Sample Final Exam Covering Chapters 10-17 (finals02) Sample Final Exam (finals02) Covering Chapters 10-17 of Fundamentals of Signals & Systems Problem 1 (30 marks) Consider the system depicted below used for discrete-time processing of continuous-time signals. The sampling period is 100 milliseconds ( T = 0.1 s). x c (t ) xd [ n ] CT/DT y c (t ) yd [ n ] H d ( z) DT/CT О¤ О¤ The discrete-time filter H d ( z ) is given by the following causal difference equation initially at rest: y[n ] + a1 y[n в€’ 1] + a2 y[n в€’ 2] = b0 x[n ] + b1 x[n в€’ 1] + b2 x[n в€’ 2] (a) [8 marks] Find the controllable canonical state-space realization of the filter H d ( z ) , i.e., sketch the block diagram and give the state-space equations. Answer: u[n ] + b0 + y[ n ] + + z в€’1 - - b1 a1 z в€’1 b2 a2 The state equation: 1 + + Sample Final Exam Covering Chapters 10-17 (finals02) 1 пЈ№ пЈ® x1 [n ] пЈ№ пЈ® 0пЈ№ пЈ® x1 [n + 1] пЈ№ пЈ® 0 пЈЇ x [n + 1]пЈє = пЈЇ в€’a в€’a пЈє пЈЇ x [n ]пЈє + пЈЇ1пЈє u[n ] . 2 1пЈ»пЈ° 2 пЈ° 2 пЈ» пЈ° пЈ» пЈ°NпЈ» B A The output equation: y[n ] = [b2 в€’ a2 b0 b1 в€’ a1b0 ] x[n ] + bN0 u[n ] D C (b) [10 marks] The filter H d ( z ) is designed to approximate the unity-gain, second-order, continuous- 2 , Re{s} > в€’1 . Find the values of the parameters s + 3s + 2 {a1 , a2 , b0 , b1 , b2 } of H d ( z ) using the "c2d" transformation. Specify the ROC of H d ( z ) . time, causal LTI filter H ( s ) = 2 Answer: The state equation for H ( s ) : пЈ® x1 (t ) пЈ№ пЈ® 0 1 пЈ№ пЈ® x1 (t ) пЈ№ пЈ® 0пЈ№ пЈЇ x (t ) пЈє = пЈЇ в€’2 в€’3пЈє пЈЇ x (t ) пЈє + пЈЇ1пЈє u (t ) . пЈ° 2 пЈ» пЈ° пЈ» пЈ° 2 пЈ» пЈ°NпЈ» A B The output equation for H ( s ) : y ( t ) = [ 2 0] x ( t ) C Diagonalize to compute matrix exponential: пЈ® в€’1 0 пЈ№ пЈ® 1 в€’1пЈ№ A1 = V в€’1 AV = пЈЇ ,V = пЈЇ пЈє пЈє пЈ° 0 в€’2 пЈ» пЈ° в€’1 2 пЈ» 0 пЈ№ пЈ® 2 1пЈ№ пЈ® 1 в€’1пЈ№ пЈ® e в€’T Ad = e AT = Ve A1T V в€’1 = пЈЇ пЈЇ пЈє пЈє в€’2 T пЈє пЈЇ пЈ° в€’1 2 пЈ» пЈ° 0 e пЈ» пЈ° 1 1пЈ» e в€’T в€’ e в€’2T пЈ№ пЈ® 0.9909 0.0861пЈ№ пЈ® 1 в€’1пЈ№ пЈ® 2e в€’T e в€’T пЈ№ пЈ® 2e в€’ T в€’ e в€’2T =пЈЇ пЈє пЈЇ в€’2T e в€’2T пЈє = пЈЇ в€’2e в€’T + 2e в€’2T в€’e в€’ T + 2e в€’2T пЈє = пЈЇ в€’0.1722 0.7326пЈє пЈ° в€’1 2 пЈ» пЈ° e пЈ» пЈ» пЈ° пЈ» пЈ° e в€’T в€’ e в€’2T пЈ№ пЈ®0пЈ№ пЈ® в€’3 / 2 в€’1/ 2 пЈ№ пЈ® 2e в€’T в€’ e в€’2T в€’ 1 AT пЈ® пЈ№ Bd = A пЈ° e в€’ I 2 пЈ» B = пЈЇ 0 пЈєпЈ» пЈЇпЈ° в€’2e в€’T + 2e в€’2T в€’ e в€’T + 2e в€’2T в€’ 1пЈєпЈ» пЈЇпЈ°1пЈєпЈ» пЈ° 1 1 1пЈ№ пЈ® пЈ® в€’3 / 2 в€’1/ 2 пЈ№ пЈ® e в€’T в€’ e в€’2T пЈ№ пЈЇ в€’ e в€’T + e в€’2T + пЈє пЈ®0.0045пЈ№ =пЈЇ = 2 2 =пЈЇ пЈє пЈ° 0.0861пЈєпЈ» 0 пЈєпЈ» пЈ°пЈЇ в€’ e в€’T + 2e в€’2T в€’ 1пЈ»пЈє пЈЇ в€’T в€’2 T пЈ° 1 в€’ e e пЈ° пЈ» Cd = C в€’1 Transfer function: 2 Sample Final Exam Covering Chapters 10-17 (finals02) H ( z ) = Cd ( zI n в€’ Ad ) в€’1 Bd + Dd в€’1 пЈ® z в€’ 0.9909 в€’0.0861 пЈ№ пЈ®0.0045пЈ№ = [ 2 0] пЈЇ z в€’ 0.7326пЈєпЈ» пЈЇпЈ° 0.0861пЈєпЈ» пЈ° 0.1722 пЈ® 0.0045( z в€’ 0.7326) + (0.0861)(0.0861) пЈ№ 1 [ 2 0] пЈЇ пЈє ( z в€’ 0.9909)( z в€’ 0.7326) + 0.0148 пЈ°( в€’0.1722)(0.0045) + (0.0861)( z в€’ 0.9909) пЈ» 0.009( z в€’ 0.7326) + 2(0.0861)(0.0861) = ( z в€’ 0.9909)( z в€’ 0.7326) + 0.0148 0.009 z + 0.0082 = 2 z в€’ 1.7235z + 0.7407 0.009 z в€’1 + 0.0082 z в€’2 = 1 в€’ 1.7235z в€’1 + 0.7407 z в€’2 = Hence, b0 = 0, b1 = 0.009, b2 = 0.0082, a1 = в€’1.7235, a2 = 0.7407 (c) [5 marks] Sketch the pole-zero plot of H d ( z ) . Compute the gain of H d ( z ) at the highest frequency. Answer: 0.009 z + 0.0082 z в€’ 1.7235z + 0.7407 0.009( z + 0.915) , = ( z в€’ 0.8184)( z в€’ 0.9051) H d ( z) = 2 . z > 0.9051 Im{z} 1 0.905 в€’0.915 0.818 -1 3 1 Re{z} Sample Final Exam Covering Chapters 10-17 (finals02) Gain at highest frequency: H d ( в€’1) = в€’0.009 + 0.0082 = 0.00023 1 + 1.7235 + 0.7407 (d) [7 marks] Suppose that the continuous-time signal to be filtered is given by: xc (t ) = cos(6ПЂ t ) в€’ cos(4ПЂ t ) . Sketch the spectra of the continuous-time and discrete-time versions of the input signal X c ( jП‰ ) and X d (e jΩ ) . Sketch the spectra Yd (e jΩ ) of the discretetime output signal and Yc ( jП‰ ) of the continuous-time output signal yc (t ) . Finally, give an expression for the output signal yc (t ) . Answer: We need to compute 0.009e j 0.4ПЂ + 0.0082 H d (e ) = j 0.8ПЂ = в€’0.0106 + j 0.0044 = 0.0115e j 2.7521 j 0.4ПЂ в€’ 1.7235e + 0.7407 e . j 0.6ПЂ + 0.0082 0.009e j 0.6ПЂ j 2.3717 = в€’0.0032 + j 0.0031 = 0.0045e H d (e ) = j1.2ПЂ в€’ 1.7235e j 0.6ПЂ + 0.7407 e j 0.4ПЂ X c (e jП‰ ) 1/2 в€’10ПЂ в€’8ПЂ в€’6ПЂ в€’4ПЂ в€’2ПЂ 4ПЂ 2ПЂ 6ПЂ 8ПЂ 10ПЂ 0.6ПЂ 0.8ПЂ ПЂ 12ПЂ -1/2 X d (e jΩ ) 5 в€’ПЂ в€’0.8ПЂ в€’0.6ПЂ в€’0.4ПЂ в€’0.2ПЂ 0.4ПЂ 0.2ПЂ Ω -5 Yd (e jΩ ) 0.0225e в€’ j 2.37 в€’ПЂ в€’0.8ПЂ в€’0.6ПЂ 0.0575e j 0.39 в€’0.4ПЂ 0.0575e j 2.752 в€’ 3.142 = 0.0575e в€’ j 0.39 в€’0.2ПЂ 0.2ПЂ 4 0.4ПЂ 0.0225e j 2.37 0.6ПЂ 0.8ПЂ ПЂ Ω П‰ Sample Final Exam Covering Chapters 10-17 (finals02) Yc ( jП‰ ) в€’10ПЂ в€’8ПЂ в€’6ПЂ 0.0575e в€’ j 0.39 0.0575e j 0.39 0.0225e в€’ j 2.37 в€’2ПЂ в€’4ПЂ 2ПЂ 4ПЂ 0.0225e j 2.37 6ПЂ 8ПЂ 10ПЂ П‰ yc (t ) = 0.0045cos(6ПЂ t + 2.3717) в€’ 0.0115cos(4ПЂ t + 2.752) Problem 2 (15 marks) Suppose we want to design a causal, stable, first-order high-pass filter of the type H ( z) = with -3dB cutoff frequency of the filter is П‰c = B ,z >a 1 в€’ az в€’1 2ПЂ (i.e., frequency where the magnitude of the frequency response 3 1 ) and a real. 2 (a) [2 marks] Express the real constant B in terms of the pole a to obtain unity gain at the highest frequency П‰ = ПЂ . Ans: The gain at П‰ = ПЂ is H (e jПЂ ) = H ( в€’1) = and unity gain is obtained for B = 1 + a . B , 1+ a (b) [10 marks] "Design" the filter, i.e., find the numerical values of the pole a and the constant B . Answer: 2 1 (1 + a ) 2 = H (e jП‰ c ) = 2 (1 в€’ a cos П‰ c ) 2 + a 2 sin 2 П‰ c (1 + a ) 2 = (1 + 0.5a ) 2 + 0.75a 2 This yields the quadratic equation 5 Sample Final Exam Covering Chapters 10-17 (finals02) 2(1 + a ) 2 = (1 + 0.5a ) 2 + 0.75a 2 ⇔ a 2 + 3a + 1 = 0 whose solutions are a1,2 = circle: a = в€’3 В± 5 . But for the filter to be stable, we select the pole inside the unit 2 в€’3 + 5 = в€’0.382 . Finally B = 0.618 , and the high-pass filter is 2 в€’1+ 5 0.618 2 H ( z) = = , z > 0.382 3в€’ 5 в€’1 1 + 0.382 z в€’1 1+ 2 z (c) [3 marks] Sketch the magnitude of the filter's frequency response. Answer: 1 H (e jП‰ ) 0.9 0.8 0.7 0.6 0.5 0.4 0 0.5 1 1.5 2 2.5 6 3 П‰ 3.5 Sample Final Exam Covering Chapters 10-17 (finals02) Problem 3 (20 marks) Consider the following sampling system where the sampling frequencies are x p (t ) H lp1 ( jП‰ ) x x (t ) p (t ) = wp (t ) w(t ) x KH lp 2 ( jП‰ ) p (t ) = ∑ Оґ (t в€’ kT ) +в€ћ ∑ Оґ (t в€’ kT ) 1 k =в€’в€ћ y (t ) +в€ћ CT/DT 2ПЂ 2ПЂ , П‰s2 = . T1 T2 yd [n ] T1 2 k =в€’в€ћ П‰ s1 = The spectrum X ( jП‰ ) of the input signal x(t ) , and the frequency responses of the two ideal lowpass filters, are shown below. The gain of the second lowpass filter is K > 0 . X ( jП‰ ) 1 в€’W 1 W П‰ c1 в€’П‰ c1 П‰ (a) [10 marks] For what range of sampling frequencies first sampler (from H lp 2 ( jП‰ ) H lp1 ( jП‰ ) 1 в€’П‰ c 2 П‰ П‰ s1 П‰c 2 П‰ is the sampling theorem satisfied for the x(t ) to x p (t ) )? Suppose that the cutoff frequencies of the lowpass filters are П‰ c1 = 3W , П‰ c 2 = W . For what range of sampling frequencies П‰ s 2 is the sampling theorem satisfied for the second sampler (from w(t ) to wp (t ) )? Choosing the lowest sampling given by frequencies in the ranges that you found for the two samplers, sketch