2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014) +ø3(563(.75$/*g5h17h/(5ø1<h.6(.'ø1$0ø.$5$/,./, GÖRÜNTÜ/(0(7(0(//ø *g56(//(ù7ø5ø/0(6ø HYPERSPECTRAL IMAGE VISUALIZATION BASED ON HIGH DYNAMIC RANGE IMAGING Seçil Süer, Hatice Koç, Sarp Ertürk .RFDHOLhQLYHUVLWHVLøúDUHWYH*|UQWøúOHPH/DE.8/,6 (OHNWURQLNYH+DEHUOHúPH0K%|OP.RFDHOLhQLYHUVLWHVL.RFDHOL HiperspeNWUDO J|UQWOHPH VLVWHPOHUL YHUL LúOHPH YH analiz o|]POHULLoLQGDKD\NVHNEDúDUÕPYHGR÷UXOXNVD÷ODPDODUÕQD UD÷PHQLQVDQODUÕQJ|UVHOLQFHOHPHYHDQDOL]LEDNÕPÕQGDQoRN VD\ÕGDKLSHUVSHNWUDOEDQWWDQROXúDQYHULQLQ GDKDNROD\YHKÕ]OÕ J|UQWOHQHELOLUELU\DSÕ\DG|QúWUOPHVLJHUHNPHNWHGLU Bu QHGHQOH \D\JÕQ RODUDN J|UVHOOHúWLUPH LoLQ LOJLOL YHUL o EDQGD G|QúWUOHUHN J|UVHOOHúWLUPHGH NÕUPÕ]Õ-\HúLO-mavi (RGB) EDQWODUÕ kullanan VWDQGDUW J|UQWOHPH HNUDQODUÕQGD gösterilmektedir. %D÷ÕPVÕ]ELOHúHQDQDOL]LLQGHSHQGHQWFRPSRQHQWDQDO\VLV ICA >@ YH\D WHPHO ELOHúHQ DQDOL]L SULQFLSDO component analysis, PCA >@ JLEL GR÷UXVDO SURMHNVL\on yöntemleri KLSHUVSHNWUDO YHULGHQ J|UQWOHPHGH NXOODQÕODFDN 5 * YH % NDQDODUÕQÕQ HOGH HGLOPHVL LoLQ OLWHUDWUGH |QHULOPLú \|QWHPOHULQ EDúÕQGD JHOPHNWHGLU $OWHUQDWLI RODUDN hiperspektral veriden üç bant seçen; bir-bit G|QúP >@ normalize bilgi (normalized information, NI) [4] ve ortak bilgi (mutual information , MI) [@WDEDQOÕ\|QWHPOHU|QHULOPLúWLU Bu bildiride hiperspektral verinin görüntülenmesi için \NVHN GLQDPLN DUDOÕNOÕ J|UQWOHPH PDQWÕ÷ÕQD GD\DQDQ \HQL YH |]JQ ELU \DNODúÕP önerilmektedir. Önerilen yöntemin J|UVHO DoÕGDQ EDúDUÕOÕ VRQXoODU YHUGL÷L |UQHN YHUL ]HULQGHQ J|VWHULOPLúWLU ÖZETÇE +LSHUVSHNWUDO J|UQWOHPH oRN VD\ÕGD GDU DUDOÕNOÕ VSHNWUDO EDQWJ|UQWV\DNDODQPDVÕQDGD\DQPDNWDYH|]HOOLNOHWHVSLW YHVÕQÕIODQGÕUPDJLELJ|UQWDQDOL]LX\JXODPDODUÕQGD|QHPOL VWQON VD÷ODPDNWDGÕU Ancak hiperspektral verilerin görsel incelemesi için genel bir \DNODúÕPRODUDNhiperspektral veriler standart ELUUHQNOLJ|UQW\DSÕVÕQD çevrilmektedir. Bu çevrim VÕUDVÕQGD RODELOGL÷LQFH oRN GHWD\ YH ELOJLQLQ NRUXQPDVÕ YH J|UVHOOHúWLULOPHVL |QHPlidir. Bu bildiride hiperspektral J|UQWOHULQ J|UVHOOHúWLULOPHVL LoLQ \NVHN GLQDPLN DUDOÕNOÕ J|UQWOHPH\H GD\DQDQ |]JQ ELU \DNODúÕP |QHULOPHNWHGLU gQHULOHQ \DNODúÕP J|UVHO D\UÕQWÕODUÕ NRUXPDNWD YH J|UVHO NDOLWHEDNÕPÕQGDQEDúDUÕOÕELUVRQXoYHUPHNWHGLr. ABSTRACT Hyperspectral imaging captures a high number of spectrally narrow bands and provides advantages for image analysis applications such as identification and classification in particular. However, for the visual inspection of hyperspectral images, the data is conventionally converted to a standard color image format. It is important that as much detail and data as possible is retained during this conversion. A novel hyperspectral visualization approach based on high dynamic range imaging is presented in this paper. The proposed approach retains visual detail and provides a superior result in terms of visual quality. 1. 2. g1(5ø/(1 YÖNTEM Bu bildiride hiperspektral verilerin görüntülenmesi için, [6]’da önerilen \NVHNGLQDPLNDUDOÕNOÕJ|UQWOHPH\DNODúÕPÕWHPHO DOÕQPÕúWÕU >@¶GD VXQXODQ \NVHN GLQDPLN DUDOÕNOÕ KLJK G\QDPLF UDQJH +'5 J|UQWOHPH \DNODúÕPÕQGD yüksek GLQDPLN DUDOÕ÷ÕQD VDKLS ELU LPJHQLQ GúN GLQDPLN DUDOÕ÷ÕQD indirgenmesi için görüntü öncelikli çift-yönlü süzgeç (bilateral ILOWHUNXOODQÕODUDNbir taban (base) imgesi ve bir detay (detail) imgesi olmak üzere iki imgeye çözümlenmektedir. Taban LPJHVL J|UQWGHNL JHQLú |OoHNOL ELU QHYL GúN X]DPVDO IUHNDQVELOJLOHULEDUÕQGÕUPDNWDGHWD\LPJHVLLVHRULMLQDOLPJH LOHWDEDQLPJHVLQLQIDUNÕQGDQHOGHHGLlmektedir. 7DEDQ LPJHVLQLQ HOGH HGLOPHVL LoLQ NHQDUODUÕ NRUX\DQ ELU V]JHoOHPH \DNODúÕPÕ RODQ oLIW-yönlü süzgeçleme NXOODQÕOPDNWDGÕU %X QHGHQOH WDEDQ LPJHVL HVDVÕQGD GúN X]DPVDO IUHNDQV ELOHúHQOHUL\OH EHUDEHU LPJH NHQDUODUÕQÕ GD EDUÕQGÕUPDNWDGÕU Çift-yönlü süzgeçleme X]DPVDO NRPúXOXNWDNL görüntü GH÷HUOHULQLQ GR÷UXVDO ROPD\DQ ELUOHúLPOHUL DUDFÕOÕ÷Õ\OD NHQDUODUÕ NRUX\DUDN J|UQWOHUL \XPXúDWPDNWDGÕU. Bu süzgeç, \DNÕQ SLNVHOOHULQ uzamsal \DNÕQOÕN YH IRWRPHWULN benzerliklerini temel alarak V]JHoOHPH LúOHPLQL JHUoHNOHúWLUPHNWHGLU>@ Çift-yönlü süzgeçleme *ø5øù Hiperspektral