hiperspektral görüntülerin yüksek dinamik aralıklı

2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014)
+ø3(563(.75$/*g5h17h/(5ø1<h.6(.'ø1$0ø.$5$/,./,
GÖRÜNTÜ/(0(7(0(//ø *g56(//(ù7ø5ø/0(6ø
HYPERSPECTRAL IMAGE VISUALIZATION BASED ON HIGH DYNAMIC
RANGE IMAGING
Seçil Süer, Hatice Koç, Sarp Ertürk
.RFDHOLhQLYHUVLWHVLøúDUHWYH*|UQWøúOHPH/DE.8/,6
(OHNWURQLNYH+DEHUOHúPH0K%|OP.RFDHOLhQLYHUVLWHVL.RFDHOL
HiperspeNWUDO J|UQWOHPH VLVWHPOHUL YHUL LúOHPH YH analiz
o|]POHULLoLQGDKD\NVHNEDúDUÕPYHGR÷UXOXNVD÷ODPDODUÕQD
UD÷PHQLQVDQODUÕQJ|UVHOLQFHOHPHYHDQDOL]LEDNÕPÕQGDQoRN
VD\ÕGDKLSHUVSHNWUDOEDQWWDQROXúDQYHULQLQ GDKDNROD\YHKÕ]OÕ
J|UQWOHQHELOLUELU\DSÕ\DG|QúWUOPHVLJHUHNPHNWHGLU Bu
QHGHQOH \D\JÕQ RODUDN J|UVHOOHúWLUPH LoLQ LOJLOL YHUL o EDQGD
G|QúWUOHUHN J|UVHOOHúWLUPHGH NÕUPÕ]Õ-\HúLO-mavi (RGB)
EDQWODUÕ kullanan VWDQGDUW J|UQWOHPH HNUDQODUÕQGD
gösterilmektedir.
%D÷ÕPVÕ]ELOHúHQDQDOL]LLQGHSHQGHQWFRPSRQHQWDQDO\VLV
ICA >@ YH\D WHPHO ELOHúHQ DQDOL]L SULQFLSDO component
analysis, PCA >@ JLEL GR÷UXVDO SURMHNVL\on yöntemleri
KLSHUVSHNWUDO YHULGHQ J|UQWOHPHGH NXOODQÕODFDN 5 * YH %
NDQDODUÕQÕQ HOGH HGLOPHVL LoLQ OLWHUDWUGH |QHULOPLú
\|QWHPOHULQ EDúÕQGD JHOPHNWHGLU $OWHUQDWLI RODUDN
hiperspektral veriden üç bant seçen; bir-bit G|QúP >@
normalize bilgi (normalized information, NI) [4] ve ortak bilgi
(mutual information , MI) [@WDEDQOÕ\|QWHPOHU|QHULOPLúWLU
Bu bildiride hiperspektral verinin görüntülenmesi için
\NVHN GLQDPLN DUDOÕNOÕ J|UQWOHPH PDQWÕ÷ÕQD GD\DQDQ \HQL
YH |]JQ ELU \DNODúÕP önerilmektedir. Önerilen yöntemin
J|UVHO DoÕGDQ EDúDUÕOÕ VRQXoODU YHUGL÷L |UQHN YHUL ]HULQGHQ
J|VWHULOPLúWLU
ÖZETÇE
+LSHUVSHNWUDO J|UQWOHPH oRN VD\ÕGD GDU DUDOÕNOÕ VSHNWUDO
EDQWJ|UQWV\DNDODQPDVÕQDGD\DQPDNWDYH|]HOOLNOHWHVSLW
YHVÕQÕIODQGÕUPDJLELJ|UQWDQDOL]LX\JXODPDODUÕQGD|QHPOL
VWQON VD÷ODPDNWDGÕU Ancak hiperspektral verilerin görsel
incelemesi için genel bir \DNODúÕPRODUDNhiperspektral veriler
standart ELUUHQNOLJ|UQW\DSÕVÕQD çevrilmektedir. Bu çevrim
VÕUDVÕQGD RODELOGL÷LQFH oRN GHWD\ YH ELOJLQLQ NRUXQPDVÕ YH
J|UVHOOHúWLULOPHVL |QHPlidir. Bu bildiride hiperspektral
J|UQWOHULQ J|UVHOOHúWLULOPHVL LoLQ \NVHN GLQDPLN DUDOÕNOÕ
J|UQWOHPH\H GD\DQDQ |]JQ ELU \DNODúÕP |QHULOPHNWHGLU
gQHULOHQ \DNODúÕP J|UVHO D\UÕQWÕODUÕ NRUXPDNWD YH J|UVHO
NDOLWHEDNÕPÕQGDQEDúDUÕOÕELUVRQXoYHUPHNWHGLr.
