zbirka zadataka iz termodinamike strana 1 KVAZISTATI^KE (RAVNOTE@NE) PROMENE STAWA IDEALNIH GASOVA 2/2/ Vazduh (idealan gas), 2)q2>3!cbs-!w2>1/5416!n40lh*!kvazistati~ki (ravnote`no) mewa stawe do 3)q3>7!cbs-!w3>w2!*/ Odrediti: a) temperaturu vazduha u karakteristi~nim ta~kama procesa b) razmewenu toplotu )r23* i zapreminski rad )x23* c) promenu unutra{we energije )∆v*- entalpije )∆i* i entropije )∆t* vazduha d) skicirati proces na qw!i!Ut dijagramu a) U2 = q2 ⋅ w 2 3 ⋅ 21 6 ⋅ 1/5416 > >411!LSh 398 U3 = q3 ⋅ w 3 7 ⋅ 21 6 ⋅ 1/5416 > >:11!L Sh 398 b) r23 = d w ⋅ (U3 − U2 ) > 1/83 ⋅ (:11 − 411) >!543! x23!>!1! lK lh lK lh c) lK lh lK = d q ⋅ (U3 − U2 ) > 2/11 ⋅ (:11 − 411) >!711! lh q3 w3 7 lK = g (q- w ) = d w mo − d q mo > 1/83 ⋅ mo >1/8:2! q2 w2 3 lhL ∆v23 = d w ⋅ (U3 − U2 ) > 1/83 ⋅ (:11 − 411) >!543! ∆i23 ∆t23 ! d) q U 3 3 2 2 w dipl.ing. @eqko Ciganovi} t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 2 2/3/ Dva kilograma kiseonika (idealan gas) po~etnog stawa 2)q>2!cbs-!U>484!L*- usled interakcije sa toplotnim ponorom stalne temperature, mewa svoje toplotno stawe kvazistati~ki (ravnote`no) politropski )o>1/9* do stawa 3)!w3> 1/6 ⋅ w 2 */ Skicirati proces u qw!i!Ut koordinatnom sistemu i odrediti: a) mehani~ke veli~ine stawa kiseonika )q-!w-!U* u karakteristi~nim ta~kama b) koli~inu toplote )lK* koju radno telo preda toplotnom ponoru kao i zapreminski rad koji pri tom izvr{i nad radni telom )lK* c) promenu entropije izolovanog termodinami~kog sistema u najpovoqnijem slu~aju q U 3 2 o>1/9 o>1/9 2 3 w UUQ t a) w2 = S h U2 q2 = q2 w 3 = q 3 w 2 U3 = 371 ⋅ 484 2 ⋅ 21 6 o ⇒ >1/:7:9! n4 lh w q 3 = q2 ⋅ 2 w3 w 3 = 1/6 ⋅ 1/:7:9 >1/595:! n4 lh o = 2 ⋅ 21 6 ⋅ 3 1/9 > 2/85 ⋅ 21 6 Qb q 3 ⋅ w 3 2/85 ⋅ 21 6 ⋅ 1/595: = >435/62!L Sh 371 b) 1/9 − 2/5 lK o−κ ⋅ (435/62 − 484) >−:5/66! ⋅ (U3 − U2 ) > 1/76 ⋅ 1/9 − 2 lh o −2 = n ⋅ r23 = 3 ⋅ (− :5/66) >−29:/2!lK r23 = d w ⋅ R 23 2 2 lK ⋅ (484 − 435/62) >!−74/15! ⋅ (U2 − U3 ) > 1/37 ⋅ 1/9 − 2 o −2 lh = n ⋅ x 23 = 3 ⋅ (− 74/15 ) >237/19!lK x23!>! S h ⋅ X23 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 3 c) ∆Ttjtufn!>!∆Tsbeop!ufmp!,!∆Tupqmpuoj!qpops!>!///!>!−1/65!,!1/69!>!1/15! U q ∆Tsbeop!ufmp!>!∆T23!> n ⋅ d q mo 3 − S h mo 3 >! U2 q2 435/62 2/85 lK > 3 ⋅ 1/:2 ⋅ mo − 1/37 ⋅ mo >−1/65! L 484 2 ∆Tupqmpuoj!qpops!>!−! lK L ! R 23 −29:/2 lK >!−! >1/69! L 435/62 UUQ 2/4/ Kiseonik (idealan gas) n>21!lh, mewa stawe kvazistati~ki izobarski i pri tom se zagreva od temperature U2>411!L!do!U3>:11!L. Kiseonik dobija toplotu od dva toplotna izvora stalnih temperatura. Odrediti: a) promenu entropije izolovanog termodinami~kog sistema ako su temperature toplotnih izvora UUJ2>711!L!i UUJ3>:11 b) temperaturu toplotnog izvora 2!)UUJ2* tako da promena entropije sistema bude minimalna kao i minimalnu promenu entropije sitema u tom slu~aju U 3 B UJ3 UJ2 2 t b* ∆Ttjtufn!>!∆TSU!,!∆TUJ2!,!∆TUJ2!>!///!>!21!−!5/66!−!4/14!>!3/53! U q ∆TSU!>! n ⋅ d qmo 3 − S hmo 3 U2 q2 :11 lK > 21 ⋅ 1/:2 ⋅ mo >21 411 L ∆TUJ2!>!!−! R 2B 3841 lK >///>!−! >−!5/66! 711 L UUJ2 ∆TUJ3!>!!−! R B3 3841 lK >///>!−! >−!4/14! L :11 UUJ3 dipl.ing. @eqko Ciganovi} lK L {fmlp@fvofu/zv zbirka zadataka iz termodinamike r2B = d q ⋅ (UB − U2 ) > 1/:2 ⋅ (711 − 411) >384! strana 4 lK lh R 2B = n ⋅ r2B = 21 ⋅ 384 >3841!lK r B3 = d q ⋅ (U3 − UB ) > 1/:2 ⋅ (:11 − 711) >384! lK lh R B3 = n ⋅ r B3 = 21 ⋅ 384 >3841!lK b) dq (UB − U2 ) dq (U3 − UB ) U q − ∆Ttjtufn>!g!)!UB!*> n ⋅ dqmo 3 − Shmo 3 − U q UB U3 2 2 U ∂)∆T tjtufn * 2 = −n ⋅ d q 23 − ∂)UB * UB U3 U2 ∂)∆Ttjtufn * 2 − =1 ⇔ ⇒ =1 3 ∂)UB * UB U3 UB = U2⋅U3 > :11 ⋅ 411 >62:/72!L Pri temperaturi toplotnog izvora UB>!62:/72!L!promena entropije sistema ima minimalnu vrednost i ona iznosi: d q (62:/72 − U2 ) d q (U3 − 62:/72) U q ∆Tnjo> n ⋅ d qmo 3 − S hmo 3 + + U2 q2 62:/72 U3 :11 1/:2 ⋅ (62:/72 − 411) 1/:2 ⋅ (:11 − 62:/72) lK ∆Tnjo> 21 ⋅ 1/:2 ⋅ mo + + >28/7: L 411 62:/72 :11 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 5 2/5/!Tokom kvazistati~ke (ravnote`ne) politropske ekspanzije n>3!lh idealnog gasa, do tri puta ve}e zapremine od po~etne, temperatura gasa opadne sa U2>!711!L!na!U3>444!L i izvr{i se zapreminski rad 211!lK. Da bi se proces obavio na opisani na~in, radnom telu se dovodi 31!lK toplote. Skicirati promene stawa idealnog gasa na qw!i!Ut dijagramu i odredite specifi~ne toplotne kapacitete pri stalnom pritisku (dq*! i pri stalnoj zapremini!)dw*!datog gasa. prvi zakon termodinamike za proces od 1 do 2 ⇒ R23!>!∆V23!,!X23 dw = R 23 − X23 31 − 211 lK !> >!1/261! lhL n ⋅ (U3 − U2 ) 3 ⋅ (444 − 711) U2 w 3 = U3 w2 U2 711 mo U3 444 o= +2= + 2 >2/646 w3 mo 4 mo w2 mo o −2 ⇒ X23>!n!/!x23!>! n ⋅ S h ⋅ Sh!>! !q R23!>!n!/!dw!/!)!U3!−!U2!*!,!X23 2 ⋅ (U3 − U2 ) ⇒ o −2 − 211 ⋅ (2/646 − 2) lK = 1/211! lhL 3 ⋅ (444 − 711) ⇒ !U !2 o>2/646 Sh = X23 ⋅ (o − 2) = n ⋅ (U3 − U2 ) dq!>!dw!,!Sh!>!1/361! lK lhL !2 o>2/646 !3 !3 !w dipl.ing. @eqko Ciganovi} !t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 6 2/6/!Dvoatomni idealan gas )o>3!lnpm* ekspandira kvazistati~ki adijabatski od U2>711!L!do!U3>411!L a zatim se od wega izobarski odvodi toplota dok mu temperatura ne dostigne U4>361!L. Odrediti koliko se zapreminskog rada dobije za vreme ekspazije )lK* i kolika se toplota odvede od gasa za vreme izobarskog hla|ewa )lK*/ X23 = n ⋅ x 23 = n ⋅ d w (U2 − U3 ) = o ⋅ )Nd w * ⋅ (U3 − U2 ) X23 = 3 ⋅ 31/9 ⋅ (411 − 711) >−23591!lK R 34 = n ⋅ r34 = n ⋅ dq (U4 − U3 ) = o ⋅ )Ndq * ⋅ (U4 − U3 ) R 34 = 3 ⋅ 3:/2 ⋅ (361 − 411) >!−3:21!lK 2/7/!Termodinami~ki sistem ~ine 21!lh kiseonika (idealan gas) kao radna materija i okolina stalne temperature Up>1pD kao toplotni ponor. Kiseonik mewa svoje stawe od 2)q>2!NQb-!U>561pD* do 3)q>2 NQb-!U>38pD* na povratan na~in (povratnim promenama stawa).Skicirati promene stawa idealnog gasa u Ut koordinatnom sistemu i odrediti razmewenu toplotu izvr{eni zapreminski rad. !2 U !3 Up !C !B !t drugi zakon termodinamike za proces 1−2: ∆Ttjtufn!>!∆Tsbeop!ufmp!,!∆Tplpmjob ⇒ ∆Tsbeop!ufmp!>!−∆Tplpmjob! U q n ⋅ d qmo 3 − S hmo 3 U2 q2 ⇒ R23!>Up/! n ⋅ dqmo R = ! 23 UP U3 q − Shmo 3 U2 q2 411 R23!>!384! ⋅ 21 ⋅ 1/:2 ⋅ mo >!−!3296/37!lK 834 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 7 prvi zakon termodinamike za proces 1−2 ⇒ R23!>!∆V23!,!X23! X23!>!R23!−!n!/!dw!/)U3!.U2* X23!>! −3296/37 − 21 ⋅ 1/76 ⋅ (411 − 834 ) >676/35!lK 2/8/ Sedam kilograma azota (idealan gas) mewa svoje stawe, na povratan na~in, od stawa 2)q>6!cbs-!u>2pD* do stawa 3, pri ~emu se dobija zapreminski rad X>2257!lK. Od okoline (toplotnog izvora) stalne temperature Up>32pD, azotu se dovodi R>2511!lK toplote. Odrediti temperaturu i pritisak radne materije (azot) na kraju procesa i skicirati promene stawa radnog tela na U−t dijagramu prvi zakon termodinamike za proces od 1 do 2 U3 = 385 + U3 = U2 + ⇒ R23!>!∆V23!,!X23 R 23 − X23 n ⋅ dw 2511 − 2257 >!434/14!L 8 ⋅ 1/85 drugi zakon termodinamike za proces od 1 do 2 ∆Ttj!>!∆Tsu!,!∆Tp 2 q 3 = q2 ⋅ fyq S h ⇒! R 23 U3 − n ⋅ U + d q mo U P 2 U q R 1!>! n ⋅ dqmo 3 − Shmo 3 − 23 U2 q2 UP = 2 2511 434/19 q 3 = 6 ⋅ 21 6 ⋅ fyq + 2/15 ⋅ mo − = !1/:!cbs 385 1/3:8 8 ⋅ 3:5 U !3 !B !C !Up !2 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike zadaci za ve`bawe: strana 8 )2/9/!−!2/21/* 2/9/ 3 mola troatomnog idealnog gasa stawa )q>:!cbs-!U>484!L*!kvazistati~ki (ravnote`no) politropski ekspandira do stawa )w3>5/!w2-!q>2/:!cbs*/!Skicirati proces na qw!j!Ut dijagramu i odrediti: a) eksponent politrope, o b) promene unutra{nje energije )lK*- entalipje )lK* i entropije radnog tela )lK0L* c) koli~inu toplote koja se preda radnom telu )lK*-!u ovom procesu a) o>2/23 b) ∆V23>.6!lK-!∆I23>.7/5!lK-!∆T23>31/23!K0L c) R23!>!7/75!LK 2/:/ Idealan gas (helijum) mase n>3/6!lh izobarski (ravnote`no) mewa svoje toplotno stawe pri ~emu mu se entropija smawi za 7/6!lK0L. Po~etna temperatura gasa iznosi 311pD. Temperatura toplotnog rezervoara koji u~estvuje u ovom procesu je konstantna i jednaka je ili po~etnoj ili krajwoj temperaturi radnog tela. Odrediti promenu entropije toplotnog rezervoara. ∆TUS!>9/54!lK0L 2/21/ Termodinami~ki sistem ~ine 4!lh vazduha (idealan gas) kao radna materija i okolina stalne temperature Up>36pD kao toplotni ponor. Radna materija mewa svoje toplotno stawe od stawa 2)q>1/2 NQb-!u>61pD* do stawa 3)u>6pD* na povratan na~in (povratnim promenama stawa). Pri tome se okolini predaje 661!lK toplote. Odrediti: a) pritisak radne materije na kraju procesa b) utro{eni zapreminski rad )lK* u procesu 1−2 c) skicirati promene stawa radnog tela na Ut dijagramu a) q3>6/16!cbs b) X23>−!563/9!LK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 9 2/22/ Idealan gas )n>2!lh* mewa svoje toplotno stawe od 2)q>:!cbs-!w>1/2!n40lh*!do 3)q>2!cbs*/ Prvi put promena se obavwa kvazistati~ki po liniji 2B3 (vidi sliku) pri ~emu je zavisnost pritiska od zapremine linearna. Drugi put promena se obavqa kvazistati~ki linijom 2C3 po zakonu qw3>dpotu, pri ~emu se radnom telu dovodi 31!lK!toplote. Odrediti: a) dobijeni zapreminski rad )X23* du` promena 2B3!i!2C3 b) koli~inu toplote )R23* dovedenu gasu du` promena 2B3 q 2 B C 3 w a) q w 3 = w 2 ⋅ 2 q3 3 3 n4 : = 1/2 ⋅ >!1/4! lh 2 w3 )X23 * B = n ⋅ ∫ q)w*ew = n ⋅ q2 + q 3 ⋅ (w 3 − w 2 ) 3 w2 )X23 * B = 2 ⋅ : ⋅ 21 6 + 2 ⋅ 21 6 ⋅ )1/4 − 1/2* >211!/214!lK 3 w3 )X23 *C = n ⋅ ∫ q)w*ew =n ⋅ w2 ∫ L ⋅ w −3 ew = −n ⋅ L ⋅ w −2 w3 w2 2 2 = −n ⋅ L ⋅ − w w 2 3 2 2 )X23 *C = −2 ⋅ : ⋅ 21 4 ⋅ − >71!/214!lK 1/4 1/2 napomena:! L = q2 ⋅ w 23 = : ⋅ 21 6 ⋅ 1/23 >:!/214!! dipl.ing. @eqko Ciganovi} K ⋅ n4 lh3 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 10 b) prvi zakon termodinamike za proces 2C3: )R 23 *C = ∆V23 + )X23 *C !!!!!)2* prvi zakon termodinamike za proces 2B3:! )R 23 * B = ∆V23 + )X23 * B !!!!!)3* oduzimawem prethodne dve jedna~ine )2* i )3*!!dobija se: )R23 * B = )X23 * B − )X23 *C , )R 23 *C >211!−!71!,!31!>!71!lK 2/23/ Jedan kilogram vazduha (idealan gas) stawa 2)q>25!cbs-!U>434!L* kvazistati~ki ekspandira do stawa 2. Tokom ekspanzije zavisnost pritiska od zapremine je linearna. U toku procesa vazduhu se dovede R23>216!lK toplote i pri tom se dobije X23>211!lK zapreminskog rada. Odrediti temperaturu i pritisak vazduha stawa 2. prvi zakon termodinamike za proces 2−3:! R 23 = n ⋅ d w )U3 − U2 * + X23 w2 X23 = n ⋅ ∫ q)w*ew = n ⋅ U3 = U2 + R 23 = ∆V23 + X23 R 23 − X23 216 − 211 >441!L = 434 + n ⋅ dw 2 ⋅ 1/83 q + q3 q2 + q 3 ⋅ (w 3 − w 2 ) = n ⋅ 2 ⋅ Sh 3 3 w3 U U ⋅ 3 − 2 q 3 q2 X n ⋅ S h ⋅ U2 ⋅ q 33 + )3 ⋅ 23 ⋅ q2 + S h ⋅ U2 ⋅ q2 − S h ⋅ U3 ⋅ q2 * ⋅ q 3 − S h ⋅ U3 ⋅ q2 ⋅ q2 = 1 n b ⋅ q 33 + c ⋅ q 3 + d >1 b> 2 ⋅ 398 ⋅ 434 >:3812 211 ⋅ 21 4 c> 2 ⋅ 3 ⋅ ⋅ 25 ⋅ 21 6 + 398 ⋅ 434 ⋅ 25 ⋅ 21 6 − 398 ⋅ 441 ⋅ 25 ⋅ 21 6 > 3/88 ⋅ 2122 2 d>− 2 ⋅ 398 ⋅ 441 ⋅ 25 ⋅ 21 6 ⋅ 25 ⋅ 21 6 >− 2/97 ⋅ 2128 :3812⋅ q33 + 3/88 ⋅ 2122 ⋅ q 3 − 2/97 ⋅ 2128 = 1 q3 = − 3/88 ⋅ 2122 ± (3/88 ⋅ 21 ) dipl.ing. @eqko Ciganovi} 22 3 ⇒ + 5 ⋅ :3812⋅ 2/97 ⋅ 2128 3 ⋅ :3812 >!6/76!cbs {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 11 2/24/ Dvoatomni idealan gas!u koli~ini o>31!npm!sabija se ravnote`no od po~etne zapremine W2>1/: 51821 4968 + , n4 do krajwe zapremine W3>1/3!n4. Promena stawa gasa odvija se po jedna~ini: q(W ) = W W3 pri ~emu je pritisak izra`en u Qb a zapremina u n4. Odrediti: a) pritisak i temperaturu gasa na po~etku i kraju procesa b) izvr{eni nad radnim telom kao i razmewenu toplotu tokom ovog procesa a) q2 = 51821 4968 51821 4968 + >!5:46:!Qb + > 1/: W2 1/: 3 (W2 )3 q3 = 51821 4968 51821 4968 + >!3:8386!Qb + > 1/3 W3 1/3 3 (W3 )3 ( ) ⇒ U2 = q2 ⋅ W2 5:46: ⋅ 1/: >378/24!L = o ⋅ NS h 1/13 ⋅ 9426 ( ) ⇒ U3 = q 3 ⋅ W3 3:8386 ⋅ 1/3 >468/63!L = o ⋅ NS h 1/13 ⋅ 9426 q2 ⋅ W2 = o ⋅ NS h ⋅ U2 q 3 ⋅ W3 = o ⋅ NS h ⋅ U3 ( ( ) ) b) W3 X23 = ∫ W2 W3 q)W*eW > ∫ W3 4968 51821 4968 + eW > 51281 ⋅ mo W − 3 W W W W2 > W2 W 4968 4968 1/3 4968 4968 51281 ⋅ mo 3 − > 51281 ⋅ mo + − + >!−86529/3!K W W W 1 /: 1/3 1/: 2 3 2 prvi zakon termodinamike za proces 2−3: R 23 = ∆V23 + X23 R 23 = o ⋅ (N ⋅ d w ) ⋅ (U3 − U2 ) + X23 R23>! 1/13 ⋅ 31/9 ⋅ (468/63 − 378/24 ) − 86/53 >−49/36!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 12 2/25/ Dvoatomnan idealna gas )o>3!lnpm* kvazistati~ki mewa stawe od 2)U>411!L-!q>2!cbs*!do 3)U>:11!L* po zakonu prave linije u Ut koordinatnom sistemu. Pri tome se radnom telu saop{tava 711 lK!rada. Odrediti pritisak radne materije stawa 2 i skicirati proces na Ut djagramu. R 23 = ∆V23 + X23 prvi zakon termodinamike za proces 2−3: R 23 = o ⋅ (N ⋅ d w ) ⋅ (U3 − U2 ) + X23 R23>! 3 ⋅ 31/9 ⋅ (:11 − 411) − 711 >!35471!lK R 23 = U2 + U3 ⋅ ∆T23 3 ⇒ ∆T23 = 3 ⋅ R 23 3 ⋅ 35471 lK >!51/7! = U2 + U3 411 + :11 L U q ⇒ ∆T23 = o ⋅ N ⋅ d q ⋅ mo 3 − NS h ⋅ mo 3 U2 q2 U3 ∆T23 :11 51/7 3:/2 ⋅ mo − N ⋅ d q ⋅ mo U − o 411 3 2 > 2 ⋅ 21 6 ⋅ fyq q 3 = q2 ⋅ fyq NS h 9/426 q3!>5/18!/216!Qb!>!5/18!!cbs ( ( ) ( ) ) ( ) U 3 2 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 13 2/26/ Idealan gas sabija se kvazistati~ki od temperature U2>384!L do temperature U3>984!L po zakonu: U + D (!L>−215!lK0L>dpotu!!i!D>dpotu). Odrediti nepovratnost ove promene stawa ,!)∆TtjT = L ⋅ mo U2 lK0L*-!ako se toplota predaje izotermnom toplotnom ponoru temperature UUQ>U2 i grafi~ki je predstaviti na Ut dijagramu ∆Ttjtufn!>!∆TSU!,!∆TUQ!>!///!>!−231/:!,!339/7!>218/8! ∆TSU!>T3!−!T2>///>!−231/:! T3 = L ⋅ mo U3 +D U2 lK L kJ K T2 = L ⋅ mo )3* U2 +D U2 )2* Oduzimawem pretnodne dve jedna~ine dobija se: U 984 lK T 3 − T2 = L ⋅ mo 3 = −215 ⋅ mo >−231/:! L U2 384 T3 ∫ ∆TUQ> − U)T*eT T R 23 =− Uuq Uuq = /// = L ⋅ T3 napomena: ∫ U3 − U2 984 − 384 lK = −215 ⋅ >339/7 Uuq 384 L T3 U)T*eT = /// = T2 U2 ⋅ L ∫ U2 T −D ⋅ f L eT = U2 ⋅ L T −D ⋅f L T2 T3 − D ⋅ )f L − T2 − D f L * T3 = T2 = U2 ⋅ L ⋅ )f U mo 3 U2 − 2* = L ⋅ )U3 − U2* Postupak grafi~kiog predstavqawa promene entropije sistema zasnovan je na jednakosti povr{ina ispod: 1. linije kojom predstavqamo promenu stawa radnog tela 2. linije kojom predstavqamo promene stawa toplotnog ponora Obe ove povr{ine predstavqaju razmewenu toplotu izme|u radno tela i toplotnog ponora. dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 14 U 3 UUQ 2 ∆TSU t ∆TUQ ∆TTJ zadaci za ve`bawe: )2/27/!−!2/28/* 2/27/ Vazduh (idealan gas) kvazistati~ki mewa toplotno stawe od stawa 2)U>411!L*!do stawa!3)U>711!L*!i pri tome je w2>3/!w3. Prvi put se promena vr{i po zakonu prave linije u Ut!kordinatnom sistemu, a drugi put se od stawa 1 do stawa 2 dolazi kvazisati~kom politropskom promenom stawa. Odrediti koliko se lK lK toplote )lK0lh*!dovede vazduhu u oba slu~aja . )r23 *qsbwb = 246/2 - )r23 *qpmjuspqb = 23:/7 lh lh Sh ⋅ U b , w3 )b>82/87!On50lh3-!c> 9/138 ⋅ 21 −5 n40lh!j!Sh>79/9!K0)lhL**-!lwb{jtubuj•lj!izotermski ekspandira pri temperaturi od 1pD od w2>1/16!n40lh do w3>1/3!n40lh. Odrediti: a) po~etni i krajwi pritisak gasa kao i dobijeni zapreminski rad tokom ekspanzije b) po~etni i krajwi pritisak gasa kao i dobijeni zapreminski rad tokom ekspanzije kada bi navedeni gas posmatrali kao idealan gas iste gasne konstante )Sh* 2/28/ Neki gas koji se pona{a saglasno jedna~ini stawa: q)w* = w −c − a) q2>4/64!cbs-!q3>1/:3!cbs-!x23>36/2:!lK0lh b) q2>4/87!cbs-!q3>1/:5!cbs-!x23>37/15!lK0lh dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 15 NEKVAZISTATI^KE (NERAVNOTE@NE) PROMENE STAWA IDEALNIH GASOVA 2/29/ Vazduh (idealan gas) stawa 2)q2>23!cbs-!U2>366pD* ekspandira nekvazistati~ki adijabatski sa stepenom dobrote η fy e >1/9 do stawa 3)q3>2!cbs*/!Odrediti: a) temperaturu vazduha nakon ekspanzije b) prira{taj entropije radnog tela usled mehani~ke neravnote`e c) zakon nekvazistati~ke promene stawa u obliku qwn>jefn U q2 2 q3 B 3 3l t a) U3L q = U2 ⋅ 3L q2 η fy e = κ .2 κ 2 = 639 ⋅ 23 1.4.2 1.4 >36:/7!L U2 − U3 -!!!!! U3 = U2 + ηEfy ⋅ (U3L − U2 ) = 639 + 1/9 ⋅ (36:/7 − 639) >424/4!L U2 − U3l b) qB U = q2 ⋅ B U2 κ κ .2 424/4 = 23 ⋅ 21 6 ⋅ 639 2/5 .2 2/5 = 2/:4 ⋅ 21 6 Qb U q 2 K ∆t nfi = ∆t B3 = dqmo 3 − S hmo 3 = −398 ⋅ mo >299/82! qB 2/:4 lhL UB dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 16 c) ! S h ⋅ U2 w2 = q2 w3 = S h ⋅ U3 q3 = 398 ⋅ 639 = 23 ⋅ 21 6 >!1/2374! 398 ⋅ 424/4 2 ⋅ 21 6 n4 lh >!1/9::3! n4 lh qw n = jefn ⇒ q2 ⋅ w 2n = q 3 ⋅ w n 3 q2 23 mo q3 2 n= >2/37 = w3 1/9::3 mo mo 1/2374 w2 ⇒ qw 2/37 = jefn mo 2/2:/ Kompresor proizvo|a~a B radi izme|u pritisaka qnjo!>2!cbs!i qnby>!:!cbs. Kompresor proizvo|a~a C radi izme|u pritisaka qnjo!>2/6!cbs i!!qnby>!21!cbs. U oba slu~aja radni fluid je vazduh (idealan gas) po~etne temperature!U2>41pD. Temperature vazduha na izlazu iz oba kompresora su jednake. Odrediti koji je kompresor kvalitetniji sa termodinami~kog aspekta, predpostavqaju}i da su kompresije adijabatske Sa termodinami~kog aspekta kvalitetniji je ona kompresija kod koje je 1. na~in: 2. na~in: ve}i stepen dobrote adijabatske kompresije mawa promena entropije sistema 1. na~in: q U2 − U2 ⋅ 3L q 2 B B = U2 − U3LB = ηe U2 − U3 U2 − U3 q U2 − U2 ⋅ 3L q U2 − U3LC 2 C ηe = = U2 − U3 U2 − U3 dipl.ing. @eqko Ciganovi} κ −2 l κ −2 l C κ −2 q l U2 ⋅ 2 − 3L q2 B = U2 − U3 q U2 ⋅ 2 − 3L q 2 = U2 − U3 κ −2 l C )2* )3* {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 17 Deqewem prethodne jedna~ina (1) i (2) dobija se: B ηe ηC e 2/5 − 2 q κ −2 : 2/5 2 − 3L κ 2− q 2 B 2 = 2/32 = = 2/5 − 2 q κ −2 3 L 2− 21 2/5 q κ 2− 2 C 2/6 Po{to je koli~nik stepena dobrote ve}i od 1 to zna~i da je stepen dobrote kompresora proizvo|a~a B ve}i od stepena dobrote kompresora proizvo|a~a C, pa je kompresor proizvo|a~a B kvalitetniji sa termodinami~kog aspekta. Uo~iti da je zadatak mogao biti re{en i bez zadate temperature U2. 