESCo projects, resulting in the
lack of commercially viable project financing due to conservative lending practices.
Low awareness, not good understanding of how an ESCo operates, no previous experience, many
ambiguities for the whole ESCo procedure leading to uncertainty.
11.1.4 Barriers
The barriers of the ESCo development in Greece were also examined in the framework of the
EUROCONTRACT IEE project, in which CRES has participated. The scenery has not changed
much since then and most of the barriers that were documented in that project still exist. Of course
in view of the transposition of the ESD into Greek legislation, some of the fundamental barriers of
the Greek ESCo market are expected to be overcome. These barriers comprise to:
•
•
•
The missing of a legal consolidation of ESCos.
Till now there is no ESCo association, although there are a lot of companies, already
involved in implementing energy saving measures that would like to act as ESCos.
The project financing, investment, design, construction and insurance mechanism is not well
defined and there are no guidelines available up to now.
Besides these barriers that are expected to be regulated from the new law, there are additional
barriers that are more market oriented and are mentioned below:
•
•
•
•
The end-users both in the public and private sector, are willing to enter only into short-term
contracts of 2 or 3 years maximum, so energy projects with payback periods of 10 or more
years, which are common periods for ESCo projects, cannot easily be accepted among the
end-users.
The great majority of the companies which plan on acting as ESCos in the future, are
companies with no credit history and limited own resources, so its most likely that they
won’t be able to invest in the project they recommend and may only enter the energy service
market and implement energy projects if they guarantee the savings, and the end users/
clients assure the financing on their own.
The financial institutions are not familiar with energy efficiency and ESCo projects,
resulting in the lack of commercially viable project financing due to conservative lending
practices.
Biomass applications are not very well developed in Greece. There is low awareness among
end users in what concerns this technology (e.g. pellets boilers) and there are also some
legislative barriers since it is not allowed in the two major cities of Greece (Athens and
Thessaloniki) to have central heating systems with biomass boilers (according to PD
103/1993/B-369).
11.2 Technical framework
11.2.1 Software tools available
ST-ESCo software tool is available for the technical and economical analysis of solar thermal
applications. The software tool starts with a simplified interface that leads the user to enter data in
the Energetic Module –called EnMo and Economic Module – celled EcMo. The Energetic Module
is a simulation tool based on TRNSYS, with a user friendly interface where the user can introduce
all technical data referred to the solar thermal system. The Economic Module is the one that does
the economic, financial and contractual analysis, based on the EnMo results or other energetic
results coming from any other energetic software.
(http://www.stescos.org/tool.htm)
11.2.2 Lessons learned
Although there is not much experience from implementing ESCo projects in Greece, some lessons
have been learned both from the few existing operations and the former IEE projects such as STESCOs and EUROCONTRACT that dealt with implementing ESCo projects. The gained
experience shows that the technical solutions applied in an ESCo project should be as simple as
possible without, however, sacrificing the systems’ reliability.
The contract between the ESCo and the end-user has to be clear and simple but should cover,
possibly, all aspects concerning billing, end-user consumption along the future, insurance and risks
management.
In case there is a heat supply contract, it should contain all technical prerequisites and conditions
that are requested in order to assure a sound operation and the expected energy efficiency from the
measures applied. The contract must fix the minimum amount of energy that the customer is going
to use and provisions have to be taken for the case that less energy is consumed by the customer
than the minimum amount that is agreed in the contract. In case of lower consumption, either a
basic price or a penalty fee may be charged to the customer. In some cases it might be sensible to
fix a profile for the range of the consumed energy over the year. This could be helpful for matching
and optimization between the available and the consumed energy.
Concluding, it should be stated that the most crucial aspect, towards the gradual developments of
ESCO contracts in Greece, is the formulation of a well structured policy and legal framework,
whereas with the implementation of measurable targets, criteria and certified bodies, such
instruments will be able to operate as parts of an overall medium-long term energy policy strategy.
12 Hungary
12.1 Legislative, Financial, contractual and marketing framework
12.1.1 Legal background for TPF and ESCos
Hungary has a feed-in tariff for small-scale renewable energy (below 6MW) heat for district heating
and single buildings 48 and a funding scheme to increase the use of renewable (see 3.1.3). Third
party financing from banks is not an issue in Hungary, as the banks are willing to finance
performance contracts, at least to established actors in the field of energy services.
12.1.2 Existing contracts
There are about 30 ESCos in Hungary, and in 2005 50% of the ESCo operations were done in heat
and hot water, and 9% in renewable energy (overlapping exists). The ESCos are equipment
suppliers, engineer eperforming ESCo activities and subsidiaries of financial institutions. Utility
based ESCos are a growing part of the ESCos. 49
Several different business models in Hungarian ESCos were found50:
•
A specific company is established for the project, and app 80% of the investment is
financed by a loan, the heat energy is used by the owners of the company, and if there is
excess heat and/or electricity, it is sold to the public grid
•
The ESCo invests in the heat plant, has long contracts with the clients. The heat energy price
will be significantly lower than previously and the electricity price a little lower (if CHP).
The client can lease the area of the plant to the ESCO and create income from it.
12.1.3 Financial institutions and schemes
The Hungary Energy Saving Credit Fund/German Coal Aid Revolving Fund (GCARF), financed
initially by the German Federal Republic Government and established by the Hungarian Ministry of
Economic Affairs, finances energy efficiency projects. The fund grants loans, which have a
preferential interest rate; 1/3 of the basic interest of the Hungarian National Bank. The payback time
of the loan is up to 6 years. Industrial companies, municipalities and district heating companies are
eligible for the loans. Eligible technologies include energy transformation, heating, lighting,
renewable, etc. The maximum amount of the loan is 80% of the investment and criteria is tied to the
total cost savings and energy savings. The fund is administered by the Hungarian Energy Centre51
In previous years, the World Bank and International Finance Corporation have also funded ESCos
in Hungary through their The Hungary Energy Efficiency Co-Financing Program (HEECP), which
48
Kiss, Benigna in Urge-Vorsatz, Diana: An assessment of Energy Service Companies (ESCos) Worldwide. 2007.
Kiss, Benigna in Urge-Vorsatz, Diana: An assessment of Energy Service Companies (ESCos) Worldwide. 2007.
50
Rodics, gergely, ESCos in the Hungarian energy market. 2004 Presentation
51
http://ase.org/contenct/aticle/detail/1292 and http://www.energiakozpont.hu/index.php?p=181
49
provided partial credit guarantees. The programme ended in 2001, but it succeeded to make the
ESCo model a very useful approach for improving energy efficiency.52
As of March 2009, renewable energy applications can receive funding from the EU Structural
funds (KEOP 2009/4.2.0 and KEOP 2009/4.4.053) Local heat and cooling supply from renewable
sources and Heat and/or electricity production from renewable sources for use of biomass,
biogas, geothermal, solar, water, wind energy and combinations of them. The funding is available
for project preparation, management, intangible assets and tangibles. The subsidy can account for
10-60% of the costs, up to app 3,3 MEUR (1000 million HUF). The grants are available for both
public and private actors.
In May 2009 The European Bank for Reconstruction and Development, EBRD, granted a loan to
Raiffeisen Bank Zrt. To finance the municipal sector. The loans will be forwarded to municipalities,
municipal companies and energy saving companies. The target of the loans is to increase the energy
efficiency in the municipal sector in Hungary. 54
12.1.4 Barriers
The relatively low price of fossil energy is a barrier in the Hungary as well is in most Eastern
European countries. Small ESCos have trouble financing especially the pre-implementation phase
as no income is generated during the background studies and baseline data gathering. They do not
have the capital for the app 20% own financing of the projects. Large, established ESCos do not
have this problem, as they have the equity and capital for the own funding part. Another barrier is
that the ESCo concept is not well known in Hungary. The problem in the municipal sector is the
commitment of the municipal officers to long term contracts, and the public procurement
procedures take a long time and may not be assessed on energy saving criteria but only the price.
The incentives of the building owner and the user do not necessarily meet, and the investment is not
made based on this.55
The absence of baseline data as a whole is a barrier in Hungary , as the electricity invoicing has
been based on estimates and no verified consumption numbers can be given for the buildings. This
restricts proving the energy savings, which are the basis of the ESCo operation.56
12.2 Technical framework
12.2.1 Quality and monitoring
A lack of appropriate energy consumption measuring is a problem in Hungary. The verification of
the previous and new consumption is necessary to prove the savings in energy after the
implementation of an ESCo operation.
52
europeandcis.undp.org/.../SLF%20Loan%20Guarantee%20Note%20Draft%20v1.5.doc and
http://www.sefi.unep.org/fileadmin/media/sefi/docs/publications/RiskMgt_full.pdf
53
http://www.business2hungary.hu/engine.aspx?page=Itdh_Priority_Sectors_Renewable_Energy
54
http://www.ebrd.com/new/pressrel/2009/090604.htm
55
Kiss, Benigna in Urge-Vorsatz, Diana: An assessment of Energy Service Companies (ESCos) Worldwide. 2007.
56
Berrutto et al. Developing an ESCo industry in the European Union. 2004
12.2.2 Appropriate technology for BioSolESCos
In 2005 the majority of ESCo operations in Hungary were focused on heating and hot water
applications and renewable accounted for only 9%. There is an opportunity for the renewable
energy sector to increase its share of ESCo operations.
13 Ireland
13.1 Legislative, Financial, Contractual and Marketing Framework
13.1.1 Legal Background for ESCOs
There is no particular required legal format for an ESCO
The constitution can be any of the recognised formats in Irish law as follows:
(not sure for Irish but generally similar to UK for company law)
• Public Limited Company
• Private Company Limited by shares
• Private Company Limited by guarantee
• Limited Liability Partnership (LLP)
• Community Interest Companies
• Industrial and Provident Society
• Trust
• Unincorporated Association
It is suggested that Private Limited Company would be the most appropriate vehicle for most
ESCOs as it is the most flexible. Whether it is limited by shares or guarantee will depend on the
aims of the ESCO.
Third Party Finance (TPF) is deemed to be any finance provided by a party other than the ESCO
itself and may be commercial (eg banks or other private investors) or public (eg grant funding).
There are no particular rules relating to the provision of private finance of ESCOs in the UK save
those that apply to borrowing and contracts generally.
Many ESCOs are likely to be regulated entities for State Aid purposes. Any sources of public
funding must abide by the State Aid rules as laid down by E C Treaty. Various exemptions are
available and include:
De Minimus
Environmental Protection
The definition of State Aid is not confined to direct funding and can include a variety of other
benefits including low interest loans, rate rebates, loan guarantees etc etc
13.1.2 Existing Contracts
By definition contracts between ESCOs and their energy users are likely to commercially
confidential.
Purchase of energy (heat and power) from an ESCO by a public authority (eg local authority,
prisons, National Health Board etc) will be subject to Public Procurement Rules.
All contracts should address certain basic principles:
•
•
•
•
•
Duration
Price and price revision
Payment
Security of supply
Default by either party
13.1.3 Financial Institutions and Schemes
Finance almost impossible to obtain from financial institutions means a dependence on investment
funds and private investors. This requires time and financial proficiency to obtain.
Fiscal incentives currently available include:
Enhanced Capital Allowances (for qualifying technologies)
Feasibility and capital grants (from SEI grants sections – eg. Reheat scheme)
Grants
Renewable Heat Deployment Programme (ReHeat)
Combined Heatand Power Deployment Programme
Support for Exemplar Energy Efficiency Projects (SEEEP)
13.1.4 Barriers
•
•
•
•
•
•
•
•
•
Conventional fuel prices at low point
Lack of confidence in technologies
Lack of knowledge among many private investors
Potentially low and slow rates of return
Legislative pressures for new Build, but new Build almost completely slowed
Insufficient government financial incentives or misdirected
Lack of understanding of ESCo options by public and private clients
Lack of long-term Credit worthy customers
An ESCo contract is best negotiated between ESCo and client. This is difficult with Public
procurement process.
14 Italy
In this section the Italian background for ESCo, and BioSolESCo in particular, is reviewed. In
particular, the report aims to assess the legislative, financial, contractual framework and to
investigate the main technical and non technical barriers towards the development of Bio-SolESCOs approaches in Italy. The overview is carried out by means of a comparative assessment
of policy measures put into practice, literature review of exemplar projects developed so far,
interviews with stakeholders and main actors in the ESCO business.
A list of interviewed people and references to useful reports and surveys for the Italian case are
provided in attachment.
14.1 Legislative, Financial, contractual and marketing framework
14.1.1 Legal background for TPF and ESCos
In Italy, specific policy measures related to energy efficiency, renewable energy and energy
management were implemented since the energy crises of 1973 and 1978. It could be useful to
differentiate the legislative framework between measures before and after 2004, which is the
year when the existing energy efficiency support measures (the so-called White Certificate
scheme) were put into practice. Among the others, it is possible to list the following laws:
•
•
•
•
•
•
•
•
•
•
Law 10/1991 which pioneered in the field of reduction in energy consumption and in the
renewable energy sources;
CIPE 6 resolution n° 137/1998: “Guidelines for national policies and measures for the
reduction of greenhouse gasses emissions”;
Presidential Legislative Decree 412/93 about energy efficiency and rationale use of
energy; it introduces the first definition of “heat sevice”, and defines the technical rules
to design, install, operate and manteinance thermal energy plants;
Legislative Decree 16 March 1999, n. 79 (n° 79/99) which concerns the liberalization
and unbundling of the electricity sector, and introduce a market system to support
renewable electricity (tradable green certificates);
Legislative Decree 23 May 2000, n. 164 (n° 164/00),which regards the liberalization of
the gas sector;
Decrees of 24 April 2001 of the Minister of Industry, which define the quantitative
targets for energy efficiency in the electricity (Article 9, Legislative Decree n. 79/99) and
gas sector (Legislative Decree n. 164/2000);
Law 120/02: ratification of the Kyoto Protocol and definition of the National Allocation
Plan and of the measures to fulfill the requirements of CO2-eq reduction;
CIPE resolution 123/02: revision of the guidelines for national policies and measures for
the reduction of greenhouse gases emissions. Among the others, energy efficiency and
solar thermal energy are promoted by this resolution;
Legislative decree (DL) 273/04: urgent dispositions for the application of 2003/87/CE
directive, in matter of greenhouse gasses emission’s credits exchange inside the
European Community;
Energy Efficiency Decrees (DM 20/7/04) : these Ministry Decrees introduced a framework
(also known as energy saving certificates or white certificates mechanism) for promoting
•
•
•
•
•
•
•
energy efficiency and energy savings in end-users. The Decrees introduce a fixed quota of
energy savings to be achieved by electricity and natural gas distribution grid operators
(DGO), by means of end-users energy efficiency measures, and a market system based on
the trading of energy efficiency certificates in order to fulfill this mandatory issue. ESCOs
and GDOs are entitled to partecipate to this energy efficiency market. Further details of this
mechanism are provided in Annex 1;
Legislative Decree 192/05, transposition of European Directive 91/2002 (Energy
performance in buildings). The law introduces a mandatory energy labelling for new and
refurbished buildings, together with energy consumption limits and use of renewable energy
in buildings; in particular, the use of solar thermal energy is made compulsory for new
public buildings in the measure of the 50% of the water heating consumption. For private
buildings, construction criteria must comply with solar thermal plants installation
requirements in order to facilitate a possible integration into the building structure;
Legislative Decree 311/06, which complements and clarifies some assumptions made by
the previous LD 192/05 and introduces new rules to stimulate the use of renewable energy
in the building sector;
Law 296/06, that defines, among the others, the technical parameters to implement energy
efficiency in the buildings in ottemperance with the Legislative Decree 192/05 and
modifications;
Legislative Decree 20/2007, which introduces the net-metering option for high efficiency
CHP plants until 200 kWe and and provides a set of comprehensive measures to promote
high-efficiency cogeneration based on a useful heat demand through the White Certificates
system;
Legislative Decree 115/08, transposition of the European Directive 2006/32/CE related to
end-user energy efficiency and energy services; this law introduces the definition of some
key concepts as "energy performance contracting, ESCOs, third party financing, heat
service contract”; moreover, the law defines monitoring and programming tools to achieve
energy efficiency targets, sets up simplified permitting procedures to facilitate the energy
services approach and remove administrative barriers, incentivates the dissemination of
third-party financing, introduces a framework for energy services and energy efficiency, in
particular in the public sector, defines the procedures for qualification and certification for
ESCOs and for energy consumption measurement and billing. Further details of this
legislative decree are provided in Annex 2;
Ministry Decree 11-03-2008, which is related to the primary energy consumption for
heating and measurements of the energy performance indices in buildings;
Law 244/07 (so-called “Legge Finanziaria 2008”) and Law 185/08 (so-called Legge
Finanziaria 2009) these laws introduced some important actions to promote end-user
energy efficiency, and in particular a tax allowance equal to the 55% of the full costs of
energy efficiency measures implemented into existing buildings; among the others, these
measures can be based on solar thermal panels and/or biomass boilers and /or other high
efficiency heating or hot water production systems. In particular, the eligible measures for
building heating should be able to reduce the yearly primary energy consumption by at least
20%; the demand sector where these measures can be implemented are both the industrial,
domestic, public and residential, including swimming pools, sporting facilities, nursing
homes and hospitals, schools and universities. In (Agenzia Entrate, 2009) the detail of all
the tax allowances available for energy efficiency measures and revewable energy projects
is reported;
•
Presidential Legislative Decree 59/09, which defines technical specification about
materials transmittance, including energy saving calculations, measurement and
monitoring procedures, in agrement with LD 192/05, that have to accomplish with
standards (UNI/TS 11300).