görüntüleme oRNVD\ÕGDdar dalga boyuna sahip spektral banGÕQ görüntülenmesi \DNODúÕPÕQD GD\DQPDNWDGÕU %X VD\HGH J|UQW DODQÕ LoHULVLQGH EXOXQDQ QHVQHOHUH DLW spektral veriler yakalanabilmektedir. Yüzey materyallerinden \DQVÕ\DQ HQHUML YH PDWHU\DOOHU WDUDIÕQGDQ HPLOHQ HQHUML PDO]HPH \DSÕVÕQGD J|UH GDOJD ER\XQD ED÷OÕ RODUDN GH÷LúWL÷LQGHQVSHNWUDO veri kullaQÕODUDN\NVHNEDúDUÕPOÕWHVSLW YH VÕQÕIODQGÕUPD X\JXODPDODUÕ JHUoHNOHúWLULOHELOPHNWHGLU %X VD\HGH LQVDQ J|] \DSÕVÕQÕ WDNOLW HGHUHN oDOÕúDQ EDQWOÕ J|UQWOHPHVLVWHPOHULQHRUDQODGDKD\NVHNEDúDUÕPJ|VWHUHQ LPJHLúOHPHYHDQDOL]oDOÕúPDODUÕ\DSÕODELOPektedir. Hiperspektral J|UQWOHPHQLQ |UQHN ED]Õ uygulama DODQODUÕWDUÕPUHNROWHVLQLQX]DNWDQDOJÕODPDLOHWHVSLWLWDUÕPGD KDVWDOÕN YH VWUHV KDULWDODPD VX NDOLWHVL WHVSLWL, ormanda D÷Do türü VD\ÕPÕD÷DoVD÷OÕ÷ÕEHOLUOHPHSHWUROVÕ]ÕQWÕVÕharitalama, RUPDQ \DQJÕQÕ ÕVÕO KDULWDODPD SDWODPDPÕú PDGGH YH gömülü PD\ÕQWHVSLWLRODUDNVD\ÕODELOLU. 1168 2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014) 1 = ݏܬ ݂( െ ܫ(݃)ݏെܫ ) ݏܫ ݇()ݏ (1) ݇( = )ݏ ݂( െ ܫ(݃)ݏെ) ݏܫ (2) úHNOLQGH EXOXQPDNWDGÕU .DUúÕWOÕN D]DOWÕPÕ GR÷UXGDQ WDEDQ ELOHúHQH X\JXODQPDNWD GHWD\ ELOHúHQL LVH D\QHQ NRUXQPDNWDGÕU%XVD\HGHVRQXoLPJHVL ߗא ݈݃ܫ, ݈݃ܫ × ݂݇ = ݊ݏ, ܾ݊ܽܽݐ+ ݈݃ܫ,݀݁ݕܽݐ ߗא RODUDNKHVDSODQPDNWDGÕU%XUDGDkf NDUúÕWOÕND]DOWÕP faktörünü J|VWHUPHNWH YH ¶GHQ NoN ELU GH÷HU ROPDNWDGÕU Son DúDPDGDORJDULWPLNX]D\GDQJHULG|QúPLOHVRQXoLPJHVL GHQNOHPOHUL LOH WDQÕPODQDELOLU %urada, k(s) normalizasyon faktörüdür YH NDWVD\Õ WRSODPODUÕQÕQ ELULP ROPDVÕQÕ VD÷ODPDNWDGÕU. Uzamsal düzlemdeki f YH ÕúÕNOÕOÕN GH÷HU düzlemindeki g IRQNVL\RQODUÕ için Gauss fonksiyonu NXOODQÕOPDNWDGÕU. Denklemlerde verilen p, oHNLUGH÷LQ (kernelin) merkez koordinatÕQÕ, s ise merkezin çevresindeki V]JHoOHPHGHNXOODQÕODFDNSLNVHONRRUGLQDWGH÷HUOHULGLUI p , p NRRUGLQDWÕQGDNL ÕúÕNOÕOÕN GH÷HUL I s ise s NRRUGLQDWÕQGDNL ÕúÕNOÕOÕN GH÷HULGLU Denklem (1) ve (2) de \DSÕODQ LúOHP HVDVÕQGD, JHQLúÕúÕNOÕOÕN IDUNODUÕQDVDKLSSLNVHOOHULQD÷ÕUOÕNODUÕQÕ D]DOWDQ ÕúÕNOÕOÕN G]OHPLQGHNL HWNL IRQNVL\RQX (g) ile uzamsal düzlemdeki \XPXúDWPD