EEG/MEG - Wellcome Trust Centre for Neuroimaging

EEG/MEG Source Localisation
SPM Short Course – Wellcome Trust Centre for Neuroimaging – May 2008
?
Jérémie Mattout, Christophe Phillips
Jean Daunizeau
Guillaume Flandin
Karl Friston
Rik Henson
Stefan Kiebel
Vladimir Litvak
EEG/MEG
Source localisation
Outline
1. Introduction
2. Forward model
3. Inverse problem
4. Bayesian inference applied to the EEG/MEG inverse problem
5. Conclusion
EEG/MEG
Source localisation
Outline
1. Introduction
2. Forward model
3. Inverse problem
4. Bayesian inference applied to the EEG/MEG inverse problem
5. Conclusion
EEG/MEG
Introduction: EEG/MEG as Neuroimaging techniques
Source localisation
MRI
MEG
EEG
spatial resolution (mm)
OI
EEG
20
invasivity
MEG
weak
strong
SPECT
15
OI
PET
10
fMRI
5
sEEG
MRI(a,d)
1
10
102
103
104
105
temporal resolution (ms)
EEG/MEG
Source localisation
Data Preperation
New MEEG data
format based on
“object-oriented”
coding
More stable
interfacing and
user-friendly 
and a bit harder for
developers 
MEEG functionalities in SPM8
Data
importation/convertion
• Import most
common
MEG/EEG data
formats into one
single data format
• Include “associated
data”, e.g.
electrode location
and sensor setup
EEG/MEG
Source localisation
Data Preperation
MEEG functionalities in SPM8
“Usual“ preprocessing
• Filtering
• Re-referencing
• Epoching
• Artefact and bad
channel rejection
• Averaging
• Displaying
•…
EEG/MEG
Source localisation
MEEG functionalities in SPM8
Data Preprocessing
Source reconstruction
Scalp Data Analysis
Statistical Parametric Mapping
Dynamic Causal Modelling
EEG/MEG
MEEG “usual” results
Source localisation
MEG experiment
of Face perception4
Right temporal evoked signal
Energy changes (Faces - Scrambled, p<0.01)
45
faces
scrambled
3
40
2
frequency (Hz)
35
100
200
M170
4Electrophysiology
300
time (ms)
400
1
30
25
0
20
-1
15
-2
10
-3
-0.1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time (s)
and haemodynamic correlates of face perception, recognition and priming, R.N. Henson, Y. Goshen-Gottstein, T. Ganel,
L.J. Otten, A. Quayle, M.D. Rugg, Cereb. Cortex, 2003.
EEG/MEG
Source localisation
Change speaker…
EEG/MEG
Source localisation
Introduction: overview
Forward
model
Inverse
problem
EEG/MEG source reconstruction process
EEG/MEG
Source localisation
Outline
1. Introduction
2. Forward model
3. Inverse problem
4. Bayesian inference applied to the EEG/MEG inverse problem
5. Conclusion
EEG/MEG
Source localisation
Forward model: source space
source biophysical model: current dipole
Equivalent
Current
Dipoles (ECD)
- few dipoles with
EEG/MEG source models
free location and orientation
Imaging or
Distributed
- many dipoles with
fixed location and orientation
EEG/MEG
Forward model: formulation
Source localisation
Forward
model
Y  f J   E
data
forward
operator
dipole
noise
parameters
EEG/MEG
Source localisation
Forward model: imaging/distributed model
Y  KJ  E
data
gain matrix
dipole
noise
amplitudes
EEG/MEG
Source localisation
Outline
1. Introduction
2. Forward model
3. Inverse problem
4. Bayesian inference applied to the EEG/MEG inverse problem
5. Conclusion
EEG/MEG
Source localisation
Inverse problem: an ill-posed problem
« Will it ever happen that mathematicians will know enough about the physiology of the brain, and
neurophysiologists enough of mathematical discovery, for efficient cooperation to be possible ? »
Jacques Hadamard (1865-1963)
1. Existence
2. Unicity
3. Stability
Inverse
problem
EEG/MEG
Source localisation
Inverse problem: an ill-posed problem
« Will it ever happen that mathematicians will know enough about the physiology of the brain, and
neurophysiologists enough of mathematical discovery, for efficient cooperation to be possible ? »
Jacques Hadamard (1865-1963)
1. Existence
2. Unicity
3. Stability
Inverse
problem
EEG/MEG
Source localisation
Inverse problem: an ill-posed problem
« Will it ever happen that mathematicians will know enough about the physiology of the brain, and
neurophysiologists enough of mathematical discovery, for efficient cooperation to be possible ? »
Jacques Hadamard (1865-1963)
1. Existence
2. Unicity
3. Stability
Inverse
problem
Introduction of prior knowledge (regularization) is needed
EEG/MEG
Source localisation
Inverse problem: regularization
Spatial and
temporal priors
Adequacy
with other
modalities
Data fit
data fit
W = I : minimum norm
W = Δ : maximum smoothness (LORETA)
prior
(regularization term)
EEG/MEG
Source localisation
Outline
1. Introduction
2. Forward model
3. Inverse problem
4. Bayesian inference applied to the EEG/MEG inverse problem
5. Conclusion
EEG/MEG
Bayesian inference: probabilistic formulation
Source localisation
Forward
model
likelihood
Inverse
problem
posterior
likelihood
posterior
evidence
prior
EEG/MEG
Source localisation
Bayesian inference: hierarchical linear model
pY J , Μ 
sensor (1st) level
likelihood
pJ Μ 
source (2nd) level
prior
q
Ce  1Qe1    qQe
C p  1Q    k Q
1
p
k
p
Q : (known) variance components
(λ,μ) : (unknown) hyperparameters
EEG/MEG
Source localisation
Bayesian inference: variance components
p( J M ) ~ N (0, C p )
C p  1Q    k Q
1
p
k
p
# dipoles
# dipoles
…
Minimum Norm
(IID)
Maximum Smoothness
(LORETA)
Multiple Sparse Priors
(MSP)
EEG/MEG
Bayesian inference: graphical representation
Source localisation
λ1
λk
J
μ1
prior