In addition, some municipalities have introduced the so-called “Solar Ordinances”, i.e. local
building regulations which impose solar thermal domestic hot water as mandatory in all new
private buildings.
For public procurement, the legal framework is essentially given by the Legislative Decree
157/95 and its subsequent modifications, including Legislative Decree 65/00, transposition of
EC/92/50 on public procurement, which regulates the tendering for service contracts. The most
important provision related to ESCOs contacting is the limitation imposed on the incidence of
the capital investment over the total contract value, which must be inferior to 50%.
Concerning the private sector, the heat service contract is an important issue, introduced with the
DPR 412/93 (and subsequent modifications and integration). The ministerial memorandum
273/98 of Finance Ministry and the 103/E/98 resolution defined: i) the heat service contract
technical and legal requirements; ii) the VAT rate reduction to the 10% (instead of 20%) for the
heat for domestic uses sold through the “heat service” contract. This last VAT rate reducion was
recently limited also to the heat service provided by district heating and/or renewable energy.
A more exhaustive detail of the Italian legislative framework is proposed in the ENEA web site
(Enea, 2009), where the procedures to obtain the 55% tax allowances for energy saving measures
are also described. In Annex 3 and 4, the details of the tax allowance procedure for the case of
biomass boilers and solar thermal plants are reported.
The review of the Italian legislative framework shows that there are several definitions of
ESCos, and the ESCO’s certification is perceived as a necessity. In particular, the definition of
ESCo eligible to trade the white certificates in the Italian energy efficiency market system
includes all the companies that declare in their costitutive act to be focused on energy services in
a broad sense. For this reason, most of these operators are not really acting as ESCos.
Up to November ’05 the Authority list counted about 400 ESCOs. Recently a new standard (the
audit and certification of obtained energy savings) has been added that reduced the number to
“only” 56 ESCOs (June ’06). But the definition remains quite wide and vague; at the moment
just few ESCOs can supply (for example) Energy Performance Contracts, Third Party Financing
and integrated energy services. In such situation there is the necessity to characterize sure criteria
in order to define what an ESCO is and what are the minimum services required, in order to
create confidence among the customers and the financial institutions.
A first attempt to introduce a clear legal background for TPF and ESCos is represented by the
Legislative Decree n° 115/08, which specifies the characteristics and rules of energy services
and ESCos approaches.
The section V, art 16 of this Decree introduces a voluntary certification procedures for ESCos,
and energy managers, to be defined by a specific standard from UNI-CTI (Italian termotechnical
Commitee, in charge of this standardization issue). Moreover, in order to achieve higher
reliability of energy efficiency measurements, further Industry Ministry Decrees should define
the procedures to certify the energy management systems and the energy audits themselves.
As regards technical standards for ESCos, CEN and CENELEC created a first technical
commettee in 2002, CEN/CLC BT/JWG Energy management (now dissolved), in charge of the
definition of the priorities in the energy management standards. This commettee produced a final
report in April 2005. Successively, two CEN/CENELEC task forces and one sector forum were
established, in order to further the previous works and develop new stardard frameworks. At
national level, in 2006 the Energy management Group (GGE UNI-CEI), coordinated by the CTI
was established. The task forces in operation are described in the following.
- CEN/CLC TF 189 “Energy Management - General requirements and qualification
procedures” coordinated by CTI. This Task Force is composed by 4 project teams (PT). The PT
Energy Efficiency Services coordinated by Italy with the partecipation of France, Germany,
Great Britain, Sweden, Norway. This PT is in charge of the standard CSF23002 - Energy
Efficiency Services - Definitions and essential requirements, aimed at the establishment of
guidelines for certification schemes, energy service providers qualification and, in turn, develop
the market for high quality energy services. The PT Energy management systems is coordinated
by the Swedish standards office (SIS) and it is developing the standard EN 16001 - Energy
management systems - Requirements with guidance for use. The PT Energy managers,
established in 2008, is in charge of the definition of the qualification standards for energy
managers. So far, this PT is focused on the assessment of the existing standards. The fourth PT is
called Benchmarking methodologies, and it is coordinated by the Deutch standards office (NEN),
being in charge of the general benchmarking methodologies to achieve a more effective energy
management.
- CEN/CLC TF 190 “Energy efficiency and saving calculation” coordinated by (NEN). Also in
this case there are several PT, such as the Expert Group "Bottom-up calculations" and "Topdown calculations" focused on the general methodologies to compute the national energy savings
as required by art 15 of Directive 2006/32/CE.
In addition, the CEN/CENELEC Sector Forum “Energy Management” (SFEM), coordinated
by the French standards office (AFNOR) has been established. SFEM represents the link among
the European standards offices, the European Commission, stakeholders, energy management
operators.
Recently, the Italian ISO launched another working group, the ISO PC 242 "Energy
Management", coordinated by the US and Brazilian standards offices (ANSI and ABNT), in
charge of the definition of a standard for energy management systems like the CEN/CENELEC
TF 189 (EN 16001).
At national level, the CTI, together with CEI (Italian termothecnical commettee) is coordinating
the Italian Energy Management Group, which is in charge, among the others, of the definition of
standards for ESCos certification, including aspects such as the skills, competencies and specific
acrivities of ESCos. In fact,
Despite of this, we can observe that the Italian legislative framework, even if characterized by an
innovative market mechanism to support energy efficiency and energy savings (the tradable
white certificates system), presents several crucial issues to be solved, namely the poor reliability
of policy measures, the high delays in putting into practice the general energy policy strategies
and support measures by specific laws, the high complexity of permitting issues and
administrative procedures (which are not simplified by specific legislation as expected), the
absence of clear definitions for ESC0s and energy services and the lack of effective support
systems for renewable heat, cogeneration and district heating.
As regards in particular the solar thermal sector, the most relevant barrier in Italy is the absence
of long term financial incentive programmes, national or regional, opened to the solar thermal
ESCO market. The incentives have been so far limited and discontinuous: no long-term financial
incentives for solar thermal technologies are present, and there is a lack of national coordination.
Some regional subsidies exist but they are mostly intended for the final user and the national
incentive programme is opened to gas distributing ESCO only.
This kind of incentives was so far not sufficient to assure a stable market growth and there has
not been a real industry development.
Moreover, in the field of public procurement, administrations face the problem of establishing
suitable selection criteria in the tendering for heat service contracts. As regards renewable
energy, the absence of a clear regulation about the “renewable” heat service contract in this field,
together with a general lack of knowledge or misperception of the renewable thermal technology,
have discouraged so far public administrations in undertaking investments in renewable heat.
Recent updates: the Legislative Decree 28/2011
The targets of energy efficiency and renewable energy penetration in Italy stated by the National
Action Plan in June 2010 are particularly ambitious, with a target percentage of renewable
energy of 17% by 2020 on the total national energy consumption. In this context, the role of
biomass is particularly relevant, since the total biomass energy should increase from 1.8 MTOE
to 5.6 MTOE by 2020, with a major contribution of biomass heating.
In order to facilitate the penetration of renewable energy, the Legislative decree 28/2001, the socalled Romani Decree, introduced important innovations in the framework of renewable energy
subsidies and energy efficiency measures.
In particular, this Decree reforms the incentives for renewable electricity, introducing a feed-in
tariff for power plants up to a defined scale and a bid incentivation system for larger plants. This
mechanism should substitute the green certificate scheme after 2012. Apart from this, several
measures to facilitate the penetration of renewable heating are introduced, such as:
•
•
•
•
•
•
Art 11: Mandatory use of renewables in new buildings and main refurbishment;
Semplified authorizative procedures for renewable heating in buildings
Art 28: Feed in tariff for small scale renewable thermal energy, and in particular for solar
thermal and biomass heating, also including small scale energy efficiency measures; this
subsidy measure could highly push up the market of renewable thermal energy ESCOs in
Italy, even if it still has to be put into practice;
Art 29: Revision of white certificates mechanism, with an extended timeline for specific
energy efficiency measures that present a lifetime higher than the 5 years of the current
legislation, and in particular the energy savings achieved by cogeneration investments
are entitled of white certificates for 8 years, as stated by a Decree of Ministry of Industry
in august 2011
Art 21: Incentives for bio-methane fed into gas network, that could be used for heating or
cogeneration near to the energy demand, while producing the bio-fuel at the premises of
biomass resources; this measure could also incentivize new ESCO schemes and
investments in biomass heating and integration into existing energy systems, such as
combined use of bio-methane and natural gas into domestic boilers of centralized CHP
systems;
Art 22: Special fund for new district heating networks, and simplifications in permitting
issues
Art 32: Special fund for technological and industrial development including rational use
of energy and energy efficiency measures coupled to major refurbishments
In particular, subsidy measures for small scale renewable energy plants, in the form of feed in
tariff introduced by art 28 of Decree 28/2011, are charged on natural gas bill and are defined by
specific contracts between GSE (gestore sistema elettrico) and plant owner, based on renewable
heat or saved energy. As already explained, a further decree of Ministry of Economic
Development within 6 months was expected to put into practice the subsidy measure, but it is
still missing. In order to be eligible for the incentive, a minimum technical performances is
required (as described in the annex 2 of Dlg 28/2011). The rationale behind these measures is to
guarantee a fair remuneration of investment and operational costs of the renewable projects, by
means of an incentive duration of 10 years, at constant amount over the timeline. It is expected
that the incentives will be differentiated according to scale and technology, however the delays
in the introduction of such scheme do not allow a proper development of the market and
investments from the operators.
Summary of ESCO developments in Italy
In Italy there are about 100-150 ESCO, even if no registry for detailed data is available, and 90%
of ESCOs are small enterprises (often manufacturers of energy efficiency technologies or
renewable energy devices). 9 ESCOs dominate the market, that are linked to the facility
management sector, as further discussed in the chapter. There are also 3 main associations
(AGESI, ASSOESCO and FEDERESCO) where some data about state of ESCO in Italy were
collected. The most relevant field of operations of ESCO are industry, residential and tertiary
buildings, street lighting, co-generation, renewable energy generation. In particular, biomass
ESCOs are diffused in Northern Italy (district heating), and most of the exemplar esco operations
proposed for Italy are referred to these applications. On the contrary, Solar thermal Escos are still
at infancy.
Summary of barriers and comments on recent trends
Technical barriers in Italy
Among the others, the main technical barriers for the development of small-medium scale
renewable heating operations in Italy, performed by ESCO approaches, are:
• Heating measurement
• Technologies reliability, mostly for CHP plants, while solar thermal and biomass
combustion are reliable technologies
• Air emission levels, in the case of biomass, and ashes discharge, that can be a major issue
in small and residential applications
• Know-how about installation and plants dimensioning (in particular in the case of
biomass-solar integration, where there is lack of specific know-how)
• Storage-logistics and biomass supply and handling (mainly in urban areas and where
space is a constraint)
Non- technical barriers in Italy
It is clear that the main barrier towards the development of ESCO schemes is given by
supporting measures unreliability, which is confirmed by the delay in the introduction of the
feed-in tariff for renewable heating stated by Decree 28/2011. Moreover, difficult public
procurement rules in case of projects involving the public sector are another major constraint, as
also confirmed by the case study proposed in the Province of Benevento (Airola), related to solar
thermal heating for a block of public buildings. Moreover, authorizations are other major
barriers, and the recently introduced Decrees also aim to simplify these procedures in order to
overcome these barriers. Finally, financing issues are highly relevant, in particular in case of
small ESCO and start-up companies with limited credit scores. Specific financial products
should be also available for biomass plants, that present annual biofuel supply costs and where
the biomass supply and related price should be secured with proper contracts, in particular if the
ESCO is not also he biomass producer.
Biomass specific barriers
Some of the biomass-specific barriers regard the biomass markets reliability and quality
standards, the social acceptability and permitting issues, the VAT systems in operation in Italy.
In particular, according to the Resolution n° 124/E of tax Agency 6° may 2009, VAT on wood
chips is set at 20% instead of 10% applied in EU’s countries, and this different VAT system
hinders the EU trade and limits the fair competition. Moreover, credit access represents the key
factor to develop heat biomass sector. In addition, specific financial products for biomass plants
are not available on the market, and companies are obliged to take out short loan (5-10 years)
even if the plant allowance period is 15-20 years
Another relevant aspect is the competing use of biomass for electricity, since the incentive for
electricity generation from biomass is very high in comparison to heat generation. The Italian
incentives for biomass electricity are feed in tariff for plants up to 1 MWe of 280 Eur/MWh or
quota system (green certificates) with coefficient 1.8 for plants above 1 MWe (to be substituted
with bid system in 2013). This higher incentive for electricity is not justified by increased
environmental and energetic benefits in comparison to thermal energy production, since the only
electricity generation from solid biomass is not a sustainable route in comparison to only heat or
CHP. It is expected that new incentives for electricity from biomass will introduce mandatory
energy efficiency levels to be achieved in order to be eligible for the support. This factor could
increase the interest in renewable biomass heating coupled to CHP with ESCO approaches.