ABSTRACT
Hyperspectral imaging captures a high number of spectrally
narrow bands and provides advantages for image analysis
applications such as identification and classification in
particular. However, for the visual inspection of hyperspectral
images, the data is conventionally converted to a standard
color image format. It is important that as much detail and
data as possible is retained during this conversion. A novel
hyperspectral visualization approach based on high dynamic
range imaging is presented in this paper. The proposed
approach retains visual detail and provides a superior result
in terms of visual quality.
1.
2.
g1(5ø/(1 YÖNTEM
Bu bildiride hiperspektral verilerin görüntülenmesi için, [6]’da
önerilen \NVHNGLQDPLNDUDOÕNOÕJ|UQWOHPH\DNODúÕPÕWHPHO
DOÕQPÕúWÕU >@¶GD VXQXODQ \NVHN GLQDPLN DUDOÕNOÕ KLJK
G\QDPLF UDQJH +'5 J|UQWOHPH \DNODúÕPÕQGD yüksek
GLQDPLN DUDOÕ÷ÕQD VDKLS ELU LPJHQLQ GúN GLQDPLN DUDOÕ÷ÕQD
indirgenmesi için görüntü öncelikli çift-yönlü süzgeç (bilateral
ILOWHUNXOODQÕODUDNbir taban (base) imgesi ve bir detay (detail)
imgesi olmak üzere iki imgeye çözümlenmektedir. Taban
LPJHVL J|UQWGHNL JHQLú |OoHNOL ELU QHYL GúN X]DPVDO
IUHNDQVELOJLOHULEDUÕQGÕUPDNWDGHWD\LPJHVLLVHRULMLQDOLPJH
LOHWDEDQLPJHVLQLQIDUNÕQGDQHOGHHGLlmektedir.
7DEDQ LPJHVLQLQ HOGH HGLOPHVL LoLQ NHQDUODUÕ NRUX\DQ ELU
V]JHoOHPH \DNODúÕPÕ RODQ oLIW-yönlü
süzgeçleme
NXOODQÕOPDNWDGÕU %X QHGHQOH WDEDQ LPJHVL HVDVÕQGD GúN
X]DPVDO IUHNDQV ELOHúHQOHUL\OH EHUDEHU LPJH NHQDUODUÕQÕ GD
EDUÕQGÕUPDNWDGÕU
Çift-yönlü süzgeçleme X]DPVDO NRPúXOXNWDNL görüntü
GH÷HUOHULQLQ GR÷UXVDO ROPD\DQ ELUOHúLPOHUL DUDFÕOÕ÷Õ\OD
NHQDUODUÕ NRUX\DUDN J|UQWOHUL \XPXúDWPDNWDGÕU. Bu süzgeç,
\DNÕQ SLNVHOOHULQ uzamsal \DNÕQOÕN YH IRWRPHWULN
benzerliklerini
temel
alarak
V]JHoOHPH LúOHPLQL
JHUoHNOHúWLUPHNWHGLU>@
Çift-yönlü süzgeçleme
*ø5øù
Hiperspektral görüntüleme oRNVD\ÕGDdar dalga boyuna sahip
spektral banGÕQ görüntülenmesi \DNODúÕPÕQD GD\DQPDNWDGÕU
%X VD\HGH J|UQW DODQÕ LoHULVLQGH EXOXQDQ QHVQHOHUH DLW
spektral veriler yakalanabilmektedir. Yüzey materyallerinden
\DQVÕ\DQ HQHUML YH PDWHU\DOOHU WDUDIÕQGDQ HPLOHQ HQHUML
PDO]HPH \DSÕVÕQGD J|UH GDOJD ER\XQD ED÷OÕ RODUDN
GH÷LúWL÷LQGHQVSHNWUDO veri kullaQÕODUDN\NVHNEDúDUÕPOÕWHVSLW
YH VÕQÕIODQGÕUPD X\JXODPDODUÕ JHUoHNOHúWLULOHELOPHNWHGLU %X
VD\HGH LQVDQ J|] \DSÕVÕQÕ WDNOLW HGHUHN oDOÕúDQ EDQWOÕ
J|UQWOHPHVLVWHPOHULQHRUDQODGDKD\NVHNEDúDUÕPJ|VWHUHQ
LPJHLúOHPHYHDQDOL]oDOÕúPDODUÕ\DSÕODELOPektedir.