the spectra X p ( jП‰ ) , W ( jП‰ ) , W p ( jП‰ ) , and Y ( jП‰ ) . Find the gain K of the second filter that leads to y (t ) = x(t ) . Answer: The sampling theorem is satisfied for spectra, we set П‰ s1 = 2W П‰ s1 > 2W ПЂ so that T1 = W and for the first sampler, and for П‰ s 2 = 6W so that T1 = ПЂ 3W П‰ s 2 > 6W : X p ( jП‰ ) W ПЂ в€’2П‰s1 -3W в€’П‰s1 -W W 7 П‰s1 3W 2П‰s1 П‰ . For the Sample Final Exam Covering Chapters 10-17 (finals02) W ( jП‰ ) W ПЂ -3W -2W 2W W -W 3W 4W П‰ 3W 2П‰s1 П‰ W p ( jП‰ ) 3W 2 ПЂ2 в€’2П‰s1 -3W в€’П‰s1 П‰s1 W -W Y ( jП‰ ) 3W 2 ПЂ2 -W Finally K = ПЂ2 3W 2 K W П‰ . П‰ s1 = 2W and П‰ s 2 = 3W and that the cutoff frequencies of the lowpass filters are given by П‰ c1 = 3W , П‰ c 2 = W . Find the signals (b) [10 marks] Assume that the sampling frequencies are set to wp (t ) and y (t ) and sketch them. Use the value for the gain K that you found in (a). Find and sketch the discrete-time signal yd [n ] . Answer: The spectrum of w p (t ) is constant: 3W W p ( jП‰ ) 2 ПЂ2 -4W -3W -2W -W W 8 2W 3W 4W П‰ Sample Final Exam Covering Chapters 10-17 (finals02) Therefore w p (t ) = 3W 2 ПЂ2 Оґ (t ) . w p (t ) 3W 2 ПЂ2 t After filtering with the second lowpass with gain K = ПЂ2 3W 2 , we get Y ( jП‰ ) 1 -W Which has the inverse FT: y (t ) = W пЈ«W sinc пЈ¬ ПЂ пЈПЂ W П‰ пЈ¶ tпЈ·. пЈё y (t ) W ПЂ в€’ After the CT/DT operation, we obtain: ПЂ ПЂ W W t yd [n ] = y ( nT1 ) = y ( n ПЂ W )= W ПЂ sinc ( n ) = W ПЂ ... ... -7 -6 -5 -4 -3 -2 -1 1 2 9 3 4 5 6 7 n W ПЂ Оґ [n ] Sample Final Exam Covering Chapters 10-17 (finals02) Problem 4 (20 marks) Space rendez-vous Consider the spacecraft shown below which has to maneuver in order to dock on a space station. space station spacecraft For simplicity, we consider the one-dimensional case where the state of each vehicle consists of its position and velocity along axis z. Assume that the space station moves autonomously according to the state-space system x s (t ) = As xs (t ) пЈ® zs пЈ№ пЈ®0 1пЈ№ , 0пЈєпЈ» where xs = пЈЇ пЈє , and As = пЈЇ пЈ°0 пЈ° zs пЈ» and the spacecraft's equation of motion is: x c (t ) = Ac xc (t ) + Bc uc (t ) пЈ® zc пЈ№ пЈ®0 1пЈ№ пЈ®0пЈ№ and Bc = пЈЇ пЈє . пЈє 0пЈ» пЈ°0.1пЈ» where xc = пЈЇ пЈє , uc (t ) is the thrust, Ac = пЈЇ пЈ°0 пЈ° zc пЈ» (a) [5 marks] Write down the state-space system of the state error e := xc в€’ xs which describes the evolution of the difference in position and velocity between the spacecraft and the space station. The output is the difference in