2. na~in: (∆t tj )B = d q ⋅ mo U3 B q − S h ⋅ mo 3 B − ∆t p U2B q2B )4* (∆t tj )C = d q ⋅ mo U3C q − S h ⋅ mo 3C − ∆t p U2C q2C )5* Oduzimawem jedna~ina!)4*!j!)5*!epcjkb!tf; (∆t tj )B − (∆t tj )C q q = −S h ⋅ mo 3 B − mo 3C q2C q2B (∆t tj )B < (∆t tj )C ⇒ K 21 : > − 398 ⋅ mo − mo >−97/24! lhL 2/6 2 kompresor proizvo|a~a A je kvalitetniji sa termodinami~kog aspekta. U q3 3 B 3l q2 2 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 18 2/31/!Pet kilograma kiseonika (idealan gas) ekspandira nekvazistati~ki politropski po zakonu qw2/2>jefn, od stawa 2)q2>8!cbs-!w2>1/23!n40lh* do stawa 3)U3>−2pD*/ Specifi~na toplota ove promene stawa iznosi d23>−761!K0lhL. Skicirati proces na Ut dijagramu i odrediti: a) prira{taj entropije radnog tela usled mehani~ke i usled toplotne neravnote`e b) promenu entropije izolovanog termodinami~kog sistema ako je temperatura toplotnog izvora 484!L U q2 2 o q3 n B 3 3l t a) q ⋅w 8 ⋅ 216 ⋅ 1/23 U2 = 2 2 = = 434 L Sh 371 [blpo!qspnfof!qwn!>jefn-!!usbotgpsnj|fnp!v!pcmjl;! U n ⋅ q2 − n = jefn n U 2− n U2n ⋅ q22 − n = U3n ⋅ q32 − n ⇒ q 3 = q2 ⋅ 2 U 3 2/2 6 434 2 − 2/2 >2/17!cbs q 3 = 8 ⋅ 21 ⋅ 383 d − dw ⋅ κ o−κ ⇒ o = 23 ⇒ dolw!>!dlw d23 = d w o −2 d23 − d w o= −761 − 831 ⋅ 2/5 >2/32 − 761 − 831 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 19 o 2 / 32 o − 2 6 383 2 / 32 − 2 > 3/7 ⋅ 21 6 !Qb = 8 ⋅ 21 ⋅ 434 U q 2/17 lK ∆Tnfi/ofs/>!∆TB3>! n ⋅ d qmo 3 − S hmo 3 > 6 ⋅ − 1/398 ⋅ mo >2/3:! UB qB 3/7 L U q B = q2 ⋅ B U 2 ∆Tupq/ofs/>!∆T2B>! n ⋅ dqmo UB q − Shmo B U2 q2 lK 383 2/17 > 6 ⋅ 2 ⋅ mo − 1/398 ⋅ mo >1/54! 434 3 / 7 L ∆Tsbeop!ufmp!>!∆Tnfi/ofs/!,!∆Tupq/ofs/!>2/3:,1/54>2/83! lK L b) ∆Ttjtufn!>!∆Tsbeop!ufmp!,!∆Tupqmpuoj!qpops!>!///!>!2/83!−!1/55!>2/39! ∆Tupqmpuoj!j{wps!>!− lK L R 23 277/22 lK =− = −1/55 UUJ 484 L R 23 = R 2B + R B3 >///> R 2B = n ⋅ d w ⋅ o−κ 2/32 − 2/5 ⋅ (UB − U2 ) > 6 ⋅ 1/83 ⋅ ⋅ (383 − 434) >277/22!lK 2/32 − 2 o −2 2/32/!Termodinami~ki sistem sa~iwava n>6!lh azota (idealan gas) i okolina temperature Up>38pD. Azot nekvazistati~ki politropski mewa toplotno stawe od stawa 2)q>21!cbs-!U>566pD* do stawa 3)U>98pD*/!Specifi~ni toplotni kapacitet promene stawa 1−2 iznosi d23>481!K0lhL a nepovratnost procesa 1−2 iznosi ∆Ttj>2/56!lK0L. Skicirati proces na Ut dijagramu i odrediti stepen dobrote ove promene stawa. !U !q2 !2 !o q3 n !B !3 !3l dipl.ing. @eqko Ciganovi} t {fmlp@fvofu/zv zbirka zadataka iz termodinamike ⇒ dolw!>!dlw o= strana 20 d23 = d w o−κ o −2 ⇒ o= d23 − d w ⋅ κ d23 − d w 481 − 851 ⋅ 2/5 >2/9 481 − 851 R23 = R2B + R B3 !>///> R 2B = n ⋅ d w ⋅ 2/9 − 2/5 o−κ ⋅ (471 − 839) >!−!791/9!lK ⋅ (UB − U2 ) > 6 ⋅ 1/85 ⋅ 2/9 − 2 o −2 U q R ∆TTJ = n ⋅ dq mo 3 − S h mo 3 − 23 U2 q2 U1 2 ∆T TJ R 23 U q 3 = q2 ⋅ fyq− + − d q mo 3 = n ⋅ UP U2 S h n ∆TTJ!>!∆TSU!,!∆Tp ⇒ 2 2/56 791/9 471 q 3 = 21 ⋅ 21 6 ⋅ fyq− − − 2/15 ⋅ mo = 2/59!!cbs 6 ⋅ 411 839 1/3:8 6 q U2 = 2 U3l q 3l q3l!>!q3 o−2 o !!!!!!!!!⇒ !!!!!!!! U3l ⇒ dipl.ing. @eqko Ciganovi} ηFY E = q = U2 ⋅ 3l q2 o−2 o 2/59 > 839 ⋅ 21 2/9 −2 2/9 = 422/5!!L U2 − U3 839 − 471 >1/99 = U2 − U3l 839 − 422/5 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 21 2/33/! Kiseonik (idealan gas) sabija se nekvazistati~ki politropski od stawa 2)q>2!cbs-!U>384!L* do stawa 3)q>7!cbs-!U>554!L*/ U toku procesa sabijawa od kiseonika se odvodi 431!lK0lh toplote. Skicirati proces na Ut dijagramu i odrediti stepene dobrote ove promene stawa. r23 = r2B + r B3 !>!−431! r2B = d w ⋅ lK lh o−κ ⋅ (UB − U2 ) o −2 r2B − dw ⋅ κ UB − U2 o= r2B − dw UB − U2 ⇒ −431 − 1/76 ⋅ 2/5 554 − 384 >2/2 o= − 431 − 1/76 554 − 384 q U2 = 2 U3l q 3l ηlq E = o−2 o ⇒ q = U2 ⋅ 3l q2 U3l o−2 o 7 > 384 ⋅ 2 2/2−2 2/2 >432/4!L U2 − U3l 384 − 432/4 >1/39 = U2 − U3 384 − 554 q3 !U !3 !B !3l !o !q2 n !2 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 22 2/34/ Tokom nekvazistati~kog sabijawa n>4!lh butana (idealan gas) od stawa 2)q2>2!cbs-!U2>31pD* do stawa 3)q3>41!cbs-!T3>T2*- spoqa{wa mehani~ka sila izvr{i rad od 961!lK. Tokom procesa radna materija predaje toplotu toplotnom ponoru stalne temperature Uq>1pD. Skicirati proces u na Ut dijagramu i odrediti: a) promenu entropije termodinami~kog sistema tokom posmatrane promene stawa b) stepen dobrote nekvazistati~ke kompresije q3 !U !B !3 n>κ !3l !q2 !o !2 t zakon nkv. promene stawa 1−2: U2 q2 = U3 q 3 κ −2 κ ⇒ κ −2 q κ U3 = U2 ⋅ 3 q 2 1.28 − 2 41 2/39 U3 = 3:4 ⋅ >!727/7!L 2 prvi zakon termodinamike za proces!2−3; R23>∆V23,X23 R23 = n ⋅ dw ⋅ (U3 − U2) + X23 > 4 ⋅ 1/6 ⋅ (727/7 − 3:4) − 961 >−475/7!LK drugi zakon termodinamike za proces!2−3; ∆TTJ!>!∆TSU!,!∆TUQ lK L −475/7 R23 lK >2/45!! ∆TUQ = − =− L UUQ 384 lK ∆TTJ!>!2/45!,!1!>!2/45! L ∆TSU!>!1! dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike b) strana 23 R 23 = R 2B + R B3 !>!−475/7!lK R 2B = n ⋅ d w ⋅ o−κ ⋅ (UB − U2 ) o −2 R 2B − dw ⋅ κ n ⋅ (UB − U2 ) o= R 2B − dw n ⋅ (UB − U2 ) ⇒ −475/7 − 1/6 ⋅ 2/39 4 ⋅ (727/7 − 3:4 ) >2/27 o= − 475/7 − 1/6 4 ⋅ (727/7 − 3:4) q U2 = 2 U3l q 3l ηlq E = o−2 o ⇒ U3l q = U2 ⋅ 3l q2 o−2 o 41 > 3:4 ⋅ 2 2/27 −2 2/27 >579/5!L U2 − U3l 3:4 − 579/5 >1/65 = U2 − U3 3:4 − 727/7 2/35/ [est kilograma troatomnog idealnog gasa mewa toplotno stawe nekvazistati~ki po zakonu qwn>jefn!)n>κ* (tj. nekvazistati~ki izentropski) od stawa!2)q2>41!cbs-!U2>727/7!L* do stawa 3)q3>2 cbs*/ Tokom ove promene stawa specifi~na zapremina gasa se pove}a za 1/49!n40lh i pri tome se dobije 811!lK mehani~kog rada. Skicirati promenu stawa idealnog gasa na Ut dijagramu i odrediti: a) koli~inu razmewene toplote tokom ove promene stawa b) stepen dobrote ove nekvazistati~ke promene c) porast entropije radnog tela usled mehani~ke neravnote`e )lK0L* !q2 !U !2 n>κ !o !B q3 !3 !3l t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 24 b* zakon nkv. promene stawa 1−2: U2 q2 = U3 q 3 κ −2 κ ⇒ κ −2 q κ U3 = U2 ⋅ 3 q 2 1.28 − 2 2 2/39 >!3:4!L U3 = 727/7 ⋅ 41 jedna~ina stawa idealnog gasa za kraj procesa: q2 ⋅ w2 = Sh ⋅ U2 !!!!!!)2* q3 ⋅ w 3 = S h ⋅ U3 !!!!)3* uslov zadatka: w 3 − w 2 = 1/49 jedna~ina stawa idealnog gasa za po~etak procesa:! n4 !)4* lh Re{avawem prethodnog sistema tri jedna~ine sa 3 nepoznate dobija se: w 2 = 1/1396 N= o= n4 n4 K - w 3 = 1/517 - S h = 249/69 lh lh lhL SV 9426 lh = = 71 S h 249/69 lnpm n 7 = >1/2!lnpm N 71 prvi zakon termodinamike za proces 1−2: R 23 = ∆V23 + X23 R 23 = o ⋅ )Nd w * ⋅ (U3 − U2 ) + X23 = 1/2 ⋅ 3:/2 ⋅ (3:4 − 727/7 ) + 811 b) R 23 = R 2B + R B3 !>!−352/79!lK R 2B o−κ = n ⋅ dw ⋅ ⋅ (UB − U2 ) o −2 ⇒ >−352/79!lK (Nd w ) R2B − ⋅κ n ⋅ (UB − U2 ) N o= R2B (Nd w ) − n ⋅ (UB − U2 ) N −352/79 3:/2 − ⋅ 2/39 7 ⋅ (3:4 − 727/7 ) 71 o= >2/49 3:/2 − 352/79 − 7 ⋅ (3:4 − 727/7 ) 71 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike q U2 = 2 U3l q 3l ηEfy = o−2 o ⇒ strana 25 U3l q = U2 ⋅ 3l q2 o−2 o 2 > 727/7 ⋅ 41 2/49 −2 2/49 >352/8!L U2 − U3 727/7 − 3:4 >1/97 = U2 − U3l 727/7 − 352/8 c) U q ∆T nfi/ofs/ = n ⋅ ∆t B3 = n ⋅ d q mo 3 − S h mo 3 UB qB Zakon kvazistati~ke promene stawa!2−B; qB U = q2 ⋅ B U2 o 2 lK > 7 ⋅ (− 249/69 ) ⋅ mo >1/69! 3 L U2 q2 = UB q B o−2 o 2/49 o−2 3:4 2/49−2 = 41 ⋅ 21 6 ⋅ >!3!cbs 727/7 2/36/ Tri kilograma vazduha (idealan gas) stawa!2)q2>3!cbs-!U2>261pD*!mewa svoje toplotno stawe nekvazistati~ki (neravnote`no) izotermski do stawa 3)q3>9!cbs*. Promena entropije radne materije usled mehani~ke neravnote`e iznosi ∆tnfi>349!K0lhL. Odrediti: a) dovedeni rad i odvedenu toplotu tokom ove promene stawa )X23-!R23* b) stepen dobrote izotermske kompresije )ηelq* qB U q3 q2 B 3>3l 2 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 26 a) ∆t nfi = ∆t B3 = d qmo U3 q − S hmo 3 UB qB ⇒ ∆t q B = q 3 ⋅ fyq nfi Sh 349 6 q B = 9 ⋅ 21 6 ⋅ fyq > 29/4 ⋅ 21 !Qb 398 R 23 = R 2B + R B3 = /// = −917/4/4 lK R 2B > n ⋅ U2 ⋅ S h ⋅ mo q2 3 > 4 ⋅ 534 ⋅ 398 ⋅ mo >−917/4!lK qB 29/4 R 23 = ∆V23 + X23 prvi zakon termodinamike za proces 1−2: X23>!R23!>−917/4!lK b) ηlq E = X23L −615/: = /// = = 1/74 X23 − 917/4 X23L = n ⋅ S h ⋅ U ⋅ mo q2 3 = 4 ⋅ 398 ⋅ 534 ⋅ mo >−615/:!lK q 3L 9 2/37/ Vazduh (idealan gas) stawa!2)q2>:!cbs-!U2>261pD*!mewa svoje toplotno stawe nekvazistati~ki (neravnote`no) izotermski do stawa 3)q3>2!cbs*. Promena entropije radne materije usled mehani~ke neravnote`e )∆tnfi* i promena entropije radne materije usled toplotne neravnote`e )∆tupq* su jednake. Odrediti stepen dobrote ove nekvazistati~ke izotermske ekspanzije )ηefy*/ q2 qB U q3 2 B 3>3l t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike ∆tupq!>!∆tnfi d q mo ⇒ strana 27 ∆t2B!>!∆tB3 UB q U q − S h mo B > d q mo 3 − S h mo 3 U2 UB q2 qB ⇒ q B = q2 ⋅ q 3 q B = : ⋅ 21 6 ⋅ 2 ⋅ 21 6 > 4 ⋅ 21 6 !Qb X23L = n ⋅ S h ⋅ U ⋅ mo q2 : = 2 ⋅ 398 ⋅ 534 ⋅ mo >377/86!lK q 3L 2 R 23 = R 2B + R B3 = /// = −917/4/4 lK R 2B > n ⋅ U2 ⋅ S h ⋅ mo q2 : > 2 ⋅ 534 ⋅ 398 ⋅ mo >244/48!lK qB 4 prvi zakon termodinamike za proces 1−2: R 23 = ∆V23 + X23 X23>!R23!>244/48!lK η fy e = X23 244/48 > >1/6 377/86 X23l zadaci za ve`bawe: )2/38/−2/39/* 2/38/!Vazduh (idealan gas) po~etnog stawa 2)q>6!cbs-!w>1/337!n40lh* ekspandira nekvazistati~ki politropski do stawa 3)q>2!cbs-!U>3:4!L*/!Tokom ove promene stawa od radne materije ka okolini se odvede 27!lK0lh toplote. Odrediti stepen dobrote ove promene stawa kao i promenu entropije vazduha lK samo usled mehani~ke neravnote`e. ! η fy e >1/73-!!∆tnfi>1/37! lhL 2/39/!Vazduh (idealan gas) stawa 2)q2>1/3!NQb-!u2* mewa svoje toplotno stawe nekvazistati~ki (neravnote`no) izotermski do stawa 3)q3?q2*/ Promena entropije radne materije usled mehani~ke neravnote`e iznosi 349!K0lhL/ Stepen dobrote ove nekvazistati~ke promene stawa iznosi ηe>1/95. Odrediti pritisak vazduha na kraju procesa )q3*/ q3 = 266/6 cbs dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 28 PRVI I DRUGI ZAKON TERMODINAMIKE (ZATVOREN TERMODINAMI^KI SISTEM) 2/3:/ U vertikalno postavqenom cilindru, od okoline adijabatski izolovanom, (slika), unutra{weg pre~nika e>711 nn, nalazi se vazduh (idealan gas) temperature 31pD. Sud je zatvoren klipom zanemarqive mase, koji se mo`e kretati bez trewa. Na klipu se nalazi teg mase nu>3111!lh. U polaznom !∆{>411!nn polo`aju ~elo klipa se nalazi na visini {>611!nn u odnosu na dowu bazu cilindra. U cilindru se nalazi elektri~ni greja~ pomo}u kojeg se vazduhu dovodi toplota. Pritisak okoline !{>611 iznosi qp>2!cbs. Odrediti: a) koli~inu toplote koju greja~ treba da preda gasu tako da se klip u procesu pomeri za ∆{>411!nn b) vreme trajawa procesa ako snaga elektri~nog greja~a ,R23 iznosi 2/77!lX c) rad koji bi izvr{io gas u cilndru ako bi se u trenutku dostizawa stawa 2 istovremeno iskqu~io greja~ i skino teg sa klipa d) skicirati sve procese sa radnim telom na qw i Ut dijagramu a) e3 ⋅ π 1/7 3 ⋅ π ⋅{ = ⋅ 1/6 = 1/2525 n 4 5 5 e3 ⋅ π 1/7 3 ⋅ π ⋅ ({ + ∆{ ) = ⋅ (1/6 + 1/4 ) = 1/3373 n 4 W3 = 5 5 W2 = jedna~ina stati~ke ravnote`e za proizvoqan polo`aj klipa: n ⋅h 3111 ⋅ :/92 q = q p + 3u = 2 ⋅ 21 6 + = 2/8 ⋅ 21 6 Qb e ⋅π 1/7 3 ⋅ π 5 5 jedna~ina stawa idealnog gasa na po~etku procesa:! n= q ⋅ W2 2/8 ⋅ 21 ⋅ 1/2525 = = 1/3: lh S h ⋅ U2 398 ⋅ 3:4 jedna~ina stawa idealnog gasa na kraju procesa:! U3 = q ⋅ W2 = n ⋅ Sh ⋅ U2 6 q ⋅ W3 = n ⋅ Sh ⋅ U3 q ⋅ W3 2/8 ⋅ 21 6 ⋅ 1/3373 = = 573 L n ⋅ Sh 1/3: ⋅ 398 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 29 R 23 = ∆V23 + X23 prvi zakon termodinamike za proces 1−2: R23> n ⋅ d w ⋅ (U3 − U2 ) + q ⋅ (W3 − W2 ) > R23>! 1/3: ⋅ 1/83 ⋅ (573 − 3:4 ) + 2/8 ⋅ 21 6 ⋅ 21 −4 ⋅ (1/3373 − 1/2525 ) >5:/9!lK b) τ= R 23 ⋅ = R 23 5:/9 = 41 t 2/77 c) napomena: U3 q3 = U4 q4 κ −2 κ proces 2−3 je kvazistati~ki adijabatski, q4>qp>!2!cbs q U4 = U3 ⋅ 4 q3 ⇒ κ −2 κ 2⋅ 216 = 573 ⋅ 2/8 ⋅ 216 2/5 −2 2/5 >4:8!L R 34 = ∆V 34 + X34 prvi zakon termodinamike za proces 2−3: X34> −n ⋅ d w ⋅ (U4 − U3 ) >− 1/3: ⋅ 1/83 ⋅ (4:8 − 573) >24/68!lK q U 2 3 3 4 2 w dipl.ing. @eqko Ciganovi} 4 t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 30 2/41/!Cilindar je napravqen prema navedenoj skici. Klip je optere}en tegom nepoznate mase i le`i na osloncu A. U cilindru se nalazi azot stawa!2)q>3/6!cbs-!U>3:4!L*/!Dovo|ewem!23/6!lK!toplote zapremina azota se udvostru~i. Pritisak okoline iznosi!!qp>!2!cbs-!masa klipa je zanemarqiva a klip se kre}e bez trewa.!Odrediti: a) masu tega b) pri kojoj temperaturi azota u cilindru |e se pokrenuti klip c) promenu potencijalne energije tega E e>291!nn E>311!nn n {>461!nn { e a) 2−3!proces u cilindru do pokretawa klipa! 3−4!proces u cilndru nakon pokretawa klipa! W2 = e3 ⋅ π 1/29 3 ⋅ π ⋅{ = ⋅ 1/46 = 1/119: n 4 5 5 jedna~ina stawa idealnog gasa na po~etku procesa:! n= )w>dpotu* )q>dpotu* q2 ⋅ W2 = n ⋅ S h ⋅ U2 q2 ⋅ W2 3/6 ⋅ 21 ⋅ 1/119: = = 1/1367 lh S h ⋅ U2 3:8 ⋅ 3:4 6 W3!>!W2>1/119:!n4 W4 = 3 ⋅ W2 > 3 ⋅ 1/119: >1/1289!n4 jedna~ina stawa idealnog gasa na kraju procesa: n ⋅ S h ⋅ U4 q 4 ⋅ W4 = n ⋅ S h ⋅ U4 ⇒ ! q4 = W4 dipl.ing. @eqko Ciganovi} )2* {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 31 prvi zakon termodinamike za proces 1−3: R 23 + R 34 = ∆V23 + ∆V 34 + X23 + X34 > n ⋅ d w ⋅ (U4 − U2 ) + q 4 ⋅ (W4 − W3 ) !!!!!!!)3* kada jedna~inu (1) uvrstimo u jedna~inu (2) dobija se: n ⋅ S h ⋅ U4 ⋅ (W4 − W3 ) ⇒ R 23 + R 34 > n ⋅ d w ⋅ (U4 − U2 ) + W4 R 23 + R 34 + n ⋅ d w ⋅ U2 23/6 + 1/1367 ⋅ 1/85 ⋅ 3:4 = 1/1289 − 1/119: W4 − W3 1/1367 ⋅ 1/85 + 1/1367 ⋅ 1/3:8 ⋅ n ⋅ d w + n ⋅ Sh ⋅ 1/1289 W4 U4!>8:4/7!L U4 = q4 = 1/1367 ⋅ 3:8 ⋅ 8:4/7 > 4/5 ⋅ 21 6 Qb 1/1289 jedna~ina stati~ke ravnote`e za proizvoqan polo`aj za proces 2−3 n ⋅h q − qp E3 ⋅ π ⇒ ⋅ q 4 = q p + 3u nu = 4 5 h E ⋅π 5 nu = 6 4/5 ⋅ 21 − 2 ⋅ 21 6 1/3 3 ⋅ π ⋅ >879/7!lh 5 :/92 b) jedna~ina stawa idealnog gasa za stawe 2:! U3 = q 3 ⋅ W3 = n ⋅ S h ⋅ U3 q 3 ⋅ W3 4/5 ⋅ 21 6 ⋅ 1/119: = = 4:9 L n ⋅ Sh 1/1367 ⋅ 3:8 c) ∆Fq> n u ⋅ h ⋅ ∆{ > n u ⋅ h ⋅ dipl.ing. @eqko Ciganovi} W4 − W3 3 E ⋅π 5 > 879/7 ⋅ :/92 ⋅ 1/1289 − 1/119: 1/3 3 ⋅ π 5 >3247!K {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 32 2/42. Vertikalni cilindar zatvoren je klipom mase nl>:!lh, ~iji je hod ograni~en na kraju cilindra (slika). U cilindru se nalazi dvoatoman idealan gas stawa!2)q>2/6!cbs-!U>561pD*/ Odrediti: a) za koliko }e se spustiti klip (zanemariti trewe) dovo|ewem vazduha u mehani~ku i toplotnu ravnote`u sa okolinom stawa P)q>2!cbs-!U>31pD* b) koliko se toplote pri tome preda okolini do trenutka pokretawa klipa a koliko nakon pokrtetawa klipa do trenutka dostizawa ravnote`e sa okolinom Skicirati procese na qw i Ut dijagramu nl e>211!nn { {>911!nn e 2−3!proces u cilindru do pokretawa klipa! 3−4!proces u cilndru nakon pokretawa klipa! q U 2 4 )w>dpotu* )q>dpotu* 2 3 3 4 w dipl.ing. @eqko Ciganovi} t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 33 a) W2 = e3 ⋅ π 1/23 ⋅ π ⋅{ = ⋅ 1/9 = 1/1174 n4 5 5 jedna~ina stawa idealnog gasa na po~etku procesa:! o= ( ) q2 ⋅ W2 = o ⋅ NS h ⋅ U2 6 q2 ⋅ W2 2/6 ⋅ 21 ⋅ 1/1174 = = 2/68 ⋅ 21.5 lnpm NSh ⋅ U2 9426 ⋅ 834 ( ) jedna~ina stati~ke ravnote`e za polo`aj klipa u stawu 2 n ⋅h : ⋅ :/92 q3 = qp + l = 2 ⋅ 21 6 + > 2/2 ⋅ 21 6 !Qb 3 3 E ⋅π 1/2 ⋅ π 5 5 W3!>!W2>1/1174!n4- q4>q3- ! U4>Up ( W4 = ( ) o ⋅ NS h ⋅ U4 q4 W3 − W4 = = 2/68 ⋅ 21 −5 ⋅ 9426 ⋅ 3:4 e3 ⋅ π ⋅ ∆{ 5 2 ⋅ 21 6 ⇒ ∆{ = >1/1149!n4 W3 − W4 3 e ⋅π 5 b) jedna~ina stawa idealnog gasa za stawe 2:! U3 = ) q 4 ⋅ W4 = o ⋅ NS h ⋅ U4 jedna~ina stawa idealnog gasa na kraju procesa:! = 1/1174 − 1/1149 1/23 ⋅ π 5 =0.318 m ( ) q 3 ⋅ W3 = o ⋅ NS h ⋅ U3 q 3 ⋅ W3 2/2 ⋅ 21 6 ⋅ 1/1174 >641/96!L = o ⋅ NS h 2 ⋅ 68 ⋅ 21 .5 ⋅ 9426 ( ) prvi zakon termodinamike za proces 1−2: R23 > o ⋅ (Nd w ) ⋅ (U3 − U2 ) > 2/68 ⋅ 21 −5 R 23 = ∆V23 + X23 ⋅ 31/9 ⋅ (641/96 − 834) >−1/74!lK prvi zakon termodinamike za proces 1−3: R 34 = ∆V34 + X34 R 34 > o ⋅ (Nd w ) ⋅ (U4 − U3 ) + q 4 ⋅ (W4 − W3 ) R 34 > 2/68 ⋅ 21 −5 ⋅ 31/9 ⋅ (3:4 − 641/96) + 2/2 ⋅ 21 6 ⋅ 21 −4 ⋅ (1/1149 − 1/1174) R 34 >!−2/16!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 34 2/43/!Dvoatoman idealan gas stawa 2)q>2/3!NQb-!U>411!L-!W>1/2!n4*- nalazi se u vertikalno postavqenom nepokretnom adijabatski izolovanom cilindru sa (bez trewa) pokretnim adijabatskim klipom zanemarqive mase. Preostali prostor cilindra (iznad klipa) ispuwen je nekom te~nosti (slika). Usled predaje toplote gasu (od greja~a), on se {iri do stawa 3)q>1/7!NQb-!W>1/33!n4*-!~ime izaziva prelivawe odgovaraju}e koli~ine te~nosti preko ivica cilindra. a) izvesti zakon promene stawa gasa u obliku q!>!g)W* b) prikazati promenu stawa gasa u qW koordinatnom sistemu c) odrediti zapreminski rad koji izvr{i gas pri ovoj promeni stawa kao i koli~inu toplote koja se u ovom procesu preda gasu a) jedna~ina stati~ke ravnote`e za proizvoqan polo`aj klipa u cilindru: q = qp + ρ ⋅ h ⋅ i q = qp + qp + ρ ⋅ h ⋅ (Wdjmjoebs − W ) 3 e π 5 ρ ⋅ h ⋅ Wdjmjoebs 3 e π 5 q = b−c⋅W - = b >dpotu ⇒ q = qp + ⇒ q = qp + ρ⋅h e3 π 5 ρ ⋅ h ⋅ Wuf•optu e3 π 5 ρ ⋅ h ⋅ Wdjmjoebs 3 e π 5 − ρ⋅h e3 π 5 ⋅W >c>dpotu zavisnost pritiska od zapremine je linearna, a konstante b i c odre|ujemo iz grani~nih uslova: q2 = b − c ⋅ W2 q 3 = b − c ⋅ W3 dipl.ing. @eqko Ciganovi} )2* )3* {fmlp@fvofu/zv zbirka zadataka iz termodinamike c= strana 35 q2 − q 3 2/3 ⋅ 21 7 − 1/7 ⋅ 21 7 Qb > 6 ⋅ 21 7 = W3 − W2 1/33 − 1/2 n4 b = q2 + c ⋅ W2 = 2/3 ⋅ 21 7 + 6 ⋅ 21 7 ⋅ 1/2 > 2/8 ⋅ 21 7 Qb q = 2/8 ⋅ 21 7 − 6 ⋅ 21 7 ⋅ W !!analiti~ki oblik zavisnosti pritiska od zapremine b) q 2 3 w c) W3 X23 = ∫ q)W*eW = w W2 q2 + q3 2/3 ⋅ 217 + 1/7 ⋅ 217 ⋅ )W3 − W2* = ⋅ (1/33 . 