Hiperspektral J|UQWOHPHQLQ |UQHN ED]Õ uygulama
DODQODUÕWDUÕPUHNROWHVLQLQX]DNWDQDOJÕODPDLOHWHVSLWLWDUÕPGD
KDVWDOÕN YH VWUHV KDULWDODPD VX NDOLWHVL WHVSLWL, ormanda D÷Do
türü VD\ÕPÕD÷DoVD÷OÕ÷ÕEHOLUOHPHSHWUROVÕ]ÕQWÕVÕharitalama,
RUPDQ \DQJÕQÕ ÕVÕO KDULWDODPD SDWODPDPÕú PDGGH YH gömülü
PD\ÕQWHVSLWLRODUDNVD\ÕODELOLU.
1168
2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014)
1
‫= ݏܬ‬
෍ ݂(‫ ݌‬െ ‫ ݌ܫ(݃)ݏ‬െ‫݌ܫ ) ݏܫ‬
݇(‫)ݏ‬
(1)
݇(‫ = )ݏ‬෍ ݂(‫ ݌‬െ ‫ ݌ܫ(݃)ݏ‬െ‫) ݏܫ‬
(2)
úHNOLQGH EXOXQPDNWDGÕU .DUúÕWOÕN D]DOWÕPÕ GR÷UXGDQ WDEDQ
ELOHúHQH X\JXODQPDNWD GHWD\ ELOHúHQL LVH D\QHQ
NRUXQPDNWDGÕU%XVD\HGHVRQXoLPJHVL
‫ߗא݌‬
‫ ݃݋݈ܫ‬,‫ ݃݋݈ܫ × ݂݇ = ݊݋ݏ‬,‫ ܾ݊ܽܽݐ‬+ ‫ ݃݋݈ܫ‬,݀݁‫ݕܽݐ‬
‫ߗא݌‬
RODUDNKHVDSODQPDNWDGÕU%XUDGDkf NDUúÕWOÕND]DOWÕP faktörünü
J|VWHUPHNWH YH ¶GHQ NoN ELU GH÷HU ROPDNWDGÕU Son
DúDPDGDORJDULWPLNX]D\GDQJHULG|QúPLOHVRQXoLPJHVL
GHQNOHPOHUL LOH WDQÕPODQDELOLU %urada, k(s) normalizasyon
faktörüdür YH NDWVD\Õ WRSODPODUÕQÕQ ELULP ROPDVÕQÕ
VD÷ODPDNWDGÕU. Uzamsal düzlemdeki f YH ÕúÕNOÕOÕN GH÷HU
düzlemindeki g IRQNVL\RQODUÕ için Gauss fonksiyonu
NXOODQÕOPDNWDGÕU. Denklemlerde verilen p, oHNLUGH÷LQ
(kernelin) merkez koordinatÕQÕ, s ise merkezin çevresindeki
V]JHoOHPHGHNXOODQÕODFDNSLNVHONRRUGLQDWGH÷HUOHULGLUI p , p
NRRUGLQDWÕQGDNL ÕúÕNOÕOÕN GH÷HUL I s ise s NRRUGLQDWÕQGDNL
ÕúÕNOÕOÕN GH÷HULGLU Denklem (1) ve (2) de \DSÕODQ LúOHP
HVDVÕQGD, JHQLúÕúÕNOÕOÕN IDUNODUÕQDVDKLSSLNVHOOHULQD÷ÕUOÕNODUÕQÕ
D]DOWDQ ÕúÕNOÕOÕN G]OHPLQGHNL HWNL IRQNVL\RQX (g) ile uzamsal
düzlemdeki \XPXúDWPD IRQNVL\RQX f) oDUSÕPÕ NXOODQÕODUDN
V]JHoOHPH VRQUDVÕQGDNL her pikselin \HQL GH÷HULQLQ NRPúX
SLNVHOOHULQ X\JXQ D÷ÕUOÕNOÕ RUWDODPDVÕ RODUDN hesaplanPDVÕGÕU
ùHNLO ¶GH oLIW-\|QO V]JHoOHPH LOH JUOW D]DOWÕPÕ
\DSÕOÕUNHQNHQDUELOJLOHULQLQNRUXQGX÷XJ|VWHULOPHNWHGLU
‫ = ݊݋ݏܫ‬10‫ ݃݋݈ܫ‬,‫݊݋ݏ‬
3.
