Gears

FORCE ANALYSIS OF
GEARS
Week-2
FORCES ON SPUR GEARS
3
T12 = r2 Ft32
O3
O3
3
B
Ft23


r2
A
O2
2
F13
Fr32
F23
Ft32 = P/ r2 2 Ft 2
12
F
r
t
F 32 = F 32 tan
12
F32 = Ft32 / cos

P = T12 2
= r2 Ft32 2
T13
Fr23

O2
Fr12
Ft32
T12
F32
PROBLEM
y 2
• 1 2 18 t
3
4
20 t
36t
F12

P= T122  20,000= T12 (900)(2/60 )
T12 = 212.2 N.m
Fr12
2
O2
Ft12
Pressure Angle:  = 20 °
Metric modul: m= 4 mm
Speed : n = 900 rpm
x Power: P = 20 kW
z: Number of teeth
T12
d = mz
d2 = 72 mm
d3 = 144 mm
d4 = 80 mm
MO2=0  T12 - Ft32 r2=0  Ft32 = T12 / r2
2

Ft32 = 212.2 / (0.072/2)  Ft32 =5894N=5.894 kN
Ft32
Fr32= Ft32 tan20 = 5.894 tan20  Fr32 = 2.145 kN
F32= Ft32 / cos20 = 5.894 / cos20  F32= 6,27 kN
Fr32
F32
F=0 
F12= - F32
F23
Fr23

MO3=0  - Ft23 r3+ Ft43 r3=0
F13
Ft23
Ft23= Ft43  Fr23= Fr43  F23= F43
3
Fr43 F=0  F + F + F =0
23
43
13
3 O3
F34
Fr34
Ft43
Ft34
4

O4
4
T14
(5.894i -2.145j)+(-2.145i+5.894j)+ F13 =0
F43
F13 =-3.75i -3.75j kN = 5.3 /-135 kN
F=0  F14 = -F34
MO4=0  T14 = Ft34 r4 =5.984 (0.04)
T14= 235.76 N.m T14 > T12 (DISCUSS)
F14 Otherwise, from kinematics
2/4= d4/d2  4= (900)(2/60 )(72/80)=84.82 r/s
T14 = P /4  T14 = 20,000 /84.82  T14 = 235.79 N.m
(DISCUSS)
Helical Gears
Ft=T/r

is helix angle
Straight Bevel Gears
Ft=T/r