1/2) >219!lK 3 3 jedna~ina stawa idealnog gasa na po~etku procesa:! o= ( ) ( ) q2 ⋅ W2 = o ⋅ NS h ⋅ U2 q2 ⋅ W2 2/3 ⋅ 21 7 ⋅ 1/33 = = 5/9 ⋅ 21 .3 lnpm NS h ⋅ U2 9426 ⋅ 411 ( ) jedna~ina stawa idealnog gasa za stawe 2:! U3 = q 3 ⋅ W3 = o ⋅ NS h ⋅ U3 q 3 ⋅ W3 1/7 ⋅ 21 7 ⋅ 1/33 = >441/8!L o ⋅ NS h 5/9 ⋅ 21 .3 ⋅ 9426 ( ) prvi zakon termodinamike za proces 1−2: R23 > o ⋅ (Nd w ) ⋅ (U3 − U2 ) + X23 > 5/9 ⋅ 21 dipl.ing. @eqko Ciganovi} −3 R 23 = ∆V23 + X23 ⋅ 31/9 ⋅ (441/8 − 411) + 219 >249/7!lK {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 36 2/44/!Dvoatoman idealan gas, stawa 2)q2>1/7NQb-!U2>411!L-!W2>1/3!n4*- nalazi se u horizontalno postavqenom nepokretnom cilindru sa (bez trewa) pokretnim klipom. Klip je preko opruge, linearne karakteristike k, povezan sa nepokretnim zidom (slika). Predajom toplote gasu, on se dovodi do stawa 3)q3>2!NQb-!W3>1/5!n4*/ U po~etnom polo`aju opruga je rastere}ena. b* izvesti zakon promene stawa gasa u obliku q>g)W* b) prikazati promenu stawa idealnog gasa na qw dijagramu c) odrediti zapreminski rad koji izvr{i gas pri ovoj promeni stawa kao i koli~inu toplote koja se u ovom procesu preda gasu ∆y 3 2 b* jedna~ina stati~ke ravnote`e za proizvoqan polo`aj klipa u cilindru: q = qp + q = qp − k ⋅ ∆y ⇒ 3 e π 5 k ⋅ W2 3 + k e3 π e3 π 5 5 k ⋅ W2 qp − = b >dpotu 3 e3 π 5 q = b+c⋅W- 3 q = qp + k ⋅ (W − W2 ) e3 π 5 3 ⇒ ⋅W k e3 π 5 3 >c>dpotu zavisnost pritiska od zapremine je linearna, a konstante b i c odre|ujemo iz grani~nih uslova: q2 = b + c ⋅ W2 q 3 = b + c ⋅ W3 dipl.ing. @eqko Ciganovi} )2* )3* {fmlp@fvofu/zv zbirka zadataka iz termodinamike c= strana 37 q 3 − q2 2 ⋅ 21 7 − 1/7 ⋅ 21 7 Qb > 3 ⋅ 21 7 = W3 − W2 1/5 − 1/3 n4 b = q2 − c ⋅ W2 = 1/7 ⋅ 21 7 − 3 ⋅ 21 7 ⋅ 1/3 > 1/3 ⋅ 21 7 Qb q = 1/3 ⋅ 21 7 + 3 ⋅ 21 7 ⋅ W !!analiti~ki oblik zavisnosti pritiska od zapremine b) q 3 2 w c) W3 X23 = ∫ q)W*eW = w W2 q2 + q 3 1/7 ⋅ 21 7 + 2 ⋅ 21 7 ⋅ )W3 − W2 * = ⋅ (1/5 . 1/3) >271!lK 3 3 jedna~ina stawa idealnog gasa na po~etku procesa:! o= ( ) ( ) q2 ⋅ W2 = o ⋅ NS h ⋅ U2 q2 ⋅ W2 1/7 ⋅ 21 7 ⋅ 1/3 = = 5/9 ⋅ 21 .3 lnpm NS h ⋅ U2 9426 ⋅ 411 ( ) jedna~ina stawa idealnog gasa za stawe 2:! U3 = q 3 ⋅ W3 = o ⋅ NS h ⋅ U3 q 3 ⋅ W3 2 ⋅ 21 7 ⋅ 1/5 = >2113/3!L o ⋅ NS h 5/9 ⋅ 21 .3 ⋅ 9426 ( ) prvi zakon termodinamike za proces 1−2: R 23 = ∆V23 + X23 R23 > o ⋅ (Nd w ) ⋅ (U3 − U2 ) + X23 > 5/9 ⋅ 21 −3 ⋅ 31/9 ⋅ (2113/3 − 411) + 271 >972/2!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 38 2/45/!U vertikalnom cilindru (slika) unutra{weg pre~nika e>311!nnnalazi se o>!1/6!npm dvoatomnog idealanog gasa. Masa klipa je nl>51 lh. Klip je poduprt oprugom linearne karakteristike l. Po~etni pritisak gasa je q2>2/16!cbs, a pritisak okoline iznosi qp>2!cbs. Plin se hladi tako da u momentu rastere}ewa opruge postigne temperatura od U3>364!L, pri ~emu se od gasa odvede 2/6!lK toplote. Zanemaruju}i trewe klipa odrediti: a) po~etnu temperaturu gasa b) za koliko se podigao gas do momenta rastere}ewa opruge R23 3 ∆{ 2 b* jedna~ina stati~ke ravnote`e za klip u trenutku rastere}ewa opruge: q3 + nl ⋅ h 3 e ⋅π 5 = qp ⇒ nl ⋅ h q3 = qp − 3 e ⋅π 5 = 2 ⋅ 21 6 − ( ) o ⋅ NS h ⋅ U3 q3 1/6 ⋅ 21 −4 ⋅ 9426 ⋅ 364 = 1/98 ⋅ 21 6 > 1/98 !cbs ( ) >1/1232!n4 R 23 = ∆V23 + X23 prvi zakon termodinamike za proces 1−2: R23 > o ⋅ (Nd w ) ⋅ (U3 − U2 ) + 1/3 3 ⋅ π 5 q 3 ⋅ W3 = o ⋅ NS h ⋅ U3 jedna~ina stawa idealnog gasa za stawe 2:! W3 = 51 ⋅ :/92 q2 + q 3 ⋅ (W3 − W2 ) 3 )2* ( ) jedna~ina stawa idealnog gasa za stawe 1:! q2 ⋅ W2 = o ⋅ NS h ⋅ U2 kombinovawem jedna~ina (1) i (2) dobija se: W2>1/1259!n4-!U2>484!L W3 napomena:! X23 = ∫ q)W*eW = )3* q2 + q 3 ⋅ )W3 − W2 * -!kao u prethodnom zadatku 3 w W2 b) W2 − W3 = e3 ⋅ π ⋅ ∆{ 5 dipl.ing. @eqko Ciganovi} ⇒ ∆{ = 5 ⋅ W2 − W3 3 e ⋅π = 5⋅ 1/1259 − 1/1232 1/3 3 ⋅ π >97!nn {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 39 2/46/!U vertikalnom, toplotno izolovanom cilindru pre~nika e>311!nn sme{tena je opruga zanemarqive zapremine (slika). Na oprugu je naslowen adijabatski klip mase nl>36!lh. U cilindru se nalazi azot stawa 2)q2>2/16!cbs!U2>414!L*. U po~etnom trenutku udaqenost klipa od dna cilindra iznosi {2>611!nn. Du`ina opruge (linearne karakteristike) u neoptere}enom stawu iznosi {p>711 nn. Dolivawem `ive )ρ>24711!lh0n4* iznad klipa, klip se spusti za ∆{>211!nn!(zanemariti trewe). Pritisak okoline iznosi qp>2!cbs. Odrediti: a) koliko je `ive doliveno )lh* b) za koliko se pove}ala unutra{wa energija gasa c) do koje bi temperature trebalo zagrejati azot tako da se klip vrati u po~etno stawe (pretpostaviti da ne dolazi do isticawa `ive) i koliko bi toplote pri tom trebalo dovesti e e ∆z ∆{ {1 {2 {3 a) jedna~ina stati~ke ravnote`e za polo`aj klipa u trenutku 1: 3 l ⋅ ({ p − {2 ) nl ⋅ h q − q + nl ⋅ h ⋅ e ⋅ π = q2 + q l = + ⇒ p 2 p e3 ⋅ π 5 ⋅ ({ p − {2 ) e3 ⋅ π e3 ⋅ π 5 5 5 36 ⋅ :/92 1/3 3 ⋅ π O l = 2 ⋅ 21 6 − 2/16 ⋅ 21 6 + ⋅ >992/8! 3 ( ) 5 1 / 7 1 / 6 ⋅ − n 1/3 ⋅ π 5 e3 ⋅ π 1/3 3 ⋅ π ⋅ {2 = ⋅ 1/6 = 1/1268 n 4 5 5 e3 ⋅ π 1/3 3 ⋅ π ⋅ ({ 2 − ∆{ ) = ⋅ (1/6 . 1/2) = 1/1237 n 4 W3 = 5 5 W2 = q2 W3 = q 3 W2 κ ⇒ dipl.ing. @eqko Ciganovi} W q 3 = q2 ⋅ 2 W3 κ 1/1268 = 2/16 ⋅ 21 6 ⋅ 1/1237 2/5 = 2/54 ⋅ 21 6 Qb {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 40 jedna~ina stati~ke ravnote`e za polo`aj klipa u trenutku 2: q3 + l ⋅ ({ p − {2 + ∆{ ) 3 e ⋅π 5 = qp + nl ⋅ h e3 ⋅ π 5 ⇒ + ρ Ih ⋅ h ⋅ z l ⋅ ({ p − {2 + ∆{ ) nl ⋅ h 2 z= q q − 3 + 3 − p⋅ 3 ρ ⋅h e ⋅π e ⋅π Ih 5 5 2483/3 ⋅ 1/3 36 ⋅ :/92 2 6 6 z> 2 / 54 21 2 / 16 21 >3:3!nn ⋅ − + ⋅ − ⋅ 3 1/3 3 ⋅ π 24711 ⋅ :/92 1/3 ⋅ π 5 5 nIh = ρ Ih ⋅ e3 ⋅ π 1/3 3 ⋅ π ⋅ z = 24711 ⋅ ⋅ 1/3:3 >235/87!lh 5 5 b) jedna~ina stawa idealnog gasa na po~etku procesa:! n= q2 ⋅ W2 2/16 ⋅ 21 ⋅ 1/1268 = = 1/129 lh S h ⋅ U2 3:8 ⋅ 414 jedna~ina stawa idealnog gasa na kraju procesa:! U3 = q2 ⋅ W2 = n ⋅ S h ⋅ U2 6 q 3 ⋅ W3 = n ⋅ S h ⋅ U3 q 3 ⋅ W3 2/54 ⋅ 21 ⋅ 1/1237 = = 448/2 L n ⋅ Sh 1/129 ⋅ 3:8 6 ∆V23 = n ⋅ d w ⋅ (U3 − U2 ) > 1/129 ⋅ 1/85 ⋅ (448/2 − 414) >!1/56!lK c) uo~iti da je: W4!>!W2- q4>q3 jedna~ina stawa idealnog gasa za stawe 3:! U4 = q 4 ⋅ W4 = n ⋅ S h ⋅ U4 q 4 ⋅ W4 2/54 ⋅ 21 ⋅ 1/1268 = = 531 L n ⋅ Sh 1/129 ⋅ 3:8 6 prvi zakon termodinamike za proces 2−3: R34> n ⋅ d w ⋅ (U4 − U3 ) + q 3 ⋅ (W4 − W3 ) > R 34 = ∆V 34 + X34 R34>! 1/129 ⋅ 1/85 ⋅ (531 − 448/2) + 2/54 ⋅ 21 6 ⋅ 21 −4 ⋅ (1/1268 − 1/1237 ) >2/66!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 41 2/47/ Toplotno izolovan cilindar, sa pokretnim toplotno izolovanim klipom, podeqen je nepokretnom, toplotno propustqivom (dijatermijskom) pregradom na dva dela (slika). U delu B nalazi se troatomni idealan gas po~etnog staqa B)qB2>1/26!NQb-!WB2>1/6!n4-!UB2>911!L*- a u delu C dvoatomni idealan gas po~etnog stawa C)qC2>1/6!NQb-!WC2>1/3!n4-!UC2>411!L*/ Odrediti zapreminu u delu B i pritisak u delu C u trenutku uspostavqawa termodinami~ke ravnote`e. B uo~iti da je: qB2>qB3 WC2>WC3 UB3>UC3 C jedna~ina stawa idealnog gasa A na po~etku procesa: q ⋅W o B = B2 B2 q B2 ⋅ WB2 = o B ⋅ NS h ⋅ UB ⇒ NS h ⋅ UB ( oB = ) ( ) 1/26 ⋅ 21 7 ⋅ 1/6 > 2/24 ⋅ 21 −3 lnpm 9426 ⋅ 911 jedna~ina stawa idealnog gasa!C!ob!po~etku procesa: q ⋅W oC = C2 C2 q C2 ⋅ WC2 = oC ⋅ NS h ⋅ UC ⇒ NS h ⋅ UC ( oC = ) ( ) 1/6 ⋅ 21 7 ⋅ 1/3 > 5/12 ⋅ 21 −3 lnpm 9426 ⋅ 411 prvi zakon za promenu stawa radnih tela B i C u celom cilindru R23!>!∆V23!,X23 1 = o B ⋅ (Nd w ) B ⋅ (UB3 − UB2 ) + oC ⋅ (Nd w )C ⋅ (UC3 − UC2 ) + q B ⋅ (WB3 − WB2 ) !!!!)2* jedna~ina stawa ideal. gasa A u trenutku uspostavqawa toplotne ravnote`e: q ⋅W )3* UB3 = B3 B3 q B3 ⋅ WB3 = o B ⋅ NS h ⋅ UB3 ⇒ o ⋅ NS h ( dipl.ing. @eqko Ciganovi} ) ( ) {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 42 kada se jedna~ina (2) stavi u jedna~inu (1) dobija se: q ⋅W q ⋅W 1 = oB ⋅ (Ndw )B ⋅ B3 B3 − UB2 + oC ⋅ (Ndw )C ⋅ B3 B3 − UC2 + q B ⋅ (WB3 − WB2) oB ⋅ NSh oB ⋅ NSh ( WB 3 = ( ) o B ⋅ (Nd w )B ⋅ UB2 + oC ⋅ (Nd w )C ⋅ UC2 + q B ⋅ WB2 (Nd w )C (Nd w )B ⋅ q B3 + ⋅ q C3 + q B NS h NS h ( WB 3 = ) ) ( ) 2/24 ⋅ 21 −3 ⋅ 3:/2 ⋅ 21 4 ⋅ 911 + 5/12 ⋅ 21 −3 ⋅ 31/9 ⋅ 21 4 ⋅ 411 + 1/26 ⋅ 21 7 ⋅ 1/6 3:/2 ⋅ 21 4 31/9 ⋅ 21 4 ⋅ 1/26 ⋅ 21 7 + ⋅ 1/6 ⋅ 21 7 + 1/26 ⋅ 21 7 q B 9426 9426 WB3>1/416!n4 odavde se dobija: vra}awem u jedna~inu!)3*;! UB3 = lK lnpmL (Nd w )C >31/9! lK lnpmL (Nd w )B >3:/2! napomena: 1/26 ⋅ 21 7 ⋅ 1/416 2/24 ⋅ 21 .3 ⋅ 9426 >598!L!>!UC3 troatoman idealan gas dvoatoman idealan gas kedna~ina stawa ideal. gasa C u trenutku uspostavqawa toplotne ravnote`e; oC ⋅ NS h ⋅ UC3 q C3 ⋅ WC3 = oC ⋅ NS h ⋅ UC3 ⇒ q C3 = WC3 ( q C3 = ) ( ) 5/12 ⋅ 21 .3 ⋅ 9426 ⋅ 598 > 9/2 ⋅ 21 6 !Qb 1/3 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 43 2/48/!Vertikalan, toplotno izolovan cilindar, zatvoren i sa gorwe i sa dowe strane pokretnim klipovima (toplotno izolovanim, zanemarqivih masa, koji se kre}u bez trewa), podeqen je nepropusnom, krutom i nepokretnom pregradom na deo B i deo C (slika). Pregrada je zanemarqivog toplotnog kapaciteta i pru`a zanemarqiv otpor kretawu toplote. U delu B nalazi se dvoatoman idealan gas, a u delu C troatoman idealan gas. U po~etnom polo`aju gas u delu B ima stawe B2)WB2>1/6!n4-!qB2>1/5!NQbUB2>411!L* gas u delu C u stawe C2)WC2>1/5!n4-!qC2>1/16!NQb-!UC2>411!L*/ Odrediti zapreminski rad koji treba obaviti pri sabijawu gasa u delu B, da bi zapremina gasa u delu C bila dva puta ve}a. )X23*B B C jedna~ina stawa idealnog gasa A na po~etku procesa: q ⋅W o B = B2 B2 q B2 ⋅ WB2 = o B ⋅ NS h ⋅ UB ⇒ NS h ⋅ UB ( oB = ) ( ) 1/5 ⋅ 21 7 ⋅ 1/6 > 9/13 ⋅ 21 −3 lnpm 9426 ⋅ 411 jedna~ina stawa idealnog gasa C na po~etku procesa: q ⋅W oC = C2 C2 q C2 ⋅ WC2 = oC ⋅ NS h ⋅ UC ⇒ NS h ⋅ UC ( oC = ) ( ) 7 1/16 ⋅ 21 ⋅ 1/3 > 9/13 ⋅ 21−4 lnpm 9426 ⋅ 411 uslov zadatka: dijatermijska pregrada: WC3!>!3!/!WC2!>!1/9!n4UB3>UC3 prvi zakon termodinamike za proces u cilindru: R23!>!∆V23!,)!X23!*B!,!)!X23!*C 1 = oB ⋅ (Ndw )B ⋅ (UB3 − UB2) + oC ⋅ (Ndw )C ⋅ (UC3 − UC2) + (X23 )B + qC ⋅ (WC3 − WC2) )2* jedna~ina stawa idealnog gasa C na kraju procesa: ( ) qC3 ⋅ WC3 = oC ⋅ NSh ⋅ UC3 )3* kombinovawem jedna~ina )2* i )3*-!sistem dve jedna~ine sa dve nepoznate, dobija se: UB3>712!L-!!)X23*B>−6:1/4!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 44 2/49/!U izolovanom i sa obe strane zatvorenom cilindru nalaze se dva idealna gasa me|usobno odeqena bez trewa pomi~nim i toplotno propusnim klipom. Po~etni pritisak oba gasa iznosi!qB2>qB3>4!cbs/ U delu nalazi se kiseonik stawa B)UB2>3:4!L-!nB>1/2!lh*-!a u delu C nalazi se metan stawa!C)UC2>634 L-!nC>1/2!lh*/!Odrediti: a) pritisak i temperaturu oba gasa trenutku uspostavqawa termodinami~ke ravnote`e b) promenu entropije sitema koja nastaje u procesu koji po~iwe od zadatog po~etnog stawa i traje do trenutka uspostavqawa termodinami~ke ravnote`e B C b* jedna~ina stawa idealnog gasa B (po~etak procesa) : q B2 ⋅ WB2 = n B ⋅ S hB ⋅ UB2 WB2 = n B ⋅ S h ⋅ UB2 q B2 = 1/2 ⋅ 371 ⋅ 3:4 4 ⋅ 21 6 >1/1365!n4 jedna~ina stawa idealnog gasa B (kraj procesa): q C2 ⋅ WC2 = nC ⋅ S hC ⋅ UC2 WC2 = nC ⋅ S hC ⋅ UC2 q C2 = 1/2 ⋅ 631 ⋅ 634 4 ⋅ 21 6 >1/1:17!n4 R 23 = ∆V23 + X23 prvi zakon termodinamike za proces u cilindru: ∆V23>1 ⇒ V2 = V 3 V2 = n B ⋅ d wB ⋅ UB + nC ⋅ d wC ⋅ UC V 3 = n B ⋅ d wB ⋅ U + + nC ⋅ d wC ⋅ U + U+ = n B ⋅ d wB ⋅ UB2 + nC ⋅ d wC ⋅ UC2 1/2 ⋅ 1/76 ⋅ 3:4 + 1/2 ⋅ 2/93 ⋅ 634 = >573/6!L n B⋅ d wB + nC ⋅ d wC 1/2 ⋅ 1/76 + 1/2 ⋅ 2/93 jedna~ina stawa idealnog gasa B na kraju procesa: q B3 ⋅ WB3 = n B ⋅ S hB ⋅ U + ⇒ WB3 = n B ⋅ S hB ⋅ U + q B3 )2* jedna~ina stawa idealnog gasa C na kraju procesa: q C3 ⋅ WC3 = nC ⋅ S hC ⋅ U + dipl.ing. @eqko Ciganovi} ⇒ WC3 = nC ⋅ S hC ⋅ U + q C3 )3* {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 45 deqewem jedna~ina!)2*!i!)3*!dobija se;! WB3 = WC3 n B ⋅ S hB nC ⋅ S hC )4* jednake zapremine cilindra pre i posle procesa;!WB2!,WC2!>WB3!,WC3!!!!)5* kada se jedna~ina!)4*!uvrsti u jedna~inu!)5*!dobija se i re{i po!WC3!dobija se; WC3!>! WB2 + WC2 1/1365 + 1/1:17 >1/1884!!n4 = n B ⋅ S hB 1/2 ⋅ 371 +2 +2 1/2 ⋅ 631 nC ⋅ S hC WB3 = 1/1884 ⋅ vra}awem u jedna~inu )4*!dobija se; q B3 = n B ⋅ S hB ⋅ U + WB3 = 1/2 ⋅ 371 >1/1498!n4 1/2 ⋅ 631 1/2 ⋅ 371 ⋅ 573/6 > 4/2 ⋅ 21 6 !Qb!>!qC3 1/1498 b) ∆TTJ!>!∆TSU!,!∆Tplpmjob!>!///!>!33/:! ∆Tplpmjob>!1! K L K L (adijabatski procesi u oba cilindra) ∆TSU!>! ∆T B + ∆T C >!///>!51/8!−!41/8!>!33/:! !∆TB!>g!)!q-!U*!> nB ⋅ dqmo UB3 q − Shmo B3 > UB2 qB2 573/6 4/2 ⋅ 21 6 − 1/371 ⋅ mo ∆TB!> 1/2 ⋅ 1/:2 ⋅ mo 3:4 4 ⋅ 21 6 ∆TC!>!g!)!q-!U*!> nC ⋅ dqmo K L >51/8! K L UC3 q − Shmo C3 > UC2 qCB2 573/3 4/2⋅ 216 lK >−41/89! ∆TC!>! 1/2⋅ 3/45 ⋅ mo − 1/631 ⋅ mo 6 L 634 4 21 ⋅ dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 46 2/4:/!U zatvorenom, delimi~no adijabatski izolovanom (vidi sliku), horizontalnom cilindru nalazi se o>3!lnpm dvoatomnog idealnog gasa. Pokretna adijabatska povr{ina (klip) deli cilindar na dva jednaka dela )WB>WC!*/ Po~etno stawe idealnog gasa (u oba dela) odre|eno je istim veli~inama stawa q>2!cbsU>399!L. Dovo|ewem toplote kroz neizolovani deo cilindra (leva ~eona povr{ina) dolazi do kretawa klipa (bez trewa) dok pritisak u delu C ne dostigne 5!cbs ( pri tome se usled kvazistati~nosti ne naru{ava mehani~ka ravnote`a tj. i pritsak u delu B iznosi 5!cbs). Odrediti: a) zapreminski rad koji izvr{i radno telo u delu B (levi deo cilindra) b) koli~inu toplote koja se preda radnom telu u istom delu cilindra R23 B C a) jedna~ina stawa idealnog gasa u delu A na po~etku procesa: q ⋅W o B = B2 B2 q B2 ⋅ WB2 = o B ⋅ NS h ⋅ UB ⇒ NS h ⋅ UB ( ) ( ) q C2 ⋅ WC2 = oC ⋅ NS h ⋅ UC ( oC = ⇒ iz jedna~ina )2*!i!)3* se dobija: uslov zadatka: ) q C2 ⋅ WC2 NS h ⋅ UC ( ) oB!>!oC o>oB!,!oC kombinovawem jedna~ina!)4*!i!)5*!dobija se: )2* )3* )4* )5* oB>!2!lnpm-!oC>2!lnpm promena stawa idealnog gasa u delu!C!je kvazistati~ka i adijabatska: UC3 q = UC2 ⋅ C3 q C2 κ −2 κ 5 ⋅ 21 6 = 399 ⋅ 6 2 ⋅ 21 2/5 −2 2/5 = 539 L prvi zakon termodinamike za proces u delu C; !!!!! (R 23 )C = (∆V23 )C + (X23 )C (X23 )C = −(∆V23 )C = −oC ⋅ (Nd w ) ⋅ (UC3 − UC2 ) > −2 ⋅ 31/9 ⋅ (539 − 399) >−3:23!lK (X23 )B = −(X23 )C >3:23!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 47 b) jedna~ina stawa idealnog gasa u delu B na po~etku procesa: WB2 = ( ) o B ⋅ NS h ⋅ UB2 q B2 ( ) o B ⋅ NS h ⋅ UB3 q B3 ( ) q C2 ( ) o W ⋅ NS h ⋅ UC3 q C3 ) ⇒ U U WB3 − WB2 = o ⋅ NS h ⋅ B3 − B2 !)8* q B3 q B2 ( ) ( ) ⇒ ( ) ⇒ q C2 ⋅ WC2 = oC ⋅ NS h ⋅ UC2 )9* q C3 ⋅ WC3 = oC ⋅ NS h ⋅ UC3 jedna~ina stawa idealnog gasa u delu C na kraju procesa: WC3 = ( q B3 ⋅ WB3 = o B ⋅ NS h ⋅ UB3 jedna~ina stawa idealnog gasa u delu C na po~etku procesa: oC ⋅ NS h ⋅ UC2 ⇒ )7* oduzimawem (7*!−!)6*!dobija se;! WC2 = ) )6* jedna~ina stawa idealnog gasa u delu B na kraju procesa: WB3 = ( q B2 ⋅ WB2 = o B ⋅ NS h ⋅ UB2 ):* U U WC2 − WC3 = o ⋅ NS h ⋅ C2 − C3 q C2 q C3 ( oduzimawem (9*!−!):*!dobija se; ) !!)21* iz ~iwenice da su leve strane jedna~ina!)8*!i!)21*!jednake dobija se: UB3 UB2 U U > C2 − C3 − q B3 q B2 q C2 q C3 ⇒ U U U UB3 = q B3 ⋅ B2 + C2 − C3 q B2 q c2 q C3 399 539 399 + − UB3 = 5 ⋅ 21 6 ⋅ >2987!L 6 6 2 ⋅ 21 5 ⋅ 21 6 2 ⋅ 21 prvi zakon termodinamike za proces u delu B; !!!!! (R 23 ) B = (∆V23 ) B + (X23 )B (R23 )B = o B ⋅ (Nd w ) ⋅ (UB3 − UB2 ) + X23 > 2 ⋅ 31/9 ⋅ (2987 − 399) + 3:23 >!46:53!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 48 2/51. U hermeti~ki zatvorenim i toplotno izolovanim cilindrima B i C , koji su razdvojeni slavinom (vidi sliku) nalazi se po!n>5!lh vazduha (idealan gas) stawa 2B)q>21!cbs-!U>511!L*, odnosno 2C)q>2!cbs-!U>511!L). U krajwem levom delu cilindra C nalazi se adijabatski klip koji mo`e da se kre}e u cilindru, ali uz savladavawe sila trewa. Otvarawem slavine, klip se usled razlike pritisaka kre}e i sa stepenom dobrote ηlq e >1/9 sabija vazduh u cilindru C dok se ne uspostavi mehani~ka ravnote`a. Skicirati procese sa radnim telom na zajedni~kom Ut dijagramu i odrediti: a) pritisak i temperaturu u cilindrima B i C u stawu mehani~ke ravnote`e b) promenu entropije izolovanog termodinami~kog sistema od zadatog po~etnog stawa do stawa mehani~ke ravnote`e izme|u vazduha u cilindrima B i C B C a) prvi zakon termodinamike za proces u delu A;! (R 23 ) B = (∆V23 ) B + (X23 )B !!)2* prvi zakon termodinamike za proces u delu C;!! (R 23 )C = (∆V23 )C + (X23 )C !!!)3* sabirawem jedna~ina (1) + (2) dobija se: (∆V23 )B = −(∆V23 )C ! ⇒ UB3 − UB2 = UC2 − UC3 ili UB2 + UC2 = UB2 + UC3 )4* napomena: po{to su oba cilindra adijabatski izolovana od okoline (R23 )B = (R23 )C =0. zapreminski rad koji izvr{i radno telo B i zapreminski rad koji se izvr{i nad radnim telom C su jednaki, ali suprotni po znaku (X23 ) B = −(X23 )C dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 49 jedna~ina stawa idealnog gasa u delu B na po~etku procesa: WB2 = ( ) o B ⋅ NS h ⋅ UB2 q B2 ( ) o B ⋅ NS h ⋅ UB3 q B3 ( ) q C2 ( ) o W ⋅ NS h ⋅ UC3 q C3 ) ⇒ U U WB3 − WB2 = o ⋅ NS h ⋅ B3 − B2 !)7* q B3 q B2 ( ) ( ) ⇒ ( ) ⇒ q C2 ⋅ WC2 = oC ⋅ NS h ⋅ UC2 )8* q C3 ⋅ WC3 = oC ⋅ NS h ⋅ UC3 jedna~ina stawa idealnog gasa u delu C na kraju procesa: WC3 = ( q B3 ⋅ WB3 = o B ⋅ NS h ⋅ UB3 jedna~ina stawa idealnog gasa u delu C na po~etku procesa: oC ⋅ NS h ⋅ UC2 ⇒ )6* oduzimawem (5*!−!)5*!dobija se;! WC2 = ) )5* jedna~ina stawa idealnog gasa u delu B na kraju procesa: WB3 = ( q B2 ⋅ WB2 = o B ⋅ NS h ⋅ UB2 )9* U U WC2 − WC3 = o ⋅ NS h ⋅ C2 − C3 q C2 q C3 ( oduzimawem )8*!−!)9*!dobija se; ) !!):* iz ~iwenice da su leve strane jedna~ina!)7*!i!):*!jednake dobija se: UB3 UB2 U U > C2 − C3 − q B3 q B2 q C2 q C3 ⇒ UB3 + UC3 U U > B2 + C2 ! qy q B2 q C2 )21* UB3 UC3 U U > B2 + C2 + q B3 q C3 q B2 q C2 ⇒ kada se u jedna~inu )21* uvrsti jedna~ina )4* dobija se: UB2 + UC2 U U U + UC2 511 + 511 > B2 + C2 ⇒ qy!>! B2 = UB2 UC2 511 511 qy q B2 q C2 + + 6 q B2 q C2 21 ⋅ 21 2 ⋅ 21 6 qy!> 2/93 ⋅ 21 6 Qb napomena:! qB3!>!qC3>!qy!(uslov mehani~ke ravnote`e na kraju procesa) dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike q UC3l = UC2 ⋅ C3l q C2 UC3l − UC2 ηlq e = UC3 − UC2 UC3> 511 + κ −2 κ strana 50 2/93 ⋅ 21 6 = 511 ⋅ 2 ⋅ 21 6 ⇒ 2/5 −2 2/5 UC3 = UC2 + >585/7!L UC3l − UC2 ηlq e 585/7 − 511 >5:4/4!L 1/9 iz jedna~ine!)4*!!!!!⇒ UB3 = UB2 + UC2 − UC3 = 511 + 511 − 5:4/4 = 417/8 L b) ∆TTJ!>!∆TSU!,!∆Tplpmjob!>!///!>!2/15! ∆Tplpmjob>!1! lK L lK L (adijabatski procesi u oba cilindra) ∆TSU!>! ∆T B + ∆T C >!///>!1/9:!,!1/26!>!2/15! 