Maths XII chapter 2 inverse trigonometric functions ex 2 1

Chapter 2
Mathematics XII
Exercise 2.1
WWW.TIWARIACADEMY.COM
(www.tiwariacademy.com)
(Class XII)
Exercise 2.1
Question 1: www.tiwariacademy.com
1
Find the principal value of π‘ π‘–π‘›βˆ’1 (βˆ’ )
2
Answer 1:
1
Let π‘ π‘–π‘›βˆ’1 (βˆ’ ) = 𝑦, Then
2
1
πœ‹
πœ‹
𝑠𝑖𝑛 𝑦 = βˆ’ = βˆ’π‘ π‘–π‘› ( ) = 𝑠𝑖𝑛 (βˆ’ )
2
6
6
Ο€ Ο€
We know that the range of the principal value branch of sin βˆ’1 is [- , ] and
2 2
Ο€
1
sin (- ) = 6
2
1
Ο€
Therefore, the principal value of sin-1 (- ) is - .
2
6
www.tiwariacademy.com
Question 2:
√3
Find the principal value of π‘π‘œπ‘  βˆ’1 ( )
2
Answer 2: www.tiwariacademy.com
√3
Let π‘π‘œπ‘  βˆ’1 ( ) = 𝑦, then
2
πœ‹
√3
= π‘π‘œπ‘  ( )
2
6
We know that the range of the principal value branch of cos βˆ’1 is [0, Ο€] and
cos 𝑦 =
Ο€
cos ( ) =
6
√3
2
√3
Ο€
Therefore, the principal value of cos -1 ( ) is .
2
6
1
Free web support in Education
(www.tiwariacademy.com)
(Class XII)
Question 3: www.tiwariacademy.com
Find the principal value of cosecβˆ’1 (2).
Answer 3:
Ο€
Let cosecβˆ’1 (2) = y. Then, cosec y = 2 = cosec ( )
6
Ο€ Ο€
We know that the range of the principal value branch of cosec βˆ’1 is [- 2 , 2 ] -{0}
Ο€
and cosec ( ) = 2.
6
Ο€
Therefore, the principal value of cosecβˆ’1 (2) is .
6
Question 4: www.tiwariacademy.com
Find the principal value of π‘‘π‘Žπ‘›βˆ’1 (βˆ’βˆš3).
Answer 4:
Ο€
Ο€
Let tan-1 (-√3) = y, then tan y = -√3 = -tan = tan (- )
3
3
Ο€ Ο€
We know that the range of the principal value branch of tanβˆ’1 is (- , ) and
2 2
Ο€
tan (- ) = -√3
3
Ο€
Therefore, the principal value of tan-1 (-√3) is - .
3
Question 5: www.tiwariacademy.com
1
Find the principal value of π‘π‘œπ‘  βˆ’1 (βˆ’ ).
2
Answer 5:
1
1
Ο€
Ο€
2Ο€
Let cos -1 (- ) = y, then cos y = - = -cos = cos (Ο€- ) = cos ( )
2
2
3
3
3
We know that the range of the principal value branch of cos βˆ’1 is [0, Ο€] and
2Ο€
1
cos ( ) = 3
2
1
Therefore, the principal value of cos -1 (- ) is
2
2Ο€
3
.
2
Free web support in Education
(www.tiwariacademy.com)
(Class XII)
Question 6: www.tiwariacademy.com
Find the principal value of tanβˆ’1 (βˆ’1).
Answer 6:
Ο€
Ο€
Let tanβˆ’1 (βˆ’1) = y. Then, tan y = -1 = -tan ( ) = tan (- )
4
4
Ο€ Ο€
We know that the range of the principal value branch of tan βˆ’1 is (- , ) and
2 2
Ο€
tan (- ) = -1
4
Ο€
Therefore, the principal value of tanβˆ’1 (βˆ’1) is - .
4
Question 7: www.tiwariacademy.com
2
Find the principal value of 𝑠𝑒𝑐 βˆ’1 ( ).