DENEYSEL SONUÇLAR
Bu bildiride deneysel sonuçlar Pavia Üniversite hiperspektral
verisi (http://www.ehu.es/ccwintco/uploads/e/ee/PaviaU.mat)
]HULQGHQ VXQXOPXú ROPDNOD EHUDEHU EHQ]HU VRQXoODU IDUNOÕ
hiperspektral veriler için GHJ|]OHPOHQPLúWLU
Hiperspektral
görüntüden
J|UVHOOHúWLUPH
LoLQ
ROXúWXUXODFDN J|UQWQQ LQVDQ J|UVHO VLVWHPL LOH X\XPOX
ROPDVÕLoLQ NÕUPÕ]Õ5\HúLO*YHPDYL%GDOJDER\ODUÕQD
GHQN JHOHQ EDQW DUDOÕNODUÕ VHoLOPHNWHGLU En basit
J|UVHOOHúWLUPH \DNODúÕPÕ LoLQ LOJLOL GDOJD ER\X DUDOÕ÷ÕQGDNL
EDQWODUÕQ HúLW D÷ÕUOÕNOÕ RUWDODPD DOPD LúOHPL \DSÕOarak R,G,B
EDQWODUÕ HOGH HGLOHELOLU %X úHNLOGH ROXúWXUXODQ HQ EDVLW UHQNOL
LPJH ùHNLO (a)’da gösterilmektedir. Renkli görüntü
DOJÕOD\ÕFÕODUÕQÕQ \DSÕODUÕQÕ ELUD] GDKD L\L WDNOLW HWPHN LoLQ
EDQWODUÕQ HúLW D÷ÕUOÕN \HULQH 5 * YH % EDQWODUÕQÕQ PHUNH]LQH
GHQNJHOHQKLSHUVSHNWUDOEDQWODUÕQGDKD\NVHNNHQDUODUDGHQN
JHOHQ EDQWODUÕQ LVH GDKD GúN ELU D÷ÕUOÕNOD ELUOHúWLULOPHVL
mümkündür. Bu aPDoOD *DXVV WDEDQOÕ ELU D÷ÕUOÕNODQGÕUPD
NXOODQÕODUDN EDQW PHUNH]OHULQH GDKD \NVHN D÷ÕUOÕN YHULOPHVL
VD÷ODQDELOLU %X úHNLOGH ROXúWXUXODQ UHQNOL J|UQW LVH
ùHNLO 2(b)’de gösterilmektedir. +HU LNL ELoLPGH ROXúWXUXODQ
UHQNOL J|UQWOHU EDVLW ELU \DNODúÕPOD temel görsel bilgileri
VXQPDNWDGÕU
gQHULOHQ \DNODúÕPGD LVH KLSHUVSHNWUDO EDQWODUÕQ \NVHN
GLQDPLN DUDOÕNOÕ LPJHOHUH EHQ]HU úHNLOGH JHQLú ELU GLQDPLN
DUDOÕ÷D VDKLS ROPDVÕ LoLQ |QFHOLNOH NÕUPÕ]Õ 5 \HúLO * YH
PDYL % GDOJD ER\ODUÕQD GHQN JHOHQ hiperspektral bantlar
toplanmakta ve
>@¶GD |QHULOHQ \DNODúÕPGD \NVHN GLQDPLN DUDOÕNOÕ
J|UQWOHULQ GúN GLQDPLN DUDOÕ÷ÕQD G|QúWUOPHVL LoLQ
WDEDQ LPJHVLQGH NDUúÕWOÕN D]DOWÕPÕ \DSÕOPDNWDGÕU Detay
LPJHVLQLQ D\QHQ NRUXQPDVÕ VD\HVLQGH GH NDUúÕWOÕN D]DOWÕPÕ
DúDPDVÕQGD GHWD\ÕQ ND\EROPDVÕ |QOHQPHNWHGLU .DUúÕWOÕN
oDUSÕPVDOELUHWNLROGX÷XQGDQ\D\JÕQRODUDNNDUúÕWOÕND]DOWÕPÕ
LúOHPOHULQLQ ORJDULWPLN X]D\GD \DSÕOPDVÕ WHUFLK HGLOPHNWHGLU
Bu nedenle imge öncelikle logaritmik uzaya çevrilmektedir.
