GEOMETRIİA 7

GEOMETRIÝA
DAKENT
“YANGIYO‘L POLIGRAPH SERVICE”
2013
7
Awtorlar: A. Azamow, B. Haýdarow, E. Sarykow,
A. Koçkarow, U. Sagdiýew
Syn ýazanlar:
A. Ýa. Narmanow !
S. F. Saidaliýewa !
"# #$%
$&'(#!
I. W. Çernýakowa "##$%$&)*+
,
- ( . * %$ ($
#$+ ( * %$ (/ /*/* (# %$ /*/* # ( /
%$ /*/** */
# %
* # #+
01
,2 * *
* # $ #+ 3% #- **# /
$+ 4 ** $
% * # / (- $ $ (# /*# % $ ( +
" (*# (
# *+ 5 * /
(# % $+
01
,2 ** $ ,
-
*/ (#
(/ / (- %
+
607*%892);<=
MAZMUNY
1. 1+1+++++++++++++++++++ '
2. >(*?(/+++++++++++++++++++++++ <<
3. @#(%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ <A
4. @#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ <'
5. @**%$+@(/+++++++++++++++++++++++++++ );
6. B(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ )A
7. C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ )'
8. D*/+D*/#+D+++++++++++++++++++++++++++++++++++++++++++++++++++++++ )E
9. D*/(/+B++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ =<
10. <
-#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ='
11. D*/*(#?(*/++++++++++++++++++++++++++++++++++++++++++++++++ =,
12.1#*/%
%$+++++++++++++++++++++++++++++++++++++++++++ =F
13.1(+++++++++++++++++++ A)
14.G*(/+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AA
15. B/****++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ AE
16.C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ H<
17. D++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ H)
18.)
-#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 57
19."(/+@(*/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ HE
20.K/*/*+K/*/*(#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ')
21.K/*/*?++++++++++++++++ 'A
22.K/*/*-LBDBM#++++++++++++++++++++++++++++++++++++++++++++++ ',
23."/*/*%$++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ,;
24.K/*/*-LDBDM#++++++++++++++++++++++++++++++++++++++++++++++++ ,=
25.K/*/*/-LBBBM#++++++++++++++++++++++++++++++++++++++++++++++ 75
26. @*%$+++++++++++++++++++++++++++++++++++++++++++++++++++++ 77
27.C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ,E
28.D++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ E;
29.=
-#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ EH
30.1(/++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ E,
31. >(/-*/+++++++++++++++++++++++++++++++++++++++++ EF
32.>(/#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ F<
33.>(/#LM+++++++++++++++++++++++++++++++++++++++++++++F=
=
34.B++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++FH
35.>(/-*/+++++++++++++++++++++++++++++F,
36. D+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<;;
37.A
-#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<;A
!
38.K/*/*/*/-%+++++++++++++++++++++++++++++++<;'
39.K/*/*#*/*%$++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<;F
40. /(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<<<
41.1(*//*/*%$+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<<)
42.1(*//*/*#++++++++++++++++++++++++++++++++++++++++++++++++<<H
43.D*/*%$+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<<E
44.K/*/**/#++++++++++++<);
45.K/*/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<))
46. D+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<)=
47.H
-#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<)E
!
48.N*/-(*#++++++++++++++++++++++<=;
49.D*/*/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<==
50.D*/**++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<=A
51.D(/*(/*+@
(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<='
52.K/*/* / ($ *+++++++++++++++++++++++++++++++++++++++++++<=F
53.D +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<A<
54.'
-#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<A<
55. 1/(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<A=
56. 4#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<AH
57. N**$#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<A,
58 – 59. 1#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<AF
60 – 61. D+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<H;
62 – 63. O-#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<HH
O(+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<H'
A
Ahmet Fergany
tarapyndan täzeden
I BAP
PLANIMETRIÝA. GEOMETRIÝANY"
BA#LANGYÇ MAGLUMATLARY
# & ! ! %
Bilimler:
P 1 % # * !
P ( / #(% */ #/
#- !
P #/ #- %$ !
P !
P ( !
P ( */ * #!
P # */ %
%$ !
P ** #- #!
P / ** ** +
$ !%
P Q * # !
P * ( # *
(/ #!
P */ * # * (/
#!
P * * (/ # // * * * #+
5
1
<
)
=
!
1 # #/ #-
* A
H *+ ( R * % -#* **
**+ * / $
* / * (/# # * (1-nji
surat)+ 1 * (/
** ( + “Geometriýa” / (
* 02 P 02 P (/ ( +
1 # #/ #-
1
T % *+
4**
%/ G T %+ +
(+ U>>.U> 1 4 %
$ C # (
(/ # +
1 $ (# ## - *
% * *+ 1 **# # (2-nji surat)+ 7%
# * *
%$ ($ $+
1 1 , V -
** +
Q ( >U # ( / #- %$ + 1 G - *
? ( ( *
'
%$ ( $ %$ / + D* */ # ($ / (+
4 G 01 $ / * W2 # (3-nji surat)+
1 X # (
/ $% #-
%$ # «Esaslar» + D* / (% * (# * $% *+ 1 %$ % #
+
1/# # / $% #*+
D # *% *
4 C% V C* Y%
D* C* C N 5 4 %
X ZQ[ * ( #*
( * # #*+
1 * handasa
* $% + D*
*% L\M ( (
0%2 % *+
D *# % $%
* + - + 5
H
- # (*/
# (4-nji surat)+
* #
* E P <) P ' P (*/*+
Geometriýa P * %$ % +
7
Ýewklid
Gadymy ýunan alymy, geome !
A
5
nokat
kesim
k
zy
y
iç
n
gö
burç
'
üçburçluk
kwadrat
7
kub
E
F
R ( / */ /*/*
( * # /
* # # (5 – 7-nji suratlar)+
,
- * # * - # +
O * (
# % +
D */ /*/* * / +
@* # #$ * / $+ X( (# # +
Planimetriýa #/
( * $ *
%$ ($+ 1#$
* %$ stereometriýa ( ($+
Planimetriýa P (
* $ *
%$ ($+
<;
1. 1 # #/ *
$% *]
2. 1 ( $ $
/ # ]
3. 1 * (
# # % $]
4. E
F
- * % $ %$ ( # *
$% # ]
5. 1 $$ ($]
6. G $% (]
N $%]
7. "#
( * E
/+
8. H . ,
- * # *
% (
] 5 $% ]
9. G H . ,
- * *
% %$ ($]
10. <;
- * * #+
5 $% * ($]
11.<<
- * * $/ /*/* ]
12.<)
- * $ $%
* ]
<<
<)
B%*+
"#$
%
&'(
)*+'
./#
0
1.
%#
0
0%.2
+3'
. ! 4'
1 # %2
'5
%51 .#
2 %
i 1 1
% 5%
#
2 1 # %
2!
& (
5
67 6
5%
5#8
9
2
#!&
'(
&
2
2$/#
!
<=
Ahmet al-Fergany
"
:;: 8 ):<'
.'
2.
!
=
$1
>!
F
'(
$ # % * %
($ / * % + *
> T
T
T . O% * ($
( * /# # * * % % # / ($ * + * % ( * # $$ $ %
/
+ % % $ /( (
/$ /$
* %(
$ /( # +
4**
+**+* +*+* . 4 % $ % # ( * # % $+
C#/**/#$?
+*+*.%$L(*M!
++*.%$$##L(*M!
+9%+*+*.CD$LM!
++*.>*%L*M!
+9%*
+.1Z>
[LM!
+*+.1*
*LM!
+*9*9+*9+.V$L*M!
+*9%++.V$*L*M!
%?^^
++*^.+/L*M!
%?^^%++*^.*L*M!
%?^^%++*^.L*M!
%?^^+9%H,++*^99^+%.%#L*M!
%?^^+_+*.$L*M!
%?^^9%+99+*.1L*M!
%?^^+%
+9.1L*M+
<;
2
)%
&
Nokat, göni çyzyk tekizlik P #-+
1 *- L1-nji suratM
( ($ / * ($
(/ %
+ Nokat
P % # (/ % #+ X (
0Q2 %/ ( * %( $+
b( (2-nji
surat) / ** #(%
/ - #P göni çyzyk + X #(% %
( / */ + C ( /
/$ $ *+ D # *
/ ( /+ X( ( /
/$ $ ( ( L4-nji suratM+ G * ( ($ ** (3-nji surat),
# tekizlik +
R * % A, B, C, D, ... (
/ / % $ $ ?$ $ +++ $ “A nokat”, “a göni çyzyk” (4-nji surat)+
A
- * A a ( /
# B C a ( / #
$+ * / A  a B  a, C  a
<<
<
)
=
A
C
a
B
A
A, B, C — nokatlar
a — göni çyzyk
Aa, Ba, Ca
5
O
?
O nokat —
b we c göni
" %
me nokady.
$ 0A # a2 0B #
$ a2 +
Q O ( / % ? (
/ % # ? ( /
O #$ (5-nji surat) O ? ( / # $+
'
- * # ( / A B /$+
çyzyk geçýär.
'
B
A
AB — göni çyzyk
* %$ ($ ( / ( * ( / +
* / ( / ( % +
'
- * AB göni çyzyk #+
Her bir göni çyzyk tekizligi iki bölege: iki
sany ýarymtekizlige bölýär.
7
1-nji ýarymtekizlik
1 ( / # + 5 ( ( ** /$ + ,
- *
a
a ( / ($
2-nji ýarymtekizlik
#+
Ýatlatma: Indikide iki göni çyzyk (iki nokat, iki
ýarymtekizlik, ...) diýlende her hili iki göni çyzyk (iki
! ""
1-nji mesele. a ( / A #$+ a ( / B
/$+ ( / % B /$]
( / B / $+ B a
( / A B / + D* ( / / %$ #+ *
$
( / B / $+
* $ /( ( / # (% %$
+
Netije. !" # ! $
<)
2 -nji mesele. C AB ( / #+ AB AC ( /
/ ]
AB AC ( / A C /$+
$ # ( / / +
* $ * ( / #$ / * $+
1. R$ # %( *
]
2. " $+ 5 // ( / /+ E
1* * /- ( +
A
1($ +
C
3. a, A, AB (# % * $]
4. C# #? M A; M
B
C; 9M CAB+ * / **+
a
D
5. E
- * ($ ( /
#
E
( +
6. A B ? ( / # C ? ( / # $+ AB AC (
/ % $ ]
7. AB &/ ( / $/ ** F
]
8. B ( / / A $+ ( / * AB ( /
/+ B ( / ]
9. M D ! M ! /M / $/ (
/ / ] O +
10. F
- * $/ ( / #]
11. > / ( / M / !
M ( #* -
-
#$ $/ ( / / ]
12. "( ( / # + R (
$/ ] 1( / $# $%]
13. B $# ( / / ( /
$# #+
<=
*(
3
#
"
<
a
A
B
C
Kesim ( / ( +
)
- * #+ A B çäkleýän
nokatlary, içki nokatlary $+ @ /$
( 0AB kesim2 $+ 5 0BA kesim2 +
Q # */ #* /$ $ $ L3-nji suratM+
)
B
A
AB
kesim
A, B&"
A
=
)' ( / $ $% ( +
B
C
A
Q a ( / / A, B, C
L1-nji suratM P B A
C + A B
C B C
A +
O
O
A
A
OA&'
O&'$"#(
a ( / O #* (
/ ($+ O
* #(% nokady $+ (%$ O #-
$ A 0OA 2 $ (4-nji surat)+ #(%$ *- - +
@$ OA #(%$ cO / #(%c
% $+ (%$ #(%
# %( +
<A
Mesele. @$ ( / A, B, C, D +
AB CD ( / #$ BC #$+ AD ( / /$ (4-nji surat)]
1( / 1-nji ýarymtekizlik
5 A
($+ A #* - # *+ AB (
D
/ #$+ " B -
+ BC ( /
#$+ " C % -
C
+ CD ( B
/ /$+ * / D 2-nji ýarymtekizlik
- A + *#+ AD ( / /$+
1. '
- * B % % C ]
2. @ #(%$ +
5 $% $]
3. 1( / C D + CD
DC CD DC #(%
#]
4. @ #(% ( / $
*]
5. M D! M ! /M /! M <; ! M n sany
( / $/ ( ($]
6. '
- * $/ ]
7. ,
- * $/ #(% ] 5 %
* #(%]
8. D ( / ) #* ( /
$/ #(%$ ] = $/]
9. B ( / #* $/ ( ($]
10. 1( / A, B, C + AB ( / /$ AC /$+ BC
#* ( / /$]
<H
'
M
A
B
C
D
M
A
B
C
D
7
C
D
B
A
E
G
(
*!!
4
Ugrukdyryjy gönükme
1. "#
( # (/
# +
2. > (/ # $% ** ]
3. <
- * / #
+ * * -
# ] R$] * ( (+
<
)
$ %
- * +
=
M
M
D * - #- **- (
#+ D* #-$ #
( ( + D *
- / *
- * * (/
+ N * */ # - * - * %* # (2-nji surat)+ Q # * * +
@$ * - %* / * * #
* ( + =
- *
# #+
D#- O #(% AB *+ 1(#
#- #* #(%$ #-
- #(% AB <'
#(% L4-nji suratM+ D $ * A
#(%$ $+ 5
/ 0 #(%$ 2 +
B
A
A
O
"" & ' ýeke-täk kesimi goýmak mümkin.
B
> ( # / #(%$ *
+ N # % #* ( *
L *
/M - / LH
- *M?
5
A
B
C
D
A
B
C
D
AB kesim CD !"
%
A
C
A
B
C
D
A
C
D
B
AB kesim CD kesimden uzyn
B
D
A
B
C
A
B
C
D
AB kesim CD kesimden gysga
D
D
C
A
B
C
D
CD kesim AB "
* ($ +
'
A
'
- * AB C
#+ V* # /- $+
@
7
1. R$% * ( $]
2. ,
- * * % (
]
3. C# % %
* %( ( ]
& & & !& & & & & & <,
%
B
4. E
-**%(]
5. C# % *%((]
E
a)
b)
ç)
d)
6. F
- a * # * (/ / +
5 F
- * *
$+
7. <;
- * * (
+
8. R$%(]
9. @$%#$]
10.@$]
11.1(/A, B, C, D+/
#* $/ ] 5
]
12. "$/*
( / + R-$ /-
(+1($+
F
a)
<;
b)
<
)
=
A
E
7
F
<A
<<
<;
<)
<=
<<
Amaly gönükme.
<<
- * cXc #
+ Q * # 0*2 $+
0N*2 % AB AB #(% */ H
* / G + N* G # +
<E
'
5
B
A
Geometrik tapmaçalar
1. <; # <)
- a
* + " =
$ <)
- * (# +
2. <=
- * = /( cc # (+
3. "% #$
+ 5 /$ (
<A
- * (# (
/ + 1 ( # #$ ( (
( * + 1 * #
$% #]
4. <H
- * # AB CD
( / ( #+
N * # * (
+
<)
<=
<A
Netije: 1 %#$ ?
( W
<H
A
B
% C
D
A
A
D
D
C
B
C
B
A
D
<F
C
B
*
(+*
5
<
C
@ #(%$ # / $+ @
% * L
* /M *
# +
4
* * < *
$+ 1 * #* * ($ + *
uzynlygy \ * * ( $/ # - ($+ 1(# <
- * CD * * < AB * ) $ + b
AB CD #$+
)
- * CD AB * =H + b AB CD **#
/ * #$+
D
1
A
B
A
B
1
1
)
C
D
1
A
B
A
B
F$<
1
1
1
'+
' '
/
Ugrukdyryjy gönükme.
=
- * # AB, BC AC * /-
( (/$+ * * $% * (
( # +
3
A
B
C
1( / A, B C * B A C # AC * AB BC
* - ýagny AC = AB + BC (3-nji
surat)+ @ * % *
** * $?
);
Eger göni çyzykda B nokat A we C AC AB we BC & bolýar:
AC = AB + BC.
X # / $+ OE #(% AB CD * (4-nji a surat)+ > OE #(%$ AB (4-nji b surat)+
N BE #(%$ CD (4-nji ç surat)+
R- AD AB CD jemi $ *
/ AD = AB + CD +
Q # % +
C OE #(% AB CD %
AB > CD * (5-nji
a surat)+ OE #(%$ * AB
(5-nji b surat)+ N OE #(%$ CD (5-nji ç surat)+ C DB AB CD
'+ $ DB = AB . CD +
A
A
5
D
B @
a)
O
b)
E
A
B @
B @
D
A
B
b)
E
A
B @
A
O
B
C
D
D
E
O
D
O
ç)
A
a)
ç)
O
E
A
B @
A
O
B
A
B @
A
C
B
D
E
D
D
E
AB * A B aralyk % $+
1(# # * ( +
)<
C * (/$ * A
B
+ A
B
5 C * # */ / * *+ " (/ + * $ iU>>> '
# $ */ % * (/ %( * +
7
N * * '
- 0V2 #+
5 ($ * / *
(/$ * % + ?
E
< km h < ;;; m; < h ;;< m; < mm h ;;;< !
@ * * (
(/$+ 5 ( # (
//+ @
* % * (/ + Q * %(
* < '
-
F
* # * H AB = 5 +
Q * (/ %( * <
AB h H; mm +
@$ * (/ ($
+ AB h H+ * AB 2m
* H (/ #$+
" *
(/ / ( * /- (7-nji surat)
+ @ / / ( /- + X (/ # # / (/ * P * (8-nji surat) P * (9-njy surat) +
Mesele. D ( / A, B
C / AB h E sm+ BC h << sm
AC * $$ ]
+ C# :
<M A, B, C a ( / <;
- a
* # # *+
))
<;
A
B
B
A
C
a
% B
C
A
a
C
a
@ * %$ ($ AC = AB + BC h Ej<< h<F +
)M A,B C a ( / <;
- * # # *+ 5 * %$ ($ BA + AC = BC AC = BC – BA h << . E h = +
=M C E
- % * B A #
$+ b AB <BC+
" AC * ( ## <F O? <F = +
= +
1. @$%(/$]
2. @*%$+
3. C#* AB, AC, AD, BC, BD, CD *+
A
AC h] 4.
)A
A
B
B C D
5. AB h=AC h )BC, BC h]6. AB h )A, BC = AC j' AC h]
A)
C
A
C
B
A
C
B
7. QB AC, AB =7,2 , AC =2 dm BC -+
8. QM  AB, N  AB, AB = 5, AM = )) BN h =' MN -+
9. 1(/(/M3 ;M7 !/M10 +N
#$%-//+
10.1(/A, B, C /AB h ';;m, BC h);;m AC
+
11. 1(/ A, B, C D / AB=2, AC=CB, 2AD =3=J CD -+
12.(% * AB = <) , CD h )E + *
#*#(%$*MA! M <'! 9M ;A; M )' *+
13.Q AB h F AB C M AC – BC h <! M AC + BC h <<!
/MAC + BC h <;$+
14*. AB+?M)AB;MAB ? )!9MAB ?A!M;,HAB
**+
15.1( / A, B, C / AB h H' , AC h EF BC h == +A, B, C%]
)=
/
6
*
< (
%
)
O
=
b)
a)
A
B
A
B
D $/ %$ $% # geometrik orny $+
R * ( * +
D * * töwerek $+ * ( merkezi $+ B( * / * (
radiusy $ L1-nji suratM+ % (
* #$
* $+ B( #$ ( hordasy,
/$ % diametr $+
Tegelek * * + L2-nji suratM D merkezi * radiusy
+
B( * ( /+ O * AB ( * ( /# =
- *
(+
B( LM /$ / * (2nji surat)+ " * *
* +
ç)
O
Töweregi gözenek depderde sirkulsyz elde
" .
