`Askhsh 1 `Askhsh 2 `Askhsh 3 `Askhsh 4 `Askhsh 5

'Askhsh 1
Na kˆnete
tic
prˆxeic ¸ste na
35
A = √ + 110 − 82
49
∆=
aplopoihjoÔn
oi arijmoÐ:
7
B =2− 3 −
2
!
3 4 − 2(3 − 6) + 4 − 3
2
3
4
Γ=
2−
1−
1
3
2
3
q√
√
√
√
E = ( 47 − 22)( 47 − 22)
'Askhsh 2
Na gÐnoun oi
prˆxeic:
(ab)2 · b−1 · (a2 b)−3
a2 b−2 · (b5 a)−1 · a · (a2 ba)−2
'Askhsh 3
An
Π=
kai
a = 10−3 , b = 10−2
ab−2 · (a−1 b2 )4 · (ab−1 )2
a−2 b · (a2 b−1 )3 · a−1 b
na apodeÐxete
ìti
Π = 100
.
'Askhsh 4
Na upologÐsete thn tim thc parˆstashc
h
i2010 h
i2
− (−2)−3 +
A = 2011 · (−1)2002 + (−1)2003
1
(−8)2
'Askhsh 5
a + b + c = 1997
A = a + 2b + 3c
An
kai
b + 2c = 15
.
1
na
aplopoi sete
thn
parˆstash
'Askhsh 6
Na apodeÐxete
ìti
3 5
7
2+ + ·
4 2 3+
1+
−
2+
4
5
! 77
: 1+
=5
228
2
3
1
2
'Askhsh 7
Na apodeÐxete
ìti
2
+ 32 − 1
3
22
+ 23 + 1
32
3
2 − 3 1 + 233
=
· 2
2
1 + 32 23 − 32
'Askhsh 8
Pˆrte ènan opoiond pote akèraio arijmì.
meno tou.
Pollaplasiˆste ton me ton mejepì-
Tìte to apotèlesma pou br kate eÐnai pˆnta katˆ èna ligìtero apì
to tetrˆgwno tou arijmoÔ pou brÐsketai anˆmesa touc.
kai
5·5 = 25
ìti
autì sumbaÐnei
.
Parˆdeigma:
Kˆnte merikˆ dikˆ sac paradeÐgmata gia na peisteÐte.
gia opoiad pote triˆda
4 · 6 = 24
ApodeÐxte
diadoqik¸n arijm¸n.
'Askhsh 9
Pˆrte
tèsseric
siˆste
pˆnta
ton
katˆ
deigma:
opoiousd pote
pr¸to
dÔo
7 · 10 = 70
sigoureuteÐte.
me
ton
ligìtero
kai
diadoqikoÔc
teleutaÐo.
apì
to
8 · 9 = 72
.
Tìte
ginìmeno
akèraiouc
to
twn
arijmìuc.
apotèlesma
dÔo
pou
mesaÐwn
Pollapla-
br kate
arijm¸n.
eÐnai
Parˆ-
Kˆnte merikˆ dikˆ sac paradeÐgmata gia na
ApodeÐxte ìti autì sumbaÐnei gia opoiad pote tetrˆda diadoqi-
k¸n arijm¸n.
'Askhsh 10
'Enac majht c
kaj¸c èpaize me
touc arijmoÔc ègraye
6
4+2
15
· 15 =
· 15 = 4 + 2 ·
= 4 + 2 · 5 = 4 + 10 = 14
3
3
3
30 = 14
?
30 = 2 · 15 =
dhlad br ke
.
Ti p ge
strabˆ
2
'Askhsh 11
Na upologÐsete touc arijmoÔc
A = 1004 + 1005 · 1004 − 1006 · 1003
B = 10043 − 10042 · 1003 − 1004 · 1003 − 1004
AntÐ
na
kˆnete
touc
pollaplasiasmoÔc
skefteÐte
ìti
1005 = 1004 + 1
kai
1006, 1003
parìmoia ta
.