3
√
Answer 7:
2
2
√
√
Let 𝑠𝑒𝑐 βˆ’1 ( ) = 𝑦, then sec 𝑦 =
3
πœ‹
= 𝑠𝑒𝑐 ( )
3
6
πœ‹
We know that the range of the principal value branch of sec βˆ’1 is [0, πœ‹] βˆ’ { }
2
πœ‹
and 𝑠𝑒𝑐 ( ) =
6
2
√3
.
2
πœ‹
Therefore, the principal value of 𝑠𝑒𝑐 βˆ’1 ( ) is .
3
6
√
Question 8: www.tiwariacademy.com
Find the principal value of π‘π‘œπ‘‘ βˆ’1 √3.
Answer 8:
Ο€
Let cot -1 √3 = y, then cot y = √3 = cot ( ).
6
We know that the range of the principal value branch of cot βˆ’1 is (0, Ο€) and
Ο€
cot ( ) = √3.
6
Ο€
Therefore, the principal value of cot -1 √3 is .
6
3
Free web support in Education
(www.tiwariacademy.com)
(Class XII)
Question 9: www.tiwariacademy.com
Find the principal value of π‘π‘œπ‘  βˆ’1 (βˆ’
1
).
√2
Answer 9:
Let cos -1 (-
cos y = -
1
) = y, then
√2
1
√
Ο€
Ο€
3Ο€
= -cos ( ) = cos (Ο€- ) = cos ( ).
2
4
4
4
We know that the range of the principal value branch of cos βˆ’1 is [0, Ο€] and
3Ο€
cos ( ) = 4
1
.
√2
Therefore, the principal value of cos -1 (-
1
) is
√2
3Ο€
4
.
Question 10:
Find the principal value of π‘π‘œπ‘ π‘’π‘ βˆ’1 (βˆ’βˆš2).
Answer 10:
Let π‘π‘œπ‘ π‘’π‘ βˆ’1 (βˆ’βˆš2) = 𝑦, then
πœ‹
πœ‹
π‘π‘œπ‘ π‘’π‘ 𝑦 = βˆ’βˆš2 = βˆ’π‘π‘œπ‘ π‘’π‘ ( ) = π‘π‘œπ‘ π‘’π‘ (βˆ’ )
4
4
Ο€ Ο€
We know that the range of the principal value branch of cosecβˆ’1 is [- , ] -{0}
2 2
Ο€
and cosec (- ) = -√2.
4
Ο€
Therefore, the principal value of cosec -1 (-√2) is - .
4
4
Free web support in Education
(www.tiwariacademy.com)
(Class XII)
Question 11: www.tiwariacademy.com
1
1
Find the value of π‘‘π‘Žπ‘›βˆ’1 (1) + π‘π‘œπ‘  βˆ’1 (βˆ’ ) + π‘ π‘–π‘›βˆ’1 (βˆ’ ).
2
2
Answer 11:
Let π‘‘π‘Žπ‘›βˆ’1 (1) = π‘₯, then
tan π‘₯ = 1 = π‘‘π‘Žπ‘›
πœ‹
4
πœ‹ πœ‹
We know that the range of the principal value branch of tanβˆ’1 is (βˆ’ , ) .
2 2
πœ‹
∴ π‘‘π‘Žπ‘›βˆ’1 (1) =
4
1
Let π‘π‘œπ‘  βˆ’1 (βˆ’ ) = 𝑦, then
2
1
πœ‹
πœ‹
2πœ‹
cos 𝑦 = βˆ’ = βˆ’π‘π‘œπ‘  = π‘π‘œπ‘  (πœ‹ βˆ’ ) = π‘π‘œπ‘  ( )
2
3
3
3
βˆ’1
We know that the range of the principal value branch of cos is [0, πœ‹].