IRQNVL\RQX f) oDUSÕPÕ NXOODQÕODUDN V]JHoOHPH VRQUDVÕQGDNL her pikselin \HQL GH÷HULQLQ NRPúX SLNVHOOHULQ X\JXQ D÷ÕUOÕNOÕ RUWDODPDVÕ RODUDN hesaplanPDVÕGÕU ùHNLO ¶GH oLIW-\|QO V]JHoOHPH LOH JUOW D]DOWÕPÕ \DSÕOÕUNHQNHQDUELOJLOHULQLQNRUXQGX÷XJ|VWHULOPHNWHGLU = ݊ݏܫ10 ݈݃ܫ,݊ݏ 3. DENEYSEL SONUÇLAR Bu bildiride deneysel sonuçlar Pavia Üniversite hiperspektral verisi (http://www.ehu.es/ccwintco/uploads/e/ee/PaviaU.mat) ]HULQGHQ VXQXOPXú ROPDNOD EHUDEHU EHQ]HU VRQXoODU IDUNOÕ hiperspektral veriler için GHJ|]OHPOHQPLúWLU Hiperspektral görüntüden J|UVHOOHúWLUPH LoLQ ROXúWXUXODFDN J|UQWQQ LQVDQ J|UVHO VLVWHPL LOH X\XPOX ROPDVÕLoLQ NÕUPÕ]Õ5\HúLO*YHPDYL%GDOJDER\ODUÕQD GHQN JHOHQ EDQW DUDOÕNODUÕ VHoLOPHNWHGLU En basit J|UVHOOHúWLUPH \DNODúÕPÕ LoLQ LOJLOL GDOJD ER\X DUDOÕ÷ÕQGDNL EDQWODUÕQ HúLW D÷ÕUOÕNOÕ RUWDODPD DOPD LúOHPL \DSÕOarak R,G,B EDQWODUÕ HOGH HGLOHELOLU %X úHNLOGH ROXúWXUXODQ HQ EDVLW UHQNOL LPJH ùHNLO (a)’da gösterilmektedir. Renkli görüntü DOJÕOD\ÕFÕODUÕQÕQ \DSÕODUÕQÕ ELUD] GDKD L\L WDNOLW HWPHN LoLQ EDQWODUÕQ HúLW D÷ÕUOÕN \HULQH 5 * YH % EDQWODUÕQÕQ PHUNH]LQH GHQNJHOHQKLSHUVSHNWUDOEDQWODUÕQGDKD\NVHNNHQDUODUDGHQN JHOHQ EDQWODUÕQ LVH GDKD GúN ELU D÷ÕUOÕNOD ELUOHúWLULOPHVL mümkündür. Bu aPDoOD *DXVV WDEDQOÕ ELU D÷ÕUOÕNODQGÕUPD NXOODQÕODUDN EDQW PHUNH]OHULQH GDKD \NVHN D÷ÕUOÕN YHULOPHVL VD÷ODQDELOLU %X úHNLOGH ROXúWXUXODQ UHQNOL J|UQW LVH ùHNLO 2(b)’de gösterilmektedir. +HU LNL ELoLPGH ROXúWXUXODQ UHQNOL J|UQWOHU EDVLW ELU \DNODúÕPOD temel görsel bilgileri VXQPDNWDGÕU gQHULOHQ \DNODúÕPGD LVH KLSHUVSHNWUDO EDQWODUÕQ \NVHN GLQDPLN DUDOÕNOÕ LPJHOHUH EHQ]HU úHNLOGH JHQLú ELU GLQDPLN DUDOÕ÷D VDKLS ROPDVÕ LoLQ |QFHOLNOH NÕUPÕ]Õ 5 \HúLO * YH PDYL % GDOJD ER\ODUÕQD GHQN JHOHQ hiperspektral bantlar toplanmakta ve >@¶GD |QHULOHQ \DNODúÕPGD \NVHN GLQDPLN DUDOÕNOÕ J|UQWOHULQ GúN GLQDPLN DUDOÕ÷ÕQD G|QúWUOPHVL LoLQ WDEDQ LPJHVLQGH NDUúÕWOÕN D]DOWÕPÕ \DSÕOPDNWDGÕU Detay LPJHVLQLQ D\QHQ NRUXQPDVÕ VD\HVLQGH GH NDUúÕWOÕN D]DOWÕPÕ DúDPDVÕQGD GHWD\ÕQ ND\EROPDVÕ |QOHQPHNWHGLU .DUúÕWOÕN