position. Answer: пЈ® zc пЈ№ пЈ® z s пЈ№ Let e := xc в€’ xs = пЈЇ пЈє в€’ пЈЇ пЈє , so that пЈ° zc пЈ» пЈ° zs пЈ» 10 Sample Final Exam Covering Chapters 10-17 (finals02) e(t ) = Ac ( xc (t ) в€’ xs (t )) + Bc uc (t ) = Ac e(t ) + Bc uc (t ) пЈ®0 1пЈ№ пЈ®0пЈ№ =пЈЇ e(t ) + пЈЇ пЈє uc (t ) пЈє пЈ° 0 0пЈ» пЈ° 0.1пЈ» y (t ) = [1 0] e(t ) (b) [5 marks] A controller is implemented in a unity feedback control system to drive the position difference to zero for docking. The controller is given by: K ( s) = 100( s + 1) , Re{s} > в€’100 0.01s + 1 ydes ( t ) = 0 + - uc ( t ) K ( s) y(t ) G ( s) Find G ( s ) and assess the stability of this feedback control system (hint: one of the closed-loop poles is at в€’10 .) Answer: G ( s ) = Ce ( sI в€’ Ae ) в€’1 Be + De в€’1 пЈ® s в€’1пЈ№ пЈ® 0 пЈ№ = [1 0] пЈЇ пЈє пЈЇ пЈє пЈ°0 s пЈ» пЈ° 0.1пЈ» 0.1 = 2 , Re{s} > 0 s Closed-loop characteristic polynomial with coprime numerators and denominators: p ( s ) = nG nK + d G d K = 0.1(100s + 100) + s 2 (0.01s + 1) = 0.01s 3 + s 2 + 10s + 10 = 0.01( s 3 + 100s 2 + 1000s + 1000) Thus, s 3 + 100s 2 + 1000s + 1000 = ( s + a )( s + b)( s + 10) = s 3 + (10 + a + b) s 2 + (10a + 10b + ab) s + 10ab By identifying coefficients, we find three equations in two unknowns (one is redundant): 10 + a + b = 100 10a + 10b + ab = 1000 10ab = 1000 We combine the first and third equations to find a quadratic equation: 11 Sample Final Exam Covering Chapters 10-17 (finals02) a 2 в€’ 90a + 100 = 0 в‡’ a1 = 45 + 10 4.52 в€’ 1 = 88.8748 a2 = 45 в€’ 10 4.52 в€’ 1 = 1.1252 It turns out that for the choice a = 88.8748 в‡’ b = 1.1252 and for the choice a = 1.1252 в‡’ b = 88.8748 . Therefore the three closed-loop poles are at в€’10, в€’ 1.1252, в€’ 88.8748 , and the closed-loop system is stable. (c) [7 marks] Find the loop gain, sketch its Bode plot, and compute the phase margin of the closedloop system. Assuming for the moment that the controller would be implemented on earth, what would be the longest communication delay that would not destabilize the automatic docking system? Answer: Loop gain: L( s ) = 10( s + 1) s (0.01s + 1) 2 150 100 50 0 -50 -100 -2 10 -1 10 0 1 10 10 2 10 3 10 -100 -110 -120 -130 -140 -150 -160 -170 -180 -2 10 -1 10 0 1 10 10 12 2 10 3 10 Sample Final Exam Covering Chapters 10-17 (finals02) Phase margin: The crossover frequency is approximately П‰ co = 10rd/s . The phase margin is given by: в€ L( jП‰ co ) в‰… в€’102D в‡’ П†m = 78D . From the broken line approximation, we find