<+ 1( A
- * (# $+ 5 ##
+
)+ Q <) #
/ #+
)A
R- O (
# $+ D* ** L
M + 5 * % ( / +
=+ O % #* <) /
( /-
( (+
1. B( / #+
2. B( * % $]
3. B( % % * ]
4. N* * ( / $%
** $]
5. R$ / ( #]
6. R$ / * # $
# ]
7. "#
( ( <;
+
8. B( * M <E mm! M AH sm! /M ) m <<
sm * +
9. B( % * ] R$ /]
10. B M <; sm! M , sm! /M < m <A
sm * * !
11. ( / *? M H
M , /M A' ( /+
12. A# % O * R M (! M # A ? OA = R, OA 0 R,
AO > R.
13. B( * 'H sm * +
14. Y* E m * % +
)H
A
O
7
$
Ugrukdyryjy amaly gönükmeler
1. Q$ * 0"" $!%
/- ( (/$+
"" 2. Q$ $% $3 ! "
(/ ] b- ( - 4 # (/$ ]
! !!
3. b # * (/$ 3 #5
#
+ D * # +
4. 1# /- ( (/$+ N $/
(/ L * $#$
M # (/$ +
5. 3 * (/$+ - / $$ (/$ +
6. # ($ #$% * (1-nji surat)+
#?<
<;;
Nusga:
;
<(
+(
!
@/-(
(/$A;,+
N#($
A;,+<;;hA;,
+O?A;,+
)'
@( ( % (/ # # * (/ %
*+
+ dýuým K L$<P $ + K +$*F; !
)
7. B * *
(2-nji surat) * (/$+
Q < * )HA <H <, <F * +
8. =
- * * X 1 # / * +
Mars
asteroidler
9.
Q / F;; 141 mln.mil
D*% N #$%
* / +
=
Ýer
93 mln.mil
Wenera
67 mln.mil
Merkuriý
36 mln.mil
=
!
Neptun Neptun
2796 mln.mil
2796 mln.mil
Mars
141 mln.mil
Gün
Wenera
67 mln.mil
asteroidler
Ýupiter
Ýer 483 mln.mil
93 mln.mil
Ýupiter
483 mln.mil
Saturn
887 mln.mil
Saturn
887 mln.mil
Uran
Uran
mln.mil
17841784
mln.mil
Gyzykly mesele. Uzaklygy ses bilen ölçemek. " $ $ / /*
* ($ (% %+ 5*
/ $ ** $/ (/$+ * * P H;; ^ (
/** $+
Q * = * /** $/ ]
),
8
<<!!<
Burç / #(% * +
D*/ #(% '
** #- ' $+ <
- * */
#+ 5 O */* OA OB #(% * +
D* */ “‘AOB” “‘BOA” $ 0AOB */2 0BOA */2 + D * */* %#
+ % * */ /
“‘O” % “O burç” + b */ *
( / $ * <
-
* (# # /
*#+
> # (
/ */ +
)
- * */ #+
X */ * O */ *+ " #* */* $ AB L3-nji suratM+
Q */* / OC #(%
L3-nji suratM AB / * #(%$
'
$+
D*/* /$ #(%
*/ ($+
O */ * / * #(%$
* /$ $+
1(# A
- * # O
*/ ( ($+
)E
A
<
B
O
‘AOB — AOB burç
O — '
OA, OB #(% P '
) O
O
‘O — ýazgyn burç
=
A
C
O
B
OC — '
+
A
#
zolagy
C
O
#
zolagy
B */* /$ $ #(% (
$ - $+
> OB #(% A */ * L5-nji a
suratM+ $ # OB #(% ( / ($+ 1(# A */ OB #(% #$
- */ L5-nji $ %
suratlarM+ * #/ c*/ #(% c $+
5
%
A
A
O
A
A
ýarymtekizlik
O
B
B
B
A
O
ýarymtekizlik
*/ # * $+
' "
> */ ( # / * */ $ #(% #
*+ N # % /# */ ( *
/ % -
/?
'
B
A
A1
C
C1
B1
%
A(A1
O
B(B1
C(C1
‘ABC = ‘A1B1C1
ABC A1B1C1 */ O #(% (6-njy % surat) BA B1A1 BC B1C1 #$+ D* ABC */ A1B1C1 */ !" $ *
‘ABC =‘A1B1C1 +
)F
7
B
A
C
B1
A
%
A1
A1
O
B(B1
C1
C(C1
‘ABC > ‘A1B1C1
7
- % * # , ABC */ A 1B 1C 1 */ uly
$ ‘ABC > ‘A1B1C1 + % * A1B1C1
*/ ABC */ kiçi $ ‘A1B1C1 < ‘ ABC +
" #
*/ */ ($ #(%$ +
E
- * AOB */*
#+
OC
A
E
C
B
O
‘AOC = ‘COB
OC &?4#"
#
1. D*/ $$ $% $]
2. X */ $]
3. D*/ $% ( ($]
4. F
- * # */ +
5. <;
- * $/ */ ] 5 +
6. cD*/ #(% c $$ #$]
7. 4/ */ ( ]
8. 4/ */ - * /
]
9. D*/* +
10. ‘ AOB + C# *
] ‘ AOB =‘ BOA;
‘ AOB =‘ ABO !
‘AOB=‘OAB+
=;
F
A
O
C
D
B
<;
C
B
D
O
A
E
9
</
X */ * #(% <E; */ ( * L1-nji suratM+
* */ (/ P birlik
burç %( * + 5*
*/ ** bir gradus $ <m
$+ > */* *
(/ #* + # gradus ölçegi */* /
$/ */* *
( #$ ($+
)
- * # ABC */
<Hm
+ b * / <H
*/ #$+
<
<**/
)
A
15°
B
C
A
=
@
Islendik burç berlen gradus ölçegine
' '
/
< ?@DF O
B
A
A
C
O
B
‘AOB = ‘AOC + ‘COB
D*/ * (/ ' * ( (/$+
B # #+ 5* # # (
/- <E; (
( * % ( *
+ =
- * ( */* (/# (+
N* (# AOB */* **
60 * * ‘AOB h ';m ýaly
+ 1(# # *
(/ */ ( ( */ *
(/
+ */* *
(/ % * +
=<
D*/ (/ * # % + <m
<^';
( «minut» <^=';; ( «sekunt» # Zo[
Zp[ $+ ** AH * =E * HF * */ AHm=EoHFp + 1(# <m h ';o <o h ';p+
1 AOB */ * * OC #(% AOC COB */ ($ * (4-nji surat)+ 5
AOB */* * (/ AOC COB */ * (/
- ?
‘AOB = ‘AOC + ‘COB+
D* %$ # ?
# '
& 1-nji mesele. Q H
- *
‘ AB C = ‘ DBE ‘ AB D =
‘CBE (+
D ‘ AB C = ‘ DBE
‘@=J- #?
‘AB C + ‘CBD = ‘CBD + ‘DBE
X( ‘AB C + ‘CBD = ‘ABD ‘CB D + ‘DBE = ‘U=!
" ‘$DD = ‘U=!
5
A
C
B
D
E
'$ # ! # " +
1. > OB #(% / +
2. B OB #(%$ O '
- * (# *+
3. B # */* * (/ ($ (
* # A1(A2) *+
4. O A1(A2) #(% /$+ R- * (/
A+OB LA2S= */ $+
=)
'
2-nji mesele. D OB #(%$ H;m
*/ *+
OB ( / ($ $+
B OB #(%$ O ) ** * * # H;m
$ ( */ *
*+ " #(% % H;m
*/
(6-njy surat):
‘A1OB = ‘A2OB h H;m +
A1
B
O
H;m
O
B
A2
1.
2.
3.
4.
5.
D*/* * (/ $$ ]
X */ $/ *]
<m
*/ $% */ #$]
> */* * (/ ]
,
- * # */ */ +
7
?
>
6. B ( <;m =;m ,;m <;;m <';m */ **+
7. M ‘AOB h] (8-nji a surat); M ‘AOB h <);m x h] (8-nji b surat);
/M ‘AOD h <;Hm xh] (8-nji ç surat).
A
8
E
%
A
E
=)m
B
C
)Hm
x
x
x
A;m
O
A
B
O
=;m
B
==
O
D
8. D AB #(%$ <H;m
OAB */ *+
9. PQ #(%$ AOB */ * (9-njy surat).
F
Q
Q
B
B
P
P
O
O
A
A
10.* ';m
<);m
*/ **+ R$% */
]
11. <;
- * # */ % *]
<;
P
C
A
O
Q
B
12.Q M ‘ AOE h );m ‘ EOB h A;m
AOB h ';m! M ‘ AOE h E;m EOB h<);m!
/M ‘AOE >‘AOB OE #(%
‘AOB /]
13." #(% / (
/ ( /- (
<Hm =;m AHm ';m ,Hm F;m <);m <H;m
*/ *+ N */ (
(/$ $% /
+ 1($ +
<<
C
D
O
B
A
14.N M =+;;! M '+;; * */* $/ * +
15.<<
- * AOB, AOC, AOD, BOC, BOD COD */
* (/ +
16. <)
- * # */ * (/ +
=A
12
+
2
3
P
<
*
Taryhy maglumatlar
& & % %#
2$ X22
2
+)F +L< %
2 +3'
. ! X
5 % % 5
2! Y
7 1
% %
2 2! = # 5% 2 1
% 1 2 2 +P'
.
! S % 1 %51
# %# 1
2
! S
PL 2Z
7 +F+) #
%#2$ 5
6[. . /
6 2! +<'
. '
<A
=H
<=
<H
2$ 5
%
2 ! +*'
. 12 2 2 2
2
1
! S 7
1
2' % ! \# % +:'
. !
<'
10
<,
?@
F
R* # ( ?
<
>+ R (+ * / (
# /+ 5 %$ +
A
>>+ C (+ C# /( LA
- 02 % / */
M?
1. D ( / A, B C / AB h F , AC h <) BC )
* $$ ]
2. AB hAE AC h=BC, BC h] (1-nji surat)
A
3. Q )
- * ‘ AOE h<A;m BOC
*/* * (/ +
4*.N H+;; * LM */ $/ *
]
='
C
B
B
C
D
H;m
O
=;m
)Hm
E
11
<
=%
&=
A
<
O
B
‘ AOB qF;m
<
A
O
B
‘AOB hF;m
Göni burç
Mesele. Q ‘ AOD h<=Hm ‘ AOB =
‘BOC = =‘COD (2-nji a surat),
A
%
O
F;mq‘AOB q<E;m
Kütek burç
)
# */*
* (/ <E;m -a + * /?
“> # @DJL % !"” % +
D*/ ** (# ($?
Q */* * (/
F;m - / L1-nji a suratM #,
F;m - L1-nji suratM #,
F;m <E;m L1-nji % suratM
# $+
b */* ( */* (
/ <
- * $+
B
B
C
A
D
O
O
1
B
C
A
O2
D
O
M / $/ ( */ ]
M AOB COD */ */ +
+ M ‘AOB =‘BOC=‘COD = *+
5 */ (/ %$ ($
‘AOD h<=Hm+ D* DhAHm+ "
‘AOC h)DhF;m, ‘BOD h)DhF;m+ /
= ) ( < */ +
M OO1 OO2 P *
(2-nji surat)+ ‘AOB = ‘COD h AHm /
*/* ($
D
‘O1OB = ‘O2OC = h ))Hm+
)
1($ */ ‘O1OO2 = ‘O1OB + ‘BOC + ‘COO2 =
D
D
= + D + h )D h F;m
)
)
ýagny O1OO2 P ( */+
=,
Ýatlatma. C/ */ (/ / D LM E
LM J LM +++ % $+
=
1. R$% */ ( */ $] "#
( ( */ +
2. X */ $% *
]
3. K/ */ /+ 5 # ‘AOB,
‘MNL, ‘PQR $+ B (/$ (# +
4. OA #(% /+ B ( *
(/ # )Hm ,)m <A'm AOB,
AOC AOD */ **+
5. 1( */* * $%
*/ $]
6. =
- * $/? M ! M ! /M (! M
*/ ]
7. A
- * $/ $/ */ ]
8. @ $ ( */ ]
9. 4/ * ( */
$]
10.N ? M < ! M ' !
/M ) * $/ * ]
11. N * ? M < *! M H *!
/M ;H $/ * #]
12*. N? M <A =; ! M <H =; * */* (5-nji surat)+
13. AOB */ OC, OD OE #(% ( */ (+ * #(% % */
]
=E
C
B
D
A
E
O
(
\
G
A
M
N
P
Q
O
5
12
!(@!(+
B
<
C
O
‘AOB
‘BOC
A
<
- * AOB BOC # */
#+
"
#
)
Ugrukdyryjy gönükme
)
=
M 1# */ - */
(+
M Q # */ ( ( */ (+
/M )
- * # (
/ # ‘<
‘) ‘= ‘A */ % (
# */ - $]
<
A
=
)
=
<
A
‘1 we ‘3
‘2 we ‘4
!#
1# */ ($
# %$ + 5* *
(# +
P$
F ?JQW
a
A
<H;m
=;m
<H;m
0" # ** ( /
$ */ - +
=;m
Q # ( / # ( # */ - +
=
- * ‘< ‘= */+ ‘) ‘A % */ - $+
> */ # %$ ** $+
P$
; !
1 ‘< ‘= */ * (3-nji surat)+ ‘< h ‘=
** $+ #!+ ‘< j ‘) h <E;m / ‘< ‘) # */+
‘) j ‘= h <E;m / ‘) ‘= % # */+
* ‘< j ‘) h ‘) j ‘= ýagny ‘< h ‘= +
P$
#
!!
=F
( / # # */ $+
$ # # */ - ( */ $+ 5 F;m * - F;m / + 1# */ /
* (/ ( / */ * + A
-
* ( / */ =;m $+ * #/
c( / =;m */ #$c % +
Mesele+ > ( / #
*/ - 5
a
)Am * # */ +
+ $ # ( /
x j )Am x
# */ # */ (5-nji surat)+ " */
( + " $ #
*/ # */ + 5
L/M x - x+)Am + 1# */
%$ ($ x+ x+ )Am h <E;m+ * x h,Em x j )Am h<;)m + " a ( / # ,Em <;)m ,Em <;)m
*/ $+ Jogaby: ,Em <;)m ,Em <;)m+
Sorag we meseleler
1. R$% */ # */ $]
2. 1# */ - $$ ] O #+
3. 1# */ ( ]
4. " */ $] b (+
5. " */ %$ #+
6. );m =;m AHm F;m */ # */ +
7. Q # */ - / * +
8. 1# */ ? M ! M (! /M */ * ]
9. Q */ # */ % ]
10.R$ x */ +
a)
b)
x
A;m
ç)
<=Hm
F;m
x
x
A;
x
11.R$ x */ +
=x
?
x+';m
x
)x
=x
x
x
12. Q # */ * (/ # M )?,! M <<?)H! /M <?F
+
13.V* /(+
y
%
y
x
y – x h=;m
x
x
y
x : y hA?H
)x h=y
14. Q ( / # */ A;m */ +
15.cQ */ */ c P %#
*]
Geometrik tapmaça
cBc % -
+ 5* / '
- * (#
/ ( ( +
N cBc (-
% ,
- *
# * +
'
%
7
#
>
A<
13
!!
D ( * %$ #+ / */ # ( (+ X * %$ ( # *
* ? 0" */ 2 * (
+ D* 0**2 #- - #+ 1
- * 0**2 #- V %+
@$ * /
#
$+ "* ** teorema $+ B # - (
+ ( $ - ( $$ ** $+ # ?
Teorema. X ! & @! D* 0( # */ 2 -
( 0 ( */ 2 + Teoremany subut etmek
. * # #* / * ( - ( * /+ B # - ( # # ** #$+ * $
** ( # - ( ( $
+ # (# $ ?
Berlen: ‘A‘B#*/
‘A =‘B
#
+
‘A =‘BhF;m
R"
R"
(
* # - ( ( # %
(##?
Q$!<!+
R"
(
R"
A)
<
!==
F R ( / #- #/ #- %+ 5 + Q ""&
(
(
$ #-+ 1 * #- *
+ D#/ #- # $ * #-
% ## $ kesgitlenýär+ " / ( (% * *+
% #* / ( / (
(
/ %$ % ** (
( * +
%$ $+ Q $%
,
+ *
/ # $ L % M?
? R "
S Q " arasynda ýatýar.
1 #- $+ > . #/ #- ** (
( * $+ N #* $ #- $ $ %$
$+ D* $/ ** %( * $+
1 (# ( ** $+ G ( ** %$ % * /
/ ( * $ . * **# +
@ $] R$% #- * $]
B $] 5 $% ( ]
B $% ** $] N** $$ #$]
C $]
Q * %$ / /
( * * %$
** * ]
6. C# % ** * ?
<M ( / / !
1.
2.
3.
4.
5.
A=
)M */ ( */ *!
=M # */ - <E;m !
AM % */ !
HM % !
'M % \ / * #* ]
7. * ** * ? 01( / A, B,
C, D / AB = CD AD BC #$2]
8. " ( / # ** %$
+
14
!
a
<
Ugrukdyryjy gönükme
> ( / # */
( */ (1-nji surat), galan
*/ % $ ]
1( LF;m M */ #$ (
/ ! $+
F;m
aA. a(/ (
/*+
<
- * * a ( / #+
D* ( / * ( ( a A 0a ( / ( / *2 +
G* ( / # A ( */ $+
G* ( / L#(%M % * +
Teorema. ! !
!
@+
! =
#! 1 AB ( / O
* (2-nji surat)+ $ # OB #(%$ O F;m COB */
+ 5 CO ( / AB (
/ * ( / +
AA
)
D
C
A
B
O
> #* ( / $ ** + B / $ O /$ AB ( / * DO ( / *+ 5 DOB COB */ % F;m
* OB #(%$ */ ($+ X( OB #(%$ *
(/ $ */ % ($ $+
" AB ( / O * (
/ / + R #
!!
Mesele. Q‘<h‘A‘) h‘=, COA AE ( (3-nji surat)+
+ 1 ‘<h ‘A h D, ‘) h‘= h E *+
D*/ (/ %$ ($
D
‘AOE = ‘< j ‘) j ‘=j‘A h D+E + D +E h )D j )E h <E;m
B
)LD
+ EM h <E;m D+EhF;m + 5 ‘AOC =
) =
=
‘<j‘)hD+EhF;m
/ COA AE +
A
<
a ( / A A
E
O
*+ A a ( / $ B *# (4-nji surat)+ Q AB
A
A
$+ B #
asosy +
Q AB , a (
B
a
/ * AB a (
/ inderilen ! +
H
- * A a ( / A
5
* #+
0 33! " B
a
usullary
1-nji usul. B ( (6-njy a surat).
2-nji usul. K/*/* ( (6-njy surat).
C
=
'
A
A
C
O
B
F;m
C
AH
O
B
0
#
4
( / /+ 5 $ (
/ * $/ # /+ G* # * (/$ ( #+ 4 *
/ ] O / LM (# + D* /
$ * ** * %( **
]
Gönükme. "%
%- ,
- * +
<+ V ( */+
5 % / */ *
% $] R$ /] b #*
/ (+ )+ V $ *
/+ 5 % / */ *
% $] R$ /] b #*
/ (+
$ # E
- * # A
B #$ 02 * AB
+ * $ # AB * A we B * + * # A nokatdan a
göni çyzyga çenli bolan uzaklyk A a ( / AB * *
* $+ 1(# * * A
a ( / $% #
* / (9-njy surat)+ D* ** ** /+
1**# L
($ *M $ *
( (10-njy surat)+
7
B A (
a
E
B
A
F
A
a
B
<;
1. 4/ ( / * ] O / #+
2. D ( / $/ * ( /
/ ] O #+
A'
<<
x
=;m
O
<)
B
A
C
D
O
<=
A
a
A
<A
<H
?