'Askhsh 12*
Na aplopoi sete
touc
arijmoÔc
A = 317 · 5172 · 0 · 5 · 6189 · 35
B = (−1)2011
∆=
ShmeÐwsh:
2500
4250
E=
Γ=
1 2 3 4
99
· · · · ... ·
· 100
2 3 4 5
100
1 + 2 + 3 + 4 + ... + 499 + 500
2 + 4 + 6 + 8 + ... + 998 + 1000
Kai ta pènte jèloun skèyh allˆ qreiˆzontai mìno aplèc idiìthtec
pou xèrete.
'Askhsh 13
Na breÐte to
prìshmo tou parakˆtw arijmoÔ
(−2)(−4)(−6) · ... · (−2010)
(−1)(−3)(−5) · ... · (−2009)(−2011)
'Askhsh 14
Se ti
yhfÐo
telei¸nei o arijmìc
B =1·2·3·4·5·6·7·8·9 ?
3
MporeÐte na to breÐte qwrÐc na kˆnete ìlouc autoÔc touc pollaplasiasmoÔc.
'Askhsh 15
BreÐte
ton
epìmeno
arijmì
(dhlad breÐte
me
poiˆ
logik ftiˆqnontai
oi
a-
rijmoÐ) sta parakˆtw
1, 2, 3, 4, 5, ...
3, 6, 9, 12, 15, ...
3, 1, −1, −3, −5, ...
1, 4, 9, 16, 25, ...
1, 3, 7, 15, 31, 63, ...
1, 1, 2, 3, 5, 8, 13, 21, ...
2, 4, 7, 11, 16, 22, ...
1, 2, 6, 42, 1806, ...
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...
Na
exhgeÐsete
eÐnai
polÔ
th
logik dÔskolo
oi pio ìmorfoi
na
arijmoÐ
sac.
to
H
duskolÐa
breÐte.
auxˆnei
Parìlauta
me
autoÐ
th
eÐnai
seirˆ.
oi
pio
To
teleutaÐo
shmantikoÐ
kai
onomˆzontai
pe-
se ìla ta majhmatikˆ.
'Askhsh 16*
Oi
zugoÐ
rittoÐ.
zugoÔ
noÔ
ìti
me
arijmoÐ
Autì
me
to
2
to
ˆrtioc
to
2
onomˆzontai
ìnoma
den
touc
ˆrtioi
dwjeÐ
perisseÔei
perisseÔei
sun
kai
èqei
ˆrtio
upìloipo
upìloipo
dÐnei
ˆrtio.
perittìc sun ˆrtio dÐnei perittì.
1
.
en¸
oi
diìti
en¸
monoÐ
ìtan
an
kˆnoume
ParathreÐste
EpÐshc
arijmoÐ
kˆnoume
perittìc
me
sun
th
th
diaÐresh
diaÐresh
diˆfora
perittì
enìc
enìc
mo-
paradeÐgmata
dÐnei
ˆrtio
kai
ProspajeÐste na apodeÐxete ìti autˆ ta trÐa
sumbaÐnoun pˆnta.
Upìdeixh:
alli¸c
ton
Ja
qreiasteÐ
tuqaÐo
èqoun th morf èqoun oi
2κ
na
perittì.
ìpou
κ
parast sete
AfoÔ
oi
akèraioc.
kˆpwc
ˆrtioi
ton
tuqaÐo
diairoÔntai
me
ˆrtio
to
2
kai
kˆpwc
shmaÐnei
ìti
Me parìmoio trìpo breÐte th morf pou
perittoÐ.
4
'Askhsh 17*
Na
apodeÐxete
ìti
to
ˆjroisma,
rht¸n arijm¸n eÐnai rhtìc
Upìdeixh:
JumhjeÐte
me èna rhtì arijmì
ρ
ìti
h
diaforˆ,
to
ginìmeno
kai
to
phlÐko
dÔo
arijmìc.
rhtoÐ
arijmoÐ
eÐnai
tìte upˆrqoun akèraioi
ta
κ, λ
klˆsmata.
me
λ 6= 0
'Ara
ìtan
tètoioi ¸ste
èqou-
ρ=
κ
.
λ
'Askhsh 18**
'Estw
x
rhtoÐ.
Na apodeÐxete
ènac
pragmatikìc
arijmìc
ìti kai o
tètoioc ¸ste
x
arijmìc
oi
arijmoÐ
x7
x12
kai
na
eÐnai
na
eÐnai
eÐnai rhtìc.