417/8 2/93 ⋅ 216 UB3 q − 1/398 ⋅ mo − Shmo B3 > 5 ⋅ 2⋅ mo UB2 qB2 511 21 ⋅ 216 >1/9:! lK L 5:4/4 2/93 ⋅ 21 6 UC3 q − 1/398 ⋅ mo − Shmo C3 > 5 ⋅ 2 ⋅ mo UC2 qCB2 511 2 ⋅ 21 6 >1/26! lK L !∆TB!> nB ⋅ dqmo ∆TC!> nC ⋅ dqmo lK L qB2 3C U 3lC qy qC2 2B 2C UB2>UC2 3B 3lB t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 51 2/52/!Geometrijski identi~ni, adijabatski i bez trewa poktretni klipovi hermeti~ki zaptivaju dva horizontalno postavqena, toplotno izolovana, nepokretna cilindra. Klipovi su me|usobno spregnuti preko sistema zup~astih letvi, odnosno preko fiksnog i bez trewa pokretnog zup~anika (slika). U levom cilindru )B*- nalazi se 1/9!lh sumpor dioksida (idealan gas), a u desnom cilindru )C* 1/9!lh kiseonika (idealan gas). U polaznom polo`aju, sumpor-dioksid se nalazi u stawu B2)qB2>1/23!NQbUB2>411!L*- a kiseonik u stawu C2!)qC2>1/19!NQb-!UC2>411!L*. Odrediti koli~inu elektri~ne energije koju bi elektri~ni greja~ H trebao da preda sumpor-dioksidu, da bi se temperatura kiseonika snizila do UC3>393!L/ H qB C B qbnc QC jedna~ina stawa idealnog gasa C na po~etku procesa:! q C2 ⋅ WC2 = nC ⋅ S hC ⋅ UC2 WC2 = nC ⋅ S hC ⋅ UC2 q C2 = 1/9 ⋅ 371 ⋅ 411 1/19 ⋅ 21 7 >1/89!n4 U q zakon kvazistati~ke adijabatske promene stawa gasa!C;!!!! C2 = C2 q C3 UC3 q C3 U = q C2 ⋅ C3 UC2 κ κ −2 = 1/19 ⋅ 21 7 κ κ −2 2/5 393 2/5 −2 ⋅ >! 1/75 ⋅ 21 6 Qb 411 jedna~ina stawa idealnog gasa C!na kraju procesa:!!!! q C3 ⋅ WC3 = nC ⋅ S hC ⋅ UC3 WC3 = nC ⋅ S hC ⋅ UC3 q C3 = 1/9 ⋅ 371 ⋅ 393 1/755 ⋅ 21 6 >1/:2!n4 prvi zakon termodinamike za proces u delu C;!!!!!! (R 23 )C = (∆V23 )C + (X23 )C (X23 )C >! − nC ⋅ d wC ⋅ (UC3 − UC2 ) > −1/9 ⋅ 1/76 ⋅ (393 − 411) >!:/47!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 52 (X23 )B >! (X23 )C >!:/47!lX jedna~ina stawa idealnog gasa A na po~etku procesa: q B2 ⋅ WB2 = n B ⋅ S hB ⋅ UB2 WB2 = n B ⋅ S hB ⋅ UB2 q B2 = 1/9 ⋅ 241 ⋅ 411 1/23 ⋅ 21 7 >1/37!n4 WB3!−!WB2!>!WC3!−!WC2! uslov jednakih promena zapremina: WB3!>!WB2!,!WC3!−!WC2 WB3>1/37!,!1/:2!−!1/89!>!1/4:!n4 jedna~ina stati~ke ravnote`e za idealan gas!C!na kraju procesa: qC3!>!qbnc!−!q{vq•bojl! ⇒ q{vq•bojl!>!qbnc!−!qC3!>!2!−!1/75!>!1/47!cbs jedna~ina stati~ke ravnote`e za idealan gas!B!na kraju procesa: qB3!>!qbnc!,!q{vq•bojl! ⇒ qB3!>!2!,!1/47!>!2/47!cbs jedna~ina stawa idealnog gasa!B!na kraju procesa:!! q B3 ⋅ WB3 = n B ⋅ S hB ⋅ UB3 UB 3 = q B3 ⋅ WB3 2/47 ⋅ 21 6 ⋅ 1/4: >621!L = n B ⋅ S hB 1/9 ⋅ 241 prvi zakon termodinamike za proces u delu!B;!!!!! (R 23 ) B = (∆V23 ) B + (X23 )B (R23 )B > n B ⋅ d wB (UB3 − UB2 ) + (X23 )B dipl.ing. @eqko Ciganovi} = 1/9 ⋅ 1/56 ⋅ (621 − 411) + :/47 >95/:7!lX {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 53 2/53/ U toplotno izolovanom spremniku zapremine W>1/4!n4- nalazi se idealan gas B)Sh>394!K0lhLdw>821!K0lhL-!q>2!cbs-!U>3:4!L*/ Gre{kom je u ovaj spremnik pu{tena izvesna koli~ina idealnog gasa C tako da je nastala me{avina idealni gasova stawa 2)q>2/49!cbs-!U>431!L*/ Da bi se saznalo koji je gas u{ao u spremnik izmerena je ukupna masa me{avine nB,nC>1/573!lh, a zatim je me{avina zagrejana to temperature od U3>464!L. Za ovo zagrevawe je utro{eno R23>21/4!lK toplote. Odrediti koli~inu )nC* i vrstu )Sh-!dw* dodatog gasa C. q B ⋅ WB = n B ⋅ S hB ⋅ UB jedna~ina stawa idealnog gasa A pre me{awa: nB = qB ⋅ W 2 ⋅ 21 6 ⋅ 1/4 = = 1/473 lh S hB ⋅ UB 394 ⋅ 3:4 nC!>)nB!!,!nC!*!−!nB!>!1/573!−!1/473!>1/2!lh koli~ina dodatog gasa: jedna~ina stawa me{avine idealnih gasova B,C pre zagrevawa, stawe (1): 2 q2 ⋅ W ⋅ − n B ⋅ S hB S hC = q2 ⋅ WB = n B ⋅ S hB + nC ⋅ S hC ⋅ U2 ⇒ nC U2 ( S hC = ) K 2 2/49 ⋅ 21 6 ⋅ 1/4 ⋅ − 1/473 ⋅ 394 >37:/4! 1/2 431 lhL prvi zakon termodinamike za proces zagrevawa me{avine: R 23 = ∆V23 + X23 R 23 = (n B ⋅ d wB + nC ⋅ d wC ) ⋅ (U3 − U2 ) d wC = ⇒ d wC = 2 nC R23 ⋅ − n B ⋅ d wB U3 − U2 2 21/4 ⋅ 21 4 K ⋅ − 1/473 ⋅ 821 >662 1/2 464 − 431 lhL dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 54 2/54!U adijabatski izolovanom sudu sa nepropusnim i adijabatskim pregradnim zidom odvojeno je B)O3W>8!n4-!q>5!cbs-!U>394!L* od C)DP3-!W>!5!n4-!q>9!cbs-!U>684!L*/ Izvla~ewem pregradnog zida gasovi }e se izme{ati. Odrediti: a) temperaturu )U+* i pritisak )q+* dobijene me{avine b) dokazati da je proces me{awa O3!i!DP3 nepovratan !B a) !C jedna~ina stawa idealnog gasa B pre me{awa: q B ⋅ WB = n B ⋅ S hB ⋅ UB nB = q B ⋅ WB 5 ⋅ 21 6 ⋅ 8 = = 44/42 lh S hB ⋅ UB 3:8 ⋅ 394 jedna~ina stawa idealnog gasa C pre me{awa: q C ⋅ WC = nC ⋅ S hC ⋅ UC nC = q C ⋅ WC 9 ⋅ 21 6 ⋅ 5 = = 3:/66 lh S hC ⋅ UC 29: ⋅ 684 prvi zakon termodinamike za proces me{awa: ∆V23>1 ⇒ R 23 = ∆V23 + X23 V2 = V 3 V2 = n B ⋅ d wB ⋅ UB + nC ⋅ d wC ⋅ UC V 3 = n B ⋅ d wB ⋅ U + + nC ⋅ d wC ⋅ U + U+ = n B ⋅ d wB ⋅ UB + nC ⋅ d wC ⋅ UC 44/42 ⋅ 1/85 ⋅ 394 + 3:/66 ⋅ 1/77 ⋅ 684 = >522!L n B⋅ d wB + nC ⋅ d wC 44/42 ⋅ 1/85 + 3:/66 ⋅ 1/77 jedna~ina stawa me{avine idealnih gasova u trenutku uspostavqawa toplotne ravnote`e: q + ⋅ (WB + WC ) = n B ⋅ S hB + nC ⋅ S hC ⋅ U + q+ = (n B ⋅ S hB + nC ⋅ S hC ) ⋅ U WB + WC dipl.ing. @eqko Ciganovi} ( ∗ = ) (44/42 ⋅ 3:8 + 3:/66 ⋅ 29:) ⋅ 522 8+5 > 6/89 ⋅ 21 6 Qb {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 55 pritisak gasne me{avine q+ se mo`e odrediti i primenom Daltonovog zakona q+!> q +B + q C+ pri ~emu q +B i q C+ imaju slede}a zna~ewa: napomena: q +B − pritisak gasa B u gasnoj me{avini u trenutku dostizawa toplotne ravnote`e q C+ − pritisak gasa C u gasnoj me{avini u trenutku dostizawa toplotne ravnote`e jedna~ina stawa idealnog gasa B u trenutku uspostavqawa toplotne q +B ⋅ (WB + WC ) = n B ⋅ S hB ⋅ U + ravnote`e: q +B = n B ⋅ S hB ⋅ U + WB + WC = 44/42 ⋅ 3:8 ⋅ 522 = 4/81 ⋅ 21 6 !Qb 8+5 jedna~ina stawa idealnog gasa C u trenutku uspostavqawa toplotne q C+ ⋅ (WB + WC ) = nC ⋅ S hC ⋅ U + ravnote`e: q C+ = nC ⋅ S hC ⋅ U + WB + WC = 3:/66 ⋅ 29: ⋅ 522 = 3/19 ⋅ 21 6 !Qb 8+5 b) ∆TTJ!>!∆TSU!,!∆Tplpmjob!>!///!>23/95! ∆Tplpmjob>−! R23 lK = 1! L Up lK !?1 L (sud izolovan od okoline) ∆TSU!>∆TB!,!∆TC>!///>!24/78!−!1/94!>23!/95! lK L W + WC U∗ + S hB mo B ∆TB!> n B ⋅ g (U- w ) !> n B ⋅ d wB mo U WB B > 522 8+5 lK ∆TB!> 44/42 ⋅ 1/85 ⋅ mo + 1/3:8 ⋅ mo >24/78! 394 8 L W + WC U∗ + S hC mo B ∆TC!> nC ⋅ g (U- w ) !> nC ⋅ d wC mo UC WC > 522 8+5 lK ∆TC!> 3:/66 ⋅ 1/77 ⋅ mo + 1/29: ⋅ mo >!−1/94! L 684 5 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 56 2/55. Toplotno izolovan sud podeqen je izolovanom pregradom na dva dela (slika). U delu B zapremine WB>2/6!n4 nalazi se vodonik (idealan gas) stawa B)qB>1/3!NQb-!UB>3:4!L*/ U delu C zapremine WC>1/5!n4, nalazi se azot stawa C)qC>1/4!NQb-!nC>2!lh*. U jednom trenutku sa pregrade se uklawa izolacioni nepropusni sloj sa pregrade, ~ime ona postaje toplotno ne izolovana polupropustqiva membrana, kroz koju mogu da prolaze samo molekuli vodonika. Odrediti a) promenu entropije sistema tokom procesa koji po~iwe uklawawem sloja pregrade i traje do uspostavqawa toplotne ravnote`e u sudu b) pritisak u delu suda B i delu suda C na kraju ovog procesa C B a) jedna~ina stawa idealnog gasa B pre me{awa: q B ⋅ WB = n B ⋅ S hB ⋅ UB nB = q B ⋅ WB 1/3 ⋅ 21 7 ⋅ 2/6 = = 1/36 lh S hB ⋅ UB 5268 ⋅ 3:4 jedna~ina stawa idealnog gasa C pre me{awa: q C ⋅ WC = nC ⋅ S hC ⋅ UC UC = q C ⋅ WC 1/4 ⋅ 21 7 ⋅ 1/5 = >515!L S hC ⋅ nC 3:8 ⋅ 2 prvi zakon termodinamike za proces me{awa: ∆V23>1 ⇒ R 23 = ∆V23 + X23 V2 = V 3 V2 = n B ⋅ d wB ⋅ UB + nC ⋅ d wC ⋅ UC V 3 = n B ⋅ d wB ⋅ U + + nC ⋅ d wC ⋅ U + U+ = n B ⋅ d wB ⋅ UB + nC ⋅ d wC ⋅ UC 1/36 ⋅ 21/5 ⋅ 3:4 + 2 ⋅ 1/85 ⋅ 515 >428/7!L = n B⋅ d wB + nC ⋅ d wC 1/36 ⋅ 21/5 + 2 ⋅ 1/85 ∆TTJ!>!∆TSU!,!∆Tplpmjob!>!///!>1/39! ∆Tplpmjob>−! R23 lK = 1! Up L lK !?1 L (sud izolovan od okoline) ∆TSU!>∆TB!,!∆TC>!///>!1/57!−!1/29!>1/39! dipl.ing. @eqko Ciganovi} lK L {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 57 W + WC U∗ ∆TB!> n B ⋅ g (U- w ) !> n B ⋅ d wB mo + S hB mo B UB WB > 428/7 2/6 + 1/5 lK + 5/268 ⋅ mo ∆TB!> 1/36 ⋅ 21/5 ⋅ mo >1/57! L 3:4 2/6 W U∗ + S hC mo C ∆TC!> nC ⋅ g (U- w ) !> nC ⋅ d wC mo U WC C > 428/7 lK ∆TC!> 2 ⋅ 1/85 ⋅ mo >!−1/29! L 515 b) jedna~ina stawa idealnog gasa B u trenutku uspostavqawa toplotne ravnote`e: q +B ⋅ (WB + WC ) = n B ⋅ S hB ⋅ U + q +B = n B ⋅ S hB ⋅ U + WB + WC q +B − = 1/36 ⋅ 5268 ⋅ 428/7 = 2/85 ⋅ 21 6 !Qb 2/6 + 1/5 pritisak vodonika u sudu A i istovremeno parcijalni pritisak vodonika gasa ugasnoj me{avini (vodonik +azot) u delu suda B u trenutku dostizawa toplotne ravnote`e jedna~ina stawa idealnog gasa C u trenutku uspostavqawa toplotne q C+ ⋅ WC = nC ⋅ S hC ⋅ U + ravnote`e: q C+ = nC ⋅ S hC ⋅ U + q C+ − WC = 2 ⋅ 3:8 ⋅ 428/7 = 3/47 ⋅ 21 6 !Qb 1/5 parcijalni pritisak azota gasnoj me{avini (vodonik +azot) u delu suda C u trenutku dostizawa toplotne ravnote`e (qC )3 > q +B + q C+ = 2/85 ⋅ 21 6 , 3/47 ⋅ 21 6 > 5/2 ⋅ 21 6 Qb (qC )3 − pritisak u sudu C u trenutku dostizawa toplotne ravnote`e dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 58 2/56/ Adijabatski izolovan termodinami~ki sistem prikazan na slici ~ine: − zatvoren rezervoar )B* stalne zapremine WB>1/4!n4, u kojem se nalazi kiseonik (idealan gas) stawa B)qB>3/7!cbs-!UB>411!L* − zatvoren vertikalni cilindar )C* sa bez trewa pokretnim klipom, u kojem se nalazi nC>!2!lh metana (idealan gas) stawa C)qC>3!cbs-!UC>511!L*/ (pokretni klip svojom te`inom obezbe|uje stalan pritisak gasa) Otvarawem ventila dolazi do me{awa gasova. Smatraju}i da pri me{awu gasova ne}e do}i do hemijske reakcije (eksplozija) odrediti: a) rad koji izvr{i klip za vreme procesa me{awa b) promenu entropije ovog adijabatski izolovanog sistema za vreme procesa me{awa b* B C jedna~ina stawa idealnog gasa B pre me{awa: q B ⋅ WB = n B ⋅ S hB ⋅ UB nB = q B ⋅ WB 3/7 ⋅ 21 6 ⋅ 1/4 = = 2 lh S hB ⋅ UB 371 ⋅ 411 jedna~ina stawa idealnog gasa C pre me{awa: q C ⋅ WC = nC ⋅ S hC ⋅ UC WC = nC ⋅ S hC ⋅ UC qC = 2 ⋅ 631 ⋅ 511 3 ⋅ 21 6 >2/15!n4 prvi zakon termodinamike za proces me{awa: !!R23!>!∆V23!,!X23 [ ] 1> n B ⋅ d wB ⋅ U + + nC ⋅ d wC ⋅ U + − [n B ⋅ d wB ⋅ UB + nC ⋅ d wC ⋅ UC ] + X23 izra~unavawe zapreminskog rada: )2* X23!>! q C ⋅ W + − WB − WC !! )3* jedna~ina stawa dobijene me{avine idealnih gasova: q C ⋅ W + = n B ⋅ S hB + nC ⋅ S hC ⋅ U + )4* ( dipl.ing. @eqko Ciganovi} ) {fmlp@fvofu/zv zbirka zadataka iz termodinamike )4* W+ = ⇒ strana 59 (n B ⋅ S hB + nC ⋅ S hC ) ⋅ U + qC ovu jedna~inu uvrstimo u jedna~inu (2): n B ⋅ S hB + nC ⋅ S hC ⋅ U + X23 = q C ⋅ − WB − WC qC ovu jedna~inu uvrstimo u jedna~inu )2* odakle se nakon sre|ivawa dobija: n B ⋅ d wB ⋅ UB + n C ⋅ d wC ⋅ UC + q C ⋅ (WB + WC ) U+ = n B ⋅ d wB + n C ⋅ d wC + n B ⋅ S hB + n C ⋅ S hC ( U+ = ) 2 ⋅ 1/76 ⋅ 411 + 2 ⋅ 2/93 ⋅ 511 + 3 ⋅ 21 6 ⋅ 21 −4 ⋅ (1/4 + 2/15 ) >477/6!L 2 ⋅ 1/76 + 2 ⋅ 2/93 + 2 ⋅ 1/37 + 2 ⋅ 1/63 (2 ⋅ 371 + 2 ⋅ 631) ⋅ 477/6 >2/54!n4 )4* ⇒ W+ = )3*! ⇒ X23 = 3 ⋅ 21 6 ⋅ 21 −4 ⋅ [2/54 − 1/4 − 2/15 ] >29!lK 3 ⋅ 21 6 b) ∆TTJ!>!∆TSU!,!∆Tplpmjob!>!///!>1/654! ∆Tplpmjob>−! R23 lK = 1! Up L lK L (sud i cilidar izolovani od okoline) ∆TSU!>∆TB!,!∆TC>!///>!1/647!,!1/118!>1/654! U+ W+ + S hB mo ∆TB> n B ⋅ d wB mo UB WB U∗ W+ ∆TC> nC ⋅ d wC mo + S hC mo UC WC dipl.ing. @eqko Ciganovi} lK L > 2 ⋅ 1/76 ⋅ mo 477/6 + 1/37 ⋅ mo 2/54 >1/647 lK L 411 1/4 = 2 ⋅ 2/93 ⋅ mo 477/6 + 1/63 ⋅ mo 2/54 >1/118! lK L 511 2/15 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 60 2/57/ Termodinami~ki sistem prikazan na slici ~ine: − zatvoren rezervoar )B* stalne zapremine WB>1/37!n4, u kojem se nalazi kiseonik (idealan gas) stawa B)qB>5!cbs-!UB>511!L* − zatvoren rezervoar )C* stalne zapremine WC>1/37!n4 u kojem vlada apsolutni vakum − okolina stalne temperature Up>399!L Otvarawem ventila kiseonik se {iri i u toku procesa {irewa okolini preda 25/5!lK toplote. a) odrediti pritisak kiseonika nakon {irewa b) dokazati da je proces {irewa kiseonika nepovratan. B a) C jedna~ina stawa idealnog gasa B pre {irewa: q B ⋅ WB = n B ⋅ S h ⋅ UB2 nB = q B ⋅ WB 5 ⋅ 21 6 ⋅ 1/37 = = 2 lh S hB ⋅ UB2 371 ⋅ 511 prvi zakon termodinamike za proces {irewa: R 23 = n ⋅ d w (UB3 − UB2 ) ⇒ UB3 = UB2 + R 23 = ∆V23 + X23 R 23 25/5 = 511 − >491!L n ⋅ dw 2 ⋅ 1/83 jedna~ina stawa idealnog gasa B nakon {irewa: q B3 ⋅ (WB + WC ) = n B ⋅ S h ⋅ UB3 q B3 = n B ⋅ S h ⋅ UB 3 WB + WC = 2 ⋅ 371 ⋅ 491 >! 2/: ⋅ 21 6 Qb 1/37 + 1/37 b) ∆TTJ!>!∆TSU!,!∆Tplpmjob!>!///!>1/258,1/16!>!1/2:8! ∆Tplpmjob>−! lK !?!1 L R 23 − 25/5 lK =− >1/161! L Up 399 U q ∆TSU> n B ⋅ d q mo B3 − S hmo B3 UB2 QB2 dipl.ing. @eqko Ciganovi} 491 2/: lK > 2 ⋅ 1/:2 ⋅ mo − 1/37 ⋅ mo >1/258 L 511 5 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 61 2/58/!Adijabatski izolovan sud podeqen je nepropusnom i adijabatskom membranom na dva dela WB>1/4!n4 i WC>1/6!n4 (slika). U delu B nalazi se nB>1/6!lh kiseonika (idealan gas) temperature UB>411!L, a u delu C!nC>2!lh sumpor-dioksida (idealan gas) temperature UC>641!L. U delu A kiseonik po~iwe da se me{a ventilatorom snage 41!X/ Membrana je projektovana da pukne kada razlika pritisaka prema{i ∆q>73!lQb i u tom trenutku se iskqu~uje ventilator. Odrediti: a) vreme do pucawa membrane c* temperaturu i pritisak nastale me{avine posle pucawa membrane, a po uspostavqawu termodinami~ke ravnote`e X23 !C B b* q C ⋅ WC = nC ⋅ S hC ⋅ UC jedna~ina stawa idealnog gasa C: nC ⋅ S hC ⋅ UC qC = WC = 2 ⋅ 241 ⋅ 641 > 2/49 ⋅ 21 6 Qb 1/6 ∆q = q B3 − q C uslov pucawa membrane: 6 4 6 q B3 = q C + ∆q = 2/49 ⋅ 21 + 1/73 ⋅ 21 > 3 ⋅ 21 !Qb jedna~ina stawa idealnog gasa B neposredno pred pucawe membrane: q ⋅W 3 ⋅ 21 6 ⋅ 1/4 UB 3 = B 3 B = >572/6!L q B3 ⋅ WB = n B ⋅ S hB ⋅ UB3 ⇒ n B ⋅ S hB 1/6 ⋅ 371 prvi zakon termodinamike za proces u delu A (za vreme rada ventilatora) R 23 = ∆V23 + XU23 ⇒ XU23 = −∆V23 XU23 = −n B ⋅ d wB ⋅ (UB3 − UB2 ) = −1/6 ⋅ 1/76 ⋅ (572/6 − 411) >−63/6!lK τ= XU23 ⋅ X U23 = − 63/6 . 41 ⋅ 21 .4 dipl.ing. @eqko Ciganovi} >!2861!t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 62 b) prvi zakon termodinamike za proces me{awa: ∆V23>1 ⇒ R 23 = ∆V23 + X23 V2 = V 3 V2 = n B ⋅ d wB ⋅ UB3 + nC ⋅ d wC ⋅ UC V 3 = n B ⋅ d wB ⋅ U + + nC ⋅ d wC ⋅ U + U+ = n B ⋅ d wB ⋅ UB3 + nC ⋅ d wC ⋅ UC 1/6 ⋅ 1/76 ⋅ 572/6 + 2 ⋅ 1/56 ⋅ 641 >612/4!L = n B⋅ d wB + nC ⋅ d wC 1/6 ⋅ 1/76 + 2 ⋅ 1/56 jedna~ina stawa me{avine idealnih gasova u trenutku uspostavqawa toplotne ravnote`e: q + ⋅ (WB + WC ) = n B ⋅ S hB + nC ⋅ S hC ⋅ U + q+ = (n B ⋅ S hB + nC ⋅ S hC ) ⋅ U ( ∗ = WB + WC ) (1/6 ⋅ 371 + 2 ⋅ 241) ⋅ 612/4 > 2/74 ⋅ 21 6 Qb 1/4 + 1/6 2/59/!Adijabatski izolovan sud podeqen je nepropustqivom i adijabatskom membranom na dva dela WB>1/4 n4!i!WC>1/6!n4 (vidi sliku). U delu B nalazi se nB>1/6!lh kiseonika (idealan gas) temperature UB>411 L, a u delu C!nC>2!lh sumpor-dioksida (idealan gas) temperature UC>461!L/ Me{awe kiseonika se obavqa ventilatorom pogonske snage 41!X, sumpor-dioksida ventilatorom pogonske snage 56!X. Membrana je projektovana tako da pukne kada razlika pritisaka prema{i ∆q≥75/3!lQb i u tom trenutku se iskqu~uju oba ventilatora. Odrediti: a) vreme do pucawa membrane b) temperaturu i pritisak nastale me{avine posle pucawa membrane, a po uspostavqawu termodinami~ke ravnote`e B )XU23*B dipl.ing. @eqko Ciganovi} C )XU23*B {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 63 b* ⋅ prvi zakon termodinamike za proces u delu!B;!!! (R 23 ) B = (∆V23 ) B + X U23 ⋅ τ B ⋅ n B ⋅ d wB ⋅ (UB3 − UB2 ) = − X U23 ⋅ τ B )2* ⋅ prvi zakon termodinamike za proces u delu!C;! (R 23 )C = (∆V23 )C + X U23 ⋅ τ C ⋅ nC ⋅ d wC ⋅ (UC3 − UC2 ) = − X U23 ⋅ τ C )3* ⋅ X U23 n ⋅ d ⋅ (UB3 − UB2 ) B > B wB !!!!!)4* deqewem jedna~ina!)2*!i!)3*!dobija se;! nC ⋅ d wC ⋅ (UC3 − UC2 ) ⋅ X U23 C jedna~ina stawa idealnog gasa!C!neposredno pred!pucawa membrane: nC ⋅ S hC ⋅ UC3 q C3 ⋅ WC = nC ⋅ S hC ⋅ UC3 ⇒ q C3 = )5* WC jedna~ina stawa idealnog gasa!B!neposredno pred!pucawa membrane: n B ⋅ S hB ⋅ UB3 q B3 = )6* q B3 ⋅ WB = n B ⋅ S hB ⋅ UB3 ⇒ WB oduzimawem jedna~ina!)6*!i )5*!dobija se: n B ⋅ S hB ⋅ UB3 nC ⋅ S hC ⋅ UC3 q B 3 − q C3 = − WB WC uslov pucawa membrane: ∆q = q B3 − q C3 )7* )8* kombinovawem jedna~ina!)4*-!)7*!i!)8*!dobija se: UB3!>!577/26!L UC3!>!641!L vra}awem UB3!u jedna~inu!)2*!ili UC3!u jedna~inu )3*!dobija se: −n B ⋅ d wB ⋅ (UB3 − UB2 ) −1/6 ⋅ 1/76 ⋅ (577/26 − 411) τ= = >2911!t ⋅ − 41 X U23 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 64 b) prvi zakon termodinamike za proces me{awa: ∆V23>1 ⇒ R 23 = ∆V23 + X23 V2 = V 3 V2 = n B ⋅ d wB ⋅ UB3 + nC ⋅ d wC ⋅ UC3 V 3 = n B ⋅ d wB ⋅ U + + nC ⋅ d wC ⋅ U + U+ = n B ⋅ d wB ⋅ UB3 + nC ⋅ d wC ⋅ UC3 1/6 ⋅ 1/76 ⋅ 577/26 + 2 ⋅ 1/56 ⋅ 641 = >614/3!L n B⋅ d wB + nC ⋅ d wC 1/6 ⋅ 1/76 + 2 ⋅ 1/56 jedna~ina stawa me{avine idealnih gasova u trenutku uspostavqawa toplotne ravnote`e: q + ⋅ (WB + WC ) = n B ⋅ S hB + nC ⋅ S hC ⋅ U + ( q+ = ) (n B ⋅ S hB + nC ⋅ S hC ) ⋅ U ∗ (1/6 ⋅ 371 + 2 ⋅ 241) ⋅ 614/3 > 2/75 ⋅ 21 6 Qb = WB + WC dipl.ing. @eqko Ciganovi} 1/4 + 1/6 {fmlp@fvofu/zv zbirka zadataka iz termodinamike zadaci za ve`bawe: strana 65 )2/5:/!−2/61/* 2/5:/ Verikalni cilindar unutra{weg pre~nika e>361!nn, adijabatski izolovan od okoline, zatvoren je sa gorwe strane bez trewa pokretnim adijabatskim klipom mase nl>61!lh. Klip na sebi nosi oprugu zanemarqive te`ine, linearne karakteristike l>231 O0dn3 i u po~etnom polo`aju udaqen je od dna cilindra {>511!nn (slika). Pritisak okoline iznosi qp>2!cbs/ U cilindru se nalazi vazduh (idealan gas) temperature U2>3:4!L. Na oprugu se odozgo po~iwe spu{tati teg nbtf!nU>411!lh/ Od trenutka kada teg dodirne opruga , on po~inwe oprugu sa klipom potiskivati na dole, istovremeno sabijaju}i oprugu i gas u cilindru. Odrediti a) za koliko se spusti klip )∆{* a koliko sabije opruga )∆m* do trenutka kada sila u u`etu postane jednaka nuli (stawe 2) b) do koje temperature bi trebalo zagrejati vazduh stawa 2 da bi klip vratili u prvobitni polo`aj i koliko toplote je za to potrebno dovesti nu m { e a) ∆{>21:!nnb) U>563/9!L- ∆m>356!nn R>4/2!lK 2/61/ Cilindar je napravqen prema slici. Slobodno pomi~ni klip zanemarqive mase, optere}en tegom mase nU>311!lh, nalazi se u po~etnom polo`aju na kao na slici. U cilndru se nalazi vazduh po~etne temperature U2>634!L koji se hladi predaju}i kroz zidove cilindra toplotu okolini stawa P)qp>2!cbs-!!Up>3:4!L* sve do uspostavqawa toplotne ravnote`e sa okolinom. Odrediti: a) pri kojoj temperaturi vazduha u cilindru }e klip dodirnuti oslonac (stawe 2) b) pritisak gasa na po~etku i kraju procesa c) koli~inu toplote koju vazduh preda okolini tokom procesa 1−2−3 nu ∆{ E e>291!nn E>311!nn { e {>461!nn ∆{>261!nn a) U3!