3. 1( / * $$
]
4. D ( / #
$]
5. D A ( / $/ #
/ ]
6. b- /*/* (
( / * +
7. a ( / A, B, C $ ( #* % a ( / * (
/ /+
8. 1( */ */ $/ *]
9. a ( / A */* B C /$+ AB AC ( /
a ( / * * ]
10.> ( / # - A
*/ + D* ( /
* ]
11.<<
- * $ x */ +
12. Q OBAOD, OA AOC ‘AOB =‘COD
( (12-nji surat)+
13.R ( / / * $]
14.K/*/* ( A a, ? ( / / * (13-nji surat)+
15.B ( /- ( <A
- * # / # / * + #? < ? <; ;;;.
Geometrik tapmaçalar
1. M <; ! M << # /( =
+
2. <) # /( (
M A ! M ' ** ]
A,
3. <H
- * ( * / / #+
4. " * $# / - #$ (16-njy surat)+ Q % ( * $/ /$]
15
<'
B
A
C
D
/
!
<
$%
)
!"
#$%
%$
<=
- (
/ $ ** * ** 0B / ** **2 + D* **
# ( $ + C * $ ( ( *# (1-nji surat)+ * #$% $ $+
X (- - - * $ (+ N * - */ *
+ X($
($ # $# + D*
% $% ] Q 0B- W2 P $ (2-nji surat)+
B / ** **
% #* # /#$+ B
# $ + 5 $ $ L02M ?
AE
<
- + B - +
)
- + B - $+
B - . - 02 +
Q * 02 ( * ( L
* M $ %$ -$ * 0*2 $
* + D* ( - 0*2 * # * -
% ($+ ** * /+
B / ** ** * ** # ? M ** -$ ! M / # $ %$
- /! /M ( ( %$ -$ +
Ugrukdyryjy gönükme
C# ?
M CD a ( / /$!
M A B a ( / !
/M CD * <H !
M AOB */ ( */ $!
M ‘ABC > ‘MNL!
$M AB # AC * *+
Teorema. < ! +
AA1, BB< CD(/
AA1ACD BB<ACDL3-nji suratM
=
A
B
1
C
D
2
A1
B1
AA< BB< (/
(#$
#! 4 =
- * CD (
/ * $ # +
<
- )
- */ / CA
#(% CA < #(% *#$+
* # DB #(% DB < #(% #$+
AF
D ** /
Z / ** [ **
*+B # * - / ýagny AA < BB 1 (
/ $% M # (4-nji
surat)+ 5 #
M AA< BB1 ( / #
A
A
M
C
A1
B
D
M1
B1
$ M 1 *#$+ R- M M <
AA 1 we BB 1 ( / /$+ X( * ( / /$ + " / $? AA1 we BB1 ( / ( # $+
R #
!!
Teorema. 1( / #* ( / *
( / / $+
D* %$ / ** ( (# ** +
1. B / ** ** $% ]
2. A, B, C ( / ? M AB = 3,6; BC = 5,4; AC = 9;
M AB = 2,4; BC = 4,2; AC = 1,8 C A B ** + * % ]
3. 1# */ */ +
4. " */ / ** ** +
5. Q ‘ AOB h HEm ‘ BOC h <,m ‘ AOC h A<m OA , OB OC
#(% % +
6. > ( / # */ - );m+ *
*/ +
7. > ( / # */ * );m+
* */ +
8. " */ ( / ** +
9. B / A, B, C ? AB h )' AC h E= BC h ',+ D*
( / ** +
10. > ( / # */* - <E;m $+
D* */ */ ** +
H;
16
$
? [
<
- * AB #(% #+ * #(%$ ( #$
';m
*/ *+ 1* */* AB- *
*/ '; m ($+ C + CA #(%$ # (
#$ <);m
*/ *+ * */* CA #(%
* */ <); m ($+ * - #
% (+
@ #? <? );;;+ @ / + 4
+
<
A
=
"
B
Hazyna
\ $ (! X# # + 4 * * * $+
N ( */ #
+ c4c L
/#$ # %
+++M ( ($+ 4 $ %
<;
<);m
<H
H
';m
F;m
<;
1
-
H
O#/
H<
* ( $ L@
* )
- * (M+ B ( %
($ #+ 4 - * ( (
/ */ % % # -
%+
] * )
- * + * * * / +
17
<
? ^= !
!!%
R #* +++++++++++++ * */ $+
B ++++++++++++++++ ( / / +
X */* * (/ +++++++++++++ +
> ( / +++++++++++++++++++++++ #$+
D*/* / ++++++++++++ */* $+
1( / $ ( +++++++++++ $+
,+ * * ( / $
*/+++++++++++++++ $+
E+ 1( / ++++++++++++++++++++++ ($+
F+ " */ ++++++++++++++ $+
<;+@ +++++++++++++++++++ #* $+
<<+Q # */ ++++++++++++++ ( */ +
<)+" ++++++++++++++++++++++++ % +
<+
)+
=+
A+
H+
'+
\ $! F=! & !=!%
<+ O <E;m
*/ # */ +
)+ B$ ( / ** +
=+ D*/* / ($ ( / */*
$+
A+ > ( / / +
H+ > % #(% */ */ $+
'+ B$ ( / ($+
,+ > ( / # */ */ $+
E+ @ $ ($ $+
H)
F+ D #(%$ #- ( */ +
<;+ B$ A, B, C / AB + BC = AC +
<<+" */ - <E;m
+
_ <
(+ )
==
!+ !
( %
<+ O <E;m )+ B #(% =+ * <E;m A+ D * H+ @ ($
'+ N** * -
,+ D*/ ($
E+ 1( / # $
F+ "* ** <;+ / $
` <
F ==
! !==
F+ F ==
!
!
(+ @! !==
! %
Q""&
$"" <+ R
)+ 1(/
=+ X(/
A+ @
H+ (%
'+ @*
,+ "*
E+ X
F+ G
<;+D*/
<<+<*
<)+X */ *
(/
<=+"*/
<A+1#*/
<H+B
<'+C
<,+D
C+012 ( D+O <E;m s+ */
"+1( / Q+<E;m
V+ * $ #(%
1+ (/$ 4+1( */* <^F; (
>+ N** * $ O+ N** @+1( / t+ B$ * %$
(
$
+D*/ ($ R+B ( / ( ( 5+D( $
G+ G\ u+4* # H=
b/c
F
!
!
f%
<+ @ * #- (? M !
M ! /M ! M #(%! M ( /! $M +
CM ! ! 9 DM ! 9! sM ! ! 9! "M ! ! .
)+ > # */* * )A m
/ ?
CM ,)m! DM ,'m! sM ,Em! "M E)m+
=+ 1 %( % * #]
CM 1 ! DM T! sM 1! "M 4+
A+ > ( / # */ / - );;m
+ D*/ / ?
CM );m! DM A;m! sM ';m! "M E;m+
H+ K/ %/ ( / A + *
% - ( / /+ 5 +
CM <! DM A! sM H! "M '+
'+ D*/* * ';m
*/ $+ D
*/ # */ ?
CM =;m! DM ';m! sM F;m! "M <);m+
,+ AB ) ( / / ( $/ ]
CM =!
DM A! sM H! "M '+
E+ N A * */ $/ *
]
CM ';m! DM ,Hm! sM <;Hm! "M <);m+
F+ AB = 6, CAB, AC = 3BC, BC = ]
CM <!
DM <H! sM )! "M =+
<
<;+N =; * $/ *
]
x
Ax
CM <E;m! DM 'm! sM ';m! "M =;m+
<<+ AB = 18, CAB, AC – BC = 4, BC h ]
CM ,! DM E! sM <;! "M <<+
)
<)+" */ - <E;m+ * */ ?
x
CM ';m <);m! DM AHm <=Hm! y
AAm
sM F;m F;m! "M AHm AHm+
<=+K/ ( / ( $/ (
( ]
CM A! DM H! sM '! "M ,+
=
<A+<
- * x h ]
CM =;m! DM ='m! sM AHm! "M ';m+
<H+)
- * x h] 3x 2x
CM <='m! DM ,)m! sM H'm! "M F'm+
x
<'+=
- * x h ]
HA
CM <Hm! DM =; m! sM AHm! "M ';m+
<,+C# ( * ?
CMB ( / / +
DM1( / $ ( #(% $+
sM1( / ( $+
"M> #(%$ */ +
<E+C# ( * +
CM1# */ */ + DMQ AB h H BC h ' AC h << +
sMQ */ */ +
"MQ */ # */ % +
6. Meseleler
1. B ( ** <;m );m A;m ';m F;m
<=;m <,;m */ **+
2. X */* * $% */ $]
3. D*/* * =;m */ */* ( $/ *]
4. D*/* * */ ]
5. ‘AOB hH;m ‘BOC hE;m AOB BOC */ */ + $/ /( ]
6. <Hm
*/ <; *- * $/ * */
($]
7. M F;m! M ';m! /M H;m! M );m */* ( **+
8. ‘AOB =<);m */* S/ (
**+ N &S/ we /S= */ **
#* */ +
9. Q AB = 1,8 m, AC = 1,3 m BC = 3 m A, B C ( / ]
10. A, B we C ( / + Q AB = 2,7 m, AC = 3,2 m
BC * + $/ /( ]
11. <H m AB C + Q?
M AC BC = m *
M C AB 55
/M AC BC * )?= # AC we BC
* +
12. A, B, C, D ( / + Q B AC C BD AB = BC = CD (+
13. K/ %/ ( / ? M '! M ,! /M <; $/ ( / / ]
14. OA OB #(% %/ #$]
15. AB #(% C BA #(% D AC h ;, BD h )< + Q AB h <H CD - +
16. A
- * $/ */ - #
A
A
B
]
17*. Q * */ AHm * * (
C
' * % O
($ ]
18. 1( / O E
D
OA # OB *
/+ 5 * -
<= * < O
( / / * 5 B
+
19. AOB BOC # */ +
Q?
O
A
M AOB */ BOC */ A;m *!
M AOB */ BOC */ A /!
/M ‘AOB = ‘BOC j AAm!
B
M ‘ AOB = 5 ˜ ‘ BOC * */
+
20.> ( / # ( O
A
*/ + 5 *
(/ - <;;m #* (
*/* * (/ +
%
B
21. A, B C #
# M AC + CB = AB! M
AB + AC = BC+ 4 O
A
]
H'
22.H
- * */ A B *
( / /+ * ( / # $%
*/ ]
18
\@
F
R* # ( * - ( HA. HH
-
% $# $+ >- ( #
# = $ LA
- 0$#2 %
/ */ / #/ %($M?
<+ MN /^ ( / # MOL /S0 */ - <AEm + _S/ */ +
)+ 1# */ * ';m + * */ / +
=+ D*/* #* */* ''m */ $+
* */ # */ +
Av+1# */ ( */ #$ **
+
g(
=
1. Z1.,[ # % #+ * # #/
**# **# /( ( +
2. % <;
- % * #* # (+
57
II BAP
ÜÇBURÇLUKLAR
# ! ! %
Bilimler:
P "( / * (# !
P (*/* !
P /*/* * #* */
/*/* (# ( #!
P /*/* !
P /*/* BDB # !
P /*/* %$ !
P /*/* DBD # !
P /*/* BBB # !
P /*/* %$ !
P * %$ +
Endikler:
P K/*/* # ($ /*/* #!
P (# /( # * #!
P $ *+
58
;=*
19
D
1
E
ABCDEFG
—
7 $ (
/ A 1A 2, A 2A 3,...,
A n-1A n *
!= $+
döwük çyzyk;
A, B, C, D, E, F, G —
C
! "
uçlary;
F
B
G
A
AB, BC, CD, DE,
EF, FG — döwük
A1, A2,..., An ( /
uçlary A 1 A 2 , A 2 A 3 ,..., A n-1 A n
"#
(taraplary).
+" taraplary $+ +
<
- * ABCDEFG — ( / #+ D#/ %
*/ #$ ( / P ýapyk döwük çyzyk $+
Gönükme. )
- * # / ( / #+
2
A3
A2
A4
A4
A2
A1
A1
a)
A7
A6
A3
A5
A3
A2
A5
A1
A5
A2
A2
A5
ç)
b)
A3
A4
A4
A1
A4
A3
A6
A1
d)
e)
A7
( $ ( / köpburçluk +
Ugrukdyryjy gönükme.
@(*/* / =
- * * (*/* * #+
3 a)
b)
ç)
d)
59
e)
f)
B (*/*
/*/* (*/* $#*/* */*
** */ + N $
(*/* # #+
> (*/* ($+
@(*/* /$ —
(*/* - P /$ (*/* + A
-
* ABCDEF */* / (a surat) #
(b surat) (+
C
A
D
a)
Içki
B
b)
E
A
F
C
D
B
E
F
A
$
? "( / $]
\ "( / / $ * */
* / (+
_ X ( / +
` N ( ( /
+
b @(*/* $] +
h H
- * # $% /
+
7
5
8
j '
- * # * % M
( /! M ( /! /M (*/*
+
6
E
A
D
C
C
B
C
a) B
b)
ç)
B
A
D
e)
C
B
A
F
A
B
D
C
D
D
D
F
E
D
60
B
h)
F
A
E
E
E
g)
C
A
A
F
C
E
f)
B
d)
B
D
G
A
C
J 4 # * $#
* ( / /+ ( /
$/ ]
9
0
3
? ,
- * $/ (*/* ]
\ E
- * ( * / ($ /+
_ B F - * ( /$ /*/* /+
` <; - * # F % /$ * A ( / / ]
10
B%*+
&'%$%
LFF:'
.>1
&%2
#
1
#22!Y#$LFF<'
.Y
&
5
# %
X1 1
2
9^
2
2!S
5
+;:F'
.
%
22
$9
2
%
j 2! J$ # p '
15
# 2 2$ % j %#
#
$
.2
2Z\'
11
' 2 %! ++'
.
# #
#
! +L'
. 2$
5#
2%
!
12
61
=
20
D ( / / $+ 5 ( # üçburçluk $ W?& !+ D / /*/* depeleri #$ /*/* taraplary
$+ C 0/*/*2 ( ' *+ 0' ABC 2 0/*/* ABC 2 0ABC /*/*2 + ‘BAC ‘ABC ‘ACB
P /*/* burçlary $+ 5 $ / içki burçlar %
$ L?& M+
K/*/* */ ‘ A , ‘ B , ‘ C % +
K/*/* */ * +
K/*/* / * - * perimetri $+ 5
9 % $+ * BAC "
AB we AC '
X
AB we AC taraplar BAC '
BC tarap BAC - *+
B
1
ABC — ABC /*/*
A, B, C P/*/*
AB, BC, AC P/*/*
‘A, ‘B, ‘C — /*/**/
P = AB + BC + AC — /*/*
A
C
B */ ($ /*/* # (# ($?
/ ( '
"
WR& a surat)
( "
WR& b surat)
*/ ( "
"
WR& ç surat)
$% */ ýiti burçly üçburçluk WR& d surat)
*/ kütek burçly üçburçluk WR& e surat)
2
B
B
ç)
B
e)
B
b)
a)
d)
A
A
C
0#
Q"
3
A
C #
Q"
#
A
#
C
62
B
A
#
#
C
>
##
C
Y G )E 3
A
x
x
x+A
B
C
/*/* A *+
* /*/* +
+ ABC /*/* x
xj A WS& !+ 5
$ # ($ 9 = x + x + x j A h =x j A h )E
x h E+ " AB = AC = 8 ! BC =12 + O? 8 ! E ! <) +
R$% * /*/* ]
PQR /*/*
M ‘9 # % ]
M 9q % */ #$]
/M 9q we qr % */ #$]
M 9r % */* # ]
D* * $ - $ /#+
K/*/* $% (# ] K/*/* % (# /*/* /+ 5 $+ K/*/* (# / +
` A
- * /*/* (# +
?
\
_
A
d)
ç)
b)
a)
6
50°
e)
35°
4
70°
60°
6
120°
25°
b 1( / / /*/* **+ N (/$
(+ h " /*/* / */ (/$ E
5
- /+
j H
- * ? aM A ! M B !
/M C $/ /*/* ]
J H
- * /*/* $% (# ($
] 5 (# */ +
p
@$
/*/* / $+ b-
A
B
C
D
( (/$ /*/* +
63
21
% !
& ABC /*/* B * #
M #$ W?
& !+ Q BM ABC "
+ D* B
/ AC # $+
K/*/* #* $ #
#$ #" +
ABC /*/* B */ /$ WR& !+ 5* AC #
^ $+ Q =^ ABC "
+
K/*/* */* /*/* / ( LM
"
$+
ABC /*/* B AC ( / * /$ WS&
surat)+ G* \ $+
Q =\ ABC "
+
K/*/* #* $ #
( / * "
beýikligi $+
B
1
A
B
2
A
3
C
M
L
a)
A
C
B
B
b)
A
C
\
C
\
K/*/* / $ % /*/* / +
A
- * AM1 BM2 we CM3 P ABC /*/* +
H
- * &^1 =^2 we U^3 P ABC /*/* +
'
- * &\1 =\2 we U\3 P ABC /*/* +
* (% #- %$ #+
'A
B
A
0
#
M1
M3
A
C
M2
B
5
\3
\1
A
\2
B
6
^3
^1
^2
A
7
C
C
<+ > /*/* /+ 5* $%
/ W\& !+ R$$
] B-$ /*/* /
( %$
/ (# +
)+ > /*/* /+ 5* $%
/ W]& !+ R$$
] B-$ /*/* /
( %$
/ (# +
=+ > /*/* /+ 5* $%
/ W^& !+ R$$
] B-$ /*/* /
( %$
/ (# +
1/ - %$ %
] R$ /]
@ */ /*/*
/+
Gönükme.
A
+ K/*/* %**
*/ /*/* % / +
@ */ ABC /*/* W_&
surat)+ @ */* / BD
C
E
B
/*/* / + X */ A
/ / #* */*
F
# BC $ BC A AE * /$+ Q AE ABC /*/* A + Q #
AB CF / +
D
? K/*/* $] K/*/* $/ ] b
/ (+
65
\ K/*/* $] K/*/* $/
] b / (+
_ K/*/* $] K/*/*
$/ ] b / (+
` D*/* /*/*
# * ]
b W`
"!+ K/ # /*/*
*/ W@& !+
Q ' /*/* /*/* **+
h K/*/* % %#
/*/* / ]
jq 4 /*/* / /*/* #$]
Jq K/*/* * / %
/ ]
p G =' /*/*
<E )A /*/* ($+ D /*/*
+ ?QG =' /*/*
)A =; /*/* ($+ D /*/*
+
?? ABC /*/* AB = BC we BD A + Q ABD /*/* <) ABC /*/* +
8
9
0
3
? D$# # /( ) /*/* **+
\ "* # /( H /*/*
**+
_ " F
- * ( $/ /*/* /
]
` <;
- * $/ /*/* ]
66
10
!