.ROD\OÕN LoLQ WDEDQOÕ ORJDULWPD NXOODQÕOPDNWD ROXS EX
nedenle logaritmik uzaydaki imge
ܴ‫ = ܴܦܪ‬σ‫)ݐ(ܫܪ ܴאݐ‬
‫ = ܴܦܪܩ‬σ‫)ݐ(ܫܪ ܩאݐ‬
‫ = ܴܦܪܤ‬σ‫)ݐ(ܫܪ ܤאݐ‬
(3)
úHNOLQGH LIDGH HGLOHELOLU. Çift-yönlü süzgeçleme (ÇYS) ise
GR÷UXGDQ ORJDULWPLN X]D\GD X\JXODQPDNWD ROXS EX QHGHQOH
taban imgesi
‫ ݃݋݈ܫ‬,‫ = ܾ݊ܽܽݐ‬Çܻܵ൫‫ ݃݋݈ܫ‬൯
(7)
RODUDN EXOXQPDNWDGÕU. .DUúÕWOÕN D]DOWÕPÕ VDGHFH ÕúÕNOÕOÕN
X]D\ÕQGD JHUoHNOHúWLULOPHNWH ROXS UHQNOL LPJHOHU LoLQ UHQN
|]GR\JXQOXNÕúÕNOÕOÕNKXHVDWXUDWLRQLQWHQVLW\G|QúP
LOH UHQN ELOJLVL YH ÕúÕNOÕOÕN ELOJLVL D\UÕúWÕUÕODUDN NDUúÕWOÕN
D]DOWÕPÕQÕQÕúÕNOÕOÕNX]D\ÕQGD\DSÕODELOPHVLVD÷ODQPDNWDGÕU
ùHNLO *UOWOELUJLULúVROGDYHULVLQLQoLIW-yönlü süzgeç
oHNLUGH÷Lf×g) (ortada) LOHV]JHoOHQPHVLQGHQHOGHHGLOHQoÕNÕú
VD÷GD
‫݃݋݈ = ݃݋݈ܫ‬10(‫)ܫ‬
(8)
úHNOLQGH \NVHN GLQDPLN DUDOÕ÷ÕQD VDKLS +'5 EDQWODU HOGH
edilmektedir. Burada HI hiperspektral imgeyi göstermekte
olup, t LVHEDQWLQGLVLRODUDNNXOODQÕOPDNWDGÕU5HQNG|QúP
LOH EX o EDQW +6, X]D\ÕQD oHYULOPHNWH YH EX VD\HGH UHQN
bilgisi ile \NVHN GLQDPLN DUDOÕNOÕ ÕúÕNOÕOÕN ELOJLVL
(‫ ) ܴܦܪܫ‬D\UÕúWÕUÕOPDNWDGÕU %LUVRQUDNLDúDPDGDLVH%|OP¶GH
DQODWÕODQ NDUúÕWOÕN azaOWÕP \DNODúÕPÕ NXOODQÕODUDN GúN
GLQDPLNDUDOÕNOÕÕúÕNOÕOÕNELOJLVL‫ ) ܴܦܮܫ‬elde edilmektedir.
(4)
0T
RODUDN ROXúWXUXOPDNWDGÕU %XUDGD d<6
süzgeçlemeyi ifade etmektedir. Detay imgesi ise
‫ ݃݋݈ܫ‬,݀݁‫ ݃݋݈ܫ = ݕܽݐ‬െ ‫ ݃݋݈ܫ‬,‫ܾ݊ܽܽݐ‬
(6)
oLIW-yönlü
0T
(5)
1169
2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014)
4.