>456/7!L b) q2!>2/73!cbs-!q4!>2/48!cbs c) R24!>!−4/27!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 66 PRVI I DRUGI ZAKON TERMODINAMIKE (OTVOREN TERMODINAMI^KI SISTEM) 2/62/ Vazduh (idealan gas) struji stacionarno kroz vertikalnu cev visine 4/7!n, konstantnog popre~nog preseka, masenim 3 ⋅ protokom od n >411!lh0i (slika). Cev je toplotno izolovana od okoline, a u cevi je instaliran greja~ koji vazduhu predaje toplotu. Stawe vazduha na ulazu u cev odre|eno je veli~inama stawa 2)q2>2/3!cbs-!U2>3:4!L-!x>5/6!n0t*, a na izlazu 3)q3>2 cbs!U3>472!L*. Odrediti: a) brzinu vazduha na izlazu iz cevi c* toplotni protok koji greja~ saop{tava vazduhu {3−{2 a) 2 jedna~ina stawa idealnog gasa na ulazu u cev: q2 ⋅ w 2 = S h ⋅ U2 S h ⋅ U2 w2 = q2 = 398 ⋅ 3:4 2/3 ⋅ 21 6 >1/8118! n4 lh q 3 ⋅ w 3 = S h ⋅ U3 jedna~ina stawa idealnog gasa na izazu iz cevi: w3 = S h ⋅ U3 q3 = 398 ⋅ 472 2 ⋅ 21 6 >2/1472! n4 lh x2 ⋅ jedna~ina kontinuiteta: x 3 = x2 ⋅ e23 ⋅ π e 3 ⋅π x3 ⋅ 3 5 5 = w2 w3 w3 n 2/1472 = 5/6 ⋅ >7/76! w2 1/8118 t b) ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u cevi:! R 23 = ∆ I23 + X U23 + ∆Fl23 + ∆Fq23 ⋅ ⋅ x 33 − x 23 + n⋅ ({ 3 − {2 ) 3 411 411 7/76 3 − 5/6 3 411 = ⋅ 2 ⋅ 21 4 ⋅ (472 − 3:4) + ⋅ + ⋅ 4/7 >6779!X 4711 4711 3 4711 ⋅ ⋅ R 23 = ∆ n⋅ d q ⋅ (U3 − U2 ) + n⋅ ⋅ R 23 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 67 ⋅ 2/63/ U toplotno izolovanoj komori me{aju se tri struje idealnih gasova: kiseonik B) n >7!lh0t-!q>1/29 ⋅ ⋅ NQb-!u>361pD*- azot C) n >4!lh0t-!q>1/44!NQb-!u>6:1pD* i ugqen−monoksid D) n >3!lh0t-!q>1/49!NQbu>551pD*/ Pritisak dobijene sme{e na izlazu iz komore q+>1/2!NQb/!Zanemaruju}i promenu kineti~ke energije kao i potencijalne energije, odrediti: a) temperaturu )U+* i zapreminski protok ( W + ) dobijene sme{e c* promenu entropije sistema za proces me{awa B C me{avina D a) prvi zakon termodinamike za proces u me{noj komori: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 + ∆Fl23 + ∆Fq23 ⇒ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ I2 = I3 I2 = n B ⋅ d qB ⋅ UB + nC ⋅ d qC ⋅ UC + nD ⋅ d qD ⋅ UD I3 = n B ⋅ d qB ⋅ U + + nC ⋅ d qC ⋅ U + + nD ⋅ d qD ⋅ U + ⋅ + U = ⋅ ⋅ n B ⋅ d qB ⋅ UB + nC ⋅ d qC ⋅ UC + nD ⋅ d qD ⋅ UD ⋅ ⋅ ⋅ n B ⋅ d qB + nC ⋅ d qC + nD ⋅ d qD U+ = 7 ⋅ 1/:2 ⋅ 634 + 4 ⋅ 2/15 ⋅ 974 + 3 ⋅ 2/15 ⋅ 824 = 76:/7!L 7 ⋅ 1/:2 + 4 ⋅ 2/15 + 3 ⋅ 2/15 jedna~ina stawa idealne gasne me{avine na izlazu iz komore za me{awe: ⋅ ⋅ ⋅ q + ⋅ W + = n B ⋅ S hB + nC ⋅ S hC + nD ⋅ S hD ⋅ U + ⇒ ⋅ ⋅ ⋅ n B ⋅ S hB + nC ⋅ S hC + nD ⋅ S hD ⋅ U + (7 ⋅ 371 + 4 ⋅ 3:8 + 3 ⋅ 3:8) ⋅ 76:/7 W+ = = + q 2 ⋅ 21 6 W + = 31 ! n4 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 68 b) jedna~ina stawa idealnog gasa B u nastaloj me{avini: ⋅ q +B = n B ⋅ S hB ⋅ U + W + 7 ⋅ 371 ⋅ 76:/7 >1/62 ⋅ 21 6 !Qb 31 = jedna~ina stawa idealnog gasa C u nastaloj me{avini: ⋅ q C+ = nC ⋅ S hC ⋅ U + W + ⋅ ⋅ = nD ⋅ S hD ⋅ U + W ⋅ + = ⋅ ⋅ ⋅ lX L ⋅ ∆ T SU > ∆ T B , ∆ TC , ∆ TD >!///>4/34!,!2/44!,!2/6:!>!7/26! ⋅ ⋅ q +D ⋅ W + = nD ⋅ S hD ⋅ U + 3 ⋅ 3:8 ⋅ 76:/7 >1/31 ⋅ 21 6 !Qb 31 ∆ Ttj > ∆ T SU , ∆ Tp >!///!>7/26! ⋅ ⋅ q C+ ⋅ W + = nC ⋅ S hC ⋅ U + 4 ⋅ 3:8 ⋅ 76:/7 >1/3: ⋅ 21 6 !Qb 31 = jedna~ina stawa idealnog gasa D u nastaloj me{avini: q +D ⋅ q +B ⋅ W + = n B ⋅ S hB ⋅ U + lX L ⋅ R23 lX ∆ Tp = − >1! L Up (adijabatski izolovana komora za me{awe) ⋅ ⋅ q+ U+ ∆ T B = g (q- U ) = n B . d qB mo − S hB mo B UB qB = ⋅ 76:/7 1/62 ⋅ 21 6 lX ∆ T B > 7 ⋅ 1/:2 ⋅ mo − 1/37 ⋅ mo = 4/34 7 L 634 1/29 ⋅ 21 ⋅ ⋅ q+ U+ ∆ TC > g (q- U ) > nC /! d qC mo − S hC mo C > UC q C ⋅ 76:/7 1/3: ⋅ 21 6 lX >2/44! ∆ TC > 4 ⋅ 2/15 ⋅ mo − 1/3:8 ⋅ mo 7 L 974 1/44 ⋅ 21 ⋅ ⋅ q+ U+ ∆ TD > g (q- U ) > nD /! d qD mo − S hC mo D UD qD > ⋅ 76:/7 1/31 ⋅ 21 6 − 1/3:8 ⋅ mo ∆ TD > 3 ⋅ 2/15 ⋅ mo 824 1/49 ⋅ 21 7 dipl.ing. @eqko Ciganovi} >2/6:! lX L {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 69 2/64/ “Ludi nau~nik” tvrdi da je mogu}e, bez izmene toplote i/ili rada sa okolinom, struju vazduha stawa ⋅ 2) n >2!lh0t-!q>4!cbs-!U>3:4!L* razdvojiti na dve struje. Struju 2 stawa 3)q>3/8!cbs-!U>444!L* i struju 3 stawa 4)q>3/8!cbs-!U>384!L*/ Dokazati da je “ludi nau~nik” u pravu. Zanemariti promene kineti~ke i potencijalne energije vazduha. prvi zakon termodinamike za proces u razdelnoj komori: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 + ∆Fl23 + ∆Fq23 ⋅ ⋅ ⋅ ⇒ ⋅ n2⋅ d q ⋅ U2 > n3 ⋅ d q ⋅ U3 + n4 ⋅ d q ⋅ U4 ⋅ jedna~ina kontinuiteta: ⋅ I2 = I3 )2* ⋅ ⋅ n2 = n3 + n4 )3* ⋅ kombinovawem jedna~ina!)2*!j!)3*!dobija se: n3 >1/44! lh ⋅ lh -! n4 >1/78! t t drugi zakon termodinamike za proces u razdelnoj komori: ⋅ ⋅ ⋅ ∆ Ttj > ∆ T SU , ∆ Tp >!///!>36/7! ⋅ ⋅ X L ⋅ ∆ T SU > ∆ T 3 , ∆ T 4 >!///>63/85!−38/25!>!36/7! ⋅ X L ⋅ R23 X ∆ Tp = − >1! Up L (adijabatski izolovana komora za me{awe) ⋅ ⋅ U q ∆ T 3 = g (q- U ) = n3 . d q mo 3 − S h mo 3 U2 q2 ⋅ 444 3/8 X ∆ T 3 > 1/44 ⋅ 2 ⋅ mo − 1/398 ⋅ mo = 63/85 L 3:4 4 ⋅ ⋅ U q ∆ T 4 = g (q- U ) = n4 . d q mo 4 − S h mo 4 U2 q2 = ⋅ 384 3/8 X ∆ T 4 > 1/77 ⋅ 2 ⋅ mo − 1/398 ⋅ mo = −38/25 3:4 L 4 ⋅ Kako je ∆ Ttj ?!1, ovaj proces je mogu} pa je “ludi nau~nik” u pravu. dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 70 !2 2/65/ [ire}i se u gasnoj turbini, tok vazduha (idealan gas), mewa R23 ⋅ svoje toplotno stawe od stawa 2) W 2>1/3!n40t- q>21!cbs-!U>691!L*!, ⋅ na ulazu u turbinu, do stawa 3) W 3>2/3!n40t-!q>2!cbs*- na izlazu iz we. Tokom {irewa usled neidealnog toplotnog izolovawa turbine, toplotni protok sa vazdu{nog toka na okolni vazduh iznosi 29!lX. Zanemaruju}i promene kineti~ke i potencijalne energije vazdha , odrediti: a) snagu turbine b) dokazati da je proces u turbini nepovratan (temperatura okoline iznosi Up>3:4!L) XU23 !3 a) ⋅ jedna~ina stawa idealnog gasa na ulazu u turbinu: ⋅ q2 ⋅ W 2 = n⋅ S h ⋅ U2 ⋅ ⋅ q ⋅ W 2 21 ⋅ 21 6 ⋅ 1/3 lh n= 2 = >2/3! S h ⋅ U2 398 ⋅ 691 t ⋅ jedna~ina stawa idealnog gasa na izlazu iz turbine: ⋅ U3 = q3 ⋅ W 3 2 ⋅ 21 6 ⋅ 2/3 >459/5!L 398 ⋅ 2/3 = ⋅ ⋅ q 3 ⋅ W 3 = n⋅ S h ⋅ U3 Sh ⋅ n prvi zakon termodinamike za proces u turbini: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 + ∆Fl23 + ∆Fq23 ⋅ ⋅ ⋅ ⋅ ⇒ ⋅ X U23 = R23 − ∆ I23 = R23 − n⋅ dq ⋅ (U3 − U2) > −29 − 2/3 ⋅ 2 ⋅ (459/5 − 691) >371!lX b) ⋅ ⋅ ⋅ ∆ Ttj > ∆ T SU , ∆ Tp >!///!>72/5!,!292/5!>353/9! ⋅ X ?!1 L ⋅ X − 29 R23 ∆ Tp = − =− >72/5! Up 3:4 L ⋅ ⋅ ⋅ U q ∆ T SU = ∆ T23 = g (q- U ) = n . d q mo 3 − S h mo 3 U2 q2 ⋅ ∆ T SU > 2/3 ⋅ 2 ⋅ mo X 459/5 2 − 1/398 ⋅ mo = 292/5 691 21 L dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 71 ⋅ 2/66/!U dvostepenoj gasnoj turbini ekspandira n >3!lh0t vazduha (idealan gas) od po~etnog pritiska q2>71!cbs!do krajweg pritiska q5>21!cbs. Nakon ekspanzije u prvom stepenu turbine vazduh se uvodi u me|uzagreja~ u kome se izobarski zagreva do temperature U2>U4>911!L/ Ekspanzije u oba stepena su adijabatske i kvazistati~ke. Zanemariti promene potencijalne i kineti~ke energije. Skicirati proces u qw i Ut koordinatnim sistemima i odrediti: a) pritisak u me|uzagreja~u tako da snaga dvostepene turbine bude maksimalna b) snagu dvostepene turbine u tom slu~aju 2 XU23 3 4 R34 XU45 5 q U 2 3 2 4 3 5 4 5 w t a) ⋅ ⋅ ⋅ Q = X U23 + X U 45 = n⋅ d q ⋅ (U2 − U3 + U4 − U5 ) !>!/// κ q2 U2 κ −2 = q3 U3 κ ⇒ U κ −2 q3 = q2 ⋅ 3 >qy U2 ⇒ U κ −2 q4 = q5 ⋅ 4 >qy U5 κ q4 U4 κ −2 = q5 U5 dipl.ing. @eqko Ciganovi} )2* κ )3* {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 72 kombinovawem jedna~ina (1) i (2) dobija se: κ κ U κ −2 U κ −2 q2 ⋅ 3 > q5 ⋅ 4 U2 U5 U ⋅U q U3 = 4 2 ⋅ 2 U5 q5 ⇒! κ ⇒ q2 U4 ⋅ U2 κ −2 = q5 U5 ⋅ U3 ⇒ 2− κ U4 ⋅ U2 q2 κ Q = n⋅ dq ⋅ U2 − ⋅ + U4 − U5 U5 q5 q U5 = U4 ⋅ U2 ⋅ 2 q5 2− κ κ 71 ⋅ 216 > 911 ⋅ 911 ⋅ 21 ⋅ 216 911 ⋅ 911 71 ⋅ 216 U3 = ⋅ 72:/44 21 ⋅ 216 = U4 ⋅ U2 U5 ⋅ U3 2− κ ⋅ U ⋅U q κ ∂Q 4 2 2 2 = n⋅ dq ⋅ ⋅ − 3 q ∂U5 U5 5 2− κ U ⋅U q κ 4 2 2 ⋅ − 2 = 1 3 U5 q5 ⇔ κ −2 κ 2− κ κ ⋅ ∂Q =1 ∂U5 q2 q 5 2−2/5 2/5 2−2/5 2/5 q U5 = U4 ⋅ U2 ⋅ 2 q5 ⇒ ⇒ >72:/44!L κ >72:/44!L- 2− κ κ 2/5 U κ −2 72:/44 2/5 −2 >35/6!cbs q3 = q2 ⋅ 3 > 71 ⋅ 216 ⋅ 911 U2 b) Qnby = 3 ⋅ 2⋅ (911 − 72:/44 + 911 − 72:/44) >833/79!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 73 ⋅ 2/67/!Kopresor, snage!3!lX-!usisava okolni vazduh (idealan gas) stawa!2)q>2!cbs-!U>3:4!L-! n >1/16 lh0t*!i adijabatski ga sabija do stawa!3/!Nakon toga se vazduh adijabatski prigu{uje do po~etnog pritiska )q4>q2*. Prira{taj entropije vazduha za vreme adijabatske kompresije i adijabatskog prigu{ivawa je jednak. Odrediti stepen dobrote adijabatske kompresije. Zanemariti promene kineti~ke i potencijalne energije vazduha. 2 3 4 XU23 prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ⋅ ograni~enom isprekidanom linijom: ⋅ ⋅ ⋅ R 24 = ∆ I24 + X U24 + ∆Fl24 + ∆Fq24 ⋅ ⋅ 1 = n⋅ d q ⋅ (U4 − U2 ) + X U23 ⇒ U4 = U2 − XU23 ⋅ = 3:4 + n⋅ d q 3 >444!L 1/16 ⋅ 2 prvi zakon termodinamike za proces u prigu{nom ventilu : ⋅ ⋅ ⋅ R 34 = ∆ I34 + X U34 + ∆Fl34 + ∆Fq34 ∆t23 = ∆t 34 U q 3 = q2 ⋅ 3 U2 q U2 = 2 U3l q 3l ηlq e = ⇒ d q mo ⋅ ⇒ ⋅ I3 = I 4 U3>U4 U q U3 q − S h mo 3 = d q mo 4 − S h mo 4 U2 q2 U3 q3 dq ⇒ 2 3⋅Sh 444 3⋅1/398 > 2/36 ⋅ 21 6 !Qb = 2 ⋅ 21 6 ⋅ 3:4 κ −2 κ ⇒ ⇒ U3l q = U2 ⋅ 3l q2 κ −2 κ q3l>q3 2/36 = 3:4 ⋅ 2 2/5 −2 2/5 >423/4!L U2 − U3l 3:4 − 423/4 >1/59 = U2 − U3 3:4 − 444 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 74 2/68/!!U turbo kompresorskoj stanici se vr{i dvostepena kvazistati~ka adijabatska kompresija. Kompresor usisava 6!lnpm0i okolnog vazduha (idelan gas) stawa!2)q>2!cbs-!U>3:4!L* i sabija ga na neki me|u pritisak pri kojem se daqe hladi do temperature okoline. Nakon toga se vazduh sabija na kona~ni pritisak 5)q>:!cbs*. Zanemaruju}i promene potencijalne i kineti~ke energije, odrediti: a) vrednost me|u pritiska )q3>q4*!pri kojem su snage potrebne za oba stepena sabijawa jednake b) u{tedu u snazi u ovom procesu u odnosu na kompresiju bez me|uhla|ewa, tj. kada bi se kvazistati~ka adijabatska kompresija od stawa 2)q>2!cbs-!U>3:4!L* do pritiska od :!cbs!vr{ila u jednom stepenu 5 XU45 3 4 R34 XU23 2 a) prvi zakon termodinamike za proces u kompresoru niskog pritiska: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 + ∆Fl23 + ∆Fq23 ⋅ ⋅ X U23 = n⋅ d q ⋅ (U2 − U3 ) !!!!!!!)2* ⇒ prvi zakon termodinamike za proces u kompresoru visokog pritiska: ⋅ ⋅ ⋅ R 45 = ∆ I45 + X U 45 + ∆Fl 45 + ∆Fq45 ⇒ ⋅ ⋅ ⋅ ⋅ X U 45 = n⋅ d q ⋅ (U4 − U5 ) !!!!!!!)3* Kombinovawem uslova zadatka X U23 = X U 45 !i!U2>U4!sa jedna~inama!)2*!i!)3* dobija se!U3>U5/ κ q2 U2 κ −2 = q3 U3 κ ⇒ U κ −2 q3 = q2 ⋅ 3 U2 ⇒ U κ −2 q4 = q5 ⋅ 4 U5 κ q4 U4 κ −2 = q5 U5 dipl.ing. @eqko Ciganovi} )4* κ )5* {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 75 q U5 = U2 ⋅ 5 q2 deqewem jedna~ina!)4* i!)5*!dobija se: κ −2 3κ 2/5 −2 : 3⋅2/5 U5 = 3:4 ⋅ >512/15!L!>!U3 2 2/5 512/15 2/5 −2 >! 4 ⋅ 21 6 Qb!>!q4 q 3 = 2 ⋅ 21 ⋅ 3:4 6 ⇒ iz jedna~ine!)4*! b) q U5( = U2 ⋅ 5 q2 κ −2 κ : > 3:4 ⋅ 2 2/5 −2 2/5 >659/:3!L ⋅ ⋅ ⋅ ( ) X U > o⋅ Nd q ⋅ (U2 − U3 + U4 − U5 ) = ⋅ - ⋅ - ⋅ ( ) ⋅ 6 ⋅ 3:/2 ⋅ (3:4 − 512/15 ) >!−5/48!LX 4711 ⋅ X U = X U25 ( potrebna snaga u drugom slu~aju: X U > o⋅ Nd q ⋅ (U2 − U5 ( ) = ⋅ X U = X U23 + X U 45 potrebna snaga u prvom slu~aju: 6 ⋅ 3:/2 ⋅ (3:4 − 659/:3) >!−21/45!LX 4711 ⋅ ⋅ - ⋅ ∆ X U = X U − X U >−5/48,21/45!>!6/:8!lX u{teda u snazi: 5′ U zatvorena povr{ina!!)3−4−5−5′−3*!predstavqa u{tedu u ⋅ 5 snazi ( ∆ X U *!koja je ostvarena dvostepenom kompresijom (u odnosu na jednostepenu kompresiju) 3 4 2 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 76 2/69/!U dvostepenom kompresoru sa me|uhla|ewem, pri ustaqenim uslovima, sabija se neravnote`no (nekvazistati~ki) i adijabatski!1/4!lh0t!azota (idealan gas), od polaznog stawa!2)q2>1/2!NQb-!U2>3:4!L* do stawa!5)q5>1/7!NQb-!U5>561!L*/!Stepeni dobrote prilikom sabijawa u oba stepena su jednaki i iznose ηJe = ηJJe = 1/9 /!Odrediti ukupnu snagu za pogon kompresora i toplotnu snagu koja se odvodi pri hla|ewu (izme|u dve kompresije), ako se proces me|uhla|ewa odvija pri stalnom pritisku!q3>q4!>!1/4!NQb/ Zanemariti promene kineti~ke i potencijalne energije vazduha i prikazati sve procese na!Ut!dijagramu. 5 XU45 4 3 XU23 R34 2 κ −2 κ κ −2 κ U2 q2 = U3l q3l ⇒ U3l U2 − U3l U2 − U3 ⇒ U3 = U2 − ηJe = q U4 = 4 U5l q 5l ηJJe = κ −2 κ U4 − U5l U4 − U5 q = U2 ⋅ 3l q2 U2 − U3l q = U4 ⋅ 5l q4 = 3:4 − κ −2 κ ⇒ U5l ⇒ U5l = U4 − ηJJe ⋅ (U4 − U5 ) kombinovawem jedna~ina!)2*!i!)3*!dobija se: dipl.ing. @eqko Ciganovi} ηJe 4 = 3:4 ⋅ 2 ! 2/5 −2 2/5 >512!L 3:4 − 512 = 539!L 1/9 )2* )3* U4>465!L-!U5l>542!L {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 77 ⋅ ⋅ ⋅ R 34 = n⋅ (r34 )q=dpotu odvedena toplota u fazi me|uhla|ewa )3−4*; ⋅ R 34 = n⋅ d q ⋅ (U4 − U3 ) = 1/4 ⋅ 2/15 ⋅ (465 − 539) >!−34/2!lX prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ R 34 = ∆ I25 + X U25 + ∆Fl25 + ∆Fq25 ograni~enom isprekidanom linijom: ⋅ X U25 = R 34 − ∆ I25 = R 34 − n⋅ d q ⋅ (U5 − U2 ) > −34/2 − 1/4 ⋅ 2/15 ⋅ (561 − 3:4) ⋅ X U25 >−83/2!lX napomena: ukupna snaga za pogon oba kompresora jednaka je zbiru snaga potrebnih za pogon kompresora niskog pritiska i kompresora ⋅ ⋅ ⋅ visokog pritiska tj:! X U25 = X U23 + X U 45 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 78 PRVI I DRUGI ZAKON TERMODINAMIKE (PUWEWE I PRA@WEWE REZERVOARA) 2/6:/!Vazduh (idealan gas) stawa!)q>2!cbs-!U>3:1!L) nalazi se u toplotno izolovanom rezervoaru zapremine!W>1/7!n4/!Toplotno izolovanim cevovodom u rezervoar se uvodi vazduh (idealan gas) stawa )q>21!cbs-!U>511!L). Tokom procesa u rezervoaru je stalno ukqu~en greja~ snage!3/6!lX/!Kada vazduh u rezervoaru dostigne stawe!)q>5!cbs-!U>611!L*!prekida se dotok vazduha i iskqu~uje greja~. Odrediti vreme trajawa procesa puwewa rezervoara kao i maseni protok vazduha koji se uvodi u rezervoar. q>2!cbs-!U>3:1!L q>5!cbs-!U>611!L q>21!cbs-!U>511!L po~etak: kraj: ulaz: jedna~ina stawa idealnog gasa za po~etak: nqpd = q qpd ⋅ W S h ⋅ Uqpd = 2 ⋅ 21 6 ⋅ 1/7 >1/83!lh 398 ⋅ 3:1 q ls ⋅ W = nls ⋅ S h ⋅ Uls jedna~ina stawa idealnog gasa za kraj: nls = q qpd ⋅ W = nqpd ⋅ S h ⋅ Uqpd q ls ⋅ W 5 ⋅ 21 6 ⋅ 1/7 = >2/78!lh S h ⋅ Uls 398 ⋅ 611 nqp + nvm = nls + nj{ materijalni bilans procesa puwewa: nvm = nls − nqp >2/78!−!1/83!>!1/:6!lh prvi zakon termodinamike za proces puwewa: R 23 − X23 = Vls − Vqp + Ij{ − Ivm R 23 = nls ⋅ d w ⋅ Uls − nqp ⋅ d w ⋅ Uqp − nvm ⋅ d q ⋅ Uvm R 23 = 2/78 ⋅ 1/83 ⋅ 611 − 1/83 ⋅ 1/83 ⋅ 3:1 − 1/:6 ⋅ 2 ⋅ 511 >81/97!lK τ= R 23 ⋅ R 23 ⋅ nvm = = 81/97 >39/4!t 3/6 nvm 1/:6 h = >44/7! τ 39/4 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 79 2/71/!U verikalnom toplotno izolovanom cilindru-!povr{ine popre~nog preseka B>1/2!n3-! nalazi se vazduh (idealan gas) stawa )U>291pD-!n>1/16!lh), ispod toplotno izolovanog klipa mase koja odgovara te`ini od!31!lO-!a na koji spoqa deluje atmosferski pritisak od!1/2!NQb!(slika). U cilindar se, kroz toplotno izolovan cevovod, naknadno uvede vazduh stawa!)q>1/5!NQb-!U>651pD-!n>1/2!lh*!{to dovede do pomerawa klipa (bez trewa)/!Zanemaruju}i promene kineti~ke i potencijalne energije uvedenog vazduha odrediti koliki rad izvr{i vazduh nad okolinom kao i temperaturu vazduha u cilindru na kraju procesa. kraj ∆z po~etak ulaz Gufh = 2 ⋅ 21 6 + po~etak: U>564!L-!q> q p + kraj: ulaz: q>4!cbs q>5!cbs-!U>924!L-!n>1/2!lh B jedna~ina stawa idealnog gasa za po~etak: Wqpd = nqpd ⋅ S h ⋅ Uqpd = 1/16 ⋅ 398 ⋅ 564 4 ⋅ 21 6 materijalni bilans procesa puwewa: q qpd 31 ⋅ 21 4 >4!cbs-!n>1/16!lh 1/2 q qpd ⋅ Wqpd = nqpd ⋅ S h ⋅ Uqpd >1/1328!n4 nqp + nvm = nls + nj{ nls = nqp + nvm >1/16!,!1/2!>!1/26!lh q ls ⋅ Wls = nls ⋅ S h ⋅ Uls !!!)2* jedna~ina stawa idealnog gasa za kraj: prvi zakon termodinamike za proces puwewa: R 23 − X23 = Vls − Vqp + Ij{ − Ivm −X23 = nls ⋅ d w ⋅ Uls − nqp ⋅ d w ⋅ Uqp − nvm ⋅ d q ⋅ Uvm )3* Wls X23 = ∫() ( q W ⋅ eW = q qpd ⋅ Wls − Wqpd ) !!!)4* Wqpd dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 80 kada se jedna~ine )2*!i )4* uvrste u jedna~inu )3* dobija se: ( ) − q qpd ⋅ Wls − Wqpd = nls ⋅ d w ⋅ Wls = Wls = q ls ⋅ Wls − nqp ⋅ d w ⋅ Uqp − nvm ⋅ d q ⋅ Uvm nls ⋅ S h ⇒ nqp ⋅ d w ⋅ Uqp + nvm ⋅ d q ⋅ Uvm + q qpd ⋅ Wqpd q qpd + dw ⋅ q lsbk Sh 1/16 ⋅ 1/83 ⋅ 564 + 1/2 ⋅ 2 ⋅ 924 + 4 ⋅ 21 6 ⋅ 21 −4 ⋅ 1/1328 >1/1:9:!n4 1/83 6 6 −4 ⋅ 4 ⋅ 21 4 ⋅ 21 ⋅ 21 + 398 )2*!!!⇒ ! Uls = q ls ⋅ Wls 4 ⋅ 21 6 ⋅ 1/1:9: = >79:/3!L nls ⋅ S h 1/26 ⋅ 398 ( ) )4*!!!⇒! ! X23 = qqpd ⋅ Wls − Wqpd = 4 ⋅ 216 ⋅ 21 −4 ⋅ (1/1:9: − 1/1328) >34/27!lK 2/72/!Kroz toplotno izolovan cevovod, unutra{weg pre~nika!e>21!nn*-!biva uveden azot!)O3-!idealan gas*!stawa!)U>416!L-!q>1/7!NQb-!x>21!n0t) u toplotno izolovan rezervoar zapremine!W>1/7!n4!!u kojem se ve} nalazi ugqen−dioksid!)DP3-!idealan gas) stawa!)q>1/2!NQb-!U>3:4!L*/!Ako se proces puwewa prekida kada pritisak sme{e u rezevoaru dostigne!1/6!NQb-!odrediti: a) temperaturu me{avine idealnih gasova u rezervoaru na kraju procesa puwewa b) promenu entropije sistema za vreme procesa puwewa c) vreme trajawa procesa puwewa rezervoara po~etak: kraj: ulaz: q>2!cbs-!U>3:4!L-!DP3 q>6!cbs-!DP3!