oDUSÕPVDOELUHWNLROGX÷XQGDQ\D\JÕQRODUDNNDUúÕWOÕND]DOWÕPÕ LúOHPOHULQLQ ORJDULWPLN X]D\GD \DSÕOPDVÕ WHUFLK HGLOPHNWHGLU Bu nedenle imge öncelikle logaritmik uzaya çevrilmektedir. .ROD\OÕN LoLQ WDEDQOÕ ORJDULWPD NXOODQÕOPDNWD ROXS EX nedenle logaritmik uzaydaki imge ܴ = ܴܦܪσ)ݐ(ܫܪ ܴאݐ = ܴܦܪܩσ)ݐ(ܫܪ ܩאݐ = ܴܦܪܤσ)ݐ(ܫܪ ܤאݐ (3) úHNOLQGH LIDGH HGLOHELOLU. Çift-yönlü süzgeçleme (ÇYS) ise GR÷UXGDQ ORJDULWPLN X]D\GD X\JXODQPDNWD ROXS EX QHGHQOH taban imgesi ݈݃ܫ, = ܾ݊ܽܽݐÇܻܵ൫ ݈݃ܫ൯ (7) RODUDN EXOXQPDNWDGÕU. .DUúÕWOÕN D]DOWÕPÕ VDGHFH ÕúÕNOÕOÕN X]D\ÕQGD JHUoHNOHúWLULOPHNWH ROXS UHQNOL LPJHOHU LoLQ UHQN |]GR\JXQOXNÕúÕNOÕOÕNKXHVDWXUDWLRQLQWHQVLW\G|QúP LOH UHQN ELOJLVL YH ÕúÕNOÕOÕN ELOJLVL D\UÕúWÕUÕODUDN NDUúÕWOÕN D]DOWÕPÕQÕQÕúÕNOÕOÕNX]D\ÕQGD\DSÕODELOPHVLVD÷ODQPDNWDGÕU ùHNLO *UOWOELUJLULúVROGDYHULVLQLQoLIW-yönlü süzgeç oHNLUGH÷Lf×g) (ortada) LOHV]JHoOHQPHVLQGHQHOGHHGLOHQoÕNÕú VD÷GD ݈݃ = ݈݃ܫ10()ܫ (8) úHNOLQGH \NVHN GLQDPLN DUDOÕ÷ÕQD VDKLS +'5 EDQWODU HOGH edilmektedir. Burada HI hiperspektral imgeyi göstermekte olup, t LVHEDQWLQGLVLRODUDNNXOODQÕOPDNWDGÕU5HQNG|QúP LOH EX o EDQW +6, X]D\ÕQD oHYULOPHNWH YH EX VD\HGH UHQN bilgisi ile \NVHN GLQDPLN DUDOÕNOÕ ÕúÕNOÕOÕN ELOJLVL ( ) ܴܦܪܫD\UÕúWÕUÕOPDNWDGÕU %LUVRQUDNLDúDPDGDLVH%|OP¶GH DQODWÕODQ NDUúÕWOÕN azaOWÕP \DNODúÕPÕ NXOODQÕODUDN GúN GLQDPLNDUDOÕNOÕÕúÕNOÕOÕNELOJLVL ) ܴܦܮܫelde edilmektedir. (4) 0T RODUDN ROXúWXUXOPDNWDGÕU %XUDGD d<6 süzgeçlemeyi ifade etmektedir. Detay imgesi ise ݈݃ܫ,݀݁ ݈݃ܫ = ݕܽݐെ ݈݃ܫ,ܾ݊ܽܽݐ (6) oLIW-yönlü 0T (5) 1169 2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014) 4. SONUÇ Bu bildiride hiperspektral J|UQWOHULQ J|UVHOOHúWLULOPHVL LoLQ \HQL ELU \DNODúÕP |QHULOPHNWHGLU gQHULOHQ \DNODúÕP OLWHUDWUGH\NVHNGLQDPLNDUDOÕNOÕLPJHOHULQJ|UVHOOHúWLULOPHVL \|QWHPLQH GD\DQPDNWDGÕU +LSHUVSHNWUDO EDQWODUÕQ WRSODQPDVÕ sonucunda bir nevi bir yüksek dinamik aralÕNOÕ YHUL ROXúWXUXOPDNWD YH VRQUDVÕQGD X\JXQ ELU NDUúÕWOÕN D]DOWÕPÕ \DNODúÕPÕ\OD VRQ J|UQW HOGH HGLOPHNWHGLU gQHULOHQ \|QWHPLQ D\UÕQWÕODUÕQ J|VWHULPL DoÕVÕQGDQ EDúDUÕOÕ YH J|UVHO DOJÕ\DX\JXQELUVRQXoYHUGL÷LJ|VWHULOPLúWLU 