Fc/</f
22
1
B
A
B1
A1
C
C1
' ABC = ' A1B1C1
AB = A1B1&BC = B1C1&
AC = A1C1
‘BAC = ‘B1A1C1&
‘ABC = ‘A1B1C1&
‘ACB = ‘A1C1B1
1 * ($
/*/* - # ! + <
- * ABC we A1B1C1 P /*/* #+ 5 - + /*/* / / # -
/*/* / / #$+ 1(# * /*/* */
% # #$+
ABC we A1B1C1 /*/* 'ABC = 'A1B1C1
+ b */ #
- #
/- <
- * (# * ($+
Ugrukdyryjy K/*/* #$ * ( $%
] 5 - * %]
> /*/* ( $ / %(] ** + D* $
/*/* $ # /( + 0K/*/
* #2 P #* %+
D* c#c $ ( /*/
* $ % - / +
* c#c P * $ $ ( $ # % +
ABC /*/* *+ 5 # /*/* #
** *+ A */ (/$ # A1 */ *+ A1 */* # A1B1 = AB we A1C1
= AC + B 1 we C1 #$+ R- ABC
67
/*/* */ A1B1C1
/*/* + A1B1C1 /*/* ABC /*/* +
C# * + 5 0K/*/* */ */ % 2 + D 9% /*/* 0BDB #2 + W# c'f cf c'f '
""
!+
R Z[#" !"" RR \ X = ! F
= ! !!
! & = ! WR& !
'ABC'A1B1C1
ABA1B1 ACA1C1‘A‘A1
'ABC 'A1B1C1
#! ‘A = ‘A1 / ABC /*/*
A 1B 1C 1 /*/* # 2
A A 1 $ AB we AC # A1B1 we A1C1 #(% $+ AB
= A 1B 1 we AC = A 1C 1 / AB A 1B 1
A
AC A1C1 #$+ 4**
B B1 C
C1 #$+ 5
B1C1 we BC % #$+ R-
ABC /*/* / A1B1C1 /*/* /
A1
# #+
" ABC we A1B1C1 /*/* ( +
Y =
- * *
*/ BC +
+ ADB we CDB /*/* +
AD = DC ‘ADB = ‘CDB BD P * /*/*
/ ** + " /*/* BDB # ($ ' ADB = 'CDB %**
CB = AB h <) +
*#+ <)+
68
B
C
B1
C
A
3
12
D
C
B
A
x
5
5
C
D
A
B
A
6
D
B
O
E
C
7
B
C
D
A
8
? R$% /*/* $]
\ ' ABC = ' A 1 B 1 C 1 /*/* %
]
_ A
- * $ x +
` BDB # ($ /*/* $%
*/ $]
b K/*/* BDB # #+
h Q H
- * ‘CAB = ‘ABD AD = BC
(+
j '
- * ‘A = ‘C (+
J ,
- * 'ABC = 'CDA ** +
p E
- * 'ABC = 'ABD ** +
?Q AB we CD S #$ #*
($ Wq& !+
M ' &S= = ' JSU !
M BD = AC !
/M ' ABD = ' DCA ** +
M Q &S= /*/* ‘A = 35° we ‘B = 62°
JSU /*/* D we C */ +
?? <;
- * $ x */ .
?\D /*/* - /*/* *+ D* /*/* ]
?_ ABC /*/* AB D A1B1C1
/*/* A1B1 D1 + ADC
= A1D1C1 we BD = B1D1 + ABC we
A1B1C1 /*/* ** +
C
9
10
B
D
x
A
O
B
S
85°
A
D
69
C
23
;
=(+
> /*/* üçburçluk + " /*/* * gapdal taraplary, /- esasy, # $ /*/* depesi $+
B
1
A
Ugrukdyryjy gönükme
)
- * /*/* %
] 5 +
0
#
ABC —!"#
AB, BC — gapdal taraplary
AC — B — !3
2
> /*/* **+ 5*
#$ */ (/$ #+ B-$ ) . = #
/*/* / (
(# +
B- * %$ $% /*/* / ]
C
B
C
E
A
M
D
N
K
\
X
R ;
=
r
! !
'ABC ABAC
‘B =‘C
#! 1 &^ — ABC /*/*
* WS& !+ &=^ we &U^
/*/* + D- &^ ** - # ($ AB
= AC we 'ABC P + K/- ‘1 =
‘) / &^ P +
" /*/* BDB
# ($ '&=^='&U^ +
5 ‘B = ‘C+ R #
!!
70
F
Y
Y
Z
A
3
1 2
B
^
C
0
#
" /*/* /+ 5* /+
D
# ( ( * (/$ #+
* $% - /] N */ (/$ #+ * $% - /]
* - (# + B- - *
%$ $% /*/* / ]
R ;
= !
( !
& ( L\& M
&^ .
'ABCAB = AC, &^ .+
#!
A
A
&^ ABC /*/* ** ($ ' &=^ = ' &U^ +
K/*/* =^ = ^U we ‘3 =‘A
1 2
3 4
B
^
C
+
" ^ BC &^ ABC
/*/* +
‘3 we ‘A ( # */ /
( */+
" &^ ABC /*/* %
+ R #
!!
]
( /*/* / $ +
Gönükme.
? " /*/* %
$ ]
Y " ABC /*/* AD we CF /+ 'ADC ='CFA we 'ADB = 'CFB ** L]& M+
' ABCAB = BCAD we
CF P
'ADC = 'CFA; 'ADB = 'CFB
#! AB = BC / * AD we CF ( ( ?
71
AF = FB = BD = CD+ L<M
M ADC we CFA /*/*
<+ ‘ACD = ‘FAC / 'ABC — !
)+ AC **!
=+ AF = CD — ($+
" /*/* BDB #
($ 'ADC = 'CFA+
M 'ADB = 'CFB (# ** +
B
5
F
D
A
C
6
2a
2a
R$% /*/* $]
" /*/* % */ ]
'
- * 9 = 50 a h]
,
- * 9ABC = 36 we 9ADC h )E a h ]
b h]
b " /*/* /
** +
h E
- * AB = AC BE = FC. M 'ABE = 'ACF!
M AE = AF! 9M 'ABF = 'ACE **
.
j F
- * AB = AC BE = CF. M 'AED = 'AFD!
M 'BED = 'CFD ** .
J " /*/* $% */ ** +
p > /*/* #* # #*
/*/* ** +
?Q" /*/* 3 * ( - H /+ K/*/* +
??" /*/* # /*/* $ ** +
?
\
_
`
72
a
B
7
a
a
A
C
a
b
b
D
A
8
B
E
F
A
9
E
B
C
F
D
C
!
Fc</<f
24
> /*/* #$ */ */ # $+ > 0DBD #2 +
R Z[#" !"" R \ X = +
F =
+
!! ! &
= ! 'ABC we 'A1B1C1
AB = A1B1‘A = ‘A1‘B = ‘B1
1
C
A
B
C1
A1
B1
'ABC = 'A1B1C1
#! ABC /*/* A1B1C1 /*/*
A A 1 AB A 1B 1
# C we C 1
A1B1 ( / + 5 ‘ A = ‘ A 1 /
AC A1C1 #(% ‘B = ‘B1 / BC B1C1 #(% + * /
C AC we BC #(% ** %( A 1C 1 we B 1C 1 #(% + 5 C A1C1 we B1C1 #(%
** P C 1 #$+
R- AC we A1C1 BC we B1C1 %
( #$+ " ABC we A1B1C1
/*/* %* #$ * + R #
!!
Y )
- * '&S= = ' JSU ** +
2
B
D
S
A
C
+ ‘&S= we ‘JSU — */
/ ( +
"
=S = SU ‘&=S =‘JUS ‘&S= = ‘JSU
/*/* DBD #
($ ' &S= = ' JSU+
73
B
3
? K/*/* DBD # */ %
# $]
D
\ K/*/* DBD # #+
_ =
- * 'ABD = 'ACD ** +
` A
- * $ x - +
C
b H
- * AC BAC we BCD */
C
A
' ABC = ' ADC ** +
A
h ABC we A 1 B 1 C 1 /*/* AB = A 1 B 1 A
BC = B 1 C 1 we ‘ B = ‘ B 1 + AB we
A 1B 1 # D we D 1 ‘ ACD = ‘ A 1 C 1 D 1 + 5
B
5
'BCD = 'B1C1D1 ** +
j AB we CD S #$+ Q
A
=S = US we ‘ &US = ‘ J=S &US we
J=S /*/* ** +
J Q ABC /*/* AB = AC BE we CD —
D
BE = CD **
A
6
W^& !
p 'S&U = 'SJ= ** W_& !+
?Q ABC we ADC /*/* + B we D D
AC ( / + ABD we
BCD /*/* ** +
?? E
- * * AC we BD
B
+
7
8 B
D
A
A
B
x
D
C
E
C
C
2
E
5
S
B
C
,A
A
D
!
==
Fc///f
25
> /*/* / */ # #+
> 0BBB #2 +
R Z[#" !"" RRR \ X = = F = = !!
! & = ! =
{'ABC we
'A1B1C1!AB = A1B1
AC = A1C1BC = B1C1+
C
1
A
B
C+
A+
B1
C
1 2
B+(B)
A+(A)
3 A
C+
' ABC =
=' A1B1C1
#! C ABC /*/* * AB *+ ABC /*/* AB
A 1B 1 # %
C we C 1 A 1B 1 ( /
+
5 AC = A1C1 we BC = B1C1 /
A1C1C we B1C1C /*/* +
" /*/* %$ ($‘1 = ‘3
we ‘2 = ‘A + * / ‘A1CB1 =
‘A1C1B1 +
" ABC we A 1B 1C 1 /*/*?
AC = A1C1 BC = B1C1 we ‘A1CB1 = ‘A1C1B1+
K/*/* BDB # ($
'ABC = 'A1B1C1+
]
( X = = @! !! ! &
! ( ! 2
B
Y )
- * M 'AFD = 'CEB!
M 'AEB ='CFD ** +
C
F
#!+ )
- * ($
E
A
D
AE = FC BE = FD we AD = BC+
M AF = AE + EF / EC = EF +
+FC = EF+ AE = AF+
75
" 'AFD we 'CEB - # ( /*/* BBB
# ($ 'AFD ='CEB+
M 'AFD = 'CEB / ‘BEF = ‘EFD.
5 # */ / ‘ AEB =
‘CFD +
AEB we CFD /*/*?
<+ AE = FC !
)+ BE = FD !
=+ AEB = CFD+
" /*/* BDB
# ($ 'AEB = 'CFD +
B
3
C
A
D
A
C
S
A
B
? BBB # /*/* $% */ # ]
\ K/*/* BBB # #+
_ =
- * ($ ' ABC = ' CDA
** +
` A
- *? M ' ABC = ' ABD ! M
'=SU = ' =SJ! /M ' &SU = ' &SJ! M ABACD
** .
b ABC we ABD P AB /*/* 'ACD ='BCD ** +
h Q H
- * BA = AM AC = AN ‘BAC =
=‘ NAM A, B, C, M we N
$% /*/* -
+
j ABC we A 1B 1C 1 /*/* AB = A 1B 1 we
BC = B1C1 * ' ABC = ' A1B1C1 (+
Jq AB we CD # ($+ 'ACD='BDC ** +
p '
- * $/ /*/* - ]
?Qq Q ,
- *? M ‘1 = ‘) AC = BD !
M ‘1 = ‘) =S = SU AB = CD 'ABD = 'ACD (+
76
D
5
B
N
A
C
M
6
B
C
S
D
A
7
B
C
S
1
A
2
D
*
!
(+
26
a
1
A
S
B
> /*/* # ** *# ($+
AB *+ 5* S
AB * a ( /
/$ W?& !+ D* ( / AB ''
+
R * !
! ! !
! ! AB C — AB * L)
- *M+
2
C
A
S
B
a
AC = BC
#! &US we =US /*/* LR& M?
<+ SU — ** !
)+ &S ==S — # ($!
=+ ‘&SU = ‘=SU =90° — # ($+
" /*/* TBT # ($
'&SU ='=SU+
4**
AC = BC+
R #
!!
Y ABC /*/* BC * AC
3
B
E /$+ Q BE = 6 AC h EA AE
we CE +
+ ABC /*/* BC A
* DE * WS& !+ @ E
* %$ ($ CE = BE = 6 +
AE + EC = AC /
D
C
AE = AC – EC h EA . ' h )A +
*#+ AE h )A CE = 6 +
? @ * $]
\ @ * %$ #+
77
_ @$ /*/* / * % * /+
R$$ ] b # / # %$ / %( +
` R$% /*/* /*/* * #*
#$]
b ABC /*/* BC / * AC D
/$+ Q BD h ,) AD h =) AC $$ ]
h ABC we ABD /*/* ** AB + CD ( /
AB * ** +
jq ABC /*/* AB / * BC
D /$+ Q ADC /*/* )A -e
AB = 16 AC +
B
A
JqK/*/* *
#$ ** +
p " ABC /*/* BF E
E L\& M+ ' ABE = ' CBE
BBB #? M ! M A
F
C
** +
27
$
*= 1
C A we B (
/ * W?& !+
5 (# AB (
(/$ + 1* $%
* # #*
* (/ ]
+ CA we CB A we B C ABC /*/* *+
AC we BC A1C = AC we B1C = BC + A1 we B1 #$+
R- /*/* BDB # ($ 'ABC = 'A1B1C +
4**
AB = A1B1 /+
" * A1B1 * (/$ AB % *
+
78
2
3
A
!
///@
= u cfv )
!
!
> / LM - */ )
- * (# / #$+ Q * / * */ */ /
+
> #* */ /-
=
- * (# / #$+ Q /*/* * + b % $/
#
* */ +
<+ * * %
/]
)+ K/*/* * **#
A
- * + a)
b)
? K/*/* . Z *[ $$
#$]
\ K/*/* % ( #$]
_ K/*/* *] L\&
suratM
` AB = A1B1 BC = B1C1 CA = C1A1 + ABC we A1C1B1 /*/* ‘A h =;m
‘B = 60° we ‘C1 h F;m+ ABC we A1B1C1 üç*/* */ +
b ABC we DEF /*/* +
ABC /*/* AC = BC we AB = 2 +
Q DE h A % /*/*
+
79
28
<
? < !
!
! !!
<+ Q /*/* +++++++++++++++ +
)+ " /*/* +++++++++++++++++ * % %
+
=+ X ( / * +++++++++++++++++ $+
A+ 4 ( /*/* +++++++++++++++ +
H+ +++++++++++++++ /*/* ( +
'+ +++++++++++++++ #$ */ +
,+ " /*/* ++++++++++++++++ /*/* % +
<+
)+
=+
A+
H+
'+
,+
\ $! F=!+ !=!
" /*/* */ +
Q /*/* */ # * /*/* +
" /*/* * %
+
K/*/* */* / #* */ ($ #(%$
/*/* $+
P /*/* $ ($ /+
Q /*/* */ # *
/*/* +
D /*/* */ - /*/* */* # * /*/* +
_ <
(+ !
==
!+
+
( <+ 4 +
)+ K/*/* #* $ #
#$ +
=+ K/*/* #* $ #
*+
A+ K/*/* -+
H+ ( /$ ( /+
80
` <
F ==
! !==
F+ F ==
!
!
(+ @! !==
!
!
"##
%$
1#-
<+ "( /
)+ @(*/*
( */
C+ D */
D+ K/*/* #* $ #$
=+ K/*/* s+ >
A+ X */ /*/*
"+
( /$ ( /
H+ " /*/*
Q+ 7 $ ( /
A 1 A 2 , A 2 A 3 , ... , A n-1 A n
'+ 1(*/ /*/*
V+ K/ -
,+ K/*/* 1+ 3% */ E+ K/*/* 4+ K/*/* */* /*/* / (
F+ K/*/* >+ K/*/* #* $
# ( /
*
<;+@ * O+ @ *
b /
<+ " /*/* E = + 5*
/- +
CM H! DM E! "M <<! QM F+
1
a
a
)+ 9 h =' a h ] W?& !
CM <<! DM <)! "M <=! QM <E+
a-3
=+ " /*/* AE <E + 5* +
CM <E! DM <)! "M <'! QM <E+
81
2
A+ " /*/* AE + 5* <) $ +
CM <)! <) DM <'! <' "M <E! )A QM <E! <E+
H+ " /*/* =' <' + K/*/* * +
CM <' A! DM <; <;! "M <; <; <' A! QM D /*/* +
C
A
S
6
D
'+ AC h ] WR& !
CM '! DM E!
B
"M <)! QM <;H+
,+ K/*/* $/ ]
CM D !
DM > !"M K/ !
QMC +
E+ K/*/* $% #]
CM @! DM (%! "M 1( /!QM R+
B
3
A
C
AC = DF, ‘ A = ‘ F,
AB = FE
E
D
A
K
F
<;+cQ /*/* */ * /*/*
/*/* c $%
]
CM @! DM 4$!
"M C! QM C+
<<+=
- * ABC we DEF /*/* ]
CM 4! DM X+
^
\
F+ K/*/* % * # ]
CM ! DM D!
"M D! QM "+
M
<)+A
- * % /*/* ( ]
CM ' /^_ = ' ^_\! DM ' /^\ = ' _^\!
"M ' /^_ = ' /^\! QM 4/ %+
82
<=+H
- * ABD we CDB /*/* % #
]
CM K/*/* BDB # ($!
DM K/*/* DBD # ($!
"M K/*/* BBB # ($! QM D* /*/* $+
<A+'
- * /*/* (# +
CM "! DM "!
"M @ */!
QM 4/ +
<H+,
- * * ($ #
$* +
CM ‘ GEF = ‘ \(! DM ‘ EGF = ‘ (\!
"M ‘ \( = ‘ FEG! QM ‘ (\ = ‘ GEF+
<'+G <) sm /*/* , sm F /*/* ($+
D * +
CM ) sm! DM = sm! "M < sm! QM A sm+
5
B
C
A
D
6
B
C
G
7
E
F
\
h'
? N* * /*/* (# +
5
7
65°
7
90°
60°
95°
A
55°
5
7
\ C# /*/* - % ( ]
4 # ($]
<M
)M
AM
=M
83
HM
'M
_ E
- * 'ACD = 'ABF ** +
` Q F
- * ‘CAB = ‘ABD AD =BC (+
b <;
- * 'ABD = 'BCD ** +
h <<
- * 'ABC='ADC ** +
j Q 'ABC we '9qr AB=9q, AC = 9r we
BC =qr 'ABC we '9qr ]
J Q <)
- * AB = AC, BE = CF M
'AED = 'AFD! M 'BED = 'CFD ** .
p <=
- * ' ABC =' EFD ** +
?Q<A
- * AD = CE ** +
??<H
- * * ($ x +
?\ AE we BD C #$+ Q
DC = DE AB = BC we ‘ BAC h AEm ‘CED +
?_ ABC /*/* / D + Q
AC = AB CD = BD we ‘ BDA h <);m ‘ ADC
+
10
A
B
11
B
S
A
F
C
9
C
D
A
B
A
B
C
A
B
13
D
12
D
D
8
E
C
B
B
<A
F
D
C
15
x
A
E
C
D
F
D
E
85°
C
A
EA
29
_@
F
1
B
x-?
A
C
10
D
D # ( ?
>+ E<
E=
- % #
H !
>>+ C# # = LA
-
c$#c % / */ /
#/M+
<+ <
- * * */ $
+
)+ AB we CD S #$+ Q ‘CAB =‘ABD we &S = =S
‘&US = ‘=JS ** +
=+ " /*/* <EA =' + * /*/* +
Av+K/*/* #* ($ ** +
g(
=
? Z1.,[ # % #+ * # #/
**# **# /( ( +
\ * <;
- % * #* # (+
85
III BAP
PARALLEL GÖNI ÇYZYKLAR
# ! !@ %
Bilimler:
P G ( / %$ !
P ( / - $ */
(# / * !
P ( / # !
P !
Endikler:
P K/*/* ( /- ( ( /
* #!
P ( / - $ */ /
( #!
86
30
Ugrukdyryjy gönükme.