Solar specific incentives
The specific barriers towards the solar thermal heating are the small size of projects and high
transaction costs, the recent high development of PV plants in Italy (that achieved by end 2011 a
generation higher than 10 GWh with and installed power above 10 GWp). In fact, the very
profitable feed-in tariff for PV plants does not allow a development of the solar thermal sector.
Another crucial issue is the need to secure the energy demand, since the solar thermal investment
is repaid by the energy sold to the customer, and the operation costs are very limited, which is
not the case for biomass plants, where the fuel must be purchased to produce energy.
Finally, landscape constraints can be also a barrier, in particular when the solar thermal plants
are integrated into buildings. Solar thermal cooling is also a very promising technology, in
particular in southern Europe climate conditions, but it is still at infancy.
ESCos and Bio-sol-ESCo markets in Italy
The italian ESCo’s market is characterized by a large number of companies which present
various and different business models.
The first ESPCo started to operate in Italy in the early 80’s by providing “heat service” to public
buildings and being also in charge of the boilers and infrastructures manteinance. Some TPF was
conducted, mostly in the service sector. During this period, several CHP plants were installed in
hospitals. In 1984, the association of heat supply companies (ASSOCALOR) was established. In
the middle of 90’s, ASSOCALOR changed its name to AGESI (the Italian energy service
industry association).
The results of the IEE funded research project ST-ESCOs (www.stescos.org) concluded that
most of the ESCOs are SME, and about 70% has less then 15 employees, and the average
turnover is below 2.500.000 €/ year for 80% of the recorded ESCOs.
Their customers are mainly Public Administrations (21%), Small and Medium enterprises (21%)
and Industry (19%). Still at a low level, but with the higher growth rate, is civil sector (both
tertiary and residential).
Less than 50% of the Italian ESCOs implemented projects dealing with renewable energy and
about 10% developed some solar thermal installations (mostly little plants, less than 15 m2).
Most of the ESCO applications are related to electricity, both end-use efficiency and generation
(see also IEA DSM). In fact the most profitable area of ESCOs business regards electric
components (in particular repowering of electric engines and lighting, in the public and private
sectors). Regarding heat energy services, the main share of the market are large users (mostly
public administration and hospitals), where the refurbishment of thermal plants and the
installation of co-generators are the most implemented actions (due to high cost-efficiency).
Nowadays ESCo’s activities are implemented by means of various approaches. In particular
there are some large ESPCos that own a major white certificates market share, or some private
companies, with small number of project developed, that operate like a MESCo. These
companies implement only energy efficiency actions (no heat service), and are mainly located in
the North of Italy. Among these, there are also some public-private joint ventures, that
sometimes operate like a CRESCo.
The main Italian ESCos involved in the heat service for large consumers (hospitals, public
sector, aggregate of residential consumers and also industrial thermal energy consumers) are
Cofathec, Siram (Delkia Group), Fenice, Manutencoop, ABB, CPL Concordia. These companies
often offer a global energy service, including cogeneration of heat and power. They are
characterized by an high know-how in the energy field, high credit rate in order to be financed by
banks, and economies of scale because of the development of several similar projects for
different customers. Recently also Property Managment, Real Estate and Global Service
Companies (for istance, Pirelli RE and Romeo gestione) are approaching the energy service
sector, enforced by their strong financial capacities, customer portfolios and management skills.
The services they offer are: energy managment (heat, cool, lighting services), but also facility
managment (cleaning, reception, security, representative services) and property managment
(rent, mainance and building managment).
Other operators are energy utilities and electricity distributors, in most cases with a strong
presence on the territory, such as Hera Group (Emilia Romagna Region), Acea (Rome), Ageas
(Campania Region), SEA (Valle d’Aosta Region), A2A and ASM Brescia (Lombardia Region).
These operators are, in some cases, owners of urban district heating systems for residential
customers, but in some cases they also manage ESCos operations in the premises of industrial
firms, near to a large heat and power demand.
The main activities of these companies are based upon cogenerative and district heating projects,
and they can develop from 1 up to 3 project per year with a medium rate of investment of 0.1 up
to 2 mln euro and a medium installed power of 0.5 – 2 MW.
Another category of ESCos is represented by manufacturers of boilers (Riello), solar thermal
plants (Costruzioni Solari), and other devices, that are registered as ESCos in order to trade the
WhC produced by the installation of their products. These companies commonly do not properly
operate as ESCos as from the definition of the EC Directive.
Moreover, there are several other SME acting like ESCos in the Italian market, that are able to
propose a wide range of energy services and energy efficiency investments.
These companies have a 1-10 milion euro year turnover, and in most cases are out of biggest
public procurement. The main barriers are, in this case, (1) the limited access to equity, (2)
limited know-how and skilled uman resources, (3) difficulty to apply a complete custom
satysfaction system, (4) difficulty to achieve economies of scale.
Emerging ESCos are also some engineering companies, usually SME, focused on enegy audits
and on the development of energy saving measures. They follow the project from the audit stage
towards engineering and building, using subcontract to fill out the work.
An overview of the ESCos registered in the AEEG web site and entitled for WhC trading is
reported
in
the
AEEWG
web
site
(http://www.autorita.energia.it/cgibin/elenco_rep_public?OPERAZIONE=6&HEADER=1).
As regards, finally, the specific biomass heating service, most of the ESCos operating in this
sector are located in North Italy, and a comprehensive overview of most of the biomass district
heating plants is provided by FIPER (Federazione Italiana Produttori Energia Rinnovabile), an
association of district heating plant operators with some 550 MWt of district heating plants and
250 MWt of biomass boilers installed by 2008, 82 boilers, 735 km of district heating pipeline,
108.000 customers, thermal and electric power generation respectively of 585 and 48,75
GW/year.
Subsidies available
The main incentives regarding BioSolESCos are summarized in Table 1.
Subsidies available
Solar
Thermal
X
Solar
Cooling
X
Biomass
White certificates (ii)
X
X
X
X
55% tax discount (iii)
X
X
X
X (iv)
X
X
X
Capital cost subsidies (i)
Tax Credit (v)
V.A.T. reduced to
10%(vi)
X
X
X
Biomass/solar
district heating
X
Table 13.1. Incentives available for solar thermal and biomass heating systems.
(i) available time to time on the basis of national, regional or community level funds;
(ii) in the case of solar thermal a stardard procedure is available, while in the case of biomass
district heating or CHP an analytical procedure should be followed;
(iii) 55% Tax Discount is end-user subsidy that doesn’t compete to ESCos;
(iv) only available for heat exchangers and other end-user infrastructures;
(v) a heating plant fueled by biomass or geothermal source may receive a tax credit in
recognition of the avoided emissions of carbon dioxide. The facility granted to the district
heating networks consist of a fixed fee (L. 448/98, L. 418/01). The incentive is assigned to the
heat produced by biomass fuel, and it consists of a fixed amount of € 2.5 cents / kWht;
(vi) District heating energy supply and other renewable energy sources can advantage of VAT
rate of 10% (L. 296/06, DPR633/72); in the caase of heat generation, the reduced VAT rate is
recognized to generating plants fueled by renewable sources or to cogeneration plants (as defined
by the Authority Del. 42/02). In this case, an "energy performance service" contract is required,
that meets the requirements established by the Department of Revenue of the Ministry of Finance
(Circ. 273/98). In the case of a district heating supply, most of these requirements are implicitly
satisfied.
Among the others, specific incentives for renewable heating in the form of capital cost subsidies
are offered by the POI Energia (Programma Operativo Interregionale, www.poienergia.it) and
Kyoto fund (www.cassaddpp.it ), aiming to increase the competitiveness of sustainable
renewable heating.
14.1.2 Existing contracts
The typologies of ESCos contracts applied in the Italian market are basically the EPC (Energy
Performance Contracting), which is characterized by shared or guaranteed savings, and the
ESC (Energy Service Contracting), where the payment is commonly based on the amount of
energy consumed. These typologies are reported in Figure 1.
The Energy Service contracts payment scheme can be based on days – celsius degree, fixed fee,
time fee, or heated space (m3 or m2).
The ESC has been used in Italy since 80’s, mainly in the case of hospitals, public buildings,
residential district heating and so on. This kind of contract is still widely implemented, as also
results from the case studies reported. Mixed ESC/EPC contracts are also possible, on the basis
of the presence of some performance parameters and/or on the capacity of the ESCo to take some
financial risks. It is the case, for instance, of the Bari main Hospital (Policlinico of Bari) case
study, where Siram installed a 2 MWe natural gas fired CHP district heating plant, in order to
serve the heat/cool and electricity demand of the hospital. In this case, an ESC (billing based on
heated m3) is coupled to an EPC (CHP plant built by the ESCo with investment cost repayment
based on the sale of electricity). Nowadays, ESC Energy Service contracts are becoming more
complex, including further services such as insurance to unexpected events (mainly required to
increase the bankability of the project, so decreasing the deby/equity ratio or the cost of capital).
Figure 13.1 ESCos Energy contracts in the Italian market.
Although Energy Supply Contracts are widely used by ESPCos, the EPC is being applied more
and more, expecially after the Legislative Decree 115/2008.
Under an EPC arrangement, an ESCo develops, implements and finances (or arranges financing
of) an energy efficiency project or a renewable energy project, and uses the stream of income
from the cost savings, or the renewable energy produced, to repay the costs of the project,
including the costs of the investment. Essentially the ESCO will not recover all of its costs unless
the project delivers all of the energy savings guaranteed.
The EPC can be classified as Shared Savings, Guarantee Savings, First Out or Pico (Public
Internal Contracting) and Project Financing, which are mainly used in public procurement.
Under a guaranteed savings contract the ESCO guarantees a certain level of energy savings and
in this way shields the client from any performance risk. The performance related to level of
energy saved, and the value of energy saved is guaranteed to meet debt service obligations down
to a floor price. In this case, the ESCO carries performance risk and the energy-user/customer
carries credit risk. Moreover, ESCO can do more projects without getting highly leveraged, and
there is a more comprehensive project scope due to lower financing costs.
In the case of Shared Savings, the cost savings are split for a pre-determined length of time in
accordance with a pre-arranged percentage. In this case the prerformance is related to the cost of
energy saved and the value of payments to ESCO is linked to the energy price. This contract
favours large ESCOs, while small ESCOs become too leveraged to do more projects, and it
favours projects with short payback due to higher financing costs.
Another very frequent type of contract in Italy is the ‘chauffage’ contract, where an ESCO takes
over complete responsibility for the provision to the client of an agreed set of energy services
(e.g. space heat, lighting, motive power, etc.). This arrangement is a type of supply contracting
and represents a form of energy management outsourcing. Sometimes the ESCO in a chauffage
arrangement also takes over full responsibility for fuel/electricity purchasing. The fee paid by the
client is calculated on the basis of its existing energy bill minus a percentage saving (in the range
of 5-10 %). Sometimes a fee may be charged per square meter of conditioned space. Thus the
client is guaranteed an immediate saving relative to its current bill. The ESCO takes
responsibility for providing the improved level of energy service for a reduced bill. The more
efficiently and cheaply it can do this, the greater its earnings: chauffage contracts give the
strongest incentive to ESCOs to provide services in an efficient way. This is the case, for
instance, of the case study of the heat service contracts of University of Bari.
Such contracts may have an element of shared savings in addition to the guaranteed savings
element to provide incentive for the customer. For instance, all savings up to an agreed figure
would go to the ESCO to repay project costs and return on capital; above this savings will be
shared between the ESCO and the customer.
Another variation is the ‘first out’ approach whereby the ESCO is paid 100 % of the energy
savings until the project costs, including the ESCO profit, are fully paid. The exact duration of
the contract will actually depend on the level of savings achieved: the greater the savings, the
shorter the contract.
A BOOT (Build-own-operate-transfer) model may involve an ESCO designing, building,
financing, owning and operating the equipment for a defined period of time and then transferring
this ownership across to the client. This model resembles a special purpose enterprise created for
a particular project. Clients enter into long term supply contracts with the BOOT operator and
the service charge includes capital and operating cost recovery and project profit. BOOT
schemes are becoming an increasingly popular means of financing CHP projects. This is the case
of some Italian ESCO that propose distributed CHP generation systems (in most cases natural
gas or liquid biomass fired) installed at the premises of industrial firms, to serve their
heat/cool/electricity demand. The ESCO investment is often repaid under “BOOT” contracts,
and the plant ownership is transferred to the energy consumer when the investment costs are paid
(commonly after 4-6 years).
The Project Financing is most used for complex projects, such as the construction of large power
plants. The PF is a quite complex and expensive form of financing, based on accurate technical
and economic assessment (due diligence) of the project itself rather than the financial capacity of
the promoters. The loan must be fully guaranteed by the project cash flows, and this requires the
management of a complex set of contracts in order to minimize risks. The magnitude of
minimum investment is therefore high, usually in millions of euros.
The advantages of this form of contracting, used in the field of public utility for the development
of water resources, natural gas concessions, cogeneration plants, district heating, are:
• Efficiency: all the actors involved in PF have an interest to focus on the efficiency of the
work, since the cash flows finance the investment;
• PF allows financing great projects with low expenses, which is particularly relevant for
public administration.
The energy supply contract defines all the important issues between the ESCO (the energy
supplier) and the customer (the energy consumer). An energy supply contract is always an
integral part of an ESCO project. It fixes several important topics that are related to the risk
accepted by the ESCO in acquiring the project.
The main topics to be covered by the energy supply contract are: i) the subject of the contract
(heat/power supply and related quality of service provided); ii) the duration of the contract; iii)
property of the plant and manteinance/operations responsabilites; iv) billing systems and energy
measurements; v) property structure of the areas affected by the installations; vi) obligations to
deliver/supply the energy, imncluding min/max values; vii) insurance schemes.
There are three different schemes for billing the thermal energy between the customer and the
ESCO. Most schemes which are implemented in real projects follow one of these schemes or a
mix of these:
Energy price only: the customer pays a certain energy price per kWh of thermal energy. The
energy is usually billed once every month or once every two months. This means that the
payback for the ESCO works only by means of the energy sold.
Usually, for residential demand and district heating systems the ESCO and the customer agree
for a different summer and winter price (summer price lower, as the demand is lower).
Energy price and basic price: Additionally to the cost per kWh, the customer is also charged a
fixed fee, which takes into account also manteinance costs. This model allows more security for
the ESCO as it will get the payments in any case.
Energy price and connection fee: In this case the customer pays a percentage of the installation
cost (both for the thermal generation plant and/or for the distric heating or the connection to the
heat pipeline). This fee may be calculated on the basis of the kWh delivered per year or on the
installed power. In return, the energy price for the customer is reduced, so the ESCO needs to
perform a very thorough economic feasibility calculation.
The delivered energy price is usually linked to the consumer price index (general index which
reflects the course of the inflation or the fossil fuel price).
14.1.3 Financial institutions and schemes
Suitable financial instruments could help to overcome barriers, namely the limited and
sometimes difficult access to financing opportunities for ESCOs. This is particularly relevant in
the case of new ESCOs, with limited credit rate.
In the case of solar thermal plants and small biomass fired installations, due to the size of the
projects, financing is mainly a business for local banks. Financial instruments can support
renewable ESCOs in several manners, such as: i) establishing suitable funds or making access to
existing funds easier in order to establish financing opportunities for ESCOs; ii) reducing the
risks for banks providing financing through public liabilities; iii) subsidy funds that are available
for renewable heat services.