+!O3 q>7!cbs-!U>416!L-!x>21!n0t-!!O3 a) prvi zakon termodinamike za proces puwewa: R 23 − X23 = Vls − Vqp + Ij{ − Ivm x3 !!)2* 1 = nDP3 ⋅ dwDP3 + nO3 ⋅ dwO3 ⋅ Uls − nDP3 ⋅ dwDP3 ⋅ Uqp − nO3 ⋅ dqO3 ⋅ Uvm + 3 ( ) jedna~ina stawa me{avine idealnih gasova za zavr{etak puwewa: q ls ⋅ W = )nDP3 ⋅ S hDP3 + nO3 ⋅ S hO3 * ⋅ Uls !!!! jedna~ina stawa idealnog gasa za )DP3*!po~etak: !!!!!!!)3* q qpd ⋅ W = nDP3 ⋅ S hDP3 ⋅ Uqpd !!!!!!!)4* dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike ⇒ )4* nDP3 = q qpd ⋅ W S hDP3 ⋅ Uqpd strana 81 = 2 ⋅ 21 6 ⋅ 1/7 >2/19!lh 29: ⋅ 3:4 kombinovawem jedna~ina!)2*!i!)3*!dobija se:! Uls>494/7!L-! nO3 >2/:5!lh b) ∆Ttjtufn!>!∆Tubeop!ufmp!,!∆Tplpmjob!>!///!>:47/4! ∆Tplpmjob>1! K L K ! (sud adijabatski izolovan od okoline) L ∆Tsbeop!ufmp!> ∆TDP3 + ∆TO3 >!///>!2:3!,!855/4!>!:47/4! K L U W 494/7 K ∆T DP3 >g)U-!W*> nDP3 ⋅ dwDP3 mo ls + ShDP3 mo = 2/19 ⋅ 1/77 ⋅ mo >2:3! L Uqp W 3:4 O3 q lsbk U ∆TO3 >g)U-!Q*> nO3 ⋅ d qO3 mo ls − S hO3 mo Uvm q vm > 494/7 4/79 K − 1/3:8 ⋅ mo ∆TO3 > 2/:5 ⋅ 2/15 ⋅ mo >///>!855/4! L 416 7 jedna~ina stawa idealnog gasa )O3* za kraj: 3 qO ls = nO3 ⋅ ShO3 ⋅ Uls W = O q ls3 ⋅ W = nO3 ⋅ S hO3 ⋅ Uls 2/:5 ⋅ 3:8 ⋅ 494/7 > 4/79 ⋅ 216 Qb 1/7 c) τ= nO3 ⋅ nO3 ⋅ >///> 2/:5 6/3 ⋅ 21−4 nO3 = ρvmb{ ⋅ x ⋅ ρ vmb{ = >484/2!t e3π 1/123 π lh >///> 7/73 ⋅ 21 ⋅ > 6/3 ⋅ 21−4 5 5 t q vmb{ lh 7 ⋅ 21 6 = >7/73! 4 S hO3 ⋅ Uvmb{ 3:8 ⋅ 416 n dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 82 2/73/ U rezervoaru zapremine!W>1/4!n4!nalazi se azot stawa!)q>231!cbs-!U>411!L*/!Ventil na rezervoaru se brzo otvori, ispusti se izvesna koli~ina azota u atmosferu a zatim se ventil ponovo zatvori, tako da se mo`e smatrati da pri takvim uslovima nema razmene toplote izme|u rezervoara i okoline. Ne posredno po zatvarawu ventila pritisak azota u rezervoaru iznosi!q>71!cbs/!Odrediti: a) koli~inu azota koja je istekla iz rezervoara )lh* kao i temperaturu azota u rezervoaru neposredno posle zatvarawa ventila c* koli~inu toplote koju bi trebalo dovesti preostalom vazduhu u sudu da bi dostigao pritisak koji je je imao pre pra`wewa )NK* b* Promena stawa azota koji se za vreme procesa pra`wewa nalazi u sudu je kvazistai~ka adijabatska promena, pa se temperatura azota u sudu na kraju procesa pra`ewa mo`e odrediti iz zakona kvazistati~ke adijabatske promene: Uls qls = Uqp qqp κ −2 κ q Uls = Uqp ⋅ ls qqp ⇒ κ −2 κ 71 = 411 ⋅ 231 jedna~ina stawa idealnog gasa za po~etak: nqpd = qqpd ⋅ W Sh ⋅ Uqpd = >357/2!L q qpd ⋅ W = nqpd ⋅ S h ⋅ Uqpd 231 ⋅ 216 ⋅ 1/4 >51/5!lh 3:8 ⋅ 411 jedna~ina stawa idealnog gasa za kraj: nls = 2/5 −2 2/5 q ls ⋅ W = nls ⋅ S h ⋅ Uls q ls ⋅ W 71 ⋅ 21 6 ⋅ 1/4 = >35/74!lh S h ⋅ Uls 3:8 ⋅ 357/2 nqp + nvm = nls + nj{ materijalni bilans procesa pra`wewa: nj{ = nqp − nls >51/5!−!35/74!>!26/88!lh b) 2!>!kraj 3 ! )n>35/74!lh-!q>71!cbs-!U>357/2!L* )n>35/74!lh-!q>231!cbs-!U>@* jedna~ina stawa idealnog gasa za stawe 2: U3 = q3 ⋅ W = n ⋅ Sh ⋅ U3 ⇒ 6 q3 ⋅ W 231 ⋅ 21 ⋅ 1/4 = >5:3/2!L n ⋅ Sh 35/74 ⋅ 3:8 R23 = n ⋅ (r23 )w =dpotu = n ⋅ dw ⋅ (U3 − U2) > 35/74 ⋅ 1/85 ⋅ (5:3/2 − 357/2) >5/59!NK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 83 ME[AVINE IDEALNIH GASOVA 2/74. Za me{avinu idealnih gasova, kiseonika )B*!i azota!)C), odredititi molsku masu!)Nn*-!gasnu konstantu!)Shn*-!specifi~ne toplotne kapacitete pri stalnom pritisku!)dqn) i pri stalnoj zapremini )dwn!*-!eksponent izentropske promene stawa!)κn*!kao i parcijalne pritiske komponenata!B!i!C!ako se me{avina nalazi na qn>2!cbs!i ako je sastav me{avine zadat na slede}i na~in: b* hB>1/7-!hC>1/5 c* sB>1/3-!sC>1/9 b* N hN = 2 hB + NB Shn hC NC = 2 1/7 1/5 + 43 39 (NSh ) = 9426 >385/7:! = Nn 41/38 >41/38! lh lnpm K lhL d Qn = h B ⋅ d QB + hC ⋅ d QC = 1/7 ⋅ 1/:2 ⋅ 21 4 + 1/5 ⋅ 2/15 ⋅ 21 4 >:73! d wn = d qn − S hn = :73 − 385/7: >798/42 κn = d qt d wn qB = hB ⋅ = K lhL K lhL :73 >2/5 798/42 NN 41/38 ⋅ q n = 1/7 ⋅ ⋅ 2 >1/68!cbs NB 43 q C = q n − q B = 2 − 1/68 >1/54!cbs b) Nn = sB ⋅ N B + sC ⋅ NC = 1/3 ⋅ 43 + 1/9 ⋅ 39 = 39/9! lh lnpm S hn = (NS h ) Nn = 9426 >399/83 39/9 K lhL dqn = sB ⋅ K NB N 43 39 ⋅ dqB + sC ⋅ C ⋅ dqC = 1/3 ⋅ ⋅ 1/:2 + 1/9 ⋅ ⋅ 2/15 >2122/22 NN NN 39/9 39/9 lhL d wn = d qn − S hn = 2122/22 − 399/83 >833/4: κn = d qt d wn = K lhL 2122/22 >2/5 833/4: q B = sB ⋅ q n = 1/3 ⋅ 2 >1/3!cbs q C = q n − q B = 2 − 1/3 >1/9!cbs dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 84 2/75/!Me{avina idealnih gasova-!n>2!lh-!sastoji se od azota!)B), zapreminskog udela!51& i metana!)C*zapreminskog udela!)71%). Me{avina se zagreva od temperature!U2>411!L!do temperature!U3>711!L!na dva na~ina. Prvi put je promena stawa kvazistati~ki izohorska, a drugi put se odvija kvazistati~ki po zakonu prave linije u!Ut!koordinatnom sistemu. U oba slu~aja po~etna i krajwa stawa radnog tela su jednaka. Skicirati promene stawa na Ut dijagramu i odrediti: a) zapreminski rad )lK* du` promene!2−2 koja se odvija po zakonu prave linije b) promenu entropije izolovanog sistema!)lK0L*!koji ~ine radna materija i toplotni izvor stalne temperature!UUJ>U3!za slu~aj izohorske promene stawa U 3 2 t Nn = sB ⋅ N B + sC ⋅ NC = 1/5 ⋅ 39 + 1/7 ⋅ 27 = 31/9! dwn = sB ⋅ lh lnpm NB N 39 27 lK ⋅ dwB + sC ⋅ C ⋅ dqC = 1/5 ⋅ ⋅ 1/85 + 1/7 ⋅ ⋅ 2/93 >2/35! NN NN 31/9 31/9 lhL a) t3 R 23 = n ⋅ ∫ U (t ) ⋅ et = n ⋅ U2 + U3 U + U3 ⋅ ∆t23 = n ⋅ 2 3 3 t2 U w ⋅ d wn ⋅ mo 3 + S hn mo 3 U w2 2 711 + 411 711 R 23 = 2 ⋅ ⋅ 2/35 ⋅ mo >497/89!lK 3 411 ∆V23 = n ⋅ ∆v23 = n ⋅ d wtn ⋅ (U3 − U2 ) = 2 ⋅ 2/35 ⋅ (711 − 411) >483!lK prvi zakon termodinamike za proces 2−3 koji se odvija po pravoj liniji: R23!>!∆V23!,!X23 dipl.ing. @eqko Ciganovi} ⇒ X23!>!R23!−!∆V23!>!497/89−483>25/89!lK {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 85 b) ∆TTJ!>!∆TSU!,!∆TUJ!>!///>!96:/6!−!731!>34:/6! ∆TSU!>n!/!∆t23!>! n ⋅ d wtnmo ∆TUJ!>! − K L U3 711 K = 2 ⋅ 2/35 ⋅ mo >96:/6! U2 411 L 483 R23 K >!!−731! >///> − UUJ 711 L R 23 = n ⋅ (r23 )w =dpotu = n ⋅ d wn ⋅ (U3 − U2 ) = 2 ⋅ 2/35 ⋅ (711 − 411) >483!lK 2/76/![upqa kugla zanemarqive mase unutra{weg pre~nika!e>2!n!sastavqena je od dve polovine koje su tesno priqubqene (slika). U kugli se nalazi me{avina idealnih gasova vodonika )B*ugqen−dioksida )C* i azota )D* sastava sB>1/46-!sC>1/5!j!sD>1/36!stawa 2)q>1/3!cbs-!U>3:4!L*/ Na dowoj polovini kugle obe{en je teret mase nU>5111!lh. Pritisak okoline iznosi qp>2!cbs. Odrediti koliko toplote treba dovesti me{avini idealnih gasova u kugli da bi se polovine mogle razdvojiti. Nn = sB ⋅ N B + sC ⋅ NC + sD ⋅ ND = 1/46 ⋅ 3 + 1/5 ⋅ 55 + 1/36 ⋅ 39 = 36/4! S hn = (NS h ) Nn d wn = sB ⋅ = lh lnpm K 9426 >439/77! lhL 36/4 N NB N ⋅ d wB + sC ⋅ C ⋅ d qC + sD ⋅ D ⋅ d qD NN NN NN d wn = 1/46 ⋅ 3 55 39 lK ⋅ 21/5 + 1/5 ⋅ ⋅ 1/77 + 1/36 ⋅ ⋅ 1/85 >1/:6! 36/4 36/4 36/4 lhL zapremina lopte: dipl.ing. @eqko Ciganovi} W> e 4 π 24 ⋅ π = >1/6347!n4 7 7 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 86 jedna~ina stawa me{avine idealnih gasova stawa!)2*;! q2 ⋅ W = n ⋅ S hn ⋅ U2 n= q2 ⋅ W 1/3 ⋅ 21 6 ⋅ 1/6347 = >1/22!lh S hn ⋅ U2 439/77 ⋅ 3:4 jedna~ina stati~ke ravnote`e neposredno pred odvajawe dowe polovine n ⋅h q 3 + 3u > q p !!! !!⇒ (stawe 2): e ⋅π 5 n ⋅h 5 ⋅ 21 4 ⋅ :/92 = 2 ⋅ 21 6 − q3!>! q p − 3u > 1/6 ⋅ 21 6 Qb e ⋅π 23 ⋅ π 5 5 jedna~ina stawa me{avine idealnih gasova stawa!)3*;!!! q 3 ⋅ W = n ⋅ S hn ⋅ U3 U3 = q3 ⋅ W 1/6 ⋅ 21 6 ⋅ 1/6347 = >835/26!L n ⋅ S hn 1/22 ⋅ 439/77 R23 = n ⋅ (r23 )w =dpotu = 1/22⋅ 1/:6 ⋅ (U3 − U2 ) = 1/33 ⋅ 1/:6 ⋅ (835/26 − 3:4) >56/4!lK 2/77/!Za situaciju u proto~nom ure|aju za me{awe (prikazanu na slici) koji radi pri stacionarnim uslovima, odrediti da li se u sistem dovodi mehani~ka snaga ili se iz sistema mehani~ka snaga odvodi i izra~unati wenu vrednost!)lX*/ ⋅ R 23 = −21 lX ⋅ struja 1: x2>311!n0t U2>611pD n2>21!u0i X U23 = @ struja 2: x3>1!n0t U3>531pD n3>7!u0i molski sastav: B; DP3>61& C; O3>61& molski sastav: D; O3>71& E; P3>51& me{avina: x+>41!n0t U+>611pD dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 87 struja 1: Nn2 = sB ⋅ NB + sC ⋅ NC = 1/6 ⋅ 55 + 1/6 ⋅ 39 = 47! lh lnpm ⋅ ⋅ o2 = n2 21 ⋅ 21 4 lnpm(B + C) = >388/89! i Nn2 47 ⋅ ⋅ lnpmB i ⋅ ⋅ lnpmC oC = sC ⋅ o2 = 1/4 ⋅ 382/85 >249/9:! i o B = sB ⋅ o2 = 1/6 ⋅ 388/89 >249/9:! struja 2: Nn3 = sD ⋅ ND + sE ⋅ NE = 1/7 ⋅ 39 + 1/5 ⋅ 43 >3:/7! lh lnpm ⋅ n3 7 ⋅ 21 4 lnpm(D + E ) o3 = = >313/81! Nn3 3:/7 i ⋅ ⋅ ⋅ lnpmD i ⋅ ⋅ lnpmE oE = sE ⋅ o3 = 1/5 ⋅ 313/81 >92/19! i o D = sD ⋅ o 3 = 1/7 ⋅ 313/81 >232/73! prvi zakon termodinamike za proces me{awa fluidnih struja: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 + ∆Fl23 + ∆Fq23 ⋅ ⋅ ⋅ ⋅ ⋅ X U23 = R 23 − ∆ I23 − ∆Fl23 ⇒ ⋅ ∆ I23 = I3 − I2 >///>435:/88!−!4229/7:!>!242/19!lX ⋅ ⋅ ⋅ ⋅ ⋅ I2 > o B ⋅ Nd q B + oC ⋅ Nd q C ⋅ U2 + oD ⋅ Nd q D + oE ⋅ Nd q E ⋅ U3 ⋅ 249/9: 92/19 249/9: 232/73 I2 > ⋅ 48/5 + ⋅ 3:/2 ⋅ 884 + ⋅ 3:/2 + ⋅ 3:/2 ⋅ 7:4 4711 4711 4711 4711 ( ) ( ) ( ) ( ) ⋅ I2 >4229/7:!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 88 ⋅ ⋅ ⋅ ⋅ ⋅ I3 > o B ⋅ Nd q B + oC ⋅ Nd q C ⋅ U + + oD ⋅ Nd q D + oE ⋅ Nd q E ⋅ U + ⋅ 249/9: 92/19 249/9: 232/73 I3 > ⋅ 48/5 + ⋅ 3:/2 ⋅ 884 + ⋅ 3:/2 + ⋅ 3:/2 ⋅ 884 4711 4711 4711 4711 ( ) ( ) ( ) ( ) ⋅ I3 >435:/88!lX 2 3 ∆Fl23 = ∆Fltusvkb + ∆Fltusvkb >///>−65/42!,!1/86!>−64/67!lX 23 23 ( ) ⋅ ⋅ x+ ∆F tusvkb2 = o B ⋅ N B + oC ⋅ NC ⋅ l23 3 − (x 2 )3 3 3 3 249/9: 249/9: 41 − 311 >−65/42!lX ∆F tusvkb2 = ⋅ 55 + ⋅ 39 ⋅ l23 4711 3 4711 ∆F tusvkb3 l23 ( ) ⋅ ⋅ x+ = o D ⋅ ND + oE ⋅ NE ⋅ 3 − (x 3 )3 3 3 3 92/19 232/73 41 − 1 ∆F tusvkb3 = ⋅ 39 + ⋅ 43 ⋅ >,1/86!lX l23 4711 3 4711 ⋅ X U23 >!−21!−!242/19!,!65/42!>!−97/88!lX ⋅ Po{to je vrednost za X U23 negativan broj to zna~i da se u sistem dovodi mehani~ka snaga. ⋅ 2/78/ Vazduh (idealna gas) po~etne temperature!Uw2>61pD-!masenog protoka! n w>3!lh0t!zagreva se u rekuperativnom razmewiva~u toplote na ra~un hla|ewa me{avine idealnih gasova DP3!i!TP3!od ⋅ Un2>511pD!do!Un3>351pD. Maseni protok me{avine idealnih gasova je! n n>4!lh0t-!a maseni udeo!DP3!u me{avini je!91&/!Razmewiva~ toplote je toplotno izolovan od okoline. Pokazati da je proces razmene toplote u razmewiva~u toplote nepovratan. Zanemariti promene kineti~ke i potencijalne energije gasnih struja kao i padove pritiska gasnih struja pri strujawu kroz razmewiva~ toplote. DP3!,!TP3 vazduh dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike hDP3 = 1/9 ⇒ strana 89 hTP3 = 2 − hDP3 = 1/3 d qn = hDP3 ⋅ d qDP3 + hTP3 ⋅ d qTP3 = 1/9 ⋅ 1/96 + 1/3 ⋅ 1/69 >1/9! lK lhL prvi zakon termodinamike za proces u razmewiva~u toplote: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 + ∆Fl23 + ∆Fq23 ⋅ ⋅ ⋅ ⇒ ⋅ ⋅ I2 > I3 ⋅ n w ⋅ d qw ⋅ Uw2 + nn ⋅ d qn ⋅ Un2 = n w ⋅ d qw ⋅ Uw3 + nn ⋅ d qn ⋅ Un3 ⋅ Uw 3 = ⋅ ⋅ n w ⋅ d qw ⋅ Uw2 + nn ⋅ d qn ⋅ Un2 − nn ⋅ d qn ⋅ Un3 ⋅ n w ⋅ d qw Uw3 = ⋅ 3 ⋅ 2 ⋅ 434 + 4 ⋅ 1/9 ⋅ 784 − 4 ⋅ 1/9 ⋅ 624 >626!L 3 ⋅2 ⋅ ⋅ ∆ T TJ = ∆ TSU + ∆ T plpmjob >//!/>1/39! ⋅ ∆ T plpmjob = − ⋅ ⋅ ⋅ R 23 lX =1 Up L lX L (razmewiva~ toplote je izolovan od okoline) ⋅ lX ! L q 626 lX − S hw mo w3 > 3 ⋅ 2 ⋅ mo >1/:4! q w2 434 L ∆ TSU = ∆ T w + ∆ Tn = /// >1/:4!−!1/76!>!1/39! / / ⋅ U ∆ T w = n w ⋅ g (q- U ) = n w ⋅ d qw mo w3 Uw2 / / ⋅ U q ∆ T n = nn ⋅ g (q- U ) = nn ⋅ d qn mo n3 − S hn mo n3 Un2 q n2 napomena: 624 lX > 4 ⋅ 1/9 ⋅ mo >−1/76! 784 L po{to je promena entropije sistema pozitivan broj ⋅ ( ∆ T TJ > 1 ) to zna~i da je proces razmene toplote u razmewiva~u toplote nepovratan dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 90 2/79/!!Me{avina idealnih gasova (kiseonik i ugqen−dioksid), pogowena kompresorom snage!2:!lXstruji kroz kanal. Usled neidealnog izolovawa kanala i kompresora okolini se predaje!2/39!lX ⋅ toplote. Zapreminski protok i temperatura me{avine na ulazu u kanal iznose! W 2>1/26!n40t!i U2>486!L. Na izlazu iz kanala, pri pritisku!q>3!cbs-!zapreminski protok i temperatura me{avine ⋅ iznose! W 3>1/22!n40t!i!U3>586!L/!Zanemaruju}i promene kineti~ke i potencijalne energije me{avine idealnih gasova, odrediti: a) masene udele komponenata u me{avini b) promeu entropije sistema u navedenom procesu, ako temperatura okoline iznosi Up>3:4!L a) R23 XU23 2 3 jednan~ina stawa me{avine idealnih gasova na izlazu iz kanala: ⋅ ( ⋅ ) ⇒ q 3 ⋅ W 3 = o⋅ NS h ⋅ U3 ⋅ q3 ⋅ W 3 3 ⋅ 21 6 ⋅ 1/22 lnpm o= >!6/68/21−4! = NS h ⋅ U3 9426 ⋅ 586 t ⋅ ( ) prvi zakon termodinamike za proces u kanalu: ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 + ∆Fl23 + ∆Fq23 (Ndq )n = ⋅ ⋅ R 23 − X U23 ⋅ o⋅ (U3 − U2 ) = − 2/39 + 2: 6/68 ⋅ 21 −4 ⋅ ( ⇒!!!!!! R 23 = o⋅ Nd q ⋅ (586 − 486) >42/92! lK lnpmL (Ndq )n = sP3 ⋅ (Ndq )P3 + sDP3 ⋅ (Ndq )DP3 )2* sP3 + sDP3 = 2 )3* Kombinovawem jedna~ina!)2* i!)3*!dobija se:! sP3 >1/7:-!!! sDP3 >1/42 hP3 = sP3 ⋅ )n ⋅ (U3 − U2 ) + X U23 sP3 ⋅ NP3 1/7: ⋅ 43 >1/7 = ⋅ NP3 + sDP3 ⋅ NDP3 1/7: ⋅ 43 + 1/42 ⋅ 55 hDP3 = 2 − hP3 = 2 − 1/7 >!1/5 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 91 b) jedna~ina stawa me{avine idealnih gasova na ulazu u kanal: ⋅ ( ⋅ ⋅ ) q2 ⋅ W 2 = o⋅ NS h ⋅ U2 q2 = ⇒ ( ) o⋅ NS h ⋅ U2 ⋅ W2 q2 = 6/68 ⋅ 21 ⋅ ⋅ −4 ⋅ 9426 ⋅ 486 > 2/27 ⋅ 21 6 !Qb 1/26 ⋅ ∆ T TJ = ∆ TSU + ∆ T plpmjob >//!/>5/48!,!27/76!>32/13! X L ⋅ R 23 − 2/39 X =− >5/48! Up 3:4 L / / ⋅ ⋅ U q ∆ T SU = ∆ T n > o⋅ g (q- U ) = o⋅ Nd qn ⋅ mo 3 − NS hn ⋅ mo 3 U2 q2 ⋅ 586 3 − 9/426 ⋅ mo ∆ T n > 6/68 ⋅ 21 −4 ⋅ 42/92 ⋅ mo > 27/76 486 2/27 ∆ T plpmjob = − ( zadatak za ve`bawe: ) ( ) X L )2/7:* 2/7:/!U ~eli~noj boci zapremine W>1/2!n4!nalazi se vazduh ) sP3 >1/32-! sO3 >1/8:* okolnog stawa P)qp>2!cbs-!Up>3:4!L*/ Boca se puni ugqen−dioksidom. Odrediti: a) koliko se lh!DP3!treba ubaciti u bocu, da bi molski udeo kiseonika u novonastaloj me{avini bio 6& i koliki je tada pritisak me{avine u boci pri temperaturi od 3:4!L b) koliko toplote treba dovesti da se me{avina u boci zagreje na 564!L a) nDP3 > :/6 ⋅ 21 −4 !lh-!!!q>2/16!cbs b) R23>25/76!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 92 POLUIDEALNI GASOVI 2/81/!Tokom kvazistati~ke promene stawa 2−2 kiseoniku (poluidealan gas) mase!n>1/4!lh, po~etnog stawa!2)U2>484!L-!q2) predaje se toplota pri ~emu se kisonik zagreje do!U3>784!L. Specifi~ni toplotni kapacitet kiseonika tokom ove promene stawa mewa se po zakonu: d23 U = 1/: + 2 ⋅ 21 −4 [lK 0)lhL] [L ] Od stawa 2 kiseonik kvazistati~ki izotermski mewa stawe do stawa!4!)q4>q2*/!Odrediti koli~inu toplote!)lK*!koja se kisoniku preda: b* tokom procesa!2−3 c* tokom procesa!3−4 a) U3 R 23 = n ⋅ U3 ∫() d U ⋅ eU = n ⋅ U2 ( ) ∫ 1/: + 2 ⋅ 21 − 4 U ⋅ eU U2 ( ) R 23 = n ⋅ 1/: ⋅ U3 − U2 + 6 ⋅ 21 − 5 ⋅ U33 − U23 ( ) R 23 = 1/4 ⋅ 1/: ⋅ (784 − 484) + 6 ⋅ 21 − 5 ⋅ 784 3 − 484 3 >239/18!lK b) U3 ∆t23 = ∫ d(U ) ⋅ eU = U U3 U2 ∆t23 = 1/: ⋅ mo U3 dq U2 dq U3 U2 = −4 3 U U2 + 2 ⋅ 21 −4 ⋅ (U3 − U2 ) U2 784 lK + 2 ⋅ 21 −4 ⋅ (784 − 484) >1/94! 484 lhL 2 ⋅ dq U3 − U2 >2/129! ∫ (1/: + 2 ⋅ 21 U ) ⋅ eU = 1/: ⋅ mo U U2 2 ⋅ (1/:757 ⋅ 784 − 1/:329 ⋅ 484) > ⋅ U3 − dq ⋅ U2 = 12 U2 784 − 484 U3 lK lhL U3 U q ⇒ ∆t23 = d q mo 3 − S h mo 3 !! U U q 2 2 2 q3 lK 784 S h mo = 2/129 ⋅ mo − 1/94 >−1/34 lhL q2 484 dipl.ing. @eqko Ciganovi} ! S h mo q3 = dq q2 U3 U2 mo U3 − ∆t23 U2 {fmlp@fvofu/zv zbirka zadataka iz termodinamike t4 R 34 = n ⋅ ∫ t3 strana 93 U (t ) ⋅ et = n ⋅ U3 ⋅ ∆t 34 = n ⋅ U3 ⋅ d q U q mo 4 − S hmo 4 U q3 U3 3 U4 q3 = 1/4 ⋅ 784 ⋅ (− 1/34) >−57/55!lK q2 R 34 = n ⋅ U3 ⋅ S hmo 2/82/!Zavisnost molarnog toplotnog kapaciteta od temperature za neki poluidealan gas, pri stalnom D qN U pritisku, data je izrazom: = 3:/3 + 5/18 ⋅ 21 −4 − 384 [K 0 npmL] [L ] b* odrediti koli~inu toplote koju treba predati gasu da bi se on zagrejao od polazne temperature U2>3:1!L!do temperature!U3>684!L-!ako se predaja toplote vr{i pri stalnom pritisku!q>2/6!NQb-!a posle izobarskog {irewa gas zauzima zapreminu!W3>1/9!n4 b) odrediti koli~inu toplote koju je potrebno predati istoj koli~ini istog gasa, da bi se on zagrejao od iste polazne temperature!U2!do iste temperature!U3-!ako gas biva zagrevan pri stalnoj zapremini b* ( o= ) q 3 ⋅ W3 = o ⋅ NS h ⋅ U3 jedna~ina stawa idealnog gasa stawa!3;! q 3 ⋅ W3 2/6 ⋅ 21 7 ⋅ 1/9 = >1/36!lnpm NS h ⋅ U3 9426 ⋅ 684 ( ) U3 (R23 )q=dpotu = o⋅ ∫ U3 D qN (U ) ⋅ eU = o ⋅ U2 ∫[ ] 3:/3 + 5/18 ⋅ 21 −4 ⋅ (U − 384) ⋅ eU U2 3 (R23 )q=dpotu = o ⋅ 3:/3 ⋅ (U3 − U2) + 5/18 ⋅ 21−4 ⋅ U3 − U23 − 5/18 ⋅ 21−4 ⋅ 384 ⋅ (U3 − U2) 3 3 (R23 )q=dpotu = 1/36 ⋅ 3:/3 ⋅ (684 − 3:1) + 5/18 ⋅ 21−4 ⋅ 684 − 3:13 − 2/22 ⋅ (684 − 3:1) 3 (R23 )q=dpotu >3/22!NK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 94 b) U3 (R23 )w =dpotu = o⋅ ∫ U3 D wN (U ) ⋅ eU = o ⋅ U2 = o⋅ ( )] D qN (U ) − NS h ⋅ eU U2 U3 (R 23 )w =dpotu ∫[ ∫[ ( )] ( ) D qN (U ) − NS h ⋅ eU = (R 23 )q=dpotu − o ⋅ NS h ⋅ (U3 − U2 ) U2 (R 23 )w =dpotu = 3/22 ⋅ 21 7 − 1/36 ⋅ 9426 ⋅ (684 − 3:1) = 2/63 NK ⋅ 2/83/!Vazduh (poluidealan gas), masenog protoka! n w>1/3!lh0t, po~etne temperature!Uw>711pD-!pri konstantnom pritisku, struji kroz adijabatski izolovanu cev u kojoj se hladi kiseonikom (poluidealan gas) koji struji kroz cevnu zmiju, a zatim se i me{a sa jednim delom ovog kiseonika (slika). Temperatura tako nastale me{avine iznosi UN>411pD-!a maseni udeo kiseonika u toj sme{i je!hC>1/6. Temperatura kiseonika na ulazu u cev je!UL2>31pD-!a na izlazu iz cevi!UL3>311pD/!Pritisak kiseonika je stalan. Odrediti maseni protok kiseonika kojim se vr{i hla|ewe vazduha )nB,nC*. Zanemariti promene potencijalne i kineti~ke energije poluidealnih gasova. kiseonik,!nB,nC-!3:4!L vazduh,!nw-!984!L me{avina,!nC!,nw-!684!L kiseonik,!nB-!584!L dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 95 ⋅ nC hC = ⋅ ⇒ ⋅ n w + nC d qw Uw2=711p D >2/161! 1 Ul2=31p D d ql 1 lK lhL d qw d ql >1/:6! 1 Un =411p D >2/131! 1 Ul 3 =311p D lK >1/:222! lhL Un =411p D ⋅ h ⋅ nw 1/6 ⋅ 1/3 lh = >1/3! nC = C 2 − hC 2 − 1/6 t ⋅ d ql lK lhL >1/:466! 1 lK lhL lK lhL prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ! R 23 = ∆ I23 + X U23 + ∆Fl23 + ∆Fq23 ograni~enom isprekidanom linijom: I2 = I3 I2 = n w ⋅ d qw ⋅ ⋅ I3 = n w ⋅ d qw Uw2 Ul2 1 Un 1 ⋅ ⋅ ⋅ Uw2 + n B + nC d ql Ul 3 ⋅ ⋅ Un + n B ⋅ d ql 1 ⋅ nB = ⋅ n w ⋅ d qw ⋅ ⋅ ⋅ ⋅ Ul3 + nC ⋅ d ql Un ⋅ Un 1 Un ⋅ Un − d qw 1 ⋅ ⋅ Uw2 + nC ⋅ d ql Uw2 1 1 d ql nB = ⋅ Ul2 Ul2 Ul 3 1 1 ⋅ Ul2 − d ql ⋅ Ul2 Un Ul2 1 1 ⋅ Un − d ql ⋅ Ul3 lh 1/3 ⋅ (2/13 ⋅ 684 − 2/16 ⋅ 984) + 1/3 ⋅ (1/:6 ⋅ 684 − 1/:222⋅ 3:4 ) >1/17! 