Q ( / ( / * (
# ] O +
D ( #$ ( / parallel göni
çyzyklar $+
<
- * ( / #
+ a b ( / a||b
/ 0a göni çyzyk b göni
çyzyga parallel2 +
G ( / L#(%M L#(%M $+
G **# ( *#+ / * (*/* #$ * # ( $
/ #+
$ ($ ( / /
P !
P ** $ # $+
<H
- ** # ?
1
Teorema. < ! !
Gönükme. a ( / # O
( / /
O
b
(+
+ O a ( / *
OA ( / /$ (2-nji surat)+
a
A
N O OA ( / *
b ( / /$+ R- aAOA OAAb OA göni çyzyga
* a b ( / + 5 ($ a b ( / ( b ($ (
/+
2
87
G ( / =
( /*/* // (
=
- * / a)
+ * ** * +
1( / $/ ( / / ]
Parallellik aksiomasy $ #
#* - $+
b)
Tekizlikdäki göni çyzyga, onda ýatmaýan
'
çyzyk geçirmek mümkin.
D* %(
** * $+
Teorema. < !
a bc(/a||cb||c+
Subudy. a||c b||c a b
( / /
+ 5 $ A #$
(4-nji surat) A c göni çyzyga
a b ( / /
+ D* +
" / $ P a b göni
/ ( +
Teorema subut edildi.
a||b
4
a
A
b
c
Geometrik barlag
45° ABC */ /+ D*/* # *
BA ( * #*
#/ */* BC /$ ( / /+ N BC *
( #+ * % $% -$ ] R-$ #
** */ / +
88
? 4/ ( / $]
\ D ( / #* ( / $/
( / / ]
_ > %/ ]
` N +
b K/- ( / ( / ( (+
h 1( / / A, B C $+ b- /*/*
/- ( A B C /$ ( / /+
j @#$ ] @#$ #(%$ ]
J 4/ #(% ]
p 1(*/* # ( (+
?Q Q ( / ( / / - % /] O +
?? @ ( / 9%+ Q #* / */ $/ ( +
F
31
B a b ( / /- c ( / E */ $+ 5 <
- * (# $+ * */ # - ?
c
‘=‘5
‘A‘6
2 1
3 4
‘A‘5
‘=‘6
‘<‘5
‘)‘6
‘=‘7
‘A‘8
!
1
a
b
6 5
7 8
89
* */ # %$ $?
?@
F (+ X F
F== ! & F F== ( ! a, b(/c-?
‘1 = ‘2 (2-nji suratM
Subudy. ‘) ‘A # */ /?
‘2 + ‘A h <E;+ * ‘4 = 180 – ‘)+
‘< ‘= % # */ /?
‘1 + ‘= h <E;+ * ‘= h <E; . ‘<+
($ ‘1 = ‘) % ?
‘= h <E; . ‘1 = 180 – ‘2 = ‘A+
" ‘= h ‘4 Häsiýet subut edildi.
‘=h‘4
c
2
a
2 4
b
3
1
\@
F (+ X ! ! & F ?JQW @ ! Subudy. "# */ $ -
‘2=‘' * (3-nji surat)+ ‘6 +‘4=180°
** $+ ‘) ‘A #
*/ / ‘2 +‘A h <E;m + 5
‘2=‘' / ‘6+‘Ah<E;m /+
D# */ - % <E;m # ** $+ Häsiýet subut edildi.
=
1
2
3 4
5 6
7 8
_@
F (+ X ! & ! !
( ! Subudy. " */ ‘= ‘' * L3-nji suratM+ 5 ‘= ‘) */ / ‘=h‘) + " # */ ‘' ‘2
+ D# # */ - % #* # **
$+
? > ( / /+ 5 /- ( / P - +
D # */ / (+
\ A
- * */ % % # */ ]
90
4
1 2
3 4
5 6
8 7
5
1 2
4 3
5 6
8 7
32
_ Q H
- * ‘ 2 = ‘ ' h '=m */ +
` Q ( / /- ( / */ E)m <<;m */ +
b H
- * ‘=h ‘H ‘4= ‘' ] Q
‘1= ‘, ‘2= ‘E ‘= h ‘H ‘4 = ‘' $] O +
h D */ ( ]
jq C */ */
- <E;m (+ B % *]
Jq Q ( / - - # */ ( - -
# */ % ** +
Ugrukdyryjy gönükme.
c
1
a
b
1 2
4 3
5 6
8 7
<
- * a b ( / c
- #+ C# **# - +
? 3% */ - (/$+ 4 - */
* (/ % $ ]
\ 3% */ - (/$+
4 - */ * (/ - %
$ ]
_ 3% # */ - (/$+ 4 - # */ * (/ % $ ]
` X *]
> ( / $% ** ]
C# ( / # #* - $+
91
Teorema. X F
! &
! Subudy. <M > ‘< ‘) ( */ $ (2-nji surat)? * AB göni çyzyk
a b ( / * + 5
a b ( / ( / *
( / % (
LE,
- % M+
)M > ‘< ‘) ( */ $? AB (AO = BO) O a göni çyzyga OC * /$ (3-nji
surat)+ b göni çyzyga B * AC -ge
BD + AOC BOD /*/*
$+ 5? <+ * ($? AC = BD! )+
* ($? AO =BO! =+ # ($? ‘1 = ‘)+
5 /*/* BDB # ($
'AOC = 'BOD + 4**
‘= h ‘A ‘5
= ‘' +
‘= h ‘A D CO #(%$
C O D ( / /+
‘5 = ‘' ‘' % ‘H (
*/* /+ a b göni çyzyklar
CD ( / * + " ( + Teorema subut edildi.
2
A
a
1
2
b
B
=
C
a
A
5
=
O
4
1
b
6
B
4
D
a
60°
Q <
- * ‘) h HHm ‘H h <)Hm a b göni çyzyklar özara
]
+ ‘) ‘A */ /
‘4 = ‘) h HHm+ ‘H ‘' # /
‘6 = 180°–– ‘H h<E;m . <)Hm h HHm+ R- */ ( ?
‘4=‘'+ " ** (
/ # ($ a b göni
/ + *#+ 4+
b
Mesele.
92
5
a
b
60°
65°
65°
2
6
a
b
7
B
A
D
1
=
4
2
C
E
33
1
2
F
c!f
1
a
2
b
B (
( / %$ F
$+ ** =E
- ** )
=
- %$
# - /+
‘1 = ‘2 Ÿ a||b
1-nji netije. " ("
! # !" # ! iki göni çyzyk parallel bolýar (1-nji surat).
a
2-nji netije. " ("
#
3 #" ( @DJL
% !" # ! # 3
bolýar (2-nji surat).
1
b
> ( / # #+
A
- * a||b (+
H
- * a||b (+
'
- * a|| (+
Q <
- *? M ‘ < h <=)m ‘ E h AEm M
‘ ) h ='m ‘ H h <AAm 9M ‘ = h <<=m ‘ ' h ,,m M
‘1 + ‘, h <E;m a||b ]
h Q? ,
- *? M ‘=h ‘A BD = CE AB = EF!
M ‘1=‘) ‘=h ‘A BD = CE! 9M AB = EF BD = EC
AC = FD ' ABC = ' EFD (.
j a ( / K + K
( ( / /+ * (
/ $/ a ( / #$+
?
\
_
`
b
110°
70°
2
‘1 + ‘^_@DJLŸ a||b
=
- * ( /
% ]
Mesele.
+ " */ ‘< h <;Hm ‘) h <)Hm ‘= h <<Hm+ a b
( / $ / ‘1 + 65° = 105° + 65° z <E;m+
a||d / ‘< j ,Hm h <;Hm j ,Hm h <E;m L)
- -$ M+
F=
Q # b||e / 'Hmj‘= h 'Hmj<;Hmh
h <E;m+
a c e ( / ( $ /
# */ $ L<
- -$ M+
Q # b d ( / % $
/ # */ $? 'Hmz,Hm+
*#+ a||d, b||e.
=
a
105°
b
1
65°
c
2
75°
d
125°
e
Mesele. A
- * a||b *]
115°
3
+ " */ %$ ($ x h ='m+
5 = 4x = 4 ˜ ='m h <AAm + D
*/ - x + h='mj<AAmh<E;m+ " )
-
-$ ($ a||b +
='m
a
x
D
4
? > ( / # +
\ H
- * a b ( / / $ */ $/ * ]
_ '
- * $ */ +
` Q ,
- * M ‘1=‘Hh<;Hm! M ‘=h';m
‘E h<);m */ +
b E
- * (*/* % ]
h > ( / - # */ =)m # */ ==m
* ( / ]
j a b ( / c göni çyzyk
*/
( L9-njy
suratM+
8 B
C
114°
65°
a
l1
l2
66°
A
D
4x
a
b)
a
x
30°
b
6 B
64°
116°
64°
x
A
D
7 a)
12
4 3
5 6
8 7
1 2
4 3
5
8
b
94
5
50°
x
b
b)
c
9
a)
b
6
7
C
34
/
Q # - /# $ - L
M $+ Q * - % L **
M ters teorema $+
Q
+ Eger
$
bolsa,
ýerlikli
<
bolýar.
ýerlikli
<
bolsa,
ýerlikli
$
bolýar.
ýerlikli
1/?CŸB
R
+ Eger
1/?DŸA
Mysal. 0{ "
2 P # ? 0 #"
# !" # !" # #2+
1-nji gönükme. X cK/*/* #c $+ 5* * (# ** +
Q *$ +
0Q */ 2 0Q */ 2 $+
2-nji gönükme.
? 0Q # ** 2 + 5* -
- #+
\ C# + 4 $* +
<M D ( / * ( / ( #$+
)M Q /*/* # +
=M Q # */ ( ( */ +
AM D ( / ( / +
? B $% * ]
95
\ " ]
_ " ** ** * ]
` B $%
+
b C# # -
+ D* a * ?
<M Q <
- * AC = BD AB = CD
.
)M Q )
- * ‘1=‘) ‘=h‘4
.
=M Q =
- * EF||AC ‘1= ‘=+
AM Q A
- * AO = OB CO = OD
'AOD = 'BOC +
h A B /$ P 1 P 2 - (6njy surat)+ P = - #* C
* P 1 P 2 -
*+ AP 1||BP 2||CP =
‘ ACB = ‘ A + ‘ B
** +
j C# * ?
<M > ( / - #
# */ * ( / +
)M K/- ( / (
/ +
=M " J K/*/* # + * *]
96
1
A
B
C
D
2
=
B
F E
C
A
4
C
B
O
A
5
D
A
B
C
P3
P1
P2
F
35
C# ( / # ** /$+
1-nji teorema. F
! 1
a||bc.-L1-nji suratM
c
C
A
‘1=‘2
Subudy. B / $? ‘1z‘) *+ AB #(%$ ‘) $ CAB */
L‘CAB=‘)M+ 5 CA b göni
2
b
çyzyklary AB - B
L* ($M ‘CAB ‘2
*/ +
" CA b ( / ( + A b
( / LCA aM ( / +
D* + " / $ ‘1 = ‘) +
Teorema subut edildi.
a
1
Netije. X !
!
& F
@! ! R- %( * (# +
2-nji teorema. F
! ! 3-nji teorema. F
F ?JQW @ ! B (# ** $ #+
Mesele. )
- * $ */ +
2
a
78°
102°
y
z
48°
x x
b
+ D */ -
,Emj<;)mh<E;m / a||b + "
<
- ($ z = AEm x = y
+ x + x + AEm h <E;m / L
*/ **M x = ''m+ " y
h ''m+ *#+ x h ''m! y h ''m! z h AEm+
97
Mesele. =
- * a b c||d+ C# % ]
<M ‘1 = ‘<H! )M ‘= h‘<=! =M ‘4 = ‘<'! AM ‘4 =‘E! HM ‘1=‘<)!
'M ‘7 = ‘<;! ,M ‘8 =‘<'! EM ‘8 = ‘<<! FM ‘4 +‘<= h<E;m! <;M ‘6 +‘<A h <E;m! <<M ‘7+‘<) h <E;m! <)M ‘8+‘9=180°
+ =M ‘4 = ‘2 W häsiýetine görä) ‘) ‘<' . #
*/ / ‘2 = ‘<'+ "
‘4=‘<' +
<<M c||d / ‘7=‘10 (atanak
! ‘10=‘12 (dik
!+ " ‘7=‘<)+
* / ‘7+‘<) h <E;m ‘7=‘<)h F;m +
1 ( # (#
/+
c
a
HM ‘12=‘7 W
görä) ‘7=‘5 W !+ ‘H ‘< #
*/+ a b #* / ‘1z‘5 =‘7=‘<)
‘1=‘<) $+
FM ‘4 =‘) ‘<= h‘15 W !
c||d, ‘) ‘<H . */
/ ‘2 + ‘<H h <E;m+ "
‘4+‘<= h<E;m +
d
=
? A
- * AC = CB *]
\ D <
-
$% ]
_ H
- * BC ||AD, AO=OD ekenligi
+ M BO = OC ! M AC =BD ! 9M
'AOB='COD ! M 'ABD='ACD ** +
` '
- * BC ||AD AB||CD 'ABD = 'CBD ** +
98
1 2
4 3
b
10 11
9 12
5 6
8 7
B1
4
A
B
C
A1
5
B
C
O
D
A
B
6
15 16
14 13
C
D
A
7
<=Hm
a
b
=x
b ,
- * a||b , x=?
h ABC A 1B 1C 1 */ + Q AB||A 1B 1 BC||B 1C 1 ‘ABC = ‘A1B1C1 ** + jq "# ( / */ -
+ * */ - <E;m
** +
Ýatlatma. '
,
- . # */ %$ $+
J Q E
- * a||b c||d ‘1 = 55°
‘) ‘= +
p "# ( /
*/ * A;m
+ *
*/ +
?Qq ABC A1B1C1 */ + Q
ABAA1B1 BCAB1C1 ABC =
A1B1C1 ** +
c
8
d
1
a
b
2
3
??q "# * (
/ */ - + * */ -
<E;m
** +
Ýatlatma. <;
<<
- . # ( * */ %$ $+
?\ F
- / ABC ADC
*/ # *+
4$ */ +
9
B
A
7x
11x
D
99
C
36
<
? < !
!
! !!
<+ 1( / * +++++++++++
/ +
)+ Q ( / - +++++++++++++ * ( / +
=+ B$ ( / +++++++++++++++++ ( / $+
A+ > ( / /$ ( / ++++++++++++++ +
H+ 1( / +++++++++++++++ (
/ /$+
'+ 1( / ++++++++++++++++ ( /
/ +
,+ 1( */ #$ ( / +++++++++++++++++ $+
E+ D ( / ++++++++++++++++ ( / ( +
F+ Q ( / - */
+++++++++++++++++ ( / +
<;+G ( / - # ++++++++++ +
\ $! F=! !=!
<+ 1( / * ( / /
+
)+ D ( / #* ( /
* / +
=+ AB AK ( / * ( /
- % * +
A+ > ( / - */ +
H+ Q # $+
'+ "# */ +
,+ Q aAb bAc aAc +
E+ "# * */ - <E;m +
F+ Q ( / - */ ( / +
<;+G* ( / ( / % (
+
<<+Q a||b b||c aAc +
100
_ ^!! (+ !==
! !==
F <+
)+
=+
A+
H+
'+
* ( /
1( */ #$
R ( / / R ( / / / - ( /#
> ( / - $ */
` <
F ==
! !==
F+ F ==
!
!
(+ @! !==
! <+
)+
=+
A+
H+
'+
Q ""&
G ( /
G* ( /
zyklar
@- ( / C */
B D */
}
""
C+ Q $+
D+ @#$+
b+ @# ( */ $+
"+ C # */
$+
Q+ D +
3+ " ( / +
b /
<+ D ( / $/ ( / / ]
CM <!
DM )!
bM A! "M /+
)+ Q ~~ Ac cAd # - % ]
CM aAd bAd
bM a||c, aAd DM aAc b||d
"M aAc, aAd, bAd+
101
=+ B ( / #* ( / $/ *
( / / ]
CM <!
DM )!
bM A! "M /+
1
40°
a
b
A+ <
- * a||b , x
+
x
CM <;;m! DM <<;m!"M <=;m! QM <A;m+
2
H+ )
- * a||b , x- +
CM =;m! DM AHm! "M ';m! QM ='m+
a
b
'+ x- (3-nji surat).
x
CM F'm! DM <;Em!"M <<)m! QM ,Em+
,+ A
- * a||b =,;m D
+
CM =;m! DM <)Hm! "M ,Hm!
=
82°
x
QM ='m+
E+ > ( / /- ( / $/ */ ]
CM = ! DM E ! "M ' ! QM A +
F+ > ( / /- ( / */ F,m
+ C
*/ / +
112°
98°
CM F,m! DM E=m! "M ,,m! QM ,m+
<;+ > ( / /- ( / ( $/ */ ]
CM = ! DM A ! "M ' ! QM H +
102
4
a
b
<<+ > ( / /- ( / ( $/ ( */ ]
5
a
x
CM ) ! DM ' ! "M E ! QM H +
80°
b
<)+ > ( / /- ( / / / */ - )F;m
+ "(- */ +
6
70°
CM <AHm! DM <<;m! "M ='m! QM ,;m+
70°
85°
x
7
c
d
a
<A+ 6-njy suratdaky x */ +
CM <;Hm! DM FHm! "M EHm! QM ,Hm+
<H+ 7-nji suratda % ( / ( ]
CM a||b! DM a||c! "M c||b! QM c||d+
118° 64°
'=m 117°
b
<=+ 5-nji suratda a||b x
+
CM <;;m! DM E;m! "M <<;m! QM F;m+
<'+ 8-nji suratda a||b c||d ‘<h<))m ‘2
‘=
+
8
c
d
a
=
2
b
1
9
a
x
72°
125°
b
108°
CM ‘) h <))m ‘= h HEm! DM ‘) h <=;m ‘= h HEm!
"M ‘) h <))m ‘= h 'Em! QM ‘) h <=;m ‘= h H;m+
h'
<+ F
- * x */ +
)+ <;
- * ‘4 + ‘H h<E;m a||b
]
=+ <;
- * ‘2 = ‘' a||b ]
A+ <;
- * ‘1 = ‘H h <<Em */ +
H+ <;
- * ‘) h ,<m ‘, h <<Fm a||b ]
'+ <<
- * $ */ +
<;=
,+ > ( / /- ( / */ A,m
+ 5
*/ $/ * * (
/ ]
E+ > ( / - /# */ - EAm+ 1
*/ +
F+ > ( / - */ - E *+ Q $% */ +
<;+> ( / - */ * =;m+
* */ +
<<+<)
- * $ */ +
<)+"# ( / */ * ='m
+ * */
+
37
10 a
2
1
=
5
b
8
4
6
7
c
11
B
C
52°
128°
x
52°
A
D
12
x
59°
`@
F
R* # ( ?
>+ <;<
<;=
- % # H !
>>+ C# # = 1
B
LA
- (#$
*/ /M+
<+ > ( / - */ =Am
+ 1 */ +
A
)+ Q <
- * BC||AD AB||CD
AB=CD ** +
=+ Q )
- * a||b, c||d ‘1= 48°
2
*/ +
a
A+ ABC /*/* A /
BC D b
/$+ D / ( /
AC E /$+ Q
c
d
AE=DE DE||AB-ni ** +
104
C
D
1
C
J
D
A
DJ
E
B
EDJ
AC<BC<AB
IV BAP
ÜÇBURÇLUGY" TARAPLARYNY"
WE BURÇLARYNY" ARASYNDAKY
GATNA#YKLAR
# ! ! %
<%
P K/*/* / */ - % ** !