SONUÇ
Bu bildiride hiperspektral J|UQWOHULQ J|UVHOOHúWLULOPHVL LoLQ
\HQL ELU \DNODúÕP |QHULOPHNWHGLU gQHULOHQ \DNODúÕP
OLWHUDWUGH\NVHNGLQDPLNDUDOÕNOÕLPJHOHULQJ|UVHOOHúWLULOPHVL
\|QWHPLQH GD\DQPDNWDGÕU +LSHUVSHNWUDO EDQWODUÕQ WRSODQPDVÕ
sonucunda bir nevi bir yüksek dinamik aralÕNOÕ YHUL
ROXúWXUXOPDNWD YH VRQUDVÕQGD X\JXQ ELU NDUúÕWOÕN D]DOWÕPÕ
\DNODúÕPÕ\OD VRQ J|UQW HOGH HGLOPHNWHGLU gQHULOHQ
\|QWHPLQ D\UÕQWÕODUÕQ J|VWHULPL DoÕVÕQGDQ EDúDUÕOÕ YH J|UVHO
DOJÕ\DX\JXQELUVRQXoYHUGL÷LJ|VWHULOPLúWLU
5.
(a)
(b)
[1] H. Du, H. Qi, X. Wang, and R. Ramanath, “Band
selection using independent component analysis for
hyperspectral image processing,” in Proc. 32nd Appl.
Imagery Pattern Recog. Workshop, Washington, DC, pp.
93–99, Oct. 2003.
[2] X. Jia and J. A. Richard, “Segmented principal
components transformation for efficient hyperspectral
remote-sensing image display and classification,” IEEE
Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 538–542,
Jan. 1999
[3] B. Demir, A. Celebi, and S. Erturk, “A low-complexity
approach for the color display of hyperspectral remotesensing images using one-bit transform-based band
selection,” IEEE Trans. Geosci. Remote Sens., vol. 47,
no. 1, pt. 1, pp. 97–105, 2009.
[4] S. Le Moan, A. Mansouri, Y. Voisin, and J. Y.
Hardeberg, “A constrained band selection method based
on information measures for spectral image color
visualization,” IEEE Trans. Geosci. Remote Sens., vol.
49, no. 12, pp. 5104–5115, 2011.
[5] B. Guo, S. R. Gunn, R. I. Damper, and J. B. Nelson,
“Band selection for hyperspectral image classification
using mutual information,” IEEE Geosci. Remote Sens.
Lett., vol. 3, no. 4, pp. 522–526, 2006.
[6] F. Durand, and J. Dorsey, “Fast Bilateral Filtering for the
Display of High-Dynamic-Range Images”, ACM
Transactions on Graphics - Proceedings of ACM
SIGGRAPH 2002 vol. 21, no. 3, pp. 257-266, Jul. 2002.
[7] C. Tomasi, and R. Manduchi, “Bilateral filtering for gray
and color images.” In Proc. IEEE Int. Conf. on Computer
Vision, pp. 836–846, 1998.
(c)
ùHNLO3DYLDhQLYHUVLWH+LSHUVSHNWUDOYHULVLLoLQD(úLW
$÷ÕUOÕNOÕEDVLWJ|UVHOOHúWLUPHE*DXVVD÷ÕUOÕNODQGÕUPDOÕ
basit J|UVHOOHúWLUPHFgQHULOHQ\|QWHPLOH
J|UVHOOHúWLUPH
øOJLOL G|QúP UHQNOL LPJH\H \DQVÕWPDN LoLQ EDVLW ELU SLNVHO
ED]OÕRUDQPDWULVL
‫ ܴܦܮܫ = ݊ܽݎ݋‬/‫ܴܦܪܫ‬
(9)
úHNOLQGH HOGH HGLOPHNWHGLU %X RUDQ NXOODQÕODUDN \HQL UHQN
NDQDOODUÕ
ܴ‫ܴܦܪܴ × ݊ܽݎ݋ = ܴܦܮ‬
‫ܴܦܪܩ × ݊ܽݎ݋ = ܴܦܮܩ‬
‫ܴܦܪܤ × ݊ܽݎ݋ = ܴܦܮܤ‬
KAYNAKÇA
(10)
úHNOLQGHKHVDSODQDELOPHNWHGLU %XoNDQDOÕQJ|UQWOHPHLoLQ
NXOODQÕOPDVÕ\OD HOGH HGLOHQ UHQNOL LPJH LVH ùHNLO F¶GH
J|VWHULOPHNWHGLU gQHULOHQ \|QWHPLQ YHUGL÷L VRQXoWD LPJH
D\UÕQWÕODUÕQÕQ oRN GDKD L\L J|UQG÷ D\UÕFD HOGH HGLOHQ VRQ
LPJHQLQLQVDQJ|UVHOVLVWHPDOJÕVÕDoÕVÕQGDQoRNGDKDEDúDUÕOÕ
ROGX÷XJ|UOPHNWHGLU
1170