1/:222⋅ 3:4 − 1/:466 ⋅ 584 t ⋅ n B + nC = 1/3 + 1/17 >1/37! dipl.ing. @eqko Ciganovi} lh t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 1 VELI^INE STAWA REALNIH FLUIDA 2.1. Odrediti specifi~nu entalpiju, specifi~nu entropiju, specifi~nu zapreminu kao i specifi~nu unutra{wu energiju vode stawa (p=1 bar, t=20oC). kJ kJ m3 , sw = 0.296 , vw = 0.001001 kg kgK kg priru~nik za termodinamiku (tabela 4.2.6. ′′iznad crte′′) strana 41−55 kJ uw = hw − p . vw = 83.9 −1.105 .10−2.0.001001 = 83.8 kg hw = 83.9 2.2. Odrediti specifif~nu entalpiju, specifi~nu entropiju, specifi~nu zapreminu i specifi~nu unutra{wu energiju pregrejane vodene pare stawa (p=25 bar, t=360oC). kJ kJ m3 , spp = 6.870 , vpp = 0.1117 kg kgK kg priru~nik za termodinamiku (tabela 4.2.6. ′′ispod crte′′) strana 41−55 kJ upp = hpp − p . vpp = 3146– −25 .105 .10−2 .0.1117 = 2866.75 kg hpp = 3146 2.3. Odrediti specifi~nu unutra{wu energiju, specifi~nu entropiju i temperaturu a) kqu~ale vode pritiska p=10 bar b) suvozasi}ene vodene pare pritiska p=10 bar a) kJ kJ , s’′ = 2.138 , tK= 179.88oC kg kgK priru~nik za termodinamiku (tabela 4.2.4.) strana 36−38 u′’= 761.6 b) kJ kJ , s′′”= 6.587 , tK= 179.88oC kg kgK priru~nik za termodinamiku (tabela 4.2.4.) strana 36−38 u”′′= 2583 2.4. Odrediti specifi~nu entalpiju i temperaturu vla`ne vodene pare stawa (x=0.95, p=15 bar). kJ hx = h' +x ⋅ (h"−h' ) = ... = 844 .6 + 0.95 ⋅ (2792 − 844 .6 ) =2694 kg kJ kJ h′’ = 844.6 , h′′”= 2792 kg kg o tx = tK = 198.28 C priru~nik za termodinamiku (tabela 4.2.4.) strana 36−38 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 2 2.5. Odrediti specifi~nu entropiju i pritisak vla`ne vodene pare stawa (x=0.6, t=200oC). kJ s x = s ' + x ⋅ (s"−s ' ) = ... = 2.3308 + 0 .6 ⋅ (6 .4318 − 2 .3308 ) =4.7806 kgK kJ kJ s’′ = 2.3308 s′′”= 6.4318 kgK kgK px = pK = 15.551 bar priru~nik za termodinamiku (tabela 4.2.5.) strana 39−40 2.6. Primewuju}i postupak linearne interpolacijeodrediti: a) specifi~nu entalpiju pregrejane vodene pare stawa (p=1 bar, t=250oC) b) specifi~nu entropiju pregrejane vodene pare stawa (p=7 bar, t=300oC) c) specifi~nu entalpiju pregrejane vodene pare stawa (p=5 bar, t=350oC) a) kJ tabela 4.2.6. strana 41−55, za p=1 bar i t=240oC=x1 kg kJ y2 = hpp= 2993 tabela 4.2.6. strana 41−55, za p=1 bar i t=260oC=x2 kg y − y1 2993 − 2954 kJ hpp= 2 ⋅ (x − x1) + y1 = ⋅ (250 − 240 ) + 2954 = 2973.5 x2 − x1 260 − 240 kg y1 = hpp= 2954 b) kJ tabela 4.2.6. strana 41−55, za p=6 bar=x1 i t=300oC kgK kJ y2 = spp= 7.226 tabela 4.2.6. strana 41−55, za p=8 bar=x2 i t=300oC kgK y − y1 7.226 − 7.366 kJ spp= 2 ⋅ (x − x1) + y1 = ⋅ (7 − 6) + 7.366 = 7.296 x2 − x1 8 −6 kgK y1 = spp= 7.366 c) 1.korak kJ kg kJ y2 = hpp= 3190 kg y1 = hpp= 3148 h1 = hpp= tabela 4.2.6. strana 41−55, za p1 =4 bar i t=340oC=x1 . tabela 4.2.6. strana 41−55, za p1 =4 bar i t=360oC=x2 . kJ y 2 − y1 3190 − 3148 ⋅ (x − x 1 ) + y 1 = ⋅ (350 − 340) + 3148 = 3169 x2 − x2 360 − 340 kg dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 3 2.korak kJ tabela 4.2.6. strana 41−55, za p2 =6 bar i t=340oC=x1 . kg kJ y2 = hpp= 3185 tabela 4.2.6. strana 41−55, za p2 =6 bar i t=360oC=x2 . kg y − y1 3185 − 3143 kJ h2 = hpp= 2 ⋅ (x − x 1 ) + y 1 = ⋅ (350 − 340 ) + 3143 = 3164 x2 − x2 360 − 340 kg y1 = hpp= 3143 3.korak h − h1 3164 − 3169 kJ h= 2 ⋅ (p − p1 ) + h1 = ⋅ (5 - 4 ) + 3169 =3166.5 p2 − p1 6 −4 kg 2.7. Odrediti specifi~nu entalpiju i specifi~nu entropiju: a) leda temperature t=−5oC b) me{avine leda i vode (mw=2 kg, ml=3 kg) u stawu toplotne ravnote`e (t=0oC) a) hl = cl ⋅ (Tl − 273 ) − rl = 2 ⋅ (− 5 ) − 332 .4 = −342.4 sl = cl ⋅ ln kJ kg Tl − 273 r − 5 332 .4 kJ − l = 2 ⋅ ln − =−1.25 273 273 273 273 kgK b) y= mw 2 = =0.4 mw + ml 2 + 3 (maseni udeo vode u me{avini vode i leda) hy = hl + y ⋅ (hw − hl ) = ... = 0 + 0.4 ⋅ (0 + 332 .4 ) =−199.4 hw= 0 kJ kg kJ kg hL = −332.4 kJ kg s y = s l + y ⋅ (s w − s l ) = ... = 0 + 0.4 ⋅ (0 + 1 .22 ) =−0.732 kJ kgK kJ kgK r 332 .4 kJ sL = − l = − −1.22 273 273 kgK sw= 0 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 4 2.8. Odrediti specifi~nu entalpiju i specifi~nu entropiju: a) pregrejane vodene pare stawa (t=600oC, v=1 m3 /kg) b) vla`ne vodene pare stawa (x=0.9, v=20 m3/kg) a) v=1 m3 /kg h t=600oC h=3705 kJ/kg s=8.46 kJ/kgK kJ hpp = 3705 kg kJ spp = 8.46 kgK s (upotrebom hs dijagrama za vodenu paru) (upotrebom hs dijagrama za vodenu paru) b) h v=20 m3 /kg h=2325 kJ/kg x=0.9 s=7.54 kJ/kgK kJ kg kJ sx = 7.54 kgK hx = 2325 dipl.ing. @eqko Ciganovi} s (upotrebom hs dijagrama za vodenu paru) (upotrebom hs dijagrama za vodenu paru) [email protected] zbirka zadataka iz termodinamike strana 5 2.9. Odrediti specifi~nu entalpiju pregrejane vodene pare stawa (u=2654 kJ/kg, v=1.08 m3 /kg). pretostavimo p= 4 bar: ⇒ 3 m kJ =3846.35 hpp = f p = 4 bar, v = 1.08 kg kg provera pretpostavke: h − u 3846 .35 − 2654 p= = =11.04 bar v 1.08 pretostavimo p= 3 bar: ⇒ 3 m kJ =3340.03 hpp = f p = 3 bar, v = 1 .08 kg kg provera pretpostavke: h − u 3340 .03 − 2654 p= = =6.35 bar v 1.08 pretostavimo p= 2 bar: ⇒ 3 m kJ =2870 hpp = f p = 2 bar , v = 1 .08 kg kg provera pretpostavke: h − u 2870 − 2654 p= = =2 bar v 1 .08 kJ ta~na vrednost iznosi: hpp=2870 kg tabela 4.2.6. strana 41−55 (pretpostavka nije ta~na) tabela 4.2.6. strana 41−55 (pretpostavka nije ta~na) tabela 4.2.6. strana 41−55 (pretpostavka je ta~na) 2.10. Odrediti specifi~nu entalpiju i specifi~nu entropiju suvozasi}ene pare amonijaka na T=300 K. kJ kJ h”′′= 2246 s′′”= 9.993 kg kgK tabela 4.4.1. strana 62, za T=300 K 2.11. Odrediti specifi~nu entalpiju i specifi~nu entropiju pregrejane pare freona 12 stawa (p=6 bar, t=200oC). kJ kJ hpp =789 spp = 1.889 kg kgK tabela 4.6.2. strana 79−81, za p=6 bar, t=200oC dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 6 PROMENE STAWA REALNIH FLUIDA 2.12. Vla`na para stawa 1(x=0.3, p=0.2 bar) izohorski se {iri do stawa 2(p=1.5 bar), a zatim ravnote`no izentropski ekspandira do stawa 3(p3=p1 ). Skicirati promene stawa vodene pare na Ts i pv dijagramu i odrediti razmewenu toplotu (kJ/kg) za promenu stawa 1−2 i zapreminski rad (kJ/kg) za promenu stawa 2−3. T 2 2 p 3 1 1 3 s v ta~ka 1: u1 = ux =u’′” + x1 . (u′′” - u′’) = ...= 251 .38 + 0.3 ⋅ (2456 − 251.38 ) =912.8 u’′ =251.38 kJ kg u′′” =2456 kJ kg kJ kg v1 = vx = v’′ + x1 . (v′′” - v’′ ) = 0.0010171 + 0 .3 ⋅ (7.647 − 0.0010171) =2.29 v′’=0.0010171 m3 kg v′′”=7.647 m3 kg p2 =1.5 bar m3 kg m3 kg ta~ka 2: v2 = v1 =2.29 m3 m3 v′′”=1.159 kg kg ta~ka 2 nalazi se u oblasti pregrejane pare provera polo`aja ta~ke 2: v2 > v”′′ ⇒ h2 = hpp =3448.1 kJ , kg v′’=0.0010527 s2 = spp=8.5 kJ kgK u2 = upp = hpp –− p . vpp = 3448 .1 − 1 .5 ⋅ 10 5 ⋅ 10 −3 ⋅ 2.29 =3104.6 dipl.ing. @eqko Ciganovi} kJ kg [email protected] zbirka zadataka iz termodinamike strana 7 ta~ka 3: s3 = s2 =8.5 kJ kgK p3 = p1 = 0.2 bar kJ kJ s′′” =6.822 kgK kgK ta~ka 3 nalazi se u oblasti u pregrejane pare provera polo`aja ta~ke 3: s3 > s′′” ⇒ h3 = hpp = 2797.6 kJ , kg s′’ =08321 v3 = vpp =14.61 m3 kg u3 = upp = hpp –− p . vpp = 2797 .6 − 0.2 ⋅ 10 5 ⋅ 10− 3 ⋅ 14.61 =2505.4 kJ kg (q12 )v= const = u2 − u1 = 3104 .6 − 912 .8 =2191.8 kJ (w23 )s= const kg kJ = u2 − u3 = 3104 .6 − 2505 .4 = 599.2 kg 2.13. Pregrejana vodena para stawa 1(m=1 kg, p=0.05 MPa, t=270oC) predaje toplotu izotermnom toplotnom ponoru, usled ~ega ravnote`no mewa svoje toplotno stawe: prvo izohorski (1−2) do temperature 60oC, potom izotermski (2−3) do pritiska 0.1 MPa i kona~no izobarski (3−4) do temperature 20oC. Odrediti promenu entropije izolovanog sistema za slu~aj termodinmi~ki najpovoqnijeg temperaturskog nivoa toplotnog ponora. Skicirati proces u Ts i pv koordinatnom sistemu. 1 T 1 p 3 3 2 4 4 s dipl.ing. @eqko Ciganovi} 2 v [email protected] zbirka zadataka iz termodinamike strana 8 ∆S SI =∆S RT + ∆S TP = .… .. ∆S RT =∆S14 = m ⋅ (s 4 − s1 ) =... ∆ STP = −m ⋅ ∆ STP = −m ⋅ (q12 )v =const + (q 23 ) T =const + (q34 )p=const Ttp u2 − u1 + T2 ⋅ (s 3 − s 2 ) + h4 − h3 = ... TTP ta~ka 1: p1 =0.5 bar, t1 =270oC tk=81.35oC t1 > tk m3 , kg kJ s1 =spp= 8.423 , kgK v1 = vpp= 5 ta~ka 1 nalazi se u oblasti pregrejane pare h1 =hpp = 3015 kJ kg u1 = upp=h1 − p1 . v1 = 2765 kJ kg ta~ka 2: t2 =60oC v2 =v1 =5 v′’= 0.0010171 m3 , kg v′ < v2 < v”′′ x2 = m3 kg m3 kg ta~ka 2 nalazi se u oblasti vla`ne pare v′′”=7.678 v 2 − v' = 0.6512 v" − v' u2 = ux =u’′” + x2 . (u′′” − u′’) =…...= 251 .1 + 0.6512 ⋅ (2456 − 251 .1) = 1684.29 u’′ =251.1 kJ kg u′′” =2456 kJ kg s2 = sx =s’′” + x2 . (s′′” − s′’) =…...= 0.8311 + 0.6512 ⋅ (7.9084 − 0 .8311) =5.43 s’′ =0.8311 kJ , kgK dipl.ing. @eqko Ciganovi} s′′”=7.9084 kJ kg kJ kgK kJ kgK [email protected] zbirka zadataka iz termodinamike strana 9 ta~ka 3: p3 =1 bar t3 =60oC tk=99.64oC t3 < tk h3 = hw=251.1 kJ , kg s3 = sw= 0.83 ta~ka 3 nalazi se u oblasti te~nosti kJ kgK ta~ka 4: p4 =1 bar t4 =60oC tk=99.64oC t4 < tk h4 =hw= 83.9 kJ , kg s4 = sw=0.296 ta~ka 4 nalazi se u oblasti te~nosti kJ kgK toplotni ponor: TTP=T4 =293 K (najpovoqniji termodinami~ki slu~aj) ∆S RT =∆S14 =1 ⋅ (0 .296 − 8.423 ) =...=−8.127 ∆ STP = −1 ⋅ kJ K kJ 1684 .29 − 2765 + 333 ⋅ (0.83 − 5.43 ) + 83 .9 − 251 .1 = 9.487 K 293 ∆S SI =∆S RT + ∆S TP = … − 8.127 + 9.487 =1.36 kJ K 2.14. Vodi (m=10 kg) stawa 1(p=0.1 MPa, t=20oC) dovodi se toplota od izotermnog toplotnog izvora, usled ~ega voda mewa svoje toplotno stawe: prvo izobarski (1−2) do temperature 60oC, potom izotermski (2−3) do specifi~ne zapremine 5 m3 /kg i na kraju izohorski (3−4) do pritiska 0.05 MPa. Skicirati proces u Ts koordinatnom sistemu i odrediti promenu entropije adijabatski izolovanog sistema za slu~aj termodinmi~ki najpovoqnijeg temperaturskog nivoa toplotnog izvora. dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 10 ∆S SI = ∆S RT + ∆S TI = …... ⋅ ∆S RT = ∆S14 = m ⋅ (s 4 − s1 ) =... ∆ STI = −m ⋅ ∆ STI (q12 )p=const + (q 23 )T =const + (q 34 ) v= const TTI h − h1 + T2 ⋅ (s 3 − s 2 ) + u 4 − u 3 =m⋅ 2 =... TTI ta~ka 1: t1 =20oC p1 =1 bar, tk=99.64oC h1 =hw= 83.9 t1 < tk kJ , kg ta~ka 2: s1 = sw=0.296 t2 < tklj kJ kg kJ kgK t2 = 60oC p2 =1 bar tk=99.64oC h2 =hw = 251.1 ta~ka 1 nalazi se u oblasti te~nosti ta~ka 2 nalazi se u oblasti te~nosti s2 =sw = 0.83 kJ kgK ta~ka 3: t3 = 60oC v′’= 0.0010171 v3 = 5 m3 , kg v′ < v3 < v”′′ x3 = m3 kg m3 kg ta~ka 3 nalazi se u oblasti vla`ne pare v′′”=7.678 v 3 − v' 5 − 0.0010171 = = 0.6512 v" −v' 7.678 − 0.0010171 kJ kg kJ s3 = sx = s '+ x 3 ⋅ (s"−s ' ) = 0.8311 + 0.6512 ⋅ (7 .9084 − 0 .8311) =5.43 kgK u3 =ux = u' + x3 ⋅ (u"−u' ) = 251 .1 + 0.6512 ⋅ (2456 − 251 .1) =1684.29 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 11 ta~ka 4: p4 = 0.5 bar, v′’= 0.0010299 v4 = v3 = 5 m3 kg m3 kg m3 kg ta~ka 4 nalazi se u oblasti pregrejane pare v′′”=3.239 v4 > v”′ ′ m3 , kg kJ s1 =spp= 8.42 , kgK v1 = vpp= 5 h1 =hpp = 3015 kJ kg u 1 = upp=h1 − p1 . v1 = 2765 kJ kg T4 =Tpp= 270oC = 543 K toplotni izvor: TTI =T4 = 543 K (najpovoqniji termodinami~ki slu~aj) kJ K kJ 251.1 − 83.9 + 333 ⋅ (5.45 − 0.83 ) + 2782 .85 − 1689 .36 = −10 ⋅ =−51.6 K 542.5 ∆S RT = ∆S14 =10 ⋅ (8.42 − 0.296 ) =81.24 ∆ STIi ∆S SI = 81.24 − 51.6 = 29.64 kJ K 4 T TI 2 3 1 s dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 12 2.15. Jednom kilogramu leda stawa 1(p=1 bar T=−5 oC) dovodi se toplota od toplotnog izvora konstantne temperature TTI=300oC tako da se na kraju izobarske promene stawa (1−2) dobije suvozasi}ena vodena para (stawe 2). Odrediti promenu entropije izolovanog sistema pri ovoj promeni stawa i grafi~ki je predstaviti na Ts dijagramu. ∆S SI =∆S RT + ∆S TI = .… ..= 8.61 − 5.27 = 3.34 ∆S RT =m . ∆s12=m . ( s2 − s1 )=...= 8.61 (q12 )p=const kJ K (h2 − h1 ) kJ K = ... = −5.27 kJ K h1 = hl = cl ⋅ (TL − 273 ) − rl = 2 ⋅ (− 5 ) − 332.4 = −342.4 kJ kg ∆ STI = −m ⋅ = −m ⋅ Tti Tti ta~ka 1: s1 = s l = c l ⋅ ln TL 273 − rl 273 = 2 ⋅ ln -5 + 273 332.4 kJ − = − 1.25 kgK 273 273 ta~ka 2: h2 = h′′ = 2675 kJ , kg s2 = s′′”=7.36 kJ kgK T TI 2 1 ∆S RT ∆S TI s jednake povr{ine ∆S SI dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 13 2.16. Te~an CO2, stawa 1(p=5 MPa, t=0oC), adijabatski se prigu{uje (h=idem) do stawa 2(p=0.6 MPa). Grafi~ki predstaviti po~etno i krajwe stawe CO2 u Ts i hs kJ koordinatnom sistemu i odrediti prira{taj entropije CO2 tokom procesa 1−2 ( ). kgK T p1 h p1 p2 p2 1 2 1 2 s s ta~ka 1: p1 =50 bar, h1 =− 94 kJ , kg t1 =0oC ta~ka 1 nalazi se u oblasti te~nosti s1 = 3.1133 kJ kgK tabela 4.8.2. strana 93−98 ta~ka 2: h2 =h1 = −94 p2 =6 bar, kJ kJ , h′′”=142.7 kg kg h′ <h2 < h”′′ kJ kg h′’= −200 x2 = tabela 4.8.1. strana 92 ta~ka 2 nalazi se u oblasti vla`ne pare h2 − h' −94 + 200 = =0.3093 h"−h' 142 .7 + 200 s2 = sx = s '+ x 2 ⋅ (s "−s ' ) = 2.702 + 0.3093 ⋅ (4.260 − 2 .702 ) =3.184 s’′ =2.702 kJ , kgK s′′”=4.260 kJ kgK ∆s12 = s2 − s1 =...=3.184 − 3.1133 = 0.0707 dipl.ing. @eqko Ciganovi} kJ kgK tabela 4.8.1. strana 92 kJ kgK [email protected] zbirka zadataka iz termodinamike strana 14 2.17. Freon 22 stawa 1(T=−30oC, x=1) nekvazistati~ki (neravnote`no) adijabatski se komprimuje do stawa 2(p=6 bar). Prira{taj entropije freona tokom procesa J iznosi ∆s12 =51 . Predstaviti proces sa freonom na Ts i hs dijagramu i kgK odrediti stepen dobrote ove nekvazistati~ke adijabatske kompresije. ta~ka 1: h1 = h′′ = 691.92 kJ kJ , s1 = s′′= 1.7985 kg kgK tabela 4.7.1. strana 83 ta~ka 2k: p2k=6 bar, s′ = 1.024 kJ kgK kJ s′′ = 1.74 kgK s2k = s1 =1.7985 kJ , kgK s2k > s′′ tabela 4.7.1. strana 83 ta~ka 2k nalazi se u oblasti pregrejane pare h2k = hpp = 720.78 kJ kg ta~ka 2: p2 =6 bar, s2 = s1 +∆s12 =1.7895+0.051=1.8495 h2 = hpp = 739.36 kp ηd = kJ kgK kJ kg h1 − h2k 691 .92 − 720 .78 = =0.61 h1 − h 2 691 .92 − 739 .36 2 2 T h 2k 2k 1 1 s dipl.ing. @eqko Ciganovi} s [email protected] zbirka zadataka iz termodinamike strana 15 (2.18. –− 2.19.) zadaci za ve`bawe: 2.18. Kqu~ala voda temperature T1= 250oC mewa stawe ravnote`no: − izotermski (1−2) do p2 = 4.5 bar − zatim izohorski(2−3) do p= 2.2 bara − i na kraju izobarski (3−4) do stawa 4(s4 =s1 ) Skicirati promene stawa vodene pare na pv i Ts dijagramu i odrediti razmewene kJ toplote ( ) tokom procesa 1−2, 2−3 i 3−4. kg kJ kJ kJ re{ewe: q12 =2368.5 , q23 =−846.7 , q34 =−991.2 kg kg kg 2.19. Vodenoj pari stawa 1(T2 =100oC, x=0) ravnote`no se dovodi se toplota pri ~emi vodenu paru prevodimo u stawe 2(T=120oC, x=1). U procesu (1−2) temperatura pare raste linerano u Ts kordinatnom sistemu. Nakon toga se vr{i neravnote`na adijabatska ekspanzija (2−3) vodene pare (stepen dobrote nekvazistati~ke adijabatske ekspanzije: η eks d =0.9) do stawa 3(p=0.1 bar). Skicirati procese sa vodenom parom na Ts dijagramu i odrediti dovedenu toplotu za proces 1−2 i dobijeni tehni~ki rad za proces 2−3. re{ewe: q12 =2316.2 kJ , kg dipl.ing. @eqko Ciganovi} w T23 =402.4 kJ kg [email protected] zbirka zadataka iz termodinamike strana 16 PRVI I DRUGI ZAKON TERMODINAMIKE (ZATVOREN TERMODINAMI^KI SISTEM) 2.20. U zatvorenom, adijabatski izolovanom, sudu zapremine V=7.264 m3 , nalazi se me{avina m′=311 kg kqu~ale vode i m’′’ ′ =? suvozasi}ene vodene pare u stawu termodinami~ke ravnote`e na p1 =0.95 bar. Vodenoj pari u sudu se dovodi toplota, od toplotnog izvora stalne temperature TTI=300oC, tako da joj pritisak poraste na p2 =68 bar. Skicirati procese sa vodenom parom na Ts i pv dijagramu i odrediti: a) koliko je toplote dovedeno u procesu (MJ) b) promenu entropije izolovanog termodinami~kog sistema za proces 1−2 (kJ/K) a) prvi zakon termodinamike za proces u zatvorenom termodinami~kom sistemu ⇒ Q12 = ∆U12 + W12 Q12 = (m′ + m′′) . (u2 –− u1 )=... ta~ka 1: p1 =0.95 bar, x1 =? m m3 v′′”=1.7815 kg kg V' = m'⋅v' = 311 ⋅ 0.00104205 =0.3241 m3 v’′ = 0.00104205 3 V′′” = V − V’′ =7.264 − 0.3241 = 6.9399 m3 m" = V" 6.9399 = =3.9 kg v" 1.7815 x1 = m" 3 .9 = =0.0124 m"+m' 3 .9 + 311 u1 = ux =u’′ + x1 .(u′′” - u′’) = 411 .23 + 0 .0124 ⋅ (2504 − 411 .23 ) =437.21 kJ u’′ = 411.23 , kg kJ kg kJ u”′′ = 2504 kg v1 =vx=v’ + x1. (v”′′ − v’′ )= 0. 00104205 + 0. 0124 ⋅ (1.7815 − 0. 00104205) =0.0231 s1 = sx =s’′ + x1 .(s′′” − s′’) = 1.2861 + 0.0124 ⋅ (7 .377 − 1 .2861) =1.362 kJ s’′ = 1.2861 , kgK dipl.ing. @eqko Ciganovi} m3 kg kJ kgK kJ s”′ ′ = 7.377 kgK [email protected] zbirka zadataka iz termodinamike strana 17 ta~ka 2 p2 =68 bar, v2 = v1 = 0.0231 v′’= 0.0013445 m3 , kg m3 kg ta~ka 2 se nalazi u oblasti vla`ne pare v′′”=0.028382 v′’ < v2 < v”′′ x2 = m3 kg v 2 − v' 0 .0231 − 0.0013445 = =0.8046 v"− v' 0.028382 − 0 .0013445 u2 = ux =u’′ + x2 .(u′′” − u′’)= ...=1247 .52 + 0.8046 ⋅ (2582 − 1247 .52 ) =2321.24 u’′ = 1247.52 kJ kg u′′” = 2582 kJ kg kJ kg s2 = sx =s’′ + x1 .(s′′” − s′’) = ...= 3.103 + 0.8046 ⋅ (5.829 − 3.103 ) =5.2963 kJ kgK kJ kJ , s”′ ′ = 5.829 kgK kgK = (311 + 3.9 ) ⋅ (2321 .24 − 437.21) =593.3 MJ s’′ = 3.103 Q 12 b) ∆S SI =∆S RT + ∆S TI = …...=216.2 kJ K ∆S RT = (m' +m' ' ) ⋅ (s 2 − s 1 ) = (311 + 3.9 ) ⋅ (5.2963 − 1.362 ) =1239.1 ∆ STI = − kJ K Q12 593.3 ⋅ 10 3 kJ =− =1035.43 TTI 573 K T p 2 2 1 1 s dipl.ing. @eqko Ciganovi} v [email protected] zbirka zadataka iz termodinamike strana 18 2.21. Izolovan zatvoren sud zapremine V=120 litara ispuwen je kqu~alom vodom i suvozasi}enom parom u stawu termodinami~ke ravnote`e na pritisku p1 =1 bar. U posudi se nalazi greja~ snage 5 kW . Dovo|ewem toplote nivo vode u sudu raste i kada pritisak dostigne 50 bara, posuda je u celosti ispuwena te~nom fazom. Skicirati proces na pv dijagramu i odrediti koliko dugo je trajalo dovo|ewe toplote. p K 2 1 vk v ta~ka 2: p2 = 50 bar, x2 =0 v2 = v′= 0.0012857 m= m3 , kg u2 =u′= 1148 kJ kg V 120 ⋅ 10 −3 = =93.33 kg v 2 0.0012857 ta~ka 1: p1 =1 bar, v1 =v2 =0.0012857 v′’= 0.0010432 m3 , kg v′’ < v1 < v”′′ x1 = m3 kg m3 kg ta~ka 1 se nalazi u oblasti vla`ne pare v′′”=1.694 v 1 − v' 0.0012857 − 0.0010432 = =0.0001 v" −v' 1.694 − 0 .0010432 u1 = ux =u’′ + x1 .