1
∴ π‘π‘œπ‘  βˆ’1 (βˆ’ ) =
2
2πœ‹
3
1
Let π‘ π‘–π‘›βˆ’1 (βˆ’ ) = 𝑧, then
2
1
πœ‹
πœ‹
sin 𝑧 = βˆ’ = βˆ’π‘ π‘–π‘› = 𝑠𝑖𝑛 (βˆ’ )
2
6
6
Ο€ Ο€
We know that the range of the principal value branch of sinβˆ’1 is [- , ].
2 2
1
Ο€
∴ sin-1 (- ) = 2
6
Now,
1
1
tan-1 (1) + cos -1 (- ) + sin-1 (- )
2
2
=
πœ‹ 2πœ‹ πœ‹ 3πœ‹ + 8πœ‹ βˆ’ 2πœ‹ 9πœ‹ 3πœ‹
+
βˆ’ =
=
=
4
3
6
12
12
4
5
Free web support in Education
(www.tiwariacademy.com)
(Class XII)
Question 12: www.tiwariacademy.com
1
1
Find the value of π‘π‘œπ‘  βˆ’1 ( ) + 2π‘ π‘–π‘›βˆ’1 ( )
2
2
Answer 12:
1
1
Ο€
Let cos -1 ( ) = x, then cos x = = cos
2
2
3
We know that the range of the principal value branch of cosβˆ’1 is [0, Ο€].
1
∴ cos -1 ( ) =
2
Ο€
3
1
1
Ο€
Let sin-1 (- ) = y, then sin y = = sin
2
2
6
Ο€ Ο€
We know that the range of the principal value branch of sinβˆ’1 is [- , ].
2 2
∴
1
π‘ π‘–π‘›βˆ’1 ( )
2
=
πœ‹
6
Now,
1
1
πœ‹
πœ‹ πœ‹ πœ‹ 2πœ‹
π‘π‘œπ‘  βˆ’1 ( ) + 2π‘ π‘–π‘›βˆ’1 ( ) = + 2 × = + = .
2
2
3
6 3 3
3
Question 13:
If sinβˆ’1 x = y, then
πœ‹
πœ‹
2
πœ‹
2
πœ‹
2
2
(A) 0 ≀ 𝑦 ≀ πœ‹
(B) βˆ’ ≀ 𝑦 ≀
(C) 0 < 𝑦 < πœ‹
(D) βˆ’ < 𝑦 <
Answer 13: www.tiwariacademy.com
It is given that sinβˆ’1 x = y.
Ο€ Ο€
We know that the range of the principal value branch of sinβˆ’1 is [- , ].
2 2
Ο€
Ο€
2
2
Therefore, - ≀ y ≀ .
Hence, the option (B) is correct.
6
Free web support in Education
(www.tiwariacademy.com)
(Class XII)
Question 14: www.tiwariacademy.com
π‘‘π‘Žπ‘›βˆ’1 √3 βˆ’ 𝑠𝑒𝑐 βˆ’1 (βˆ’2) is equal to
(A) Ο€
(C)
(B) βˆ’
πœ‹
(D)
3
πœ‹
3
2πœ‹
3
Answer 14:
Let π‘‘π‘Žπ‘›βˆ’1 √3 = π‘₯, then
tan π‘₯ = √3 = π‘‘π‘Žπ‘›
πœ‹
3
Ο€ Ο€
We know that the range of the principal value branch of tanβˆ’1 is (- , ).
2 2
Ο€
∴ tan-1 √3 =
3
Let sec -1 (-2) = y, then
sec y = -2 = -sec
Ο€
Ο€
2Ο€
= sec (Ο€- ) = sec ( )
3
3
3
Ο€
We know that the range of the principal value branch of secβˆ’1 is [0, Ο€]- { }
2
∴ sec -1 (-2) =
2Ο€
3
Now,
tan-1 √3-sec -1 (-2) =
Ο€ 2Ο€
Ο€
=3 3
3
Hence, the option (B) is correct. www.tiwariacademy.com
7
Free web support in Education

Downloaded from www.tiwariacademy.com