a phase margin of в€ L( jП‰ co ) в‰… в€’90D в‡’ П†m = 90D . Using the latter, we compute the maximum time-delay that can be tolerated: П‰ coП„ = в‡’П„ = ПЂ 180 П†m ПЂ 90ПЂ = 0.1571s П†m = 180П‰ co 180 в‹… 10 (d) [3 marks] Compute the sensitivity function of the system and give the steady-state error to a unit step disturbance on the output. Answer: S ( s) = 1 = 1 + L( s ) s 2 (0.01s + 1) 1 = 10( s + 1) 0.01s 3 + s 2 + 10s + 10 1+ 2 s (0.01s + 1) The Laplace transform of the error signal is 1 0 e ( s) = S ( s) , and from the final value theorem, we have lim e(t ) = S (0) = =0 t в†’+в€ћ s 10 Problem 5 (15 marks) Consider a fourth-order ( M = 4 ) causal moving average filter H ( z ) . (a) [5 marks] Compute H ( z ) and give its pole-zero plot including the ROC. Answer: The z-transform of this filter is given by 1 1 в€’1 1 в€’2 1 в€’3 1 в€’4 1 z 4 + z 3 + z 2 + z + 1 + z + z + z + z = 5 5 5 5 5 5 z4 with ROC {z в€€ ^ , z в‰ 0} , i.e., the whole complex plane excluding 0. H ( z) = Four poles at 0, and zeros are on the unit circle at 2ПЂ 4ПЂ 6ПЂ 8ПЂ , , , . 5 5 5 5 Im{z} 1 Re{z} 4 poles -1 1 -1 13 Sample Final Exam Covering Chapters 10-17 (finals02) (b) [5 marks] Compute the filter's frequency response Answer: H ( e jП‰ ) and give its magnitude and phase. 1 1 в€’ jП‰ 1 в€’ j 2П‰ 1 в€’ j 3П‰ 1 в€’ j 4П‰ + e + e + e + e 5 5 5 5 5 1 = e в€’ j 2П‰ ( e j 2П‰ + e jП‰ + 1 + e в€’ jП‰ + e в€’ j 2П‰ ) 5 2 пЈ«1 2 пЈ¶ = e в€’ j 2П‰ пЈ¬ + cos(П‰ ) + cos(2П‰ ) пЈ· 5 пЈ5 5 пЈё 1 2 2 H ( e jП‰ ) = + cos(П‰ ) + cos(2П‰ ) 5 5 5 H ( e jП‰ ) = Phase in the passband is sufficient here: в€ H ( e jП‰ пЈ« 2ПЂ 2ПЂ пЈ¶ ) = в€’2П‰ , П‰ в€€ пЈ¬ в€’ , пЈ· , but the complete пЈ 5 5 пЈё answer is: пЈ± пЈ« 2ПЂ 2ПЂ пЈ¶ пЈґ в€’2П‰ , П‰ в€€ пЈ¬ в€’ 5 , 5 пЈ· пЈ пЈё пЈґ пЈґ пЈ« 2ПЂ 4ПЂ пЈ¶ пЈґ в€’ПЂ в€’ 2П‰ , П‰ в€€ пЈ¬ 5 , 5 пЈ· пЈ пЈё пЈґ пЈґ пЈ« 4ПЂ пЈ¶ ,ПЂ пЈ· в€ H ( e jП‰ ) = пЈІ в€’2П‰ , П‰ в€€ пЈ¬ 5 пЈ пЈё пЈґ пЈґ 4ПЂ пЈ¶ пЈ« пЈґ в€’2П‰ , П‰ в€€ пЈ¬ в€’ПЂ , в€’ пЈ· 5 пЈё пЈ пЈґ пЈґ пЈ« 4ПЂ 2ПЂ пЈ¶ ,в€’ пЈґПЂ в€’ 2П‰ , П‰ в€€ пЈ¬ в€’ пЈ· 5 пЈё пЈ 5 пЈі (c) [5 marks] Compute and sketch the unit step response of the filter. Answer: The step response is the running sum of the impulse response: 1 1 1 1 1 h[n ] = Оґ [n ] + Оґ [n в€’ 1] + Оґ [n в€’ 2] + Оґ [n в€’ 3] + Оґ [n в€’ 4] 5 5 5 5 5 1 1 y[n ] = ( n + 1)u[n ] в€’ ( n в€’ 5 + 1)u[n в€’ 5] 5 5 1 4/5 3/5 2/5 1/ 5 ... ... -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 END OF EXAMINATION 14 6 7 n
© Copyright 2024 Paperzz