Several financing sources are possible: private banks and lending institutions, venture capital
firms, equity funds, strategic partnerships (e.g. utilities, engineering firms and equipment
manufacturers).
The dedicated financial services offered by banks to the ESCOs in Italy are growing fast,
because of the strong interest in renewable energy investments, energy efficiency programs and
sustainable development by banks, increased by the presence of quite encouraging incentives.
Quite often financial institutions propose financial schemes designed specifically for energy
service companies. It should be noted that the banks offer financial schemes very different from
each other, and sometimes different offices of the same bank propose different financial solution.
Hovewer, these services are absolutely not effective in removing the financial barriers towards
the establishment of ESCos business, in particular in the case of low investment projects, as they
are considered too much riskky or not enough profitable. In fact, even where there are proposals
for funding apparently well established, in practice the access to credit is quite difficult.
In most cases, the real guarantees or the equity required by the banks to the ESCos are not
compatible with their limited financial resources.
Some of the most important financial services offered to ESCOs by Italian banks are reported in
the following.
Intesa-San Paolo: this financial service (in cooperation with EIB Funds, European Investment
Bank) is focused on material investment (buildings, machinery and equipments). The eligible
operators are SMI and /or Companies operating in the area of energy / environment and
infrastructures, including investments aimed at diversifying energy sources and / or improving
use of energy or environmental protection and /or using renewable sources.
The max loan amounts to to 50% of expenses (VAT excluded), with a maximum of 12.5 million,
with a minimum equity of 25% of the cost of the program. The nominal rate can be fixed or
variable, with a duration of 5, 8 or 10 years. Personal or real guarantees are always required.
LeasEnergy: this type of leasing proposed by Intesa Leasing is committed to renewable and
cogeneration energy plants. It allows flexibility as regards frequency of payments, and it also
ensures fast and simple operations to shorten the implementation time of the project.
Leasing Energia: this scheme supports investments of industrial agro-industral, services and
tourism inverstors which intend to establish facilities for the production / sales of energy from
renewable sources.
Moreover, there is a general agreement between Cooperative Credit Banks / Rural Casses and
the Government aimed to promote renewable energy sources. It provides access to credit for
energy efficiency actions and renewable sources plants. The financial service may vary
depending on the bank, with a maximum loan of 200.000 €, max duration of 10 years, nominal
annual rate equal to the Euribor plus a 1% spread.
The financial service proposed by Banca Etica Energy Projects is tailored for private operators
and enterprises which want to develop an energy efficiency action or build a renewable energy
source plant. It is also dedicated to ESCos, infact we can read in a note of the “Banca Etica”
proposal that “it should reward ESCos’ activities for their innovative character, in order to break
financial barriers and promote energy efficiency and sustainable development”. In this case, the
max loan: ranges between 10.000 and 200.000 €.
Figure 13.2 Financing services available from Banca Etica (www.bancaetica.it).
“Energy Save” is the financial service of “Monte dei Paschi di Siena” dedicated to energy
efficiency and renewable energy plants, and in particular to ESCos activities. The max loan is up
to 100% of the investment, subject to a due diligence approved by bank. Among the other
guarantees, a suitable insurance scheme is always required, together with real guarantees from
the investor and often a direct repayment of the loan by the project cash flows (this is required
ihn most of the financial services described).
“Progetto Spazio Energia” is a specific financial service of Banca Pololare di Ancona dedicated
to public and private operators who defined an industrial corporate program to execute energy
savings or renewable projects. The projects funded are cogeneration and trigeneration plants,
renewable source plants, pellet production plants, heat/power distribution grids. The minimum
investment is 25.000 €, with loans up to 100% of investment.
In conclusion, it appears clear that the lack of interest from financial institutions should be
overcome. So far, ESCOs have mostly implemented projects using their financial bases, but this
limits the size of the ESCO market strongly. Banks should be informed, and encouraged to
participate in third-partyfinancing.
14.1.4 Barriers
The assessment of the Italian Bio-Sol ESCos state of the art allowed identifying some existing
barriers, as reported in the following.
Policy and administrative issues
• Complex administrative issues are by far one of the main barriers towards the
development of ESCos approaches.
• In public sector, there is a very promising energy demand for ESCO’s services and
low energy efficiency, but a public call is often required and the complex
administrative procedures are one of the main barriers; in particular, a preliminar
assessment and techno-economic feasibility study is always required to prepare the
•
•
•
public call for energy services, but the public sector has a poor know-how to carry out
this study and in most cases no funds are available to outsource this to ESCOs, and
what commonly happens is that an ESCo has to spend time and money to carry out
the preliminar feasibility study taking the risk to loose the successive public
competition to put into practice the feasibility study and carry out the project.
A major drawback to ESCOs in the public sector is that public sector regulations are
not suitable for EPC. Tender procurements are traditionally price-based (based on
initial investment cost) and energy performance (lifecycle costs) does not form the
primary decision basis, which would be important for an ESCO project. Chauffagetype contracts are preferred. In this case, however, no energy saving guarantee per se
is given and the savings are not monitored, although savings are normally realized.
Subsidies are an important and structural measure to make the diffusion of good
practices and the growth of the renewable heatsector easier. One of the main barriers
for the Bio-Sol-ESCos development has been the lack of support measures towards
renewable heat in Italy. It’s very important that the measures are active for a
medium/long period (in order to attract investors along years and not only for short
and limited periods) and insert in wider programmes; simple criteria to calculate the
subsidy should be preferred, in order to assure a wider participation to the scheme by
the final users and also a faster (and therefore cheaper) assessment of the requests;
coordination at national level is also necessary: even if the development of the single
measure can be carried out by local administrations, the criteria to achieve the fund,
the bureaucratic procedures and the targets should be decided at national level.
The missing of a legal consolidation of ESCos is another issue 8partially solved by
the Law 115/2008).
Financial issues
•
The bankability of the ERSCos operations is a main issue, since the credit system
appears generally stagnant and with poor interest in the ESCOs business. In fact, it is
perceived as too much risky of scarcely profitable, in particular in the case of low
investments and small ESCos; quite often very high guarantees and/or high equity are
required to ESCos to have access to credit, and securing the loans repayment is always
required; moreover, banks often require complex and expensive procedures (“due
diligence”) to provide the loans to ESCos.
Contract issues
• It is difficult to measure the energy savings which are caused by the energy efficiency
measures implemented and those ones which are caused by energy consumer changes
(behaviour, load increase or decrease, etc) and that should be not considered when
calculating the ESCO revenues; the set up of suitable algorithms could be particularly
complex.
• The space required by the solar thermal collectors could be a barrier, in particuilar
when they are installed in urban areas, where the space has a value; moreover, in
most cases an auxiliary boiler is required to meet the load demand during winter, so
that the Esco should also face the operational issues of thermal plant management,
fuel supply and so on.
•
In some cases the final energy consumers could be sceptic about the reliability and
quality of energy services provided by the ESCO, and proper guarantees of good
operation should be provided by the ESCo to the final consumer.
Other barriers
• The low heat demand in Southern Italy causes a poor interest in the heat service and/
or district heating in these Regions; one option could be the development of cooling
systems, but they are quite expensive and difficult to integrate with solar thermal or
biomass facilities.
• In the domestic and tertiary sector, energy efficiency investments for insulation
systems are very expensive and should be carried out by the buildings owners, and
not by the ESCO.
• Solar thermal plants are commonly suitable for low temperature heat, and this could
be a barrier when high temperature heat is required, such as in the industrial and agroindustrial sector, even if a solar based pre-heating system could be a good
compromise also in this case.
• Solar thermal heat production is affected by high seasonality, and since the produced
heat can be stored for a limited amount of time, a proper plant sizing and the
knowledge of the laod pattern are major issues; in the case of biomass fired boilers,
this issue is by far less relevant, but in every case it could be appropriate to installa
integrating systems for heat peak loads, on the basis of the specific typology of heat
demand.
• In the case of energy efficiency measures implemented together with the
heating/cooling services, there is a trade off between the interest of the ESCo in
selling the energy and in achieving energy savings; in this case, the contracts and the
ESCO revenue should be composed by a first part based on the energy sold and with
a discount on respect to the baseline (cost of energy of the ex-ante situation) and a
second part based on the energy savings.
• The space required for biomas storage can be a problem in the case of biomass
heating plants, in particular in urban areas, where the space has an higher value; the
emission levels of biomas heating plants in comparison to gas fired boilers could be a
disadvantage (in particular as regards particulate, NOx and CO emission levels); the
biomas supply could be particularly comples, and biomass-Esco schemes can be more
promising when the Esco is vertically integrated, being also in charge of the biomass
production, pre-treatment and storage.
• The high costs of pipelines and installation in case of refurbishment for district
heating is by far one of the main barriers towards the development of the district
heayting service, together with the extremely complex administrative procedures for
the end-users connection to the pipeline.
• In Italy there is a high competition with natural gas, which is widely available and a
gas fired district heating system is cheaper than a solar thermal or biomass fired
district heating system.
• Absence of national high replicability projects for BioSolESCos for small-medium
scale plants, and absence of information about success cases.
14.2 Technical framework
Technical framework related to BioSolEsco’s activities is connected to technical aspects and state
of the art of implemented renewable technologies, (solar thermal and biomass).
These energy souces are suitable for space heating and hot sanitary water, but also summer air
conditioning (cooling). District heating technology is also connected with heat supply services
and it uses a centralized system to achieve economies of scale and higher efficiency.
14.2.1 Quality and monitoring
Quality and monitoring aspects are crucial for Escos, and thus for BioSolESCos, considering that
ESCo’s earnings are based on the achieved energy savings.
In particular, the Legislative Decree 115/2008 defines not only the quantitative parameters to be
monitored, but also the necessary contracts characteristics between ESCo and customer.
In particular, according to the definition of energy performance contract “Plus”, this LD states
that the ESCos have to accomplish with a voluntary certification (at the moment ISO 9001 and a
certification as in the Law 46/90).
This should ensure that the company has the necessary technical and managing know-how. In the
future, an international ESCo certification standard (ISO 16001) should be introduced, as already
discussed.
So far the quality and monitoring issues related to energy performance contract required by the
Legislative Decree 115/2008 (Annex II) are, in particular:
•
•
•
energy label of the building as defined by LD 192/2005, explicitating the energy
requirements of the building, and the measurements to be taken in order to improve its
energy performance. The energy label calculations must be executed in compliance with
UNI TS 11300, and can be performed using commercial softwares that are certified by
CTI or UNI (national technical unification body) having a maximum error of +/- 5% in
the estimate of the energy requirements;
the quantitative parameters used to calculate the effectiveness of the energy services
should be clearly explicitated; moreover, the correlation between the measured
parameters and the amount of thermal energy delivered should be explicitated;
the energy supplied to the final consumer should be reported at least yearly, with single
measurements for each consumer.
Monitoring issues are also defined in order to access to white certificates. As introduced before,
every end-user energy efficiency measure should be reported to and certified by the AEEG in order
to be assigned the related WhCs. In particular, as regards solar thermal projects, a standardized
procedure can be followed, in order to estimate the energy savings arising from the installation of
these panels. This procedures allows estimating the savings simply by means of the m2 of solar
panels, the typology of radiators, the climate zone of the area of installation, and the substituted
heating source. As regards biomass boilers and biomass CHP, there are a couple of analytical
procedures defned by the AEEG to estimate the energy savings of bio-heat, which are in particular
related to small cogenerative systems and district heating. However it should be noted that the
energy savings assessment is, in this case, more complex and specific measurements are required.
Morevoer, it should be noted that, at the moment, the certification procedures for biomass district
heating and biomass cogeneration are not appliable. Further details can be found at the AEEG web
address:
(http://www.autorita.energia.it/ee/schede.htm,).
14.2.2 Appropriate technology for BioSolESCos
14.2.3 Software tools available
The ST-ESCO software tool was developed for a quick assesment of potential solar thermal ESCOs
applications within the IEE funded project ST-ESCO. It includes the Energetic Module, a
simulation tool based on TRNSYS, with a user friendly interface where the user can introduce all
technical data referred to the solar thermal system and calculate the energy production, and the
Economic Module, that carries out the economic, financial and contractual analysis, based on the
results or energetic yield assessment.
Among the other softwares for renewable sources, and in particular for BioSol ESCo, there are:
•
The RETScreen Clean Energy Project Analysis Software, which is a unique decision
support tool developed with the contribution of numerous experts from government,
industry, and academia. The software, provided free-of-charge, can be used worldwide
to evaluate the energy production and savings, costs, emission reductions, financial
viability and risk for various types of Renewable-energy and Energy-efficient
Technologies (RETs). The software (available in multiple languages) also includes
product, project, hydrology and climate databases, a detailed user manual, and a case
study based college/university-level training course, including an engineering etextbook.
•
Polysun Solar thermal Simulation, which allows estimating the energy production and
economic feasibility of solar systems; it provides users with flexibility in the design of
solar thermal systems. Polysun enables to figure out yields and energy savings and get
an accurate cost analysis.
15 Luxemburg
16 Malta
During the 1980s and 1990s Malta experienced a growth of energy supply, markets and distribution.
The energy scene has changed rapidly during this last decade with prices for fuel increasing
substantially. Malta’s accession to the EU is leading to developments in the energy market and
establishment of more environmental measures.
Consumption of electrical energy has been increasing steadily. This can be attributed to a number of
factors including growth in economic activity and higher standards of living. Electricity demand has
increased from 1,603 GWh in 1995 to 2,263 GWh in 2005. The production of energy from fossil
fuels is the main source of environmental pollution. In 2007, the electricity sector was the largest
contributor to National Greenhouse Gases (GHG) emissions with a share of 88.7 % of gross
national emissions, followed by the waste sector that contributed 6.6% to overall emissions. These
indicators come from two reports that the Malta Environment and Planning Authority (MEPA)
recently submitted to the European Commission under the EU Decision No. 280/2004/EC. The
reports also indicate that from 1990 to 2007, the GHG emissions in Malta have increased by 49 %
with CO2 being the most significant contributor to this increase. Data indicate that on average, per
capita emissions have risen from around 5.5 tonnes per head in 1990 to 7.3 tonnes per head in 2007.
These trends reflect the socio-economic changes that have taken place over these past two decades,
resulting in an increased demand for energy, with more waste generated and energy consumed for
transport. Despite this national trend, Malta contributes only around 0.1 % to the overall EU-27
GHG emissions.
16.1 Legislative, Financial, contractual and marketing framework
16.1.1 Legal background for TPF and ESCos
In recent years, Malta Government has introduced a number of measures in order to reduce the
emissions of electricity generation. Technical modifications were made in order to increase the
efficiency of the power plants. Coal consumption was reduced gradually and the introduction of low
sulphur heavy fuel oil in 2004 reduced sulphur dioxide emissions.
Efforts are underway to assess both the potential and applicability of renewable energy sources.
Renewable energy has led to a conceptual shift in energy policy in order to obtain at least partial
relief from volatility in prices and scarcity of domestic products. Renewable energy is regarded and
promoted as an investment for the future. To date, Government has been considering the aspects of
affordability and competitiveness for the sector. Government has, directly or through its agencies,
conducted several studies in connection with specific renewable energy technologies both up to and
post-2010.