pJ Μ   p J 1 ,, k , Q1p ,, Q pk

Y
likelihood
μq

pY J , Μ   p Y J , 1 ,,  q , Qe1 ,, Qeq , K

EEG/MEG
Source localisation
Bayesian inference: iterative estimation scheme
Expectation-Maximization (EM) algorithm
E-step
qˆ ( J M )  arg max F
q( J M )
 p( J Y , ˆ, ˆ , M )
M-step
(ˆ, ˆ )  arg max F
 ,
 p(Y J , M ) p( J M ) 
ln p(Y M )  F  ln 

q
(
J
M
)


q( J M )
 p( J Y , M ) p(Y M ) 
 ln 

q
(
J
M
)


q( J M )
EEG/MEG
Bayesian inference: model comparison
Source localisation
At convergence
F  ln p(Y | M )  accuracy(M )  complexity(M )
Fi
1
2
3
model Mi
EEG/MEG
Source localisation
Outline
1. Introduction
2. Forward model
3. Inverse problem
4. Bayesian inference applied to the EEG/MEG inverse problem
5. Conclusion
EEG/MEG
Source localisation
Conclusion: At the end of the day...
Individual reconstructions in MRI template space
L
R
R
L
Group results
p < 0.01 uncorrected
EEG/MEG
Source localisation
Conclusion: Summary
• EEG/MEG source reconstruction:
1. forward model
2. inverse problem (ill-posed)
• Prior information is mandatory
• Bayesian inference is used to:
1. incorpoate such prior information…
2. … and estimating their weight w.r.t the data
3. provide a quantitative feedback on model adequacy
Forward
model
Inverse
problem
EEG/MEG
Source localisation
Change speaker…
Again !
EEG/MEG
Source localisation
Equivalent Current Dipole (ECD) solution
source biophysical model:
current dipole
few dipoles
with free
location and
orientation
Equivalent
Current
Dipoles (ECD)
EEG/MEG source models
Imaging or
Distributed
many dipoles
with fixed
location and
orientation
EEG/MEG
ECD approach: principle
Source localisation
Forward
model
Y  f J   E
data
forward
operator
dipole
noise
parameters
but a priori fixed number of sources considered
 iterative fitting of the 6 parameters of each dipole
EEG/MEG
ECD solution: variational Bayes (VB) approach
Source localisation
w
s
Dipole locations s and dipole moments
w generated data using
w
s
ε is white observation noise
with precision γy.
y
y  G( s ) w  
y
The locations s and moments w are
drawn from normal distributions with
precisions γs and γw.
These are drawn from a prior gamma
distribution.
EEG/MEG
Source localisation
ECD solution: “classical” vs. VB approaches
“Classical”
VB
Hard constraints
Yes
Yes
Soft constraints
No
Yes
Noise
accommodation
No
Yes
Model
comparison
(in general)
No
YES
EEG/MEG
Source localisation
ECD solution: when and how to apply VB-ECD?
• can be applied to single time-slice data or average over
time (MEG and EEG)
• useful for comparing several few-dipole solutions for
selected time points (N100, N170, etc.)
• although not dynamic, can be used for building up
intuition about underlying generators, or using as a
motivation for DCM source models
• implemented in Matlab and (very soon) available in SPM8
EEG/MEG
Source localisation
EEG/MEG
Source localisation
Bayesian inference: multiple sparse priors
p( J  , M ) ~ N (0, C )
k  exp(k )
k ~ N (,)
- Log-normal hyperpriors
- Enforces the non-negativity of the hyperparameters
- Enables Automatic Relevance Determination (ARD)
EEG/MEG
Source localisation
Forward model: canonical mesh
MNI Space
Canonical
mesh
Subjects
MRI
Anatomical warping
[Un]-normalising
spatial transformation
Cortical
mesh
EEG/MEG
Forward model: coregistration
Source localisation
From Sensor to MRI space
EEG
HeadShape
Rigid
Transformation
+
Surface
Matching
HeadShape
MRI derived meshes
MEG
Full setup
EEG/MEG
Source localisation
Main references
Friston et al. (2008) Multiple sparse priors for the M/EEG inverse problem
Kiebel et al. (2008) Variational Bayesian inversion of the equivalent current dipole model in
EEG/MEG
Mattout et al. (2007) Canonical Source Reconstruction for MEG
Daunizeau and Friston (2007) A mesostate-space model for EEG and MEG
Henson et al. (2007) Population-level inferences for distributed MEG source localization under
multiple constraints: application to face-evoked fields
Friston et al. (2007) Variational free energy and the Laplace approximation
Mattout et al. (2006) MEG source localization under multiple constraints
Friston et al. (2006) Bayesian estimation of evoked and induced responses
Phillips et al. (2005) An empirical Bayesian solution to the source reconstruction problem in EEG