5. (a) (b) [1] H. Du, H. Qi, X. Wang, and R. Ramanath, “Band selection using independent component analysis for hyperspectral image processing,” in Proc. 32nd Appl. Imagery Pattern Recog. Workshop, Washington, DC, pp. 93–99, Oct. 2003. [2] X. Jia and J. A. Richard, “Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 538–542, Jan. 1999 [3] B. Demir, A. Celebi, and S. Erturk, “A low-complexity approach for the color display of hyperspectral remotesensing images using one-bit transform-based band selection,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pt. 1, pp. 97–105, 2009. [4] S. Le Moan, A. Mansouri, Y. Voisin, and J. Y. Hardeberg, “A constrained band selection method based on information measures for spectral image color visualization,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 5104–5115, 2011. [5] B. Guo, S. R. Gunn, R. I. Damper, and J. B. Nelson, “Band selection for hyperspectral image classification using mutual information,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 4, pp. 522–526, 2006. [6] F. Durand, and J. Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH 2002 vol. 21, no. 3, pp. 257-266, Jul. 2002. [7] C. Tomasi, and R. Manduchi, “Bilateral filtering for gray and color images.” In Proc. IEEE Int. Conf. on Computer Vision, pp. 836–846, 1998. (c) ùHNLO3DYLDhQLYHUVLWH+LSHUVSHNWUDOYHULVLLoLQD(úLW $÷ÕUOÕNOÕEDVLWJ|UVHOOHúWLUPHE*DXVVD÷ÕUOÕNODQGÕUPDOÕ basit J|UVHOOHúWLUPHFgQHULOHQ\|QWHPLOH J|UVHOOHúWLUPH øOJLOL G|QúP UHQNOL LPJH\H \DQVÕWPDN LoLQ EDVLW ELU SLNVHO ED]OÕRUDQPDWULVL ܴܦܮܫ = ݊ܽݎ/ܴܦܪܫ (9) úHNOLQGH HOGH HGLOPHNWHGLU %X RUDQ NXOODQÕODUDN \HQL UHQN NDQDOODUÕ ܴܴܦܪܴ × ݊ܽݎ = ܴܦܮ ܴܦܪܩ × ݊ܽݎ = ܴܦܮܩ ܴܦܪܤ × ݊ܽݎ = ܴܦܮܤ KAYNAKÇA (10) úHNOLQGHKHVDSODQDELOPHNWHGLU %XoNDQDOÕQJ|UQWOHPHLoLQ NXOODQÕOPDVÕ\OD HOGH HGLOHQ UHQNOL LPJH LVH ùHNLO F¶GH J|VWHULOPHNWHGLU gQHULOHQ \|QWHPLQ YHUGL÷L VRQXoWD LPJH D\UÕQWÕODUÕQÕQ oRN GDKD L\L J|UQG÷ D\UÕFD HOGH HGLOHQ VRQ LPJHQLQLQVDQJ|UVHOVLVWHPDOJÕVÕDoÕVÕQGDQoRNGDKDEDúDUÕOÕ ROGX÷XJ|UOPHNWHGLU 1170
© Copyright 2024 Paperzz