(u′′” − u′’) = 417 .3 + 0.0001 ⋅ (2506 − 417 .3 ) =417.51 u’′ = 417.3 kJ , kg dipl.ing. @eqko Ciganovi} u”′′ = 2506 kJ kg kJ kg [email protected] zbirka zadataka iz termodinamike strana 19 prvi zakon termodinamike za proces u zatvorenom termodinami~kom sistemu Q12 = ∆U12 + W12 ⇒ Q12 =m . (u2 –− u1 ) Q12 = 93 .33 ⋅ (1148 − 417.51) =68.18 MJ τ= Q 12 ⋅ = Q 12 68.18 ⋅ 10 3 =13636 s 5 Uo~iti da se u ovom zadatku pojavquje fenomen podkriti~nih zapremina , tj. izohorskim dovo|ewem toplote vla`noj pari v<vk ne dolazi do stvarawa suvozasi}ene pare ve} kqu~ale te~nosti. U takvom slu~aju prilikom dovo|ewa toplote vla`noj pari stepen suvo}e vodene pare ne raste monotono do x=1, ve} raste do neke vrednosti x>x1 pa zatim monotono opada do x=0. 2.22. U vertikalno postavqenom cilindru povr{ine popre~nog preseka A=0.1 m2 koji je po omota~u izolovan nalazi se m=0.92 kg vode na temperaturi od 10oC. Iznad vode je klip zanemarqive mase koji ostvaruje stalni pritisak. Pritisak okoline iznosi po=1 bar. U cilindru se nalazi greja~ toplotne snage 0.5 kJ/s. Zanemaruju}i trewe klipa o zidove cilindra odrediti vreme potrebno da se klip podigne za ?∆z=1.3 m. Predstaviti proces dovo|ewa toplote na Ts dijagramu. τ= Q 12 ⋅ ∆z =... Q 12 prvi zakon termodinamike za proces u zatvorenom termodinami~kom sistemu Q12 = ∆U12 + W12 ⇒ Q12 =m . (u2 − u1 )+ p ⋅ (V2 − V1 ) = ... ta~ka 1: p1 =1 bar, h1 = hw = 42 t1 =10oC kJ , kg v1 = vw = 0.0010005 m3 kg u1 = uw = h1 − p 1 ⋅ v 1 = 42 − 1 ⋅ 10 5 ⋅ 10 −3 ⋅ 0 .0010005 =41.9 kJ kg V 1 = m . v1 = 0.92 ⋅ 0.0010005 =0.0009 m3 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 20 ta~ka 2: p2 =1 bar v2 =? V 2 = V1 + A. ∆z = 0.0009 + 0.1.1.3 = 0.1309 m3 v2 = V2 0.1309 m3 = =0.1423 m 0 .92 kg v′’= 0.0010432 m3 , kg m3 kg ta~ka 2 se nalazi u oblasti vla`ne pare v′′”=1.694 v′’ > v2 > v′′” x2 = v 2 − v' v" − v' = 0.1423 - 0.0010432 =0.0834 1.694 - 0.0010432 u2 = ux =u′’ + x2 .(u′′” − u′’) = = 417 .3 + 0.0834 ⋅ (2506 − 417 .3 ) =591.5 u’′ = 417.3 kJ , kg u”′′ = 2506 kJ kg kJ kg Q12 = 0.92 ⋅ (591 .5 − 41.9 ) + 1 ⋅ 10 5 ⋅ 10 −3 ⋅ (0 .1423 − 0.0009 ) =519.77 kJ τ= 519.77 =1039.5 s 0 .5 T p=const 1 2 s dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 21 2.23. Vertikalan cilindar (od okoline toplotno izolovan) unutra{weg pre~nika d=250 mm zatvoren je sa gorwe strane pomi~nim (bez trewa) i od okoline izolovanim klipom (zanemarqive mase) optere}enim sa dva tega masa: mT1=210 kg i mT2=1800 kg. Po~etna udaqenost klipa od dna cilindra je z1 =300 mm. U cilindru se nalazi 5 litara kqu~ale vode, a ostatak zapremine zauzima suvozasi}ena vodena para. Pritisak okoline iznosi po=1 bar. Dovo|ewem toplote klip se podigne za ∆z=200 mm. Zatim se istovremeno te`i teg podigne dizalicom i skine sa klipa ({to dovodi do daqeg podizawa klipa) i iskqu~i greja~. Odrediti: a) koli~inu toplote dovedenu u prvom delu procesa b) izvr{eni zapreminski rad u drugom delu procesa T1 T2 T2 T1 ∆z T1 ∆z z1 ta~ka 1: p1 = p o + (m T1 + m T2 ) ⋅ g = 1 ⋅ 10 5 + (210 + 1800 ) ⋅ 9.81 =5 bar d2 π 4 0.25 2 π 4 d2 π 0.25 2 π ⋅ z1 = ⋅ 0 .3 =0.0147 m3 4 4 V′′ = V − V′ =0.0147 –− 0.0050 =0.0097 m3 V1 = v′ =0.0010927 m3 , v′′=0.3747 m3 V' 0.0050 V' ' 0 .0097 = =4.576 kg, m' ' = = =0.026 kg v' 0.0010927 v ' ' 0 .3747 m' ' 0.026 x1 = = =0.0056 m' +m' ' 4.576 + 0.026 m' = u1 = ux =u’′ + x1 .(u′′” − u′’) = 639 .4 + 0.0056 ⋅ (2562 − 639 .4 ) =650.17 kJ u’′ = 639.4 , kg dipl.ing. @eqko Ciganovi} kJ kg kJ u”′′ = 2562 kg [email protected] zbirka zadataka iz termodinamike strana 22 ta~ka 2: V 2 = V1 + p2 = p1 = 5 bar, d2 π 0.25 2 π ⋅ ∆z = 0.0147 + ⋅ 0.2 =0.0245 m3 4 4 0 .0245 m3 =0.0053 m 4 .602 kg v′’ > v2 > v′′” v2 = x2 = V2 = v 2 − v' v"− v' ta~ka 2 se nalazi u oblasti vla`ne pare 0.0053 - 0.0010927 =0.0113 0.3747 - 0.0010927 = u2 = ux =u’′ + x2 .(u′′” − u′’) = 639 .4 + 0.0113 ⋅ (2562 − 639.4 ) =661.13 kJ kg kJ s2 = sx =s’′ + x2 .(s′′” − s′’) = ...= 1.86 + 0 .0113 ⋅ (6.822 − 1.86 ) =1.916 kgK kJ kJ s’′ = 1.86 , s”′ ′ = 6.822 kgK kgK ta~ka 3: p3 = p o + m T1 ⋅ g 2 = 1 ⋅ 10 5 + 210 ⋅ 9.81 2 d π 0.25 π 4 4 kJ kJ s’′ = 1.4184 , s”′ ′ = 7.2387 kgK kgK s′’ > s3 > s′′” x3 = s3 − s' s" −s' =1.42 bar, kJ kgK s3 = s2 = 1.916 ta~ka 3 se nalazi u oblasti vla`ne pare = 1.916 - 1.4184 =0.0855 7.2387 - 1.4184 u3 = ux =u’′ + x3 .(u′′” − u′’) = 461 .1 + 0.0855 ⋅ (2518 − 461 .1) =636.96 kJ u’′ = 461.1 , kg dipl.ing. @eqko Ciganovi} kJ kg kJ u”′′ = 2518 kg [email protected] zbirka zadataka iz termodinamike strana 23 a) prvi zakon termodinamike za proces u zatvorenom termodinami~kom sistemu Q12 = ∆U12 + W12 Q12 =m . (u2 –− u1 )+ p ⋅ (V2 − V1 ) ⇒ Q 12 = 4 .602 ⋅ (661 .13 − 650 .17 ) + 5 ⋅ 10 5 ⋅ 10 − 3 ⋅ (0 .0245 − 0.0147 ) =55.34 kJ b) prvi zakon termodinamike za proces u zatvorenom termodinami~kom sistemu Q23 = ∆U23 + W23 ⇒ W23 =−m . (u3 –− u2 ) W23 = −4 .602 ⋅ (636 .96 − 661 .13 ) =111.23 kJ T p1 =p2 2 1 p3 3 s 2.24. Vla`na vodena para stawa A(pA=0.11 MPa, x=0.443), koja se nalazi u toplotno izolovanom sudu A, zapremine V A=0.55 m3 , razdvojena je ventilom od suvozasi}ene vodene pare koja se pri istom pritisku (pB=pA) nalazi u toplotno izolovanom cilindru B, zapremine V B=0.31 m3 (slika). Pri zako~enom (nepokretnom) klipu K otvara se ventil i uspostavqa stawe termodinami~ke ravnote`e pare u oba suda (stawe C). Po dostizawu tog ravnote`nog stawa, pokre}e se klip K, koji pri i daqe otvorenom ventilu, kvazistati~ki sabija paru na pritisak p=2.4 MPa (stawe D). Odrediti izvr{eni zapreminski rad ( za proces C−D) i prikazati sve promene u Ts koordinatnom sistemu. K A B dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike pA=1.1 bar ta~ka A: strana 24 xA=0.443 kJ kg uA= ux =u’′ + xA.(u′′” - u′’) = ...= 428. 79 + 0. 443 ⋅ (2509 − 428.79 ) =1350.32 u’′ =428.79 kJ , kg u”′′ = 2509 kJ kg vA= vx= v’ + xA. (v”′′ − v′’)= ...= 0 .0010452 + 0. 443 ⋅ (1. 555 − 0 .0010452) =0.6894 VA vA m3 kg 0 .55 = = 0.8 kg 0.6894 ta~ka B: pB=1.1 bar v’′ = 0.0010452 mA = v′′”=1.555 m3 kg m3 kg xB=1 kJ m3 , vB = v′′”=1.555 kg kg 0.31 = 0.2 kg 1.555 uB=u”′ ′= 2509 mB = VB vB ta~ka C: pC=1.1 bar uC=? prvi zakon termodinamike za proces me{awa u zajedni~kom sudu: Q12 = ∆U12 + W12 ⇒ U1 = U2 U1 = mA. uA + mB. uB U2 = mA. uC + mB. uC mA ⋅ u A + mB ⋅ uB 0.8 ⋅ 1350 .32 + 0 .2 ⋅ 2509 kJ = =1582.06 m A + mB 0.8 + 0.2 kg kJ kJ u’′ = 428.79 , u”′′ = 2509 kg kg u′’ < uC < u”′ ′ ta~ka 2 se nalazi u oblasti vla`ne pare uC = xC = u C − u' u"−u' = 1582 .06 − 428 .79 =0.5544 2509 − 428 .79 sC= sx =s’′ + xC.(s′′” - s′’) = ...= 1.3327 + 0.5544 ⋅ (7 .238 − 1.3327 ) =4.606 s’′ = 1.3327 kJ kgK dipl.ing. @eqko Ciganovi} s”′ ′ = 7.328 kJ kgK kJ kgK [email protected] zbirka zadataka iz termodinamike ta~ka D: s’′ = 2.534 pD=24 bar kJ kgK kJ kgK sD=sC = 4.606 s”′ ′ = 6.272 s′’ < sD < s”′ ′ xD = strana 25 kJ kgK ta~ka D se nalazi u oblasti vla`ne pare s D − s' 4 .606 − 2.534 = =0.55543 s"− s' 6 .272 − 2.534 uD= ux =u’′ + xD.(u′′” - u′’) = ...= 948 .9 + 0.5543 ⋅ (2602 − 948 .9) =1865.21 u’′ = 948.9 kJ , kg u”′′ = 2602 kJ kg kJ kg prvi zakon termodinamike za proces adijabatske kompresije (C−D): QCD = ∆UCD + WCD ⇒ WCD= UC − UD WCD= (m A + m B ) ⋅ (u C − uD ) = (0.8 + 0.2 ) ⋅ (1582 .06 − 1865 .21) = −283.15 kJ T pD D pA=pB=pC A C B s dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 26 2.25. U zatvorenom sudu zapremine V=2 m3 , nalazi se suvozasi}ena vodena para stawa 1(p=10 bar). Tokom hla|ewa do stawa 2 od vodene pare odvede se 14.3 MJ toplote. Odrediti promenu entropije sistema u najpovoqnijem slu~aju tokom procesa hla|ewa pare. p= 10 bar, kJ u1 = u″ = 2583 , kg ta~ka 1: v1 = v″=0.1946 m3 , kg x=1 s1 = s″= 6.587 m= kJ kgK V 2 = =10.28 kg v 1 0 .1946 m3 , u2 =? kg prvi zakon termodinamike za proces hla|ewa pare: ta~ka 2: v2 = v1 =0.1946 Q12 = ∆U12 + W12 ⇒ Q12 = m. ( u2 –− u1 ) 3 Q 14 .3 ⋅ 10 kJ u2 = u1 + 12 = 2583 − =1191.95 kg m 10.28 pretpostavimo p2 =2.6 bar: m3 m3 v′′”=0.6925 kg kg v 2 − v ' 0.1946 − 0 .0010685 x2 = = =0.28 v"− v ' 0.6925 − 0 .0010685 kJ kJ u’′ = 540.63 , u”′′ = 2539 kg kg v’′ = 0.0010685 kJ kg pretpostavka nije ta~na u2 =ux = u′ + x2 . ( u″ - u′ )= 540 .63 + 0.28 ⋅ (2539 − 540 .63 ) =1100.17 pretpostavimo p2 =2.8 bar: m3 m3 v′′”=0.6461 kg kg v − v' 0.1946 − 0.0010709 x2 = 2 = =0.3 v"− v ' 0.6461 − 0.0010709 kJ kJ u’′ = 551.1 , u”′′ = 2541 kg kg v’′ = 0.0010709 kJ kg pretpostavka nije ta~na u2 =ux = u′ + x2 . ( u″ - u′ )= 551 .1 + 0.3 ⋅ (2541 − 551 .1) =1148.07 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 27 pretpostavimo p2 =3.0 bar: m3 m3 v′′”=0.6057 kg kg v 2 − v ' 0.1946 − 0 .0010733 x2 = = =0.32 v"− v ' 0.6057 − 0 .0010733 kJ kJ u’′ = 561.1 , u”′′ = 2543 kg kg v’′ = 0.0010733 kJ kg pretpostavka ta~na u2 =ux = u′ + x2 . ( u″ - u′ )= 561 .1 + 0.32 ⋅ (2543 − 561 .1) = 1195.3 Obzirom da je pretpostavka ta~na to zna~i da je p2 =3 bar. Na osnovu vrednosti pritiska p2 odre|uje se temperatura T2 =133.54oC. s’′ = 1.672 kJ , kgK s”′ ′ = 6.992 kJ kgK s2 = sx =s’′ + x2 . (s′′” − s′’) = 1.672 + 0 .32 ⋅ (6.992 − 1.672 ) =3.374 kJ kgK drugi zakon termodinamike za proces hla|ewa pare: ∆S SI = ∆S RT + ∆S TP = ...= 3.97 kJ K ∆S RT = m . ∆s12 = m .( s2 −– s1 ) = 10 .28 ⋅ (3.374 − 6.587 ) = − 33.03 ∆S TP = − kJ K Q 12 − 14.3 ⋅ 10 3 kJ =− =35.17 TTP 133 .54 + 273 K zadatak za ve`bawe: (2.26.) 2.26. U zatvorenom sudu nalazi se 5 kg pregrejane vodene pare stawa 1(p1 =0.1 MPa, t1 ). a) koliko iznosi temperatura pregrejane pare (t1 ) ako od we hla|ewem nastaje suva vodena para specifi~ne entalpije h=2653 kJ/kg (stawe 2) b) koliki }e biti stepen suvo}e (x3 ) vla`ne pare kada usled daqeg odvo|ewa toplote temperatura vodene pare dostigne 50oC (stawe 3) c) odrediti masu (kg) kqu~ale te~nosti (m’′’ ) i suvozasi}ene pare (m’′’ ′) stawa 3 a) t1 = 320oC b) x3 = 0.227 c) m′’=3.87 kg, m”′ ′=1.13 kg dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 28 PRVI I DRUGI ZAKON TERMODINAMIKE (OTVOREN TERMODINAMI^KI SISTEM) 2.27. U adijabatski izolovanom ure|aju me{aju se suvozasi}ena vodena para stawa ⋅ 1(p=0.4 MPa) i voda stawa 2(p=0.4 MPa, t=20oC, m w=1 kg/s ). Iz ure|aja izlazi voda stawa 3(p=0.4 MPa, t=80oC). Zanemaruju}i promene kineti~ke i potencijalne energije vodene pare, odrediti: a) potrebnu koli~inu pare (kg/s) b) promenu entropije sistema za proces me{awa (kW/K) 1 para 3 2 voda a) p1 =4 bar x=1 kJ kJ h1 =h′′ = 2738 , s1 =s′′ = 6.897 kg kgK ta~ka 1: p2 =4 bar t2 =20oC kJ kJ h2 =hw = 84.1 , s2 =sw =0.296 kg kgK ta~ka 2: p2 =4 bar t2 =80oC kJ kJ h3 =hw = 335.1 , s3 =sw =1.074 kg kgK ta~ka 3: prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu: ⋅ ⋅ ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⇒ H1 = H 2 ⋅ ⋅ ⋅ ⋅ mp ⋅ h1 + m w ⋅ h 2 = mp + m w ⋅ h3 ⋅ m w ⋅ (h3 − h2 ) 1 ⋅ (335 .1 − 84 .1) ⋅ kg mp = = = mp = 0.1 h1 − h 3 335 .1 − 2738 s ⋅ dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 29 b) ⋅ ⋅ ⋅ ∆ S SI = ∆ S RT + ∆ S o = ... = 0.196 + 0 = 0.196 kW K ⋅ ⋅ Q12 kW ∆ S o= − =0 TO K ⋅ ⋅ ⋅ ⋅ ⋅ ∆ S RT = S izlaz − S ulaz= mp + m w ⋅ ⋅ ⋅ s 3 − mp ⋅ s 1 − m w ⋅ s 2 ⋅ kW ∆ S RT = (0.1 + 1) ⋅ 1.074 − 0.1 ⋅ 6.897 − 1 ⋅ 0.296 =0.196 K ⋅ t suvozasi}ene pare stawa 1(p=13 bar). Deo te pare se h koristi za potrebe nekog tehnolo{kog procesa, dok se drugi deo pare, nakon prigu{ivawa do p2 , me{a u napojnom rezervoaru sa vodom stawa 2(p=2 bar, t=20oC). Voda se iz napojnog rezervoara uvodi u toplotno izolovanu pumpu gde joj se pritisak kvazistati~i povisi do pritiska u kotlu. Ako je toplotna snaga kotla 4.56 MW, 2.28. Kotao proizvodi m =7 ⋅ odrediti maseni protok pare koja se koristi u tehnolo{kom procesu ( m w) kao i snagu pumpe. Q12 4 1 ka tehnolo{kom procesu WT34 3 2 napojna voda dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 30 ta~ka 1: p=13 bar, kJ h1 = h”″ = 2787 kg x=1 p=2 bar, kJ h2 = hw = 84.0 kg t=20oC ta~ka 2: p=13 bar, ta~ka 4: h4 =? ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u kotlu: Q 12 = ∆ H12 + W T12 ⋅ ⋅ ⋅ Q12 = m⋅ (h1 − h 4 ) h4 = 2787 − ⇒ 4.56 ⋅ 10 3 7⋅ 3 10 3600 =441.86 p= 2 bar, ta~ka 3: h3 = hw = 440.95 Q 12 h4 = h1 − mp kJ kg s4 = sw = 1.363 s3 = s4 = 1.363 kJ kgK kJ kgK kJ kg prvi zakon termodinamike za proces me{awa: ⋅ ⋅ ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⇒ H1 = H 2 ⋅ ⋅ ⋅ ⋅ mw ⋅ h2 + mp − m w ⋅ h1 = mp ⋅ h 3 ⇒ ⋅ t 440.95 − 2787 mw = 7 ⋅ = 6.08 h 84 − 2787 ⋅ ⋅ m w = mp ⋅ h3 − h1 h2 − h1 prvi zakon termodinamike za proces u pumpi: ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⋅ ⋅ ⇒ W T12 = − m w ⋅ (h4 − h3 ) = 6 .08 ⋅ dipl.ing. @eqko Ciganovi} ⋅ ⋅ W T12 = − ∆ H12 10 3 ⋅ (441 .86 − 440 .95 ) =1.54 kW 3600 [email protected] zbirka zadataka iz termodinamike strana 31 2.29. Voda stawa 1(p=2 bar, t=80oC) dostrujava kroz cev unutra{weg pre~nika d=40 mm brzinom 0.5 m/s. Prolaskom kroz delimi~no otvoren ventil se prigu{uje na p2 =0.4 bar i ulazi u odvaja~ te~nosti (od okoline toplotno izolovan). Odrediti: a) promenu entropije sistema za proces prigu{ivawa b) snagu kompresora koji izbacuje parnu fazu iz suda u okolinu pritiska p4 =1 bar c) snagu pumpe koja te~nu fazu iz suda prebacuje u parni kotao koji radi na pritisku p4 =4 bar napomena: kompresije u kompresoru i pumpi su kvazistati~ke i adijabatske kompresor 1 2 4 3 pumpa T 3 4 1 2′ 2 2′′ s ta~ka 1: h1 = hw =334.9 ⋅ m= p1 =1 bar, kJ , kg t1 =80oC s1 =sw=1.074 ( kJ , kgK 1 d2π 1 40 ⋅ 10 −3 ⋅w⋅ = ⋅ 0.5 ⋅ v1 4 0 .001028 4 dipl.ing. @eqko Ciganovi} v1 =vw = 0.001028 ) π =0.61 2 m3 kg kg s [email protected] zbirka zadataka iz termodinamike p2 =0.4 bar, ta~ka 2: h’”′ =317.7 x2 = strana 32 kJ , kg h 2 − h' h"−h' = h2 =h1 = 334.9 h′′ = 2636 kJ kg kJ kg 334 .9 − 317 .7 =0.0074 2636 − 317 .7 s2 = sx = s '+ x 2 ⋅ (s ' ' −s ' ) = 1.0261 + 0.0074 ⋅ (7.67 − 1.0261) =1.075 kJ , kgK s’′” =1.0261 s′′ = 7.67 p3 =4 bar, ta~ka 3: kJ kgK s3 =s′= 1.0261 kJ kgK kJ kg h3 = hw= 318.5 p4 =1 bar, ta~ka 4: kJ kgK h4 = hpp= 3129.7 s3 =s′= 7.67 kJ kgK kJ kg a) ⋅ ⋅ ⋅ ∆ SSI = ∆ SRT + ∆ S O =0.61 ⋅ ⋅ ⋅ W K ⋅ ∆ SRT = Sizlaz − Sulaz = m⋅ (s 2 − s 1 ) = 0 .61 ⋅ (1 .075 − 1.074 ) =0.61 W K b) prvi zakon termodinamike za proces u kompresoru: ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⋅ ⇒ ⋅ ⋅ W T12 = − ∆ H12 ⋅ W T 12 = − m⋅ x 2 ⋅ (h 4 − h' ' ) = −0.61 ⋅ 0 .0074 ⋅ (3129 .7 − 2636 ) =−2.23 kW c) prvi zakon termodinamike za proces u pumpi: ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⋅ ⇒ ⋅ ⋅ W T12 = − ∆ H12 ⋅ W T 12 = − m⋅ (1 − x 2 ) ⋅ (h3 − h' ) = − 0.61 ⋅ (1 − 0.0074 ) ⋅ (318 .5 − 317 .7 ) =−0.48 kW dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 33 2.30. U toplotno izolovan kompresor ulazi freon 12 (R12) stawa 1(p=1 bar, t=−20oC, ⋅ m =60 kg/h). Stawe freona 12 na izlazu iz kompresora je 2(p=8 bar), a snaga kompresora iznosi 1 kW. Nakon kompresije freon se hladi i potpuno kondenzuje u razmewiva~u toplote. Kao rashladni fluid u razmewiva~u toplote koristi se voda stawa 4(p=1bar, t=10oC) koja se prolaskom kroz razmewiva~ toplote zagreje do stawa 5(p=1 bar, t=30oC). Skicirati promene stawa freona 12 na hs dijagramu i odrediti: a) stepen dobrote adijabatske kompresije u kompresoru b) potro{wu vode u razmewiva~u toplote (kg/h) voda 4 5 3 2 WT12 1 freon 2 h 2k 1 3 s ta~ka 1: h1 =hpp p=1 bar, kJ =647.4 kg ta~ka 2k: p2K=8 bar, h2K=hpp =686.1 t=−20oC s1 =spp=1.612 kJ kgK s2K=s1 =1.612 kJ kgK kJ kg dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 34 p2 =1 bar, ta~ka 2: h2 =? prvi zakon termodinamike za proces u kompresoru: ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⋅ ⋅ W T12 = − ∆ H12 ⇒ W T12 h2 = h1 − mf ⋅ ⋅ W T12 = − m f ⋅ (h2 − h1 ) h2 = 647 .4 − ⋅ ⇒ −1 kJ =707.4 60 kg 3600 p=8 bar, kJ h1 =h′ =531.45 kg x=0 ta~ka 3: a) kp ηd = b) h1 − h2K 647.4 − 686 .1 = =0.645 h1 − h 2 647.4 − 707 .4 t=10oC p=1 bar, ta~ka 4: h1 =hw =42 kJ kg (tabele za vodu) p=1 bar, t=30oC kJ h1 =hw =125.7 (tabele za vodu) kg ta~ka 5: prvi zakon termodinamike za proces u razmewiva~u toplote: ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⋅ ⋅ ⇒ ⋅ ⋅ m f ⋅ h 2 + m w ⋅ h4 = m f ⋅ h3 + m w ⋅ h5 ⋅ m w = 60 ⋅ ⋅ ⋅ H1 = H 2 ⇒ ⋅ ⋅ mw = m f ⋅ h2 − h3 h5 − h 4 kg 707 .4 − 531 .45 =12.61 h 125 .7 − 42 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 35 2.31. Pregrejana vodena para stawa 1(p=7 bar, t=450oC) ekspandira adijabatski u parnoj turbini sa stepenom dobrote η eks d =0.6 do stawa 2(p=1 bar). Po izlasku iz turbine para se u toplotno izolovanoj me{noj komori me{a sa vodom, masenog protoka ⋅ mw =2.3 kg/s stawa 3(p=1bar, t=14oC). Stawe voda na izlazu iz komore za me{awe je 4(p=1 bar, t=47oC). Skicirati procese u turbini i me{noj komori na Ts dijagramu i: a) odrediti snagu turbine (kW) b) dokazati da je proces me{awa pare i vode nepovratan para 1 WT12 3 voda 2 4 T T 1 4 3 2 2k s 1 –− 2 2 –− 4 3−4 2 s promena stawa pare u turbini promena stawa pare u me{noj komori promena stawa vode u me{noj komori dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 36 a) t=450oC p=7 bar, kJ h1 = hpp = 3374.75 kg ta~ka 1: p=1 bar, ta~ka 2k: h′=417.4 kJ , kg h′′= 2675 h2k>h′′ h2k s1 =spp =7.789 kJ kgK s2k = s1 =7.789 kJ kgK kJ kg ta~ka 2k se nalazi u oblasti pregrejane pare kJ = hpp = 2854.3 kg p=1 bar, ta~ka 2: η eks = d h1 − h2 h1 − h2k ⇒ η eks d 0.6 h2 = h1 − η eks d ⋅ (h1 − h 2k ) kJ kg h2 = 3374 .75 − 0.6 ⋅ (3374 .75 − 2854 .3) = 3062.48 s2 = spp = 8.19 kJ kgK p=1 bar, kJ h3 = hw = 58.6 kg t=14oC p= 1 bar, kJ h4 = hw = 196.74 kg t=47oC ta~ka 3: ta~ka 4: s3 = sw = 0.21 kJ kgK s4 = sw = 0.66 kJ kgK prvi zakon termodinamike za proces u me{