Large, land-based solar farms are not considered an attractive option mainly because of their
footprint and the impact of their hardware on the local landscape. More cost-effective uses of solar
energy are perceived to lie in water heating and in the medium term in cooling. In the interest of
promoting the mix of PV and solar thermal energy generation, Government has introduced various
measures of support, including capital grants for solar installations (solar thermal water heaters and
PV panels) in private households. Government has also put an exemption from excise duty on the
biomass content in bio-diesel and such measures are expected to be reviewed following an
assessment of the results achieved.
Overall, Government is continuing with the implementation of support schemes to promote the
adoption of a mix of appropriate technologies at all levels, while considering the costs of
implementation and maintenance of these technologies and related financing aspects.
Figure 16.1
Although Malta does not have emission reduction targets under the Kyoto Protocol, it is still bound
to adopt and implement policies and measures that directly or indirectly lead to limitations or
reductions of emissions of greenhouse gases.
To date, the two power generation plants currently in operation in Malta are the only installations
falling within the scope of the Directive 2003/87/EC. In fact, as a non-Annex I party signatory to
the Kyoto Protocol, Malta is eligible to participate in Clean Development Mechanism (CDM)
projects as a host of such projects. The Malta Environment and Planning Authority has been
designated as the Designated National Authority (DNA) in this respect.
To date, the DNA has received one project proposal, for a landfill gas recovery and utilisation
project to be set up at Ta’ Zwejra landfill, by WasteServ Malta. The objective of the project is the
collection and destruction of methane generated at the Ta’ Zwejra landfill where municipal solid
waste is deposited.
The Project Design Document submitted indicates that an annual average emission reduction of
approximately 19 ktonnes of CO2 equivalent is expected. It should be noted that the project has not
yet been registered with the CDM Executive Board and thus no reduction credits have been issued.
All emission savings taking place in Malta are due to domestic action and do not constitute the
“offsetting” of local emissions by emission reduction activities taking place in other countries.
In December 2008, Malta expressed its intention to change its status under the UN Framework
Convention on Climate Change (UNFCCC), apart from technical measures aimed at improving the
efficiency of the electricity generating infrastructure and reducing the GHG emissions emitted per
MWh generated, a number of measures have been put in place, or are planned, in order to reduce
the demand on the national grid and to increase the use of renewable energy sources (RES).
The measures described hereunder include regulatory, technical, economic and voluntary
/information measures:
P&M No. 5 Energy Performance in Buildings Regulations
Implementing Entity National Government (Ministry for Resources and Rural Affairs)
Type of Instrument: Regulatory; Status: Implemented
CCPM Energy performance of buildings (Directive 2002/91/EC)
The objective of the measure is to reduce the wastage of energy and provide adequate
environmental indoor conditions in buildings by the following actions:
• Prescribe limits on U values of external walls, roofs, windows and external doors of all
newly constructed buildings and large buildings that undergo major renovation;
• Prescribe limits on the area of glazing to be used in all newly constructed and large
buildings that undergo major renovation;
• Make better use of solar gain in winter and control solar gain in summer in all newly
constructed buildings and large buildings that undergo major renovation;
• Prescribe requirements for the conservation and reuse of rainwater in all newly constructed
buildings;
• Introduce better controls on artificial lighting in all new buildings and large buildings that
undergo major renovation;
• Introduce minimum requirements for switching controls in the use of water and space
heating appliances;
• Introduce minimum requirements for switching and zoning controls in the use of air
conditioning appliances.
By the powers conferred by article 28 of the Malta Resources Authority Act, the Minister
responsible for Resources and Infrastructure, in October 2006 issued Legal Notice 238 entitled
“Minimum Requirements on the Energy Performance of Buildings, 2006”.
These regulations specified that all new buildings and existing buildings that undergo major
renovation or alteration, and whose building permit application was received by the Malta
Environment and Planning Authority on or after the 2nd January 2007 had to comply with these
regulations. A technical guidance document - Conservation of Fuel, Energy and Natural Resources
(minimum requirements on the energy performance of building regulations, 2006) - was issued as
part of the regulations and is the instrument that gives the parameters and provisions for compliance
to the regulations.
Legal Notice 238 of 2006 was superseded by Legal Notice 261 of 2008 that incorporates the
minimum requirements and implements the Energy Performance Certification of Buildings.
This measure is part of the regulatory requirements imposed by the transposition and
implementation of Directive 2002/91/EC on the Energy Performance of Buildings and will also
complement the national campaign for increased energy efficiency awareness.
It is considered too early to measure the true effects of the implementation of this measure.
Furthermore, the present lack of statistics on the end use of energy in Malta buildings and the lack
of human and financial resources necessary to carry out the detailed reporting needed to obtain this
data make it very difficult to estimate the savings that will be obtained by the introduction of the
above mentioned measures.
Another factor is the link between the building performance and optimum comfort levels; although
many Malta homes are not at present cooled or heated adequately to provide good thermal comfort
throughout the year because of the amount of electricity needed to do so with the current building
stock, this trend may change as the energy performance of buildings improves.
P&M Nos. 9 – 12 Incentive schemes for Energy Efficiency and RES Measures in the Residential
Sector
Implementing Entity National Government (Malta Resources Authority); Type of Instruments
Economic
P&M No.10 Promotion of Solar Water Heaters
Status Implemented
The first grant by Government on solar water heaters was announced in 2005. The rebate of 20% on
the purchase price was capped at a maximum of €116.48 and uptake was rather low. The maximum
rebate was doubled to €232.94 in 2006, with uptake tripling (MRRA, 2008). Up to the end of 2008,
a total of 1665 applications for rebates on solar water heaters had been submitted to the Malta
Resources Authority.
Visits are organised by the Institute for Energy Technology upon application by the home owner. A
technical inspection is made on the installed solar heating system. A pre-defined technical form is
used. Observations made include measuring the azimuth and the inclination of the panels, checking
the water storage tank size and solar panel area, to see if sufficient collector area is available to heat
the water effectively and checking on lagging, insulation, and back-up heating settings. A
questionnaire is also completed to understand the lifestyle of the users and advise on certain
measures that could save on hot water usage.
Following the visit, an official report is sent to the owner, highlighting the good results as well as
those measures that need to be taken, if any, to improve the performance of the solar system, with
the scope of saving more energy and getting better customer satisfaction.
Under the new scheme for 2009, the Government allocated €2 million for the purchase of solar
water heater where applicants are refunded two thirds of the cost up to a maximum of €460. It is
calculated that 4,500 families are going to benefit from the scheme 19 MFEI (2008).
P&M No. 16 Information campaign on Energy Efficiency
Implementing Entity National Government (Office of the Prime Minister)
Type of Instrument: Information; Status: Implemented
CCPM End-use efficiency and energy services (Directive 2006/32/EC)
A national educational campaign is currently in operation to increase the level of the general public
and consumers’ awareness on sustainable energy use. The campaign aims to change consumers’
behaviour towards more sustainable energy use and to educate consumers through dissemination of
information and knowledge on Malta’s dependency on conventional energy generation, measures
that may be implemented to reduce this dependency, including policies, measures and support
mechanisms, and the benefits of sustainable energy use to the environment and society as a whole.
The educational campaign will address the following key issues:
1. Energy efficiency and conservation of electricity;
2. Micro-generation through renewable energy sources and promotion of solar thermal
systems;
3. Energy efficiency in transport;
4. Energy performance in buildings.
16.1.2 Existing contracts
Considering the early situation regarding ESCOs and Third Party Financing, no schemes of energy
performance contracts are used in Malta. Probably ESCOsschemes are not suitable in the Malta
framework and they need to be implemented as part of an integrated system that is not yet ready to
come in force. By now Malta made some efforts to decrease the GHG emissions in energy sector,
including emissions from fuel combustion activities, i.e. Public electricity and heat production,
manufacturing industries and construction, transport and commercial/residential.
16.1.3 Financial institutions and schemes
Since there are no ESCOs in Malta and Energy Market is regulated by Government, financing
energy savngs or solar-biomass power plants are not yet developped as in other Countries.
Nowadays projects are financed by Government with Energy Grant Scheme: End-use efficiency and
energy services (Directive 2006/32/EC).
This incentive scheme aims to assist companies in the implementation of projects related to energy
efficiency (such as the installation of intelligent lighting systems, solar heating, thermal insulation,
building management systems and energy-saving lighting) and electricity generation from
renewable sources such as solar and wind. Approved and selected projects (through competitive
call) will be refunded 50% of their investment cost.
The scheme will be administered by Malta Enterprise, the government agency responsible for the
promotion of foreign investments and industrial development in Malta.
Total funds of €10,000,000 are available under this scheme. The energy grant scheme, which is to
be funded through the European Regional Development Fund (ERDF) (2007 to 2013), was
launched in February 2009.
This scheme is run in parallel with a scheme aimed at assisting companies to have energy audits,
which scheme is funded by the Maltese Government through Malta Enterprise. Energy audits can
identify measures which can then be funded through the energy grant scheme.
Another ERDF scheme which will also be administered by Malta Enterprise, aimed at assisting
companies to implement environmental technologies for projects related to waste, water and air
emissions, and may also result in the indirect reduction of GHG emissions through reduction in
water demand (the production of which is heavily dependent on energy-intensive desalination
process).
The levels of savings that will actually be achieved are highly dependent on the type of solutions
that will be proposed and eventually implemented.
Additional benefits of the scheme include the reduction of air pollutants from the power stations (as
a result of reduced energy demand), increased competitiveness for industry /enterprise as a result of
reduced energy costs, and awareness-raising of the various possibilities for implementing energy
efficiency measures.
16.1.4 Barriers
Malta ratified the United Nations Framework Convention on Climate Change (UNFCCC) as a nonAnnex I party on 17th March 1994, and subsequently ratified the Kyoto Protocol on 11th November
2001.
Due to its non-Annex I party status, Malta does not have any binding obligations to limit or reduce
greenhouse gas emissions under the Kyoto Protocol neither has any limitation or reduction targets
under the ‘burden-sharing agreement’ currently in effect. It should also be noted that in view of its
non-Annex I status, Malta is also not eligible for allocation of Assigned Amount Units under Kyoto
Protocol rules.
This is probably the main reason to explain the lateness of the Country to develop ESCos business
and TPF.
A comparison between Esco in Italy and Malta is reported in Figure 1 ( “Designing an appropriate
ESCOs’ environment in the Mediterranean”, Konstantinos D. Patlitzianas, Haris Doukas and John
Psarras).
The Figure reports the main barriers to ESCos and TPF.
Figure 16.2 Comparison of ESCos in Italy and Malta.
Malta electricity system overview
Malta’s electricity generation is exclusively reliant on non-renewable energy sources (liquid fossil
fuels) and this has been adversely affected by developments in international pricing of petroleum
products. Electrical power is generated in two conventional thermal power stations owned by
Enemalta Corporation and located at Marsa and Delimara. These power plants utilise heavy fuel oil
for conventional steam plant (boiler/turbo generation) and gas-oil for gas turbines. The Marsa
power station houses the older generation plant, whereas the Delimara power station is relatively
more modern, albeit still in need of upgrading, particularly in relation to energy efficiency and
cleaner fuels. Investment is also required in certain critical sections of the distribution system to
prevent distribution failures.
The network is currently state-owned and is subject to regulation by the Malta Resources Authority.
The present electricity distribution system in Malta has evolved from three 33kV distribution
centres to a network of seventeen 33kV and one 132kV distribution centre. These are divided
among 4 regions, namely, North, Sliema, Central and South and the load growth characteristics for
each were analysed to formulate a long-term plan that would ensure a secure and high quality
supply suitable for all the different regions by 2013. The 132kV distribution centre was
commissioned in 1992, in order to deliver electrical energy from the then, newly constructed
Delimara Power Station. A second 132kV distribution centre is currently being commissioned in
the centre of the island. These distribution centres are strategically located close to large load
concentrations and directly supply large industrial and commercial consumers. An analysis of the
current condition of the distribution network shows that during peak demand periods, most
components are operated at close to their rated capacity and have no redundancy.
16.2 Technical framework
16.2.1 Quality and monitoring
No quality and monitoring standard procedures are implemented by private or public actors to
access to any incentives or white certificates scheme, since the only energy savings and efficiency
action are undertaken by Government in accordance to CDM and JI schemes.
16.2.2 Appropriate technology for BioSolESCos
As regarding technological framework, maltian situation about biomass and solar thermal plants is
in a first stage status, and equipments and instruments are mainly imported from other countries
companies.
Some technical actions can be listed to give information about energy efficiency projects
implemented on the two national power plants:
P&M No. 17 Installation of Steam Recovery Turbine at the Marsa Thermal Treatment Facility
Implementing Entity: State-owned entity
Type of Instrument: Other (Technical)
Status: Implemented
CCPM End-use efficiency and energy services (Directive 2006/32/EC)
The Thermal Treatment Facility in Marsa started operating at the end of 2007 and took over the
incineration activities that were previously carried out at a number of other facilities which did not
meet EU standards.
The facility treats waste by incineration at high temperatures, and is dependent on electricity and
diesel for the operation of its high temperature furnace. This temperature is controlled by circulating
cold water, which is then released as steam. Following studies to investigate the potential of
recovering electrical energy from the ‘waste heat’ of this plant, a turbine and generator are to be
installed (in 2009) so that steam which is currently being released into the atmosphere will be
redirected to a turbine to generate electricity.
It is estimated that the electricity generated by the turbine will be roughly equivalent to the
consumption of the plant, hence making the incinerator self-sufficient in terms of electrical energy.
GHG savings are estimated to be about 2.7 Gg CO2 equiv. in 2010 decreasing to 1.4 Gg CO2
equiv. in 2020.
P&M No. 22 Biogas from Urban Waste Water Treatment
Implementing Entity State-owned entity (Water Services Corporation)
Type of Instrument: Economic
Status: Implemented
CCPM Electricity production from RES (Directive 2001/77/EC)
The Malta South Urban Waste Water Treatment Plant (Malta South UWWTP) is the largest of the
three waste water plants being constructed under the Government’s Infrastructure Programme for
the upgrading of the national waste water infrastructure and for achieving compliance with the
requirements of the Urban Waste Water Directive.
With the aim of reducing the plant’s energy demand on the national grid and treating the sewage
sludge generated prior to disposal, the Malta South UWWTP will feature anaerobic sludge digestion
facilities with biogas production. The methane produced will be combusted in a CHP plant for
energy recovery: the electricity output will be used to meet a share of the plant’s own operating
demand, whereas the heat will be used in heating up and maintaining the sludge digesters at 35°C
16.3 Lessons learned
Malta has not yet developed an integrated system to lower GHG emissions and so ESCos
investments are made up by public government only in the form of demonstrating projects. The
most important constraints are focalized in the legal/political and the social/cultural dimension.
These can be constraints due to weakness in the provision of effective political support and the
absence of verification protocols for the certification of the contract’s guarantees, the reduced
interest for ESCos and the scarce educational policy on energy savings. Other important barriers of
the financial dimension are the lack of funds and poor financial support for ESCos.
17 Netherlands
17.1
Legislative, financial, contractual and marketing framework
17.1.1 Legal background for TPF and ESCos
The Netherlands know myriad initiatives to keep fossil fuel emissions within bounds. Enforcing
legislation however seems to be still lacking.