P /*/* # */* * %$ !
P (*/ /*/* %$ !
P (*/ /*/* # !
P /*/* */ #
!
P /*/* +
X
!%
P K/*/* / */ - ** #!
P (# %$ /( # * #+
105
F(
!
38
Ugrukdyryjy gönükme.
1
B
N
A
C
T
L
Q
P
<+ C# * # ABC
/*/* / */ ( (/$ -
%+ Q #* # MNL PQR
/*/* / % +
R- - *+
R$% %$ ] 5 - +
K/*/*
‘1 ‘2 ‘3 ‘1+‘2+‘3
ŽABC
R
ŽMNK
ŽPQR
2
> (% . /*/* */
- % ** $+
Teorema. F
=
A
4 2
1
B
)+ D ABC üçburçlugy
/ */ < ) = $+ 5* */ )
-
* (# # *+ * $% -
/ ]
180° @ !
a
5
'ABC
3
C
‘A +‘B +‘C = 180°
Subudy. A BC a (
/ /$ (3-nji surat)+
106
‘1 = ‘A / * */ a BC ( / AB - */+
‘= = ‘H / * */ a BC ( / AC - */+
A
‘A j ‘) j ‘5 = 180° / * */ ** 4
$ */ $+ Q 40°
#* / ‘< j ‘) j ‘= h <E;° ‘A j ‘B j ‘C =
180° ($. Teorema subut edildi.
B
1-nji mesele. A
- * *
$ x */ +
+ 'ABCP /*/* / ‘ACB=‘AhA;m+ " */ %$ ($
‘DCE=‘ACBhA;m+ ($ 'CED % + *
$ ‘DCE=‘DEC=A;m+
D
" /*/* */ - %
($ 'CDE ? A;mj A;mjx h<E;m xh<;;m+ *#+ <;;m+
C
x
E
2-nji mesele. K/*/* */ )?=?, # * (/ +
+ ($ /*/* */ )x, =x ,x+ $+
5 /*/* */ - % ($ )x + =x+7x =180°
+ 5 xh<Hm +
" /*/* */ * (/ =;m AHm <;Hm + *#+ =;m AHm <;Hm+
? K/*/* */ - % *
#+
\ K/*/* $/ */* ( ]
_ K/*/* $/ */* ]
` D*/? M Hm HHm <);m! M A'm <H;m Am! /M<;;m ); H;m /*/*
]
b Q /*/* */? M ';m A;m! M ,;m EHm! /M F; AHm! M
<;Hm =;m * /- */* +
107
h R$ */ +
ç
x
40°
x
j R$ */ +
y
ç
x
x
x
z
y
x
x
x
J R$*/+
x
x
x
p M xh]! M AD BE . ‘BACh'Am ‘ABChF'm xh]
B
D
x
O
x
A
E
C
?Qa||b, x = ?, y = ? ?? ‘1=‘) ** +
?\q K/*/* */ D E J / D=(EjJM^) D +
?_" /*/* */ +
?`" (*/ /*/* */ +
?bQ /*/* */ M H;m! M ';m! /M <;Hm * */ +
108
39
!
(+
Üçburçlugy / */* # */
/*/* $+
<
- * ABC /*/* B */* #
CBD ABE */ #+ 1(#
* */ / ( +
1 A C */ # */ /
(+
K/*/* */ * # */
* / / */ % $+
1
C
a)
2
1
A
B
C
b)
)
- * ABC /*/* $% / # */ (/$ #
*/ L% # */ #
/ */ -M ** (
#?
1
3
/M ‘' ‘< j ‘2
"# - $% -$ +
5 (# +
B
4
E
2
B
5
2
M ‘A ‘) j ‘=
M ‘H ‘< j ‘=
D
2
A
Geometrik barlag
4
3
4
A
1
3
6
C
Teorema. ! = ! F
!
ABC, ‘4 – (1-nji surat)
‘‘‘
Subudy. <
- * $+ 5
# */ %$ ($ ‘= j ‘4 = 180°.
K/*/* */ - % ($ ‘< j ‘) j ‘= h <E;°+
D* ‘< j ‘) j ‘= h ‘= + ‘A ‘< j ‘2 = ‘A +
Teorema subut edildi.
<;F
* # - /+
=
x
Netije. [#" ! # "
" #! #" ' #!
uly.
5* * (# +
x
? K/*/* # */ $]
\ K/*/* # */ % #+
ç
_ K/*/* # */ <);m <=Hm / */ +
` K/*/* / */ =;m
#
*/ ';m
+ K/*/* / */ +
4
x
b =
- * $ */ +
h A
- * x + y -i +
j Q H
- * a|| b , x - +
J Q '
- * a|| b , x - +
y
5
a
x
p Q ,
- * a|| b , x - +
?QQ E
- * a|| b , x - +
??K/*/* # */* ] Q $/ ]
?\q K/*/* # */ - %+
b
6
7
8
b
a
a
x
b
x
b
a
x
110
40
'
Mesele. "(*/* */ - =';m
B
1
2
** +
+ > ABCD (*/* /+
A C # /*/*
1
($+ABC ADC /*/* / */
4
A
- <E;m
L1-nji suratM?
‘< j ‘) j ‘= h <E;m ‘A j ‘H j ‘' h <E;m+
‘A= ‘<j‘A ‘C = ‘=j‘' /
‘Aj‘B j‘C j‘D = (‘<j‘AMj‘)jL‘=j‘'Mj‘5=
2
=
6
5
D
1
2
= (‘<j‘)j‘=M jL‘Aj‘Hj‘'M h <E;mj<E;m h =';m+
3
5
? K/*/* */* (/ H?F /- */ #* */ / <;m /+
K/*/* */ +
\ K/*/* <;Em # */* #
/ */ # H?A + *
/ */ +
_ K/*/* /- * ]
` K/*/* # */? M < !
M ) ! /M = ]
b K/*/* $ / #
*/ ]
h )
- * # $#*/*
*/ - +
j =
- * $ */ +
J > */ /*/* (+
p " /*/* */? M <);m! M ,;m * */ +
?Q" /*/* */ M <Hm! M ,Hm */ $$ ]
111
4
=
2x
5x
4
3x
B
F
E
O
A
D
C
C
5
x
A
6
C
D
B
x
??> /*/* # $ */ ** +
?\Q A
- * AB = BC ‘ABC = H;m AE FC P AOB EOC */
+
?_H
- * $ x */ +
?`'
- * $ x */ +
?b> /*/* # *
# */ ]
O +
?h@$ /*/* ( / */
*/ /*/* ] O +
E
41
==(+
X /$ (*/ /*/* */ ( LF;mM * */ */ + 1(*/ /*/* ( */*
# gipotenuza $+ >
(*/ /*/* $ %$ +
@%( '$
= = F pQW
@ !
4 % /*/* / */ - <E;m +
1(*/ /*/* */ F;m + * / * */ - F;m
+
1-nji mesele. 1(*/ /*/* =;m */* #
* +
1 <
- * # ABC (*/ /*/* *
‘ACB h F;m ‘ABC h =;m *+ 5 ‘BAC h ';m +
AC = AB ($+
2
112
D /*/* BCD /*/* <
-
* (# *+ R-
% */ ';m ABD üçburçlugy
+ " ABD /*/* +
4**
AB = AD + Q
=;m =;m
AD = AC + CD = 2AC+
AB = 2AC AC = AB+
2
P$
#
!!
B
1
60°
A
60°
C
D
^%( '$
= = !
@
! & _QW @ ! D* %$ )
- %$ * (# ** +
2-nji mesele. ABC (*/ /*/* C ( */ AB h<) CD =DB CD - (2-nji surat)+
+ CDB — /*/* / A
2
CD=DB (2-nji surat). " ‘ B ‘ A j‘ B h F;m / ‘ A j h F;m+ X(
D
jhF;m / ‘ A = + " ADC —
/*/*+ * / AD = CD = DB D AB +
B
C
" CD = AB h '+ *#+ CD = 6
2
D* $ /( AD=DB AD = CD % + 5
(*/ /*/* # %$ +
`%( '$
= = !
!
D* (% %$ E
- +
?
\
_
`
b
1(*/ /*/* $% ]
1(*/ /*/* */ - $$ ]
1(*/ /*/* */ ]
1(*/ /*/* $/ ]
=;m
*/* # * $%
# ]
<<=
h " (*/ /*/* * * (+
j M c h ] M a h ] /M x h]
ç)
c
a
2x
x
x
J M AB h); AD h] M AB h<E BD h ] A
A
D
/M BD h ]
C
ç)
D
C
B
C
B
A
D
B
p 1(*/ /*/* * / E + Q
/*/* */ ';m
#* */ #$ +
! $ # - - #* / ( +
? 4 # -$ / ( #]
M1(*/ /*/* */ - F;m +
MQ (*/ /*/* * * # */ =;m +
\ "# # - -#+
M > (*/*!
M ( /$ %!
/M /*/*+
114
42
==!
Gönükme. ABC A1B1C1 (*/ /*/* *+ *
/*/* */ ( / * */ %# (
+ * $ (*/ /*/* / /*/* #
(#$+
1(*/ /*/* / */ L@@ #M */ */ L@D #M * */ */ L1D #M * */ L1@ #M # $?
Teorema. < =@
1
B
B1
C A1
C1
B
B1
C A1
C1
B
B1
C A1
C1
= F
= = !! ! & =@
! (1-nji surat)
D* # /*/* BDB
# (
( /+
A
R < =
= +
& F = =@
+
! & =
! (2-nji surat)
D* # /*/* DBD
# (
( /+
R 0 < =
= & F = =
! & =
! (3-nji surat)
D* # /*/* DBD
# (
( /+
R 0 < =
= 115
2
A
=
A
4
B
B1
F = =
!
& = ! (4-nji surat)
* # ** + ABC A1B1C1
/*/* (4-nji surat) ‘C h F;m ‘C1 h F;m AB = A1B1 BC = B1C1
*+ 5 ' ABC = 'A1B1C1 A
C A1
C1
+
Subudy. ABC A1B1C1 /*/*
( ? AB =
5
B(B1)
A 1 B 1 BC= = B 1 C 1 + Q ABC A 1 B 1 C 1
*/ BDB #
($ /*/* ( +
** / A1B1C1 üçburçlugy ABC /
*/* BC B 1C 1 $ # (5-nji surat)+
5 ‘C ‘C1 ( */ /
A1
CA C 1A 1 #(% */ A
C(C1)
$ A, C, C1 A1 ( / + R- ABA 1 /*/* + Q /*/* % L,<
- % - ($M+ " ‘ABC =
‘A1B1C1+ 0 #
!!
Mesele. '
- * * ABC P /*/* ** +
+ 'AED ='BFD / C
* */ 6
+ CED CFD P (*/
/*/* ED = FD %
CD E
F
* ** / (*/ /
*/* GK # ($
D
D
'CED = 'CFD+
A
D
B
" 'ADC = 'BDC AC = BC
ABC P /*/*+
116
7
? 1(*/ /*/* #
#+
\ 1(*/ /*/* */ # * /*/*
]
A
_ Q '
- *?
M ‘A =‘D ‘B =‘E!
M BC = DE AB = CE!
8
/M AC = CD BC = CE!
A
M AB = DE
ACB DCE /*/* ]
` Q E
- *? M OC = OB! M AC = BD! C
/M AO = OD! M AC = OD! M ‘OCA =‘OBD
OAC ODB /*/* F A
]
b 1(*/ ABC A1B1C1 /*/*
A A 1 ( */ BD BD 1
‘B = ‘B1 BD = B1D1 'ABC = 'A1B1C1 ** +
C
h Q F
- *?
M AC = BD!
M OA = OD!
/M ‘OCB = ‘OBC!
M BC = OD!
M ‘ACB = ‘DBC BAC CDB /*/* ]
j ABC /*/* BD /+ Q
AD = DC ABC /*/* ** +
J X */ ABC /*/* AA1 CC1
+ ‘BAC = ‘BCA **
+
117
B
D
E
C
D
O
B
D
O
B
43
<
(+
X ( / / ( / * * +
Teorema. < ! !
!
!
1
A
C
D
O
B
Subudy. 1 O */ *
OC * (1-nji surat)+
OC D */* DA DB
* $+
OAD OBD (*/ /*/*?
<+ ‘AOD =‘BOD P # ($!
)+ OD P ** *+
1(*/ /*/* 1D
# ($ 'OAD = 'OBD+ 4**
DA=DB+
Teorema subut edildi.
2
E
L
70°
K
20°
O
F
Mesele. EOF */* OL K L2-nji suratM+ Q EK AOE
KF A OF ‘ OKE = 70° ‘ KOF = 20°
M EOK OKF */! M EOF
EKF */ +
+ M X (# 'EOK = 'FOK. * / ‘EOK =‘FOK =20°
‘OKF =‘OKE h ,;m+
M ‘EOF = 2 .‘KOF h A;m
‘FKE = ‘FKO j ‘OKE h ,;m j ,;m h <A;m+
O? M );m ,;m! M A;m <A;m+
118
?
1(*/ /*/*
# =
- * #
/ * # ** +
=
? D*/* * *# ** +
\ D*/* AOB OA #(%$ / ,
sm #* OB #(%$ / +
_ O */* * @ + Q ‘O h ';m S@ =
14 sm @ */ / +
` AOB */* / N + Q AN=BN OA A AN OBA BN N AOB */* ** +
bq A
- * ( / */* ( #+ @
*/* #$ ( +
A B */* 4
*# + D*/* $%
B
* ]
hq K/*/* #$ A
/*/* / *#
** +
j " ABC A1B1C1 /*/* AC A1C1 / BD B1D1 + ABC=A1B1C1 **
+
<<F
44
!
Teorema. ! 'ABC,ABAC
‘C‘B
Subudy. AB #(% AC AD
+ AB> AD / D
1
AB # + " CD
#(% C */* / C
*/
*/ ($+ * ($, ‘C >‘?
2
ACD
/*/* *
A
D
B
/ ‘1 = ‘2+ ‘2 — CBD
/*/* # */ / ‘2>‘B+
D* ( / #
‘C > ‘1 = ‘2 > ‘B ‘C > ‘B +
Teorema subut edildi.
C
1
* * % +
Ters teorema. ! D* ** (# +
Netije. Q" #! !" 3" ! !" #
ýatýar.
C
2
5* * ( ** +
1
4
3
2
A
D
B
B
=
1
2
A
D
C
1-nji mesele. )
- * * ‘1>‘=
** +
+ ‘2>‘= /
‘2 — BDC /*/* # */ *
# */* %$ ($ ‘2=‘=j‘4
‘A  ;+ ACD P /*/*
/ ‘1=‘)+ " ‘1>‘= +
2-nji mesele. =
- * AB<AC
(+
120
+ BDC P /*/* L/ BD=DCM ‘1=‘2
+ ‘1<‘ABC / ‘2<‘ABC. */* # * / AB<AC +
? K/*/* * # * */* * */*
# * ** +
\ ABC /*/* AB = 12 sm BC = 10 sm CA = 7 sm /*/* * / */ %]
_ ABC /*/* M AB < BC < AC ! M AB = AC < BC /*/*
*/ #+ A */* ]
` " /*/* $ */ ')m * % *
] HEm % ]
b K/*/* */* # / ]
h ABC /*/* M ‘ A > ‘ B > ‘ C ! M ‘A = ‘B < ‘ C /*/*
#.
j K/*/* * */ ';m / ] K/*/* /
*/* ';m * ]
J " /*/* # $ */
+
pq ABC /*/* AB > BC ‘ A h ';m B */ $% % *
$+
?QqK/*/* */ / B
# * 4
64° 50°
$% /*/* ]
C
46°
??qA
- * * / A 66°
50° 84°
(+ O #+
D
?\1(*/ /*/* * ** ]
121
45
!
! F
!
'ABC
1
C
A
B
D
AC < AB + BC
Subudy.
AB ( / BC
BD C
D #$ (1-nji surat)+
R- BCD /*/* $+ 5 ‘1 = ‘) / BC = BD+
V* (# ‘ACD > ‘<+
5 ‘ACD > ‘) / ‘1 = ‘) D* */ ACD /*/* #+ > * */* # * % AC < AD +
5 AC < AB + BD / AD = AB + BD. 5 BD=BC % AC < AB + BC +
Teorema subut edildi.
* # - /+
Netije. < ! ! = A, B C =
AC < AB + BC, AB < AC + BC BC < AB + AC !
!
* % "
$+
Mesele. K/*/* ;, <F+ Q /- $ (2-nji surat).
+ D /*/* ? ;, <F+ K/- /*/* ?
x j ;,  <F x  <)
2
<F j ;,  x x q )'+
<F
* <) q x q )' ;,
+
x . xh) % #* #
x
+ "
/*/* $ ) $ +
^% 2
122
? K/*/* * $ ]
\ K/*/* $% = a)
/( *] b
a
_ < m ) m = m /*/* * ]
c
` B ? M )! =! A! M )! )! A! /M ='
a : b : c h<?)?=
! <E! H! M H'! =E! <F! /*/*
]
b)
2x
a
b " /*/* ? M , =
a
M<; H! /M E H /- x
x
+
2a
h $ # * L3-nji suratM]
j K/*/* * * * ** + J " /*/* )H sm - A sm # */ /*/* +
pq )! =! A! H ' $/ /*/* *
]
?QB$ / A, B, C / AB+BC t AC AB BC AC $% * ]
??qK/*/* /*/* L
M / ** +
?\B( * % * ** +
46
<+
)+
=+
A+
H+
'+
,+
<
? < !
!
! !!
K/*/* / */* +++++++++++++++++++ /*/* # */ $+
K/*/* ++++++++++++++++ <E;m +
> */* - F;m
/*/* ++++++++++++++ +
K/*/* # */ # +++++++++++++++ +
Q /*/* */ +++++++++++++ +
1(*/ /*/* */ +++++++++++++++ * $+
K/*/* % - +++++++++++++ +
<)=
E+ > (*/ /*/* * ++++++++++++++ * /*/
* +
F+ 1(*/ /*/* ++++++++++ +
<;+1(*/ /*/* * / ++++++++++++++ #* *
+
<<+1(*/ /*/* +++++++++++ =;m */* #
+
<)+D*/* *# #* */* ++++++++++++
+
\ $! F=! & !=!
<+ 1(*/ /*/* * */ * /*/* +
)+ K/*/* / # */ - <E;m +
=+ K/*/* # */ / */ - +
A+ K/*/* * # / */ * */* # /
+
H+ K/*/* % * /+
'+ 1(*/ /*/* +
,+ 1(*/ /*/* * +
E+ 1(*/ /*/* * +
F+ 1(*/ /*/* * * /*/* %
+
<;+K/*/* / */ * */* - %# / +
<<+K/*/* # */ %# +
_ ^!! (+ !==
! +
!==
F <+
)+
=+
A+
H+
>/ */ - <E;m X */ - F;m B K/*/* #
1* '+ K/ #$
,+ @ %# *
E+ R */* *#
124
` /
<+ Q /*/* */ )?=?A # * */
+
CM );m =;m A;m! DM A;m ';m E;m! sM ='m HAm F;m!"M <Em ),m ='m+
)+ Q /*/* */ =?)?< # * (#
+
CM X */!
sM 1(*/!
DM @ */!
"M C +
=+ Q /*/* # */ * (# +
CM X */!
sM 1(*/!
DM @ */!
"M C +
A+ Q /*/* */ * */ - * * (# +
CM X */!
sM 1(*/!
DM @ */!
"M C +
H+ 4 /*/* * #$]
CM " /*/*! DM " /*/*!
"M 1(*/ /*/*!