'Askhsh 19**
'Estw
x, y, z
rhtoÐ.
Na apodeÐxete
pragmatikoÐ
arijmoÐ
tètoioi
ìti o arijmìc
¸ste
x2 + y 2 + z 2
oi
arijmoÐ
xy, yz, zx
eÐnai rhtìc.
'Askhsh 20**
Na
apodeÐxete
ìti
to
ˆjroisma
rhtoÔ
kai
ˆrrhtou
eÐnai
ˆrrhtoc.
EpÐshc
na
apodeÐxete ìti to ginìmeno rhtoÔ kai ˆrrhtou eÐnai ˆrrhtoc (ektìc an o rhtìc
eÐnai
to
0
√
).
DeÐxte
epÐshc
ìti
to
ˆjroisma
m¸n ˆllote eÐnai ˆrrhtoc kai ˆllote rhtìc.
ìti
to
2
kai
to
ginìmeno
dÔo
ˆrrhtwn
arij-
Qrhsimopoi ste an to qreiasteÐte
eÐnai ˆrrhtoc arijmìc.
'Askhsh 21*
O dieujunt c enìc gumnasÐou mˆzeye
25
majhtèc sunolikˆ apì tic treic tˆxeic
tou sqoleÐou gia na summetˆsqoun sthn qorwdÐa.
ston
9
majhtèc apì
Upìdeixh:
no
Apl autoÔc
logik .
brÐskontai sthn Ðdia
Ti
ja
sunèbaine
?
'Askhsh 22
5
an
Na apodeÐxete ìti toulˆqi-
tˆxh.
den
tan
al jeia
to
zhtoÔme-
'Ena
ploÐo
xekinˆei
apì
to
limˆni
A
kai
taxideÔei
5
mÐlia
nìtia,
sth
sunè-
qeia 6 mÐlia anatolikˆ, xanˆ 3 mÐlia nìtia kai agkuroboleÐ sto limˆni B. Pìsa
mÐlia apèqei to
limˆni A apì to
?
limˆni B
'Askhsh 23*
DÐnetai
èna
tuqaÐo
trÐgwno.
DeÐxte
ìti
eÐnai
dunatì
na
kalufjeÐ
olìklhro
to epÐpedo apì apeÐrwc pollˆ trÐgwna Ðdia me to dosmèno, ètsi ¸ste opoiad pote
dÔo tètoia trÐgwna na mhn
epikalÔptontai.
'Askhsh 24
Treic
ˆnjrwpoi,
o
BasÐlhc,
o
Gi¸rgoc
BasÐlhc lèei ìti o Gi¸rgoc yeÔdetai.
kai
o
NÐkoc
al jeia
mia
sunomilÐa.
O
O Gi¸rgoc lèei ìti o NÐkoc yeÔdetai.
NÐkoc lèei ìti kai o BasÐlhc kai o NÐkoc yeÔdontai.
lèei thn
eÐqan
O
Poiìc yeÔdetai kai poiìc
?
'Askhsh 25
Pìsa yhfÐa
èqei o arijmìc
N = 12345678910111213...201020112012 ?
'Askhsh 26
Se
èna
autoÐ
nhsÐ
pou
xeran
o
zoun
lène
ènac
dÔo
pˆnta
ton
eÐdh
yèmata.
ˆllon:
loujec apant seic:
anjr¸pwn,
Mìlic
Pìsoi
0, 1, 2, 3, 4
.
apì
autoÐ
pou
rwt same
sac
lène
Pìsoi apì
lène
pènte
thn
autoÔc
pˆnta
apì
thn
al jeia
autoÔc,
?
al jeia
oi
P rame
tan yeÔtec
kai
opoÐoi
tic
akì-
?
'Askhsh 27
To
triplˆsio
arijmoÔ.
enìc
Na brejeÐ
arijmoÔ
auxhmèno
katˆ
18
isoÔtai
me
to
tetrˆgwno
tou
o arijmìc autìc.
'Askhsh 28
H MarÐa skèfthke dÔo arijmoÔc
φ + ω = 15
kai
gia
touc
autoÔc
2φ + 3ω = 40
.
dÔo
arijmoÔc
φ
kai
ω
, gia touc opoÐouc isqÔoun oi sqèseic
H fÐlh thc MarÐac , h Iwˆnna, uposthrÐzei pwc
isqÔei
epiplèon
6
ìti
φ2 − ω = 5
.