The Kyoto protocol states that the Netherlands will have to decrease their CO2 emission by 6%
from 2008 to 2012, compared to 1990 levels. The Dutch government have decided on a 20% CO2
emission decrease by 2020, compared to 1990 levels. Moreover, 20% of all energy used will be
from renewable energy sources.
Two European regulations are due to be implemented on a federal level. The Energy Efficiency and
Services Directive (ESD) is deposited upon all EU member states in 2006 and aims for a cost
effective improvement of energy efficiency with end use by indicating target values, removal of
market barriers, and stimulation of the energy service market. The Energy Performance of
Buildings Directive (EPBD) is a framework for calculating integrated energy performance for
buildings.
CO2 reduction at a local level is described in BANS (“Bestuursakkoord Nieuwe Stijl”: policy
agreement new style) in 1999, and updated in 2007. BANS contains a climate policy
(“Klimaatbeleid”) which has resulted in an agreed CO2 reduction of 5 to 40% in about 250 of the
441 current Dutch municipalities, compared to the Construction Act (“Bouwbesluit”). The
Construction Act (latest version from 2003), outlined by the Ministry of Housing, Spatial Planning
and the Environment, consists of technical regulations which apply to all buildings, like dwellings,
office buildings and stores etc. in the Netherlands.
(Scholma, 2008)
17.1.2 Financial institutions and schemes
Government agency SenterNovem work for the Ministry of Housing, Spatial Planning and the
Environment and the Ministry of Economic Affairs and carry out government policies concerning
innovation, energy, climate and environment.
Duurzame Energie in Nederland (Sustainable Energy in the Netherlands) is a SenterNovem
programme to promote the use of renewable energy sources, in order to reach the government’s
energy targets (20% provided by renewable energy sources by 2020). One of the programme’s
purposes is to take away non-financial barriers, like obtaining necessary permits. The programme
functions as a helpdesk and offers project guidance.
The EIA (“Energie-InvesteringsAftrek”: Energy Investment Deduction) is a fiscal regulation to
stimulate investments in energy saving and sustainable assets. Every year a new Energy List is
released, which states the energy saving norm and all examples of energy saving and sustainable
assets. In 2008, the EIA allows a 44% deduction from all approved investments, with a minimum
investment amount of € 2,100 and a maximum of € 110,000,000.
SDE (“Stimuleringsregeling Duurzame Energieproductie”: Regulation for the Stimulation of
Sustainable Energy Production) is a government regulation to promote the production of clean and
sustainable energy, a.o. wind power, solar photovoltaics, cogeneration and biomass. SDE has come
into force in 2008, as a successor of the 2003 regulation MEP (“Milieukwaliteit
ElektriciteitsProductie”: Environmental Quality of Electricity Production), by which no maximum
amount of grant was given. The popularity of MEP prooved to be far bigger than the government
had ever anticipated. Hence the costs got out of hand, and the government decided to terminate the
grant on the purchase of solar panels and solar boilers.
SDE remunerates every generated kWh. Another important change is the possibility to balance up
until 3,500 kWh. This means that all returned energy can be deducted from the use. As such, a
private individual receives the same price for the returned energy as which is paid for the power
taken at another time. If more than 3,500 kWh is returned, the right to balance disposes and just the
feed-in tariff offered by the energy supplier is remitted. (Source: Wikipedia).
For years, entrepreneurs can profitably invest in environmentally friendly technologies with fiscal
policies MIA (“Milieu-InvesteringsAftrek”: Environmental Investment Deduction) and Vamil
(“Willekeurige Afschrijving Milieu-investeringen”: Arbitrary Deduction Environmental
Investments). All environmental investments that are eligible for MIA and/or Vamil are listed on
the combined MIA and Vamil list (“Milieulijst”). The Ministry of Housing, Spatial Planning and
the Environment adjusts this list every year, to match policy priorities and current market
developments.
Groen Beleggen en Financieren (Green Investing and Financing): This programme supports
environmentally friendly projects by facilitating cheap bank loans. The regulation is financed by
private investors and depositors, who receive fiscal benefits in return.
EOS (“Energie-OnderzoekSubsidies”: Energy Research Grants) offers companies and research and
educational institutions financial aid. The programme supports the development of knowledge and
its applications in many other ways.
MSK (“MilieuSteunKader”: Environmental Support Framework): There is a limit to the total
amount of financial support that environmental investments are allowed to receive from the
government. The two main principles are: 1. A Project cannot be subsidised for more than 40% of
its total investment costs (investment grant maximum); 2. During the running time, a project cannot
receive more grants than its total amount of investment (exploitation grant maximum).
17.1.3 Barriers
Biomass projects in the Netherlands usually face a number of common bottlenecks:
• The specific investment costs are high in comparison with fossil fuel systems.
• The investments are too big to be financed by a private or small company itself, but as a
project too small for an external financer.
• Few small-scaled bioenergy projects are realised in the Netherlands, which renders little
statistic data on risks and financial recoveries. Also, financers have little experience with
such projects.
• Profitable exploitation depends for a significant part on governmental support.
• Bioenergy appliances are not widely used, and therefore cannot be made fit for other
purposes. Usually the only tradeable part is the engine/generator.
• Financial success depends on factors that are beyond the initiator’s control (e.g. costs of fuel
supply and residue treatment, and yields of power and heat sales).
17.2 Technical framework
17.2.1 Quality and monitoring
Protocol Monitoring Duurzame Energie (Protocol Monitoring Sustainable Energy) provides a
method to calculate the yield of all utilised renewable energy sources and its relation to the total
yield of generated energy. This protocol is outlined by SenterNovem and used by CBS (“Centraal
Bureau voor Statistiek”: Statistics Netherlands). CBS deliver data to the Ministry of Economic
Affairs, which in turn use the data to bring about their policy objectives. The latest update stems
from 2006; a new version is due in November 2009.
Protocol Monitoring Energiebesparing (Protocol Monitoring Energy saving) has been provided by
SenterNovem in cooperation with CPB (“Centraal Planbureau”: Netherlands Bureau for Economic
Policy Analysis), RIVM (“Rijksinstituut voor Volksgezondheid en Milieu”: National Institute for
Public Health and the Environment) and ECN (“Energieonderzoek Centrum Nederland”: Energy
Research Centre of the Netherlands). Its purpose is to monitor energy savings, i.e. how much less
energy is used.
Nederlandse Technische Afspraken (Dutch Technical Agreements) by the Ministry of Housing,
Spatial Planning and the Environment focus on the percentage of biogenous elements in secondary
fuels. NEN (“NEderlandse Norm”: Dutch Norm) are the Dutch national standards institution. The
NTA-norms are a product of NEN. There are various norms available on the application of
renewable energy sources. A norm recently confirmed is NTA 8080:2009 “Sustainability criteria
for biomass in behalf of energy objectives”. NTA 8003:2008 “Classification of biomass for energy
purposes” is another one.
Also, there are reports based on Dutch data by international organisations in the likes of the IEA
(International Energy Agency) and Eurostat.
17.2.2 Appropriate technology for Bio-Sol-ESCos
Netherlands Statistics (CBS) data on numbers of installations, electric power and thermal power of
renewable energy sources are erratic. This makes it difficult to determine a complete image of the
relations between renewable energy sources to total energy amounts, and biomass and solar power
technologies in particular.
It is difficult for banks to estimate the success of technologies proposed by initiators of a project.
Nonetheless this is crucial information for the decision to either finance a project or not. To tackle
this question, banks usually employ an independent technical advisor or ask for a track record, i.e.
documented proof that a particular technology in combination with a particular fuel actually works.
SenterNovem have outlined a biomass technology matrix, containing technologies proven to be
successful. The following tables are deducted from this matrix. Note that this information is from
November 2005 and might be incomplete.
Stand-alone, thermal and biochemical conversion:
Proven and applied in the Netherlands, technology runs 100% on given fuel
Technology
Incineration, grate oven
Incineration, grate oven
Incineration, grate oven
Incineration, grate oven
Incineration, circulating fluidised bed
Incineration, (adjusted) piston engine
Attenuation, batch reactor
Attenuation, plug flow reactor
Attenuation, plug flow reactor
Attenuation, stirred tank reactor, extensively stirred
Attenuation, stirred tank reactor, extensively stirred
Attenuation, stirred tank reactor, intensively stirred
Attenuation, stirred tank reactor, intensively stirred
Fuel
Clean and green wood (thinning and pruned wood)
A wood*, used, untreated and dry wood
Solid recovered fuel, residential waste
Solid recovered fuel, company waste
Clean and green wood (thinning and pruned wood)
Biogas (from attenuation)
Residential kitchen and garden waste, separately collected
Bovine and pig manure
Residential kitchen and garden waste, separately collected
Bovine and pig manure
Sewage and industrial wastewater treatment plant sludge
Bovine and pig manure
Sewage and industrial wastewater treatment plant sludge
Table 17.1 Stand-alone, thermal and biochemical conversion.
Cogeneration and biochemical conversion:
Proven and applied in the Netherlands, technology runs partially on given fuel
Technology
Fuel
Cofiring, coal conveyor
Cofiring, coal conveyor
Cofiring, coal conveyor
Cofiring, separate burner
Cofiring, separate burner
Cofiring, separate burner
Cofiring, separate burner
Coal gasification, separate burner
Coal gasification, separate burner
Coal gasification, separate burner
Oil gasification, oil via separate burner
Attenuation, batch reactor
Attenuation, stirred tank reactor, extensively stirred
Attenuation, stirred tank reactor, extensively stirred
Attenuation, stirred tank reactor, intensively stirred
Attenuation, stirred tank reactor, intensively stirred
Solid recovered fuel, chips/pellets from residential waste
Solid recovered fuel, chips/pellets from construction waste
Animal meal
A wood*, used, untreated and dry wood
Shells (cacao, peanut, almond)
Kernels (olive, cherry)
Animal meal
Clean and green wood (thinning and pruned wood)
A wood*, used, untreated and dry wood
B wood*, treated (painted, glued)
Vegetable oils and fats
Side-strip grass
Side-strip grass
Side-strip grass
Poultry manure
Poultry manure
Table 17.2 Cogeneration and biochemical conversion.
*Classification of used wood
A wood: solid, sawn and untreated (beams, planks and pallets)
B wood: wood waste, no green wood, both treated and untreated, including glued and/or pressed
wood; cannot be impregnated and/or creosote treated
C wood: wood waste, no green wood, fully or partially impregnated and/or creosote treated
Statistics Netherlands (CBS) have provided some available data on employed thermal solar energy
installations over the last years. Unfortunately, no numbers of employed systems connected to
photovoltaic panels larger than 6 m2 are known by CBS. Especially solar boilers connected to
panels smaller than 6 m2 are being employed. Thus this technology boasts an opportunity.
Employed thermal solar energy installations
Systems ≤6 m2 (solar
Systems >6 m2
Systems ≤6 m2 (solar
Systems >6 m2
boilers)
Number
boilers)
m2
10035
8385
7844
7294
5626
6365
7924
2002
2003
2004
2005
2006
2007
2008
-
28080
23450
21284
17995
13186
17435
20654
6002
4236
5060
2582
1751
2485
2456
Table 17.3 CBS, 2009.
17.3
Lessons learned
There are plenty of grant possibilities. Biomass and solar heat systems are being used, but not on a
wide scale.
Sources
SenterNovem, Statistics Netherlands (CBS), Ministry of Economic Affairs
http://www.senternovem.nl/mmfiles/Energiediensten%20voor%20de%20gebouwde%20omgeving
%20Geert%20Scholma_tcm24-261823.pdf
http://www.senternovem.nl/duurzameenergie/agenda/denk_mee_over_de_herziening_protocol_mon
itoring_duurzame_energie_2009.asp
http://statline.cbs.nl/StatWeb/publication/?DM=SLNL&PA=71457NED&D1=2,6,9,12,18&D2=0,2
6-44&D3=12-17&HDR=T&STB=G1,G2&VW=T
http://www.senternovem.nl/duurzameenergie/publicaties/publicaties_bioenergie/biomassa_technologie_matrix.asp
18 Poland
Poland is characterized by a low uptake of the ESCO scheme. Accordingly, information on the
Polish ESCO market and details of ESCO schemes is rare.
The JRC57 states that ESCO models were not successful in Poland and that ESCO activity is
limited. Around 5 specialized ESCOs are said to be active in the market. The previous report58
counts 13 – 15 companies while the JRC ESCO company database59 lists 7 companies (June 2009).
Most of the companies identified in other publications and during this research are subsidiaries of
internationally active companies (e.g. Siemens60, Dalkia61; Axima62; Honeywell63). Project
references published by these companies (if any) do not provide comprehensive information and it
remains unclear whether ESCO projects (in a traditional sense) are performed. It seems these
companies are mainly active in DH or CHP projects and industrial partners are the preferred
customers.
Especially German ESCOs are represented by subsidiaries in Poland. Examples are MVV64 and
Endico65. From MVV, references on Polish ESCO projects are not available. Endico provides some
references but strangely, they stated not to be active in contracting any more.66 It remains unclear
which level of experience and activity is achieved.
The same goes for a number of smaller companies that state to offer ESCO services on their
websites or in other publications:
67
• Polish Energy Partners S.A.
68
• Przedsiębiorstwo Oszczędzania Energii ESCO Sp. z o.o (POE ESCO)
69
• PPWH WEST-BUD Jachimowicz Sp.j.
70
• Przedsiębiorstwo Naukowo-Techniczne Cibet sp. z o.o.
71
• SIGMA TERMODYNAMIK Sp. z o.o.
Again, no (or no recent) references are published.
Regardless of the overall ESCO market situation in Poland it can be assumed that ESCO projects
involving solar thermal or biomass technologies are rather uncommon. There are of course some
ESCO projects with biomass heating (e.g. Endico) and others that address DH or CHP with
biomass.
57
Bertoldi, P. et al.; Latest Development of Energy Service Companies across Europe - A European ESCO Update;
JRC; 2007.
58
Bertoldi, P. & Rezessy, S.; Energy service companies in Europe – Status report 2005; JRC; 2005.
59
http://sunbird.jrc.it/energyefficiency/ (accessed June 2009).
60
http://www.sbt.siemens.pl/
61
http://www.dalkia.pl/
62
http://www.axima.pl
63
http://www.honeywell.com/sites/pl/
64
http://www.mvv-energie.de/cms/konzernportal/de/homepage.jsp and
http://www.mvv.pl/
65
http://www.swl.de/site/swl/de/marktpartner/dienstleistungen/main.htm and
http://www.contracting.pl/html/jastrzebia.html
66
direct contact
67
http://www.pepsa.com.pl/
68
http://www.esco.krakow.pl/
69
http://www.west-bud.pl/start.html
70
http://www.cibet.com.pl/str.php
71
http://www.sigma-audyt.gda.pl/
Barriers
According to the JRC ESCO report57 the volume of ESCO contracts stagnated at around
€ 10 million per year. The potential for energy saving through energy efficiency measures and
therefore ESCO activities however is enormous in Poland. The report further explains some of the
major barriers to further ESCO market development in Poland:
• Many potential customers (municipalities, industrial companies) have a sufficient in-house
expertise concerning energy use and technologies (energy manager positions installed in the
socialist era). Therefore, potential customers do have the capacities to perform energy audits
on their own and to identify necessary investments.