QM D /*/* +
'+ ABC /*/* A $ # */ <);m
C $ / */
E;m + B $ # */ +
CM <);m!
DM <A;m! "M <';m! QM A;m+
,+ K/*/* # */ <);m
#* */ # $ / */
* =;m
+ K/*/* / */ ** +
CM ,;m! DM ,Hm! "M EHm! QM F;m+
E+ K/*/* */* % # <?) + K/- */ #*
*/ / A;m
*+ K/*/* * */* +
CM <;Hm!
DM ,Hm! "M E;m!
QM F;m+
F+ " /*/* AE
+ 5* <)
$ +
CM <E! <) DM <'! <'
"M <E! )A QM <E! <E+
125
<;+1(*/ /*/* ( */*
/ *
*/ )Am
+
K/*/* / */* +
CM )<m! DM )Am!
"M ='m!
1
5x
QM <'m+
3x
<<+<
- * ‘A +
CM <;m! DM );m!
"M ';m! "M H x
A
QM <;;m+
C
2
<)+ = H , <<
$/ /*/* * ]
CM ) DM =
B
y
x
QM '+
<=+)
- * x + y - +
=
CM F;m! DM <E;m! "M ),;m! QM +
B
<A+=
- * ‘BCA +
CM F;m! DM F'm!
"M <AAm!
QM EAm+
E
<H+A
- * a||b , x +
CM =Hm! DM AHm!
"M )Hm!
QM );m+
<'+ H
- * x +
CM ';m! DM HHm!
"M 'Hm!
QM ,;m+
C
A
<,+ '
- * x +
CM =;m! DM AHm!
"M <Hm!
QM ,Hm!
<E+ ) = A H $/ /*/* * ]
a
4
=;m
55°
CM < ! DM ) ! "M = ! QM A +
5
x
6
x
)H
x
b
25°
126
5
b'
? D* * < m ) m A m E m
<' m ( / *
]
\ Q /*/* *
<H
* +
7
x
8
4
_ K/*/* * %
# / ]
` ='
/*/* */
<?)?= # #* /*/*
/ +
8
B
A
b K/*/* / *
),m ='m */
$+ K/*/* */ +
C
h 1(*/ ABC A 1B 1C 1 /*/*
A A 1 ( */ BD B 1 D 1
‘B =‘B 1 , BD = B1D1 ' ABC = 'A1B1C1 ** +
A
F
j ,
- * x D
J E
- * ‘ABC
+
E
p F
- * AB||CD ** +
C
?Q" /*/* */ <;;m
+
K/*/* +
??Q /*/* */ ';m
* /*/* ]
?\Q AC B */ ='m
ABC /*/* AD /+ CDA ADB /*/*
** +
127
B
?`D /*/* ';m =Em
*/ - /*/* =Em E)m
*/ + * /*/* ]
?b Üçburçlugy <A sm <' sm )A sm * /*/* * +
?h1(*/ ABC /*/* ( */* CD + Q <M A h )Am! )M A h ,;m CDB */ +
?j" /*/* # */ ,;m
+ 5* / */ +
A
?J ABC /*/* A C F
N #$+ Q ‘A = 50°
‘C h EAm ANC */ +
D
?p ABC /*/* BD AC + K/*/* B */* +
\QF
- * BD = CD h <; AB
+
47
C
b@
F
1
x
155°
A
2
D
C
B
B
R* # ( ?
>+ <)H
- % # H !
>>+ C# # = LA
- (#$ */ /M+
<+ R$ */ (1-nji surat)+
)+ K/*/* # */ <);m * # / */ <?) #
/*/* */ +
=+ Q )
- * ACB hF;m CD=BD AB h )A CD +
A+ ABC /*/* BD AC <;;m */ $+ Q BD = BC
/*/* +
g(
=
Z1.,[ # % #+ * # #/
**# **# /( ( +
128
V BAP
z{'$$ ;X#| 'X}X|X|X{
# ! ! %
Bilimler:
P N* ( /- ( * #
/( * ( !
P * # /( / +
Endikler:
P b- * ( * # #!
P */ */ * #!
P */* * #!
P * ( / * #!
P $ (!
P ($ /*/* * #+
129
48
1
2
}F
!!
1* # ( // * /( P ($ (
1 1 * - +
* / * ( * **+ /- (
( / #(% /*/* # *
/+ B */ * (
( # (1-nji surat)+
$ # * #
( /- * (2-nji surat) ( * +
LD /- ( // $+M
* $ #* * (
* # ( +
D* * %* * # # ?
X( /- ( ?
<+ > ( / /!
)+ D /$ ( / /!
=+ > /$ ( / /+
N* ( ?
<+ > ( /!
)+
=+
A+
H+
* ( /!
D * ( /!
* ( /!
D ( / * # % ** +
D# * % #* + 4 //
( * (/ $
* $ ( / * $+
1* # $ * * **
$ * % # ** % +
* $ * # % # * ** % $+
130
1-nji mesele. AB CD
OE #(% (2nji a surat). X( /- * ( OE #(%$ *
AB + CD *+
Gurmak:
1-nji ädim. N* ( AB
A 1 B 1 OE #(%$
(2-nji b surat).
2-nji ädim. N* ( CD
C 1 D 1 B 1 E #(%$
(2-nji ç surat)+
Q A 1 D 1 . *
AB + CD +
2 a) A
B
C
D
O
E
b)
A
C
B
A1
D
B1
E
O
ç)
2-nji mesele. AB CD OE #(% (3-nji a surat)+
Q AB > CD A
B
C
D
( /- * (
A1
B1
D1
OE #(%$ * AB . CD O
E
*+
Gurmak:
OE #(%$ AB A1B1 (3-nji b surat) CD C 1D 1 (3-nji ç surat)+ Q D 1B 1 .
* AB . CD +
ç)
3 a) A
B
C
D
O
E
A
B
C1
A1 O
D1 B1
C
D
b)
A1
B1
E
O
A
B
C
D
131
E
1. X( /- ( $% * / ]
2. N* ( * # $% # # ]
3. 1( / A B + BA #(% B # BC
BC = 2 AB *+ 4. Q ( # ( * / * # ) <; ( *
+
5. A B + " * AC = 3 AB C
**+
6. a b * + M a + b! M a . b! /M )a + 3b! M )a
. b * **+
7. <) sm H sm + M <, sm! M , sm!
/M <) sm! M )) sm! M )F sm **+
Geometrik tapmaça
N ( / * / + D$ % + X(
( * <) sm * + * *
* ( / ( ]
132
49
<
!
1-nji mesele. A */ + O #(%$ (1nji surat) A */ */ *+
1
A
O
2
B
A
C
3
O
4
C1
2-nji mesele. D */* - B1
O
Gurmak:
1-nji ädim. A ( / (2-nji surat)+ D* ( A
*/* B C /+
2-nji ädim. Y* / ( * O (
/ (3-nji surat)+ D* ( O #(% # C1 $+
3-nji ädim. C 1 *
BC /- ( /
(4-nji surat)+ 5* - ( #
B1 $+
4-nji ädim. OB 1 #(%$ /$ (4-nji
surat)+ Q B1OC1 */ O #(%$ A */ */ +
Esaslandyrma: )
- A
- * #
ABC OB1C1 /*/* *
($? AB = OB1 AC = OC1 BC = B1C1+
" /*/* BBB #
($ ' ABC = 'OB1C1+ 4**
‘B1OC1 = ‘A+
Ýatlatma: D* /( *
/( =
- $ O #(% ( /
( % # +
C1
*/ ** (5-nji a surat)+
Gurmak: <
- $+ > - */ BAC */ * (5-nji b surat).
)
- $+ AC #(%$ - */ CAD
*/ + Q BAD */ */ - */ +
133
5
1. M =;m! M ';m! /M <Hm! M<);m! M AHm
*/
+ X( // * */ **+
2. ‘A = ‘B =E */ L > M+ /?
M )D! M . ! 9M )+ */ **+
3. AHm =;m */ + / M <Hm! M ,Hm!
/M <;Hm! M <);m */ **+
a)
D
b)
C
A
50
B
<
<
- * # A */ *+ D* */ $ ( /
# /#$?
Gurmak:
<
- $+ A * ( / *
*/* # B
C $+
)
- $+ Y* B C (
/ L2-nji suratM+ D* (
# D $ L3-nji suratM+
1
B
A
2
=
- $+ A D /$
AD #(% /$ L4-nji suratM+
AD #(% P */* +
C
B
A
Esaslandyrma. ABD ACD /*/*
<M * ($ AB = AC!
)M * ($ BD = CD!
=M AD — ** +
K/*/* BBB #
($ ' ABD = ' ACD + 4**
‘BAD = ‘CAD+
134
C
3
D
B
A
C
4
Mesele. D ( */ /
D
B
A
C
5
B
P
Q
A
C
(+
+ ‘A ( */ *+
5* * ( /+ 5 ( */* B C /+
Y* B C
( /+
D* ( - ( #
( */* / P
Q $+ AP AQ #(%
/+ D* #(% ( */ /
*/ ($+ D* *
(# +
Ýatlatma. Berlen islendik burçy üçe bölmek
+ ' ' +"'
$ €€ ' "
"' ' 
^DF
" "' Q"" + # '
' 1. X( /- * (? M
F;m! M ';m! /M =;m
*/ $ (+
2. D*/ / ( */ (+
3. AHm
*/ / */ ( +
4. D * */ */ (
*/ /*/* **+
5. ='m
*/ + N* (
/- ( FFm
*/ **+
6*. HAm
*/ + N* (
/- ( * */ / (+
135
51
<
!
*
!+
1-nji mesele. D a ( / * O
/$ * ( /
**+
Gurmak:
1-nji ädim. O (
/+ 5 ( / A B / (1-nji surat)+
2-nji ädim. A B * AB ( / (2-nji surat)+ 5
# C $+
3-nji ädim. C O /$ OC (
/ * (3-nji surat)+
OC ( / a ( / * O
/$ * +
Esaslandyrma. AOC BOC /*/*
+ 5 * ($?
<+ AO = BO;
)+ AC = BC ;
=+ CO ** +
" /*/* BBB #
($ 'AOC = 'BOC+ 5 ‘AOC = ‘BOC+ X(
‘AOC + ‘BOC h <E;m+ * ‘ AOC = ‘BOC h F;m
/+
" % % OCAa.
2-nji mesele. D a ( / O /$ *
( / **+
Gurmak:
1-nji ädim. O a (
/ /$ ( /+ 5
( / A B /
(4-nji surat)+
<='
1
a
A
2
O
B
C
a
A
O
3
C
B
a
A
O
B
4
O
a
C
A
B
O1
5
2-nji ädim. A B * - /
( * (
/+ 5 # O + >- O 1 $ (4-nji surat)+
3-nji ädim. O O 1 /$ ( / /+ OO 1 —
a ( / * O /$ (
/ +
* (# +
D* $ /( a ( /
# a (
/ * ( / / -$ $+
* <A
- - #
/+
Teorema. ! @
! @+
=
3-nji mesele. D '
$ (+
Gurmak:
C AB *+ D*
$ ($ / # /#$?
1-nji ädim. Y* AB A B ( /
(5-nji surat)!
2-nji ädim. B( #$ C
C 1 #$ W^&
<=,
surat)+ CC 1 ( / AB # +
Gönükme. @# O % % AB +
4-nji mesele. D /$ * **+
+ AB *+ A B AB * (
/ (7-nji surat)+ D* ( O1 O2
#$?
AO1 = AO2 = BO1 = BO2+
O1O2 ( / /$+ D* ( /
AB *+ b O1 O 2 AB */ *
O
,
A
O
B
# / #* /$
* +
O
1. @ $ ( $% ** $] @ / $ (+
2. 1( */ $% * ]
3. " * # $
(+
4. " /*/* // $ ( +
5. D * */ (*/ /*/* **+
6. Q # */ /*/* **+
7. AB (
( *
/$ * * ]
8. D ( ( (+
9. K/*/* /+ 5* **+
10.D /*/* **+
11*. A B # *# %
a ( / +
12." /- ( a ( / M a (
/ b ( / /+
138
52
=
+
A
1
A
B
c
A
B
c
B
c
A
C
b
C
a
A
B
c
C
b
A
B
C
B
c
A
C
b
a
C
3-nji ädim. BC = a +
* / B * a ( /!
Q" 1* (#
)
- =
- $
* ( #
/( + ** / a + b
> c +
Q ABC /*/*
% % a b
c (#
+
a
c
1-nji ädim. > ( /
/+ 1( / *
c AB *
( ( !
4-nji ädim. B( #
P C A B
#$+ Q
ABC /*/* a b c +
C
a
B
4
b
B
c
A
C <
- * #
# * #
a b c * c ** *+
B # AB = c
BC = a AC = b ABC
/*/* * / #
/#$?
2-nji ädim. AC = b +
* / A * b ( /!
B
3
A
C
a
A
A
C
b
B
2
A
B
c
B
139
1-nji mesele. D */ */
** (5-nji surat)+
5
B
+ D* $ /*/*
/*/* * /(
+ ** / */* A A
C
$ */* B C $+ N ABC /*/* /*/* *
A */ */ % * +
1. > * /*/* ** ]
2. B a = 3 sm b = 8 sm c = 9 sm /*/* **+
3. M B a = 3 sm b = 4 sm c h , sm /*/* *
]
M K/*/* * / * a b c $% # ]
4. > */ (*/ /*/* **+
5. 1* */ (*/ /*/* **+
6. a ( / + D a
'
- * ( ABC
/*/* /*/* **+
7*. a + b b + c a + c +
B
'
B a b c /*/* **+
8. > */ */
/*/* **+
9. D */ **+
10. D #$ */ */
C
A
/*/* **+
g(
=
1. Z1.,[ # % #+ * # #/
**# **# /( ( +
2. % <;
- % * #* # (+
140
53
<
? /
<+ @ * a b c % % #*
/*/* * $] CM a h < b h ) c h =!
DM a h ) b h = c h A! "M a h = b h A c h H! QM a h ' b h A c h =!+
)+ 1 * / % * *
* $]
CM B! DM B //! "M N* //! QM N* +
=+ 1 * // $% $ * $+ CM @ (/$! DM @ ( / /!
"M R /$ ( / * ( / /
/! QM @ (/$ * +
\'
<+ @$ */ **+ * */ # */ **+
)+ @$ */ **+ 5* **+
=+ 1( / / $+ * /$
#* ( / * ( / **+
A+ 1( / / $+ * /$
#* ( / ( / **+
H+ @$ / (+
'+ K/ **+ B #* /*/* **+
,+ @$ /*/* **+ 5* M ! M /M **+
54
h@
F
R* # ( ?
>+ R H +
>>+ C# # = LA
- (#$ */ / #/ $M+
<+ <);m */ * /- ( */ **+
)+ B a = 5 sm b = 12 sm c = 15 sm /*/* **+
=+ )
- * /*/* a /+
A+ K/*/* * # ($
**+
141
VI BAP
GAÝTALAMAK
# ! ! %
<%
P 1 /( / !
P (# * !
P /( *# $ # +
X
!%
P 1 (# ( /(#
/ ($ # !
P /( *# # ( !
P */ -- # +
142
55
1 /( # ?
<+ 1 #- %$ !
)+ " * %$ % ** ** !
=+ D $ #!
C /( # / ?
?@
F Y$ ! D* / $ #
- + R$ $$ **
* + $ # / /+
b * + D $% *
/ $+
\@
F Y#! D* / $
/( ** + 5 * / $% #/ *
+ @(/ * /+
_@
F D* / (
( /($+
`@
F D* / $ /(
+ /( /#$+ Q #
$+ " $ /(
#/ / % # $ #+
' =
+ ~
'+ !# !  +
!!
1 # / % ?
<+ 4 # )+ N** $ # =+ 1* # 1 /( $% * %$
( # $ + 5 ( * -
143
/ # % #$+ # $ **# *#
/(
+
Q $ /( * - $+
/( %$ -
* # ** * +
C#$/(#+
Y " /*/* /*/* ** +
? Y$ ! #
'ABC P K — AB N — BCL — AC
' K N L —
$ # / / (1-nji surat)+
\ Y! # " /*/* %$
/*/* BDB # +
_ # ($
LA= AK = KB = BN = NC = CL ‘A= ‘B = ‘C h ';m+ 5 'LAK AL
AK A */ 'KBN BK BN B */* %
'NCL CN CL C */* # +
" 'LAK = ' KBN = 'NCL+ 5 * /*/* /- % ( ? KL = KN = NL+
B
1
" ' KNL P +
` #
$ /(# (
K
/ % +
D* $ # ** % /(
+ * $ */ ';m 60°
/*/* %$ A
+ 'KBN /*/* BD /$ (2-nji surat)+ BD 2
% / ‘ KBD h ';m^) h =;m ‘BKD = ‘BND h F;m . =;m h ';m +
" ' KBN /*/* +
M
'KAL 'NCL % 144
60°
N
60°
L
B
30°
D
N
C
/*/* BK = KN = NL = LN $
+ * ' KNL /*/* $ 'KNL = 'KBN = 'NCL = 'KAL % $ +
56
[!
4 # $ me$+ " * ( **
% $ ($ ** +
D* $/ / / # #$+
@%( 1# */ - */*
);m */ $+ * */ +
B
1
E
20°
A
O
C
$ # / #
$ (1-nji surat)+ * OE */* $ +
" ‘BOC = 2 ˜ );m h A;m ‘AOB =180°– 40° =
h<A;m +
^%( ABC (*/ /*/* ‘ C . ( */ A
$ # */ <);m + Q AC + AB h <E /*/* * +
$ # ($ /
C
2
/ (2-nji surat)+ K/*/* #
*/* ‘A h <E;m
<);mh ';m
b
‘B h F;m ‘A h =;m +
120° 60°
30°
AC = b, AB = c *+ 5 b + c = 18. X *
c
B
A
/ =;m (*/ /*/*
%$ ($ c = 2b + * b + c = b + 2b = 18, b = 6. 5
c h <) $ + *#+ <)+
`%( ABC /*/* AB h< A */* B / *+ Q BC * /*/* +
145
$ # / #$ (3-nji surat):
AK = KC+ ANA BK+ 'ANB = 'ANK / AN
** */ L #$ */
*/M+ * AB = AK= KC h < B
3
AC h < j <h ) +
N
BC = x . /*/* ($ ) j <> x x + 1> ) x < 3 x > <
q x q = + < = A
C
M
? )+ "+ BC h ) PABCh <j ) j ) h H+
*#+ 5
? AB kesimi * <? ) ? = ? A # L#* M
(+ Q / * <H sm AB * +
\ ‘ABC h <';m */* #* */* B
BO BE #(% /+ Q BO #(% 4
*/ BE #(% = ? H # OBE */ +
_ AOB */ OC #(% - =;m
F
E
* */ (+ D */*
OC #(%$ */
O
+
` " /*/* */ =;m
A
C
D
+ * /*/* -
/ A
5
*/ +
b K/*/* # */ <;;m #
*/ # )?= +
K/*/* */ +
D
x
h A B C D ( (
/ AB = BC h < CD h )+ K BC BC AD *
# # #$?
146
B
C
BK ? KC = AK ? KD+ * # +
j K/*/* */* # */
<)Em
+K/*/* /- */* +
J " /*/* $ */ F'm + Q */
# */ +
p 1(*/ /*/* ( */*
A
6
/ * x
*/ )Am + K/*/* D
*/ +
?QQ A
- * AB = BC ‘ABC h H;m AE
FC P ‘ AOB h ]
21°
‘EOC = ?
??Q H
- * AB=AC AD=DC x=?
B
C
?\Q '
- * AB=AC BD=BC x=?
}+!