'Eqei
dÐkio
h
?
Iwˆnna
'Askhsh 29
Me th bo jeia miac kleyÔdrac
9
5
7
lept¸n kai mÐac
lept¸n na metr sete qrìno
lept¸n.
'Askhsh 30
An sto embadìn enìc tetrag¸nou prosjèsoume
Pìso m koc
èqei h pleurˆ
tou
4
prokÔptei h perÐmetroc tou.
?
'Askhsh 31*
Se
14
rièqei
mia
koutiˆ
1
2
sokolˆta
koutiˆ
me
2
upˆrqoun
3
sokolˆtec.
eÐnai
3
25
Akìma
megalÔteroc
sokolˆtec
koutiˆ perièqoun
sokolˆtec
eÐnai
mÐa, dÔo kai
eÐnai
gnwrÐzoume
tou
6
kai
ìti
megalÔteroc
treic
gnwstì
ìti
o
o
arijmìc
arijmìc
apì
17
.
ìti
Na
twn
kˆje
twn
koutÐ
pe-
kouti¸n
sokolat¸n
prosdiorÐsete
me
sta
pìsa
sokolˆtec.
'Askhsh 32
Na grˆyete
me sÔmbola tic parakˆtw frˆseic:
a) To
triplˆsio
b) To
ˆjroisma
enìc arijmoÔ auxhmèno katˆ
twn tetrag¸nwn tri¸n
5
.
arijm¸n.
g) To exaplˆsio enìc arijmoÔ eÐnai megalÔtero apì to tetrˆgwnou tou meiwmèno katˆ
d) To
7
.
tetrˆgwno tou ginìmenou dÔo arijm¸n.
e) To phlÐko twn tetrag¸nwn dÔo arijm¸n eÐnai Ðso me to ˆjroisma twn arijm¸n aut¸n.
z) 'Enac
h) To
j) H
arnhtikìc arijmìc.
ˆjroisma
twn riz¸n dÔo
arijm¸n.
rÐza tou ajroÐsmatoc dÔo arijm¸n.
'Askhsh 33**
7
a) Na
apodeÐxete thn tautìthta
b) Na
x(x − 1)
2
2
+ (x + 1)(x − 1) = 2x4 − 2x3 − x2 + 1
lÔsete thn exÐswsh
Upìdeixh:
2x4 − 2x3 − x2 + 1 = 0
.
ParagontopoÐhsh
pou isqÔei gia
qrhsimopoi¸ntac
a
kˆje pragmatikì arijmì
katˆllhla
th
a2 ≥ 0
sqèsh
.
'Askhsh 34***
Na breÐte touc
α, β, γ
pragmatikoÔc arijmoÔc
pou ikanopoioÔn thn
exÐswsh:
α2 + β 2 + γ 2 + 2α − 4β + 6γ + 14 = 0
'Askhsh 35
Me
42
kìmh
louloÔdia
h
anjodèsmec,
Pìsa louloÔdia
GewrgÐa
Ðdiec
me
thc leÐpoun
7
èftiaxe
tic
anjodèsmec.
prohgoÔmenec,
allˆ
Jèlei
èqei
na
ftiˆxei
22
mìno
9
a-
louloÔdia.
?
'Askhsh 36
Gia na parakolouj soun mia jeatrik parˆstash
pl rwsan
sunolikˆ
san sunolikˆ
gia ton
70
62
eur¸.
kˆje gonèa
eur¸.
En¸
ˆlloi
3
3
goneÐc
goneÐc me ta
me
ta
5
paidiˆ
4
paidiˆ touc,
touc,
pl rw-
Pìso kostÐzei to eisit rio gia to kˆje paidÐ kai pìso
?
'Askhsh 37
'Estw
orjog¸nio
ABGD
kai
trÐgwno AED èqei embadìn
to embadìn
E
12
shmeÐo
pˆnw
sthn
pleurˆ
AB.
DÐnetai
kai to trÐgwno DEG èqei embadìn 35.
tou trig¸nou EBG.
8
ìti
to
Na breÐte