• Most ESCOs do not command the capital necessary in order to offer TPF. A lack of capital
basis also prevents ESCOs from taking bank loans.
• Financing services provided by ESCOs are basically not needed: Several national and
international financing schemes provide funds to, among others, energy efficiency projects.
• Public tendering processes: The ESCOs offer a free pre-audit while a more thorough audit
cannot be done for free. This means that a tendering process is necessary for the detailed
audit in which competitors can use the pre-audit that was already done.
The report closes with: “These and other barriers make the guarantee based and/or financing
oriented ESCO business unsuitable for the Polish market.”
Other aspects mentioned by several authors72, 73 are:
•
•
•
•
•
•
•
•
•
Public procurement procedures hamper the selection of best bids and are not suitable for
long-term contracts; Decision processes and financial procedures within public bodies is too
complicated;
Low heat prices within approved tariffs;
The financially insecure position of potential customers;
Relatively high interest rates;
Low coal prices; Low prices of energy carriers in comparison to prices for equipment and
services;
A lack of example projects;
A general lack of awareness concerning energy efficiency;
A lack of understanding / publicity of ESCO schemes;
A lack of laws regulating specifically ESCO schemes;
Most sources agree that the ESCO sector in Poland needs initial Governmental support in order to
tap the full market potential. Since ESCO schemes and contracts are rather complicated, laws
regulating specifically contracting services would help to overcome basic insecurities. Furthermore,
public procurement processes should be adapted in order to open this market to ESCO services.
72
73
Mazur, J.; Development of the ESCO industry and projects in Poland; POE ESCO.
Szajner, A.; ESCO in Poland: Activities, Market, Barriers; Sigma Termodynamik Ltd.; 2005.
Besides implementing grant programmes (for renewable energy and energy efficiency) and general
awareness campaigns, ESCO´s should be eligible in grant programmes and decision makers in e.g.
municipalities should be pointed to the opportunities provided by ESCO approaches. Finally, the
eligibility of ESCO projects in e.g. regional environmental funds would help to facilitate fund
raising by ESCOs.
19 Portugal
There are 10 operating ESCos in Portugal and they all are local ESCos. Their range of activities
focuses mostly on energy efficiency in buildings, CHP and installation of RES systems in buildings.
Also some of them offer biomass and/or solar heating solutions within their range of energy
services. But there are no existing ESCo projects in Portugal intergrading both biomass and solar
heating solutions [personal contact: Marco Correia, Pedro Mateus, ADENE, 2009]. Popular
contractual schemes are the BOOT model, especially in the CHP sector, and the Chauffage
contracts. Also shared shavings are gaining popularity [Bertoldi, 2010].
The type of contract used very often in Portugal is the energy supply contract. The typical
contracting period for an ESCo project is 8 years and ESCo projects are implemented both in the
private and public sector [personal contact: Marco Correia, Pedro Mateus, ADENE, 2009].
There are some available financial schemes under the Portuguese energy Efficiency Plan. In
Portugal apart from the transposition of the Energy Service Directive (2006/32/2009) into national
legislation (Decreto-Lei n.º 319/2009 de 3 de Novembro) there is no other Law regulating the ESCo
market by e.g. providing model contracts or accreditation for ESCos [personal contact: Marco
Correia, Pedro Mateus, ADENE, 2009].
Over the last 4-5 years the Portuguese market has been growing steadily, though at a slow rate
[Bertoldi, 2010].
The barriers identified for the weak development of BioSolESCo projects in Portugal are the lack of
standardized documents and procedures as well as the lack of existing ESCo projects and expertise
in this sector. Also there are no Measuring and Verification protocols available in Portugal for
BioSolESCo projects [personal contact: Marco Correia, Pedro Mateus, ADENE, 2009].
The financial crisis has had a negative impact on the access to financing for ESCos. In addition,
several potential clients have frozen some ESCo projects planned. The market at present is moving
slowly because potential customers are more reluctant to sign long-term contracts.
[Bertoldi, 2010].
There is a software tool available for the technical and economical analysis of solar thermal
applications and not for biomass, and the name of this tool is SOLTHERM.
In the National Action Plan for Energy Efficiency of Portugal74 the promotion of Energy Service
Companies is set, where tenders and incentives for creation of ESCos and Efficiency contract are
foreseen.
74
“Portugal Efficiency 2015” version for public consultation- February 2008 available at:
http://www.adene.pt/NR/rdonlyres/1A510789-1032-4180-8A7B798B0DDA2F92/828/Portugal_EnergyEfficiencyPlan2015Support.pdf )
20 Romania
[personal contact: Corneliu Rotaru, Romanian Agency for Energy Conservation - ARCE, 2009]
In Romania there are 10 ESCos identified, but there is no specific registration procedure in place in
order to evaluate the number of effective ESCOs in operation. Among these ESCos there are 6
public ESCos, 2 multinational and 1 foreign ESCo.
The ESCos are mostly focused on CHP projects. Projects concerning energy efficiency in buildings
have not yet been developed, but there are few projects in this area which are in preparation phase.
On the other hand there is no documentation for ESCo projects concerning the installation of RES
systems in buildings. Finally it is not known whether there are any ESCos offering biomass and/or
solar heating solutions within their range of energy services in Romania.
The type of contract schemes used in Romania is mostly the Built Own Operate Transfer contract.
For Energy Performance Contracting (EPC) it is reported that such contracts are in preparation.
The typical contracting period for an ESCo project is 7-9 years and ESCo projects are usually
implemented in the private sector.
In general the financial institutions in Romania are not familiar with ESCo projects and there is no
available financial scheme or mechanism to support such projects. The European Bank for
Reconstruction and Development (EBRD) though is supporting energy efficiency improvements in
the public sector in Romania with an investment to expand energy saving initiatives across
Romanian municipalities. A €10 million corporate loan to EnergoBit ESCO, a subsidiary of
EnergoBit Group SA, will be used to finance energy efficiency projects mainly in the Romanian
municipal sector. The projects will range from conducting energy saving studies and engineering
assessments to installing energy efficient public lighting, introducing combined heat and power
generation as well as implementing small scale co-generation projects for industrial clients
[http://www.ebrd.com/pages/news/press/2011/110721.shtml].
The Energy Service Directive (2006/32/EC) was transposed into national legislation with
Governmental Ordinance no 22/2008. There is no other law regulating the ESCo market like e.g.
providing model contracts or accreditation for ESCos, but model contract for Energy Performance
Contracting (EPC) is in preparation.
The barriers identified for the weak development of BioSolESCo and in general ESCo project in
Romania are summarized below:
• The weak development in the public sector is related to Energy Performance Contracting
that is not yet officially accepted by the National Regulatory Authority for Public
Procurement and
• Payment for ESCos according to the value of energy saved is nor accepted by the
financial/accounting procedure of public authorities
• There is a lack of standardized documents and procedures
• Reluctance of energy consumers because of lack of certification/registration procedure for
ESCo and lack of Monitoring & Verification official protocol.
•
Very few pilot projects
Finally no software tool is available for the technical and economical analysis of solar thermal and
biomass applications in Romania.
21 Slovakia
In 2009, 5 small ESCo type enterprises were identified on the market. These companies are active
as energy consultant companies, manufacturers of building automation & control systems, and
energy service companies. National companies offer mainly energy audits, energy consultancy and
part of energy contracting.
About half of the ESCo projects involve renewable energy sources, approximately 15% are
developed respectively in each of the following areas: commercial sector, co-generation and district
heating. A small percentage (5%) of projects is carried out in street lighting.
EPC is not frequently used. The main source of financing for ESCo projects is EU structural funds
and customers own corporate funds.
[Angelica Marino, Paolo Bertoldi, Silvia Rezessy, “Energy Service Companies Market in Europe –
Status Report 2010”, Institute for Energy, Joint Research Centre]
According to our latest information currently in the Slovak Republic there are no ESCo activities in
the field of biomass and/or solar heating [personal contact with: Andrej Slancik, Slovak Innovation
and Energy Agency – SIEA, 2009].
22 Slovenia
Regulations related to ESCo projects in Slovenia are Act on Public - Private Partnership (O.G.
127/06) and Public Procurement Act (O.G. 128/06). In Slovenia there is no special state scheme for
financing ESCo projects. Thus, main sources of financing are commercial credits. On the other
hand, Environmental Development Fund of the Republic of Slovenia (Eco Fund) was established
according to the stipulations of the Environmental Protection Act dated June 1993 as a key
instrument for the financing of the environmental investment projects. Eco Fund provides loans for
the environmental protection investments at favorable interest rates (soft loans), including loans for
environmental protection services, equipment and technology for environmental protection,
environmentally friendly technologies and products etc. In period 2002-2008 activities in the area of
third-party financing (TPF) were conducted within national energy program and within a SAVE
program in cooperation with Germany. These included seminars, workshops, development of
guidance notes for TPF projects, pilot TPF projects etc. Thus, the barriers related to information and
awareness rising are mostly overcame in Slovenia. The main barrier for development of ESCo
projects in Slovenia is a lack of skills and training in public sector to enable it to deal with the
procedure related to ESCo projects. According to Act on Public - Private Partnership, support for
these projects is planned by the sector for public-private partnership within Ministry of Finance.
Moreover, because of a relatively small market for ESCo projects there is lack of interest from
foreign ESCos to be present at the Slovenian market.
In spite of barriers during previous period, there were few efforts to establish an ESCo in Slovenia
but because of a difficult financial period there is a lack of success in this field. EL-TEC MULAJ
ltd. is performing ESCo projects at the moment and there is one ongoing ESCo project regarding
public lightning done by GMW ltd.
23 Spain
As reported by Bertoldi et. al., 2007, the Spanish ESCo industry is rather complex and is composed
of local private and public ESCos as well as multinational companies. Many regional and local
energy agencies, as well as the Institute for Diversification Energy and Efficiency (IDAE) act as
ESCo.
In 2009, two associations bring together most of the ESCOs operating in Spain. AMI (Asociación
Espanola de Empresas de Mantenimiento Integral de Edificios, Infraestructuras e Industrias,
Spanish Association of Enterprises of Complex Maintenance of Buildings, Infrastructures and
Industries - AMI) is composed of 15 large companies. ANESE (Asociación de empresas de
servicios energéticos) has been established only recently and comprises more than 200 smaller
associates
[Angelica Marino, Paolo Bertoldi, Silvia Rezessy, “Energy Service Companies Market in Europe –
Status Report 2010”, Institute for Energy, Joint Research Centre].
In Spain third party financing is a well established instrument through IDEA in order to increase the
energy efficiency in buildings. The framework conditions are suitable and the demand for and the
supply
of
TPF
services
is
growing
[ST-ESCos,
http://www.stescos.info/short_report_st/short_es.pdf ].
There are ESCos offering solar heating solutions within their range of activities as well as energy
efficiency in building. Solar thermal projects are well known in Spain. A number of ESCo projects
in the area of solar thermal have been implemented in the framework of European projects (e.g.
solarge IEE, ST-ESCOs).
Some banks like CAJA POSTAL and others have been implementing the TPF instrument for green
electricity.
For solar thermal applications the ST-ESCo software tool is available for conducting the technical
and economical analysis. The software tool starts with a simplified interface that leads the user to
enter data in the Energetic Module –called EnMo and Economic Module – celled EcMo. The
Energetic Module is a simulation tool based on TRNSYS, with a user friendly interface where the
user can introduce all technical data referred to the solar thermal system. The Economic Module is
the one that does the economic, financial and contractual analysis, based on the EnMo results or
other energetic results coming from any other energetic software. (http://www.stescos.org/tool.htm)
ESCO activity in the public sector is limited due to regulations that are not supportive of EPC, for
instance, amortization accounting does not allow projects of the appropriate length. Public sector
investment is limited by barriers such as split incentives. Changing the relevant regulation may increase
the motivation to invest in longer term projects in the public sector. A major step forward would be if a
standard Measurement and Verification Protocol was implemented and commonly used, which could
reduce the perceived risk of errors in monitoring savings and build trust of financial organizations and
clients, and which would be of real value to help properly evaluate the effectiveness of projects
[Bertoldi et. al., 2007].
Recent Developments:
•
•
•
Sustainable
Economy
Law
was
voted
in
February
2011
[http://www.mondaq.com/unitedstates/article.asp?articleid=124286]. One of the objectives of
this law is to create a positive environment for the entrepreneurship in the ESCO sector. Art.
102 of the law provide a definition of ESCo, which is very similar to the one in the Energy
Service Directive. According to this definition the company should assume a certain level of
financial risk. The Law states that the government will develop a specific plan aimed at
promoting ESCos, remove barriers and facilitate financial resources [Angelica Marino, Paolo
Bertoldi, Silvia Rezessy, “Energy Service Companies Market in Europe – Status Report 2010”,
Institute for Energy, Joint Research Centre].
Project financing comes mainly from the banks, but recently due to the economic crisis,
projects are financed from ESCo’s own equity or from relevant funds. ESCo market is
supported, directly or indirectly, via various National and Regional Programmes such as the
Estrategia de Ahorro y Eficiencia Energetica E4 (National Energy Efficiency strategy) and
E4+ where Energy Audits and energy interventions are partly subsidized [Angelica Marino,
Paolo Bertoldi, Silvia Rezessy, “Energy Service Companies Market in Europe – Status
Report 2010”, Institute for Energy, Joint Research Centre].
Some recent initiatives, focused on both the improvement of energy efficiency and the
penetration of renewable energies in the building sector through ESCOS, are expected to
have a positive effect in the short term: the IDAE's Financing Lines for Thermal Renewable
Energies in Buildings BIOMCASA-SOLCASA-GEOTCASA; Plan 330 ESE (Activation
Plan in the State’s General Administration Buildings through ESCOS); Plan 2000 ESE (Plan
to Boost Energy Services Contracts) [Energy Efficiency Profile: Spain, Odyssee, June 2011,
http://www.odyssee-indicators.org/publications/country_profiles_PDF/esp.pdf].
24 Sweden
24.1 Legislative, Financial, contractual and marketing framework
24.1.1 Legal background for TPF and ESCos
Insurance schemes required.
References are found to both ESCos and EPCs, but the majority of the existing forms are EPCs.
Third party financing is not very common in the past years, most probably due to the clients being
public sector actors having the means to finance the operation themselves or together with the
ESCo.
The energy service directive (2006/32/EC) (ESD) contributes to the need of ESCos and an Energy
efficiency improvement commission of inquiry was set up in 2007 by the Ministry of Enterprise,
Energy and Communications to study the possibilities of ESCOs in reaching the targets set by the
ESD. 75
24.1.2 Existing contracts
There are a number of active ESCos in Sweden and the growth in the ESCo market has been rapid.
In 2007 it was estimated that there were 12-15 ESCo in Sweden76 and in 2009 there were 27 ESCos
active in Sweden and the annual revenue of the ESCos in 2008 is estimated to be over 140 MEUR.
Most of the clients are from the public sector. The trustworthiness of the ESCo companies is
increasing. 77
The ESCos in Sweden can be categorised into four categories:
• Building controls, automation and control manufacture
• Facility management and operation companies
• Consulting firms
• Energy supply and service companies.
The ESCo services include project identification and the technical design of the project.
