PUBLICATIONS - Department of Physics

PUBLICATIONS
1. Güçlü A.D., Potasz P. and Hawrylak P., Zero-energy states of graphene triangular
quantum dots in a magnetic field. Phys. Rev. B 88, 155429 (2013).
2. Güçlü A.D., Hawrylak P., Optical control of magnetization and spin blockade in
graphene quantum dots. Phys. Rev. B 87, 035425 (2013).
3. Güçlü A.D., Grabowski M., and Hawrylak P. Electron-electron interactions and
topology in the electronic properties of gated graphene nanoribbon rings in
Möbius and cylindrical configurations, Phys. Rev. B 87, 035435 (2013).
4. Sheng W., Korkusinski M., Güçlü A.D., Zielinski M., Potasz P., Kadantsev E.S.,
Voznyy O., and Hawrylak P., Electronic and optical properties of semiconductor
and graphene quantum dots. Front. Phys. 7, 328 (2012).
5. Potasz P., Güçlü A.D., Wojs A., and Hawrylak P., Electronic properties of gated
triangular graphene quantum dots: magnetism, correlations, and geometrical
effects. Phys. Rev. B, 85, 075431 (2012).
6. Güçlü A.D., Potasz P., and Hawrylak P., Electric-field controlled spin in bilayer
triangular quantum dots. Phys. Rev. B, 84, 035425 (2011).
7. Potasz P., Güçlü A.D., Voznyy O., and Hawrylak P., Electronic and magnetic
properties of triangular graphene quantum rings. Phys. Rev. B, 83, 174441
(2011).
8. Voznyy O., Güçlü A.D., Potasz P., and Hawrylak P., Effect of edge
reconstruction and passivation on zero-energy states and magnetism in triangular
graphene quantum dots with zigzag edges. Phys. Rev. B, 83 165417 (2011).
9. Güçlü A.D., Potasz P., and Hawrylak P., Excitonic absorption in gate controlled
graphene quantum dots. Phys. Rev. B. 82, 155445 (2010).
10. Potasz P., Güçlü A.D., and Hawrylak P., Spin and electronic correlations in gated
graphene quantum rings. Phys. Rev. B. 82, 075425 (2010).
11. Potasz P., Güçlü A.D., and Hawrylak P., Zero-energy states in triangular and
trapezoidal graphene structures. Phys. Rev. B. 81, 033403 (2010).
12. Potasz P., Güçlü A.D., and Hawrylak P., Electronic shells of Dirac fermions in
graphene quantum rings in a magnetic field. Acta Physica Polonica A. 116, 832
(2010).
13. Güçlü A.D., Potasz P., Voznyy O., Korkusinski M., and Hawrylak P., Magnetism
and correlations in fractionally filled degenerate states of graphene quantum dots.
Phys Rev. Lett. 103, 246805 (2009).
14. Güçlü A.D., Umrigar C.J., Jiang H., and Baranger H.U., Localization in an
inhomogeneous quantum wire. Phys. Rev. B Rapid Comm. 80, 201302 (2009).
1
15. Güçlü A.D., Ghosal A., Umrigar C.J., and Baranger H.U., Interaction-Induced
strong localization in quantum dots. Phys. Rev. B Rapid Comm. 77, 041301
(2008).
16. Ghosal A., Güçlü A.D., Umrigar C.J., Ullmo D., and Baranger H.U., Incipient
Wigner localization in circular quantum dots. Phys. Rev. B. 76, 085341 (2007).
17. Ghosal A., Güçlü A.D., Umrigar C.J., Ullmo D., and Baranger H.U., Correlation
induced inhomogeneity in circular quantum dots. Nature Phys. 2, 336 (2006).
18. Güçlü A.D., Jeon G.S., Jain J.K., and Umrigar C.J., Quantum Monte Carlo study
of composite fermions in quantum dots: The effect of Landau level mixing. Phys.
Rev. B. 72, 205327 (2005).
19. Jeon G.S., Güçlü A.D., Umrigar C.J., and Jain J.K., Composite-fermion
antiparticle description of the hole excitation in a maximum-density droplet with a
small number of electrons. Phys. Rev. B. 72, 245312 (2005).
20. Güçlü A.D. and Umrigar C.J., Maximum-density droplet to lower-density droplet
transition in quantum dots. Phys. Rev. B 72, 045309 (2005).
21. Güçlü A.D., Sun, Q.F., and Guo, H., Kondo resonance in a quantum dot
molecule. Phys. Rev. B 68, 245323 (2003).
22. Güçlü A.D., Wang, J.,and Guo, H., Disordered quantum dots: a diffusion quantum
Monte Carlo study. Phys.Rev.B. 68, 035304 (2003).
23. Güçlü A.D., Sun, Q.F., Guo, H., and Harris R., Geometric blockade in a quantum
dot: transport properties by exact diagonalization. Phys.Rev.B. 66, 195327 (2002).
24. Güçlü A.D., Rejeb, C., Maciejko, R., Morris D., and Champagne, A.,
Photoluminescence study of carrier dynamics and recombination in InGaAsP/InP
MQW structures. Journal of Applied Physics. 86, 3391 (1999).
25. Güçlü A.D., Maciejko, R., Champagne, A., Comparison between the Monte Carlo
method and the drift-diffusion approximation in quantum-well laser simulation.
Journal of Applied Physics. 84, 4673 (1998).
2