57
N**$#(*#/-+5/(
**+%(
#+
@%( 1#*/(*
**+
‘AOC ‘BOC — #*/ OO1
OO2 –(1-nji surat)+
1
C
O2
B
O
O1
A
OO1AOO2+
#! OO 1 OO 2 ( */ # L<
- *
(# M D E $+
5 ) + 2 h <E;m + h F;m ‘ O 1 OO 2 = + h F;m+ " OO 1 AOO 2 + *
** +
^%( )
- a * # ABCD (*/*
‘D =‘A +‘B +‘C ** +
147
#! AD ( / BC 2
#$ E $ ( AD
a)
$M */ / *
$ (2-nji b surat)+ $ #
+ + x h <E;m y + z + h <E;m+ * #* + + + x + y + z = 360° +
1# * /* % $ ( $ x + y = 1 8 0 °
B
/ + + + 1 8 0 ° + z h = ' ; m + + h <E;m
z = ‘ D b)
‘D = + + = ‘A + ‘B +‘C +
Q" #
!!
X $ / # )
- #/ * *
# * $ B
/( ( +
A
D
C
A
D
z
y
x
E
C
? K/*/* */ ( # # */ * +
* /*/* (*/ /*/* ** +
\ D */ <H;m /*/* /
** +
_ " /*/* # ) ? < # ** +
` " /*/* $ # */* /*/*
** +
b A
- $ ** +
h " /*/* ';m */ #$ ** +
j K/*/* /- / */ ** +
J ABC A 1B 1C 1 /*/* BM B 1M 1 /+ Q
AB= A1B1 AC = A1C1 BM = B1M1 'ABC = 'A1B1C1 **
+
p ABC A1B1C1 /*/* AD A1D1 . + Q AB = A1B1,
148
BD = B1D1 AD = A1D1 'ABC = 'A1B1C1
3
C
A
B
4
58-59
(+
?Q ABC A 1B 1C 1 /*/* BH B 1H 1
/+ Q ‘A =‘A1 ‘B =‘B1 BH = B1H1 'ABC = 'A1B1C1 ** +
??K/*/* *
/*/* ** +
?\=
- * + = + h F;m ** +
?_A
- * q q ** +
!
<+ > ( / - */
** +
)+ K/*/* * *
** ** +
=+ K/*/* “ */ / q + q + q + #
* $% /*/* ]
A+ D /$ ( **+ $/ /( ]
H+ ABC /*/* AA1 BB1 O #$+ Q
M ‘AOB h <='m! M ‘AOB h <<<m ACB */ +
'+ <
- * * BD h ' BE h ] DE h ] AC = ?, ‘BED = ?
,+ G A) sm ABC /*/* == sm
=H sm /*/* ($+ * +
E+ 1(*/ /*/* */ $% */ #$]
F+ )
- * ‘1 = ‘) ** +
<;+ MN NM #(% ** ( $% * ]
<<+ A B C ( / + Q AB = 2 sm BC = 3
sm AC = 5 sm B AC # ] O
+
<)+ A BC ( / B C + Q BC
= 15 sm AC AB = sm AB * +
149
<=+ ';m =;m */ **+
B
1
<A+ B( ( * **+
A
<H+ 1# */ - A /
#* */ ** +
<'+ > ( / # */ # , ? = + *
E
*/ / +
<,+ A B C ( / +
2
BC * AC *
= * AB * BC
* =' sm + AC * +
A <E+ > ( / /- ( / # */ - <E;m * ( / ( ** +
<F+ > ( / /- ( /
*/ HHm + 1 */ +
60-61
C
D
C
1
B
2
D
<
? ^= !
!!%
<+
)+
=+
A+
B ++++++++++++++ ( / / +
D*/ ++++++++++++ */ ( */ ($+
@ ++++++++++++ ($+
B ( / # ++++++++++++ % # ++++++++++++
% +
H+ Q /*/* ++++++++++++ */ +
'+ > /*/* # ++++++++++++ # ++++++++++++ +
,+ " /*/* % ++++++++++++ * +
E+ 1(*/ /*/* ++++++++++++ F;m +
F+ X */* ++++++++++++ */ ($+
<;+K/- ( / ( / ++++++++++++ +
<)+D ( / * ( / ++++++++++++ +
150
<=+G ( / - / */ ++++++++++++ +
<A+@ #/ ++++++++++++ *
+
<H+B($ ( ++++++++++++ +
\ $! F=! & !=!%
<+
)+
=+
A+
H+
B ( / / +
1( */ <E;m +
1# */ +
" */ - <E;m +
K/*/* #* $ # #$ /*/* $+
'+ K/*/* * */ - +
,+ K/*/* - <E;m
+
E+ F;m
*/ #$ ( / $+
F+ G ( / #$+
<;+B( * +
<<+1(*/ /*/* * / */ =;m
+
<)+" /*/* % */ ';m +
<=+D*/* */* *
+
_ <
(+ )
==
!+ ( %
<+ H +
)+ R #/ #* #(% +
=+ @#$ ( /+
A+ " / %
% +
H+ 4 /*/*+
'+ > /*/*+
,+ D*/ ($+
E+ > +
F+ > */* - F;m
*
/*/*+
151
` <
F ==
! !==
F+ F ==
!
!
(+ @! !==
!
%
Q ""&
$"" <+ G* ( /
C+D * D+> */ b+1* "+" # #$
Q+D / */* # */* - 3+@#$
V+ F;m */ #$
1+B 4+R *#
>+ 5* * O+ D /$ *
)+ " /*/*
=+ B(
A+ D*/* H+ K/*/* '+ =;m */* #
,+ E+ K/*/* # */
F+ " /*/*
<;+@
<<+G ( /
b /
<+ D ( / $/ ( / /
]
CM < DM ) bM = "M A
)+ X */ $/ * ]
CM F;m! DM F;m *! bM F;m /! "M <E;m+
=+ V* ($ ‘ BCA */ + A+ V* ($ x +
CM )Hm
bM AHm
DM =Hm
"M HHm
CM E;m DM F;m
bM <;;m "M ,;m
H+ Q ABC /*/* ‘B h =;m ‘C h F;m AC = 10 sm AB
* +
CM <; sm DM <) sm bM <H sm "M ); sm
152
'+ ABC /*/* AB = BC AB = AC + , LsmM+ Q ABC /*/*
)= sm /*/* / +
CM = sm DM H sm bM , sm "M F sm
,+ 1# */ - / *+ * */ *
+
CM AHm DM ';m bM ,Hm "M F;m
E+ B( * =) sm+ 5* +
1
2
3
4
CM =) DM H) bM 'A "M <'
F+ ABC P (*/ /*/* L1-nji suratM
‘C h F;m CD P + ‘BDC = 130°
‘A +
CM AHm DM 'Hm bM ,Hm "M EHm
<;+ ABC P /*/* $
B */ E;m + 5* A $
# */* +
CM <=;m DM <);m bM <<;m "M <;;m
<<+Q a A b, b A c, c A d #
- % $+
CM a||c DM bA d bM a||d "M b||c
<)+Q )
- * AO = OB, OC = OD,
BC = 5 sm AO + OC = 7 sm AOD /*/* +
CM H sm DM , sm
bM <) sm "M <, sm
<=+Q =
- * a||b b||c x = ?
CM ';m DM ,;m bM E;m "M F;m
<A+ABC /*/* ‘ A = H;m ‘B = 70°
* * +
CM AB DM BC bM AC
"M +
<H+Q A
- * O P ( AO = 4 sm BC kesimi *
+
CM A sm DM H sm
bM ) sm "M E sm
<'+H
- * # /*/* /
*/* +
153
CM =;m DM AHm bM ';m "M F;m
5
<,+K/*/* )H )F /*/* ($+ Q /*/* A; * +
CM <; sm DM , sm bM H sm "M F sm
<E+<);m
*/ # */ - +
CM =;m DM AHm bM <E;m "M <);m
<F+ABC /*/* C */ ,;m A B */
*/ +
CM HHm DM ';m bM 'Hm "M ,Hm
);+ABCD (*/* A D / BC
= ( ($+ Q (*/* * AB = H * +
CM ); DM =; bM A; "M E;
h'
<+ " ABC /*/* AB / /*/* ($+ * /*/* ** +
)+ G =; sm /*/* - ) sm *
/- ) sm /+ K/*/* * +
=+ K/*/* / <E sm )A sm
/*/* ($+ D /*/* / ' sm
-e + K/*/* * +
A+ K/*/* H <E )' /*/* ($+ D /*/* +
H+ " /*/* ,' sm ) sm +
1 +
'+ AB CD ( / O #$+ BOC AOD */ -
<FAm + AOC */ +
,+ ABC /*/* A */ C */ AD BC + Q BD h ,E AC +
E+ " /*/* / - */ );m
+ K/*/* */* +
F+ B */* D */* DA DC * /+ DA = DC ** +
<;+ Q A, B C ( / AC = 7 m BC = 9 m
AB * +
154
62-63
^F
B
1
A
C
D
2
C
B
A
D
O- # ( + D- ( ';. '<
- #
H <; /( $+ D # - ( #
# H $ + ^F <+ 1# */ - <,m /+
* */ +
)+ <
- * * M ' ABC = ' ADC **
!
M ACD /*/* +
=+ )
- * a||b AB — CAD */*
AC = 7 sm+ BC kesimi
* +
A+ 1(*/ /*/* ( */*
/ * %
+ * /*/* */ **+
H+ D */ */ * **+
155
^
\
j < + p M /! M < ! /M < ** /
+ ?Q H ! <; + ?? M = ! M ' + ?\ ' ! <; +
_
? C s! C "! C D+ _ 4! + b M ) ! M = ! M
<< ! M Ln j <M + h ' + j ' + J A ' + p 4
+ ?Q 4+
`
` + b ) H! ' F+ j = <A! A <;! ' F! H <)+ ?? ' ? AB, BC, CD; AC; AD; BD+
b
_ 4 sm! H sm! 'H sm! < sm! )H sm! <H sm+ ` ''+ b <+ h F+ j <)E
sm+ J ;E+ ?Q ) + B AC AC = 800 m+ C AB AC = 400 m+ ?? H+ ?b B A
C +
h
J M =' mm! M F; sm! /M A m 22 sm+ ?Q M H sm! M =H sm! /M H, sm+
?_ 130 sm! ?` 16 m
J
` ‘ AOD ‘ COB ‘ DOB ‘ AOC + b <; *? ‘ AOE ‘ EOD ‘DOC ‘COB ‘BOA ‘EOB ‘EOC ‘AOC ‘AOD ‘BOD+ ?Q 4!
+
p
` 4+ j M ,)m! M ';m! /M H;m+ ?\ M 4! M X! /M X+ ?` M
F;m! M <E;m+ ?b ‘ AOB h ';m ‘ AOC h F;m ‘ AOD h <=;m ‘ BOC h =;m
‘ BOD h ,;m! ‘ COD h A;m+
?Q
??
?@
F % ? BC = 3 sm+ \ BC = 12 sm+ _ ‘ BOC h =Hm+ ` <H;m+
b AHm+ h M E ! M E ! /M E ! M E + j H ! <
+ ?Q M =;m! M <E;m! /M <m+ ?? M ;Hm! M )Hm! /M <Hm+ ?\
M <;Hm! M ,Hm+ ?_ OC #(% ‘AOD-! OD #(% ‘COE-! OE #(%
‘ DOB-! OD #(% ‘ AOB +
?\
\ <E;m+ h M <';m! M <H;m! /M <=Hm! M F;m+ j AHm! <=Hm+ J M X! M
4! /M X+ p 4+ ?Q M <A;m! M AHm! /M AHm+ ?? M AHm! M ';m! /M =;m+
?\ M A;m! <A;m! M HHm! <)Hm! /M <Em! <')m+ ?` <A;m A;m <A;m+ ?b X+
?_
?`
?b
?j
h <M )M =M 'M+ j X # +
\ < + b >/+ J F;m+ p X+ ?Q 4+
_ F;m+ b OC + h ';m! ';m+
b@
F % ? Q! \ "! _ "! ` C! b Q! h D! j Q! J Q! p D! ?Q D! ??
C! ?\ "! ?_ Q! ?` D! ?b C! ?h C! ?j D! ?J Q+ h@
F % \ F;m+
_ ';m+ ` X+ b ) /( ? <M <Hm! )M 'Hm+ h <Hm+ p X+ 156
?Q /( ? <M ;H m! )M HF m+ ?? M AC = 9 m BC =6 m!
M AC h,H m BC h,H m! /M AC =6 m BC = 9 m+ ?_ M <H ! M )< !
/M AH + ?b <=+ ?h ' + ?j A+=; ,+=;+ ?J '+ ?p ‘AOB h<<;m
‘BOC h ,;m! M ‘ AOB h='m ‘BOC h<AAm! /M ‘AOB h<<)m ‘BOC h'Em!
M ‘AOB h <H;m ‘BOC h=;m+ \Q H;m <=;m H;m <=;m+ \? M C  AB ! M A BC.
?J \@
F % ? <;'m+ \ ';m+ _ AEm+
?p j M ! M 9 %! 9M 9 +
\Q \ QR! M ‘RPQ ‘RQP! /M ‘Q ‘PQR! M ‘PQR+ ` M (! M
! 9M ! M ! M */+ j M =! M =! /M =+
\? j 1(*/ /*/*+ J 4+ p =+ ?Q 9 ?? <'+
\\ ?? EHm+ ?\ M ‘D h =Hm ‘C h ')m+ ?_ X+
\_ \ Q+ _ <;+ ` a h <) b h E+ ?Q EE! <<+
\` ` A+ ?? AC = BD h ,+
\b h ' BAC = ' MAN, ' BAN = ' MAC+ p = +
\h ` " /*/*+ b <;A sm+ j 8 sm+
\j ` ‘C1hF;m ‘A1h=;m ‘B1h';m+ b 10 sm <; sm+
\J b@
F % ? D! \ "! _ D! ` Q! b "+ h C+ j "! J C! p D! ?Q "!
?? D! ?\ D! ?_ C! ?` D! ?b "! ?h C+ h@
F % j 4+ ??
EHm+ ?\ AEm+ ?_ <);m+
\p
_@
F % ? <;+ _ 3 11 7 1 7 1 +
15
3
3
_Q
_?
j X + ?Q 4+
_\
_ ‘1 = ‘3 = ‘5 = ‘, h <<,m ‘4 = ‘E h '=m+ ` FEm E)m FEm! ,;m
<<;m ,;m+
b M 4! M 4! /M 4! M X+ j < % /$+
__ ` ‘3 = ‘, h <;Hm! ‘2 = ‘4 = ‘6 = ‘E h ,Hm+ h X+
_` j <M (! )M (! =M (+
_b b AHm+ J ‘2 = ‘= h H=m+ p ,;m <<;m+ ?\ ,;m <<;m+
_h b@
F % ? C! \ D! _ C! ` Q! b "! h "! j "! J Q! p D! ?Q
D! ?? "! ?\ Q! ?_ C! ?` D! ?b Q! ?h C+ h@
F % ? HHm+ \
4+ _ 4 ` ‘3 = ‘, h <<Em! ‘2 = ‘4 = ‘6 = ‘E h ')m+ h
<)Em+ ?? 59°
157
_j
_J
`@
F % ? =Am <A'm <A'm+ _ AEm <=)m+
\ < + _ < + ` M ! M ! /M + b M E;m! M )Hm! /M AHm!
M AHm+ h M '=m! M F;m! /M <Hm+ j M E;m H;m! M =;m! ';m! F;m! /M
H;m ';m ,;m+ J M 'Hm! M AHm! F;m! AHm+ p M ,Fm! M <;;m+ ?Q x h);m
y hH;m+ ?\ ';m+ ?_ ';m ';m ';m+ ?` AHm F;m AHm+ ?b M H;m E;m 'Hm 'Hm! M ';m ';m! /M =,Hm! =,Hm+
_p
_ ';m AHm ,Hm+ ` =;m <);m+ b ,Hm+ h ),;m+ j F;m+ J F;m+ p <<;m+
?Q ';m+ ?? < + ?\ =';m+
`Q
? H;m! F;m! A;m+ \ ';m! AEm+ b + h HA;m+ j )Am ='m ';m+ p M =;m
=;m! M ,;m A;m HHm HHm+ ?Q M <Hm <H;m! M ,Hm =;m+ ?\ <Hm! 'Hm+
?_ =;m+ ?` ',Hm+
`? b 1* =;m # ) * + j M A! M '!
/M ';m+ J M H! M <=H! /M F+ ?Q E <'+
`\
_ M X! M ! M ! M + ` M ! M ! M ! M !
M + h M ! M ! M ! M ! M +
`_
``
\ 7 sm+ _ 7 sm, 7 sm+
\ ** ‘ACB / ‘ABC+ _ M ‘ABC > ‘BAC > ‘ACB $! M ‘ACB =‘ABC q ‘BAC + ` Q + b X+ h
M BC > AC > AB! M BC q AC q AB+ j X + J ';m! ';m! <);m! <);m+ p
;q ‘Bq ';m+ ?Q X */+ ?\ 1*+
`b
_ X+ ` M ! M ! /M ! M + b M ,! M <;! /M E H+ 8+
,! ,! <<+ p ' + ?Q K/*/* +
`h
`@
F % ? D! \ "! _ D! ` D! b "! h D! j D! J D! p Q! ?Q C!
?? "! ?\ C! ?_ "! ?` C! ?b "! ?h "! ?j "! ?J "+
`j
b_
bh
b@
F % ? 'Hm+ \ A;m';mE;m+ _ 12 sm ` A;m';mE;m+
?@
F /% ? C! )+ "! =+ D+
? ); + \ );m+ _ <Hm+ ` =;m+ b A;m! ';m! E;m+ h < ? )+ j ,'m+ J A)m+
p )<m 'Fm+ ?Q ‘AOB h<))Hm+ ?? ,)m+ ?\ A'm+
_ X */+ b M F)m! M A)m+ h '! '! '! ';m+ J AHm+ ?Q @+ ?? 4+
?\ 9 sm+ ?b <AAm+ ?h HAm+ ?j =' sm+ ?p A HHm
A <)Hm+
bJ@bp
b@
F /% ? C! \ Q! _ "! ` D! b Q! h C! j Q! J "+ p D+ ?Q
C+ ?? C! ?\ "! ?_ D! ?` "! ?b Q! ?h C! ?j D! ?J Q! ?p C! \Q "+
h@
F '% \ 12 sm+ _ 12 sm+ ` =A+ b )E sm+ h E=m+ j <H' sm+
J HHm+ ?Q 2 m <' m+
hQ@h?
hQ@h?
^F % ? E<m FFm+ 2+ M )) sm+ =+ , sm+
158
$<;z||$$g$'€&<$[€;{[$;${€&X{$}[€}${‚€
$/$'z{$/‚€ƒ„[‚€{€&z|zƒ<X*}$ƒ;X
†X€'X/{$‡
LB*M
*”,
*9%*
B%P07*%892P);<=
B-P+C*
YP@+4
B%P
@P@+4
N%-P
5
/$);<=
-<H
-***+/,;_F;1/16+
ZC[*+5/#**+5+/<A;+R#/
<=;+–––––*/+D**R––––––+
R–––+
†
(ˆ‰‡^Š^(
!!!
]
&}
&``
159
*+
!
!!
+
F!
B^
5*/
5*
"
N
"
N
#/
#
#/
1
2
3
4
5
6
;+
!
&
(
!
!!F!
!
!
(!
!!%
B$
"-$+
X#
@ # ( +
4 %
/+
@
@
@#-/$
( - +1$
$%/+
@#/(
+ N%
#$ / #+ "
+