Performance guarantees are common but the ESCos very rarely take insurance coverage in case the
energy savings would not realise. Third party financing is also rare in Sweden, although the ESCos
offer them to the clients. One of the reasons is that the majority of the ESCo projects are in the
municipal sector, and they can self finance the projects or get better loan offers from other sources
directly. 78 Depending on the ESCo, the project may also include project implementation, operation
services and purchase of fuel and/or electricity.
75
Lindgren, Kate. Transforming the ”efficiency gap” into a viable business opportunity: Lessons learned from the
ESCo experience in Sweden. Article. 2009
76
Bertoldi, S. et al, Latest Development of Energy Service Companies across Europe - A European ESCO Update. JRC.
2007
77
Lindgren, Kate. Transforming the ”efficiency gap” into a viable business opportunity: Lessons learned from the
ESCo experience in Sweden. Presentation. 2009
78
Lindgren, Kate. Transforming the ”efficiency gap” into a viable business opportunity: Lessons learned from the
ESCo experience in Sweden. Article. 2009
Among common ESCO services are adjustments to equipment, increasing thermal insulation, heat
recovery, retrofitting old oil boilers with renewable fuel boilers, and heating of water with solar
installations.
24.1.3 Financial institutions and schemes
The government grants include investment grants for solar heating and grants for conversion of
heating systems. The grant for solar heating is aimed at accommodation buildings and at specific
commercial buildings for space heating and hot water. The grant for conversion of heating system is
for changing direct electric heating to other forms of heating (heat pumps, DH or biofuel heating).
79
24.1.4 Barriers
The identified barriers include the unawareness of such operations and companies, low energy
prices and the lack of capable labour for ESCo operations. The larger companies have proven track
record of successful ESCo operations but the smaller companies find it hard to enter the market
with no prior cases of ESCo operations. 80
Some of the ESCos are currently using all their personnel in ESCo projects and cannot take more
projects because there is no staff available for implementing the project. The need for energy
experts and engineers exists in Sweden.
The price of electricity is a driver and a barrier for ESCo development. When energy prices are
high, there is more concern of the costs of heating and energy in general. When the prices are low,
the customers do not seem to care so much about the energy efficiency. At the moment, the
customers are also concerned about the CO2 emissions and this is one major driver for ESCos in
Sweden.
24.2 Technical framework
24.2.1 Appropriate technology for BioSolESCos
Among the biomass and solar technologies the ones most commonly used in Sweden are pellets and
wood chips for heating and solar collectors for producing hot water.
79
80
Swedish Energy Agency. Energy in Sweden 2008.
Lindgren, Kate. Transforming the ”efficiency gap” into a viable business opportunity: Lessons learned from the
ESCo experience in Sweden. Presentation. 2009
25 United Kingdom
25.1
Legal Background
There is no particular required legal format for an ESCO.
The constitution can be any of the recognised formats in English law as follows:
•
•
•
•
•
•
•
•
Public Limited Company
Private Company Limited by shares
Private Company Limited by guarantee
Limited Liability Partnership (LLP)
Community Interest Companies
Industrial and Provident Society
Trust
Unincorporated Association
It is suggested that Private Limited Company would be the most appropriate vehicle for most
ESCos as it is the most flexible. Whether it is limited by shares or guarantee will depend on the
aims of the ESCo.
Third Party Finance (TPF) is deemed to be any finance provided by a party other than the ESCO
itself and may be commercial (eg banks or other private investors) or public (eg grant funding).
There are no particular rules relating to the provision of private finance of ESCOs in the UK save
those that apply to borrowing and contracts generally.
Many ESCos are likely to be regulated entities for State Aid purposes. Any sources of public
funding must abide by the State Aid rules as laid down by E C Treaty. Various exemptions are
available and include:
De Minimus
Environmental Protection
The definition of State Aid is not confined to direct funding and can include a variety of other
benefits including low interest loans, rate rebates, loan guarantees etc etc
25.1.1 Existing contracts
By definition contracts between ESCos and there energy users are likely to commercially
confidential.
Purchase of energy (heat and power) from an ESCo by a public authority (e.g. local authority,
prisons, NHS etc) will be subject to Public Procurement Rules.
All contracts should address certain basic principles:
•
Duration
•
•
•
•
Price and price revision
Payment
Security of supply
Default by either party
25.1.2 Financial institutions and schemes
Finance will be available from commercial lenders subject to usual criteria but may be affected by
the current recession.
Fiscal incentives currently available include:
•
•
•
•
•
ROCS
Enhanced Capital Allowances (for qualifying technology)
Climate Change Levy
Carbon Trust Loans at preferential rates
Renewable Heat Initiative (from April 2011)
Grants
Low Carbon Buildings
Bio-Energy Capital Grant Scheme
Community Sustainable Energy Programme
Rural Development Programme for England ( precise circumstances required)
Some Energy companies have a limited amount of grant funding for small schemes available on
application
25.1.3 Barriers
•
•
•
•
•
•
Conventional fuel prices at low point
Lack of confidence in technologies
Lack of knowledge among many private investors
Potentially low and slow rates of return
Insufficient legislative pressures
Insufficient government financial incentives or misdirected
26 Croatia
26.1 Legislative, Financial, contractual and marketing framework
26.1.1 Legal background for TPF and ESCos
RES and EE projects in Croatia are supported by the Croatian legislation through the provisions of
the Energy Act (Official Gazette 68/01, 76/07, 152/08), particularly the section entitled “Energy
efficiency and renewable energy sources”, Croatian Energy Development Strategy which is aimed
at improving energy efficiency and increasing share of RES, Government-approved national energy
efficiency programs, and by Environmental Protection and Energy Efficiency Fund which was
established to secure additional funding for projects, programs and similar activities in the fields of
conservation, sustainable use, protection and improvement of the environment.
In Croatian legislation, ESCo model is mentioned in Act on energy efficiency in direct consumption
(OG 152/08). The act regulates:
• Energy efficiency in direct consumption,
• Energy efficiency programmes and plans at national, county and large consumer level,
• Energy efficiency measures, energy services and energy audits,
• Responsibilities of public sector, energy subjects and large consumers
• Consumer rights in implementation of energy efficiency measures.
The act defies an ESCo and states that funds for energy services are ensured by contractor, i.e.
ESCo, entirely or partially, from own sources or third parties, that contractor or a third party bears
risks partially or entirely and that energy service is repaid through savings. Moreover, the Act
formulates energy efficiency contract which has to include following information:
• Energy service client
• Energy service contractor
• Third party if there is any participating in financing
• Primary energy consumption of a building
• Energy efficiency assessment
• Guaranteed energy savings and activates for identification of savings
• Financing schemes for investments in energy efficiency measures
• Mode of fee payment for an energy service
• Other questions
Insurance schemes are incorporated in the ESCo project procedure which is following:
1. Project identification – contact with a potential client including filling of a preliminary
questionnaire.
2. Screening – obtaining information about a building. Questionnaire is used to evaluate if
there is potential for energy efficiency measures.
3. Client interview – deciding about the continuation of the project.
4. Walkthrough audit – verifying if the project is suitable for ESCo model. During this phase a
preliminary financial analysis of the client is performed. Information from Financial Agency
(FINA) about solvency of the client is obtained (BON1 and BON2 – includes data about
business activities, employees, financial assets etc.) together with information if the client is
a regular electricity payer.
5. Bank interview – proposal to a financial institution which will finance the project
6. Client interview – proposal to the client for the continuation of the project
7. Agreement – based on which investment grade audit (IGA) is conducted. The client binds
that he will pay for IGA. The client has to present his financial balances and three-year
business plan. Client’s solvency is checked by the financial department of HEP d.d.
(national electricity company).
8. Investment grade audit
9. Client interview – offer for the project is presented to the client
10. Contract – includes instruments of collateral, bonds and promissory notes for a client from
public sector and bank guarantees for a client from private sector.
11. Project implementation
Insurance of equipment is regulated by a contract with a producer/provider of equipment who
guarantees for the equipment installed. The producer/provider of the equipment has to provide bank
guarantee, its financial report, confirmation from the Ministry of Finance about regular tax
payments, list of business deals regarding similar activities with conformation about regular
execution of the work. The producer/provider of the equipment has to make insurance on the
principle “insurance of all risks” from the beginning of the installation of the equipment to the end
of guarantee period. The producer/provider has to make insurance towards third parties in the case
of death, injury or damage to assets.
As payment security instruments, HEP ESCO use different instruments depending on the type of a
client (Table 26.1). Type and number of instruments used depend on the evaluation of a client
solvency.
payment
instrument
security
Promissory note with no
protest clause
Blank or regular bonds
notified by public notary
Bank guarantee for a part of
agreed amount
Bank guarantee for complete
agreed amount
Cash deposit at minimum
level of three monthly
annuities
Mortgage
Fiduciary guarantee
Counties, cities
Ministries
yes
yes
Hospitals, other
social
care
institutions
Hotels, industry,
other
private
clients
yes
yes
yes
yes
yes
yes
yes
yes
(depending on the
size of a project)
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
Table 26.1 Payment security instruments.
26.1.2 Existing contracts
HEP ESCO, as the only ESCo company in Croatia, works mainly as MESCo dealing mostly in the
area of public lighting, buildings and industry conducting projects involving introduction of more
efficient equipment. Moreover, the firm started working on projects involving renewable energy
sources as CRESCo. Until now they worked with companies from forestry sector involving
utilization of woody residues, e.g. Strizivojna Hrast where diesel aggregate was replaced with
cogeneration using wood processing residues. Moreover, in the near future they are planning to start
with projects involving utilization of solar thermal energy.
The company offers complete service, development, execution and financing of the project. The
whole procedure is conducted “open book” with a customer actively participating in the project.
After project implementation post-installation report and financial analysis are conducted. During
this process baseline consumption, including last three years, and energy consumption after the
project implementation are compared to arrange financial issues of the contract which lasts five
years for private and eight years for public sector. The company does not guarantee performance
because this is usually too expensive for a customer, as this includes monitoring, maintenance, IT
services etc.
26.1.3 Financial institutions and schemes
HEP ESCO is the implementing agency for the Energy Efficiency Project Croatia and is currently
the key market creator for energy efficiency projects. The Energy Efficiency Project Croatia was
initiated by the World Bank (IBRD) and Global Environment Facility (GEF) in collaboration with
Hrvatska Elektroprivreda d.d. (national electricity company) and Croatian Reconstruction and
Development Bank (HBOR). For this purpose Hrvatska Elektroprivreda d.d. and/or HEP ESCO was
received a loan by the World Bank in the amount of 4.4 million € and a GEF grant in the amount of
5 million USD. Main goal of the grant is to support development of the market for renewable
energy sources in Croatia and create an encouraging atmosphere for investments in RES projects.
User of the grant is Ministry of Economy, Labour and Entrepreneurship, implementing body is
HBOR, and partner and subsidizer of the projects is Environment Protection and Energy Efficiency
Fund. The total value of the Energy Efficiency Project Croatia, with participation of international
and domestic banks, such as Erste & Steiermarkishe Bank d.d., Privredna Banka Zagreb d.d.,
Raiffeisenbank Austria d.d., Splitska Banka d.d., Zagrebačka Banka d.d. and KfW, is estimated at
40 million USD over a six-year period.
Environment Protection and Energy Efficiency Fund is the first and only extra-budgetary dedicated
foundation for financing projects, programs and measures of environmental protection, energy
efficiency and use of renewable energy sources in Croatia. Primary Fund goal is conduction of
policy and strategy of environmental protection. That is accomplished through rendering financial
support in investing in environmental protection and projects that increase energy efficiency and
use of renewable energy sources. Fund also participate in co-financing of programs, projects and
similar activities in the area of environmental protection, energy efficiency and use of renewable
energy sources, that are conducted in Croatia, when are organized and financed by international
organizations, financial institutions and other legal entities. Thus, Fund imposes it self as the most
important partner and source of financing for projects in energy efficiency and renewable energy in
Croatia.
Beside Environment Protection and Energy Efficiency Fund, Croatian Bank for Reconstruction and
Development (HBOR) is a significant source of possible financing. HBOR implemented a
programme for financing preparation of renewable energy sources projects. Credits are designed for
project preparation and development of project documentation. One of the programme’s goals is to
encourage use of renewable energy sources.
26.1.4 Barriers
One of the major barriers for expansion of ESCo projects in Croatia is that ESCo activities are not
well defined by regulations. Major obstacle refers to a public sector due to Budget Act (OG 87/08)
that regulates developing of State, regional and local budgets. According to the act, budget is
brought for a one-year period and is estimated according to revenues and expenditures of the
administrative unit based on the last year. Thus, there is a problem how to charge for the savings
made through a project. HEP ESCO has obtained an official confirmation from the Ministry of
Finance, “Šukerovo pismo”, which enables HEP ESCO to conduct projects including energy
savings with public sector and solves problem how to include energy savings costs in the budget.
The problem is that this option is possible only for HEP ESCO. It can be seen that there is a lack of
clear rules how to treat ESCo projects within public budgeting framework.
26.2 Technical framework
26.2.1 Quality and monitoring
HEP ESCO does not provide performance guaranteeing in its projects because this model is usually
too expensive for a customer, including monitoring, maintenance, IT services etc. Thus, monitoring
activities after project implementation are not conducted. In their projects they usually monitor
customers’ electricity bills for their own information.
26.2.2 Appropriate technology for BioSolESCos
Vacuum collectors are more efficient than flat-plate collectors but are also more expensive, around
40%. For that reason, flat-plate collectors are usually used in Croatia. In Croatia, solar collectors
can approximately satisfy 90% customer heat needs during summer period and 10% during winter
period. It is estimated that solar collectors can produce 60-70% more heat in the coastal part of
Croatia than in continental part. Thus, the most suitable location for placing solar collectors would
be costal part of Croatia on buildings which work during whole year but also have increased need
for heat during summer period, such as hotels and hospitals.
Biomass market in Croatia is still not developed. Only woody biomass can be considered for
heating purposes at the moment. Majority of Croatian forest are situated in continental, central, part
of Croatia which would be the most suitable area for utilization of woody biomass. Moreover,
majority of forest industry, which woody residues can be used for heating purposes, is situated in
this area too. Three types of feedstock should be considered, pellets, chips and logs. In Croatia there
are seven larger producers of pellets and they are all exporting majority of pellets produced. Wood
chips can be bought from Croatia forest Ltd., national company for forest management, but long
period contract should be made. Logs can also be bought from Croatian forests Ltd but they pose a
problem regarding automatic feedstock input. Thus, optimal situation for biomass project would be
company from forestry sector which could use woody residues from its production or a project
should be located near forest industry or developed in cooperation with Croatian forests Ltd.
26.2.3 Software tools available
HEP ESCO uses economic programmes to calculate its cost for the preparation and execution of a
project.
Moreover, they have installed Central-Supervisory-Operating system (Centralni-NadzorniUpravljački system – SNUS) in four schools. It consists of SCADA software which is appended
with a module for monitoring, reporting and verifying of savings. Operation indicators are installed
on equipment which enables receiving of data in real time.
26.3 Lessons learned
•
Due to comprehensive procedure the ESCo projects should be larger projects, e.g. 100.0002.000.000 euros
•
•
•
It is important to study in detail customer energy consumption
ESCo projects should be supported by different legislative and financial initiatives
There is a need for increasing public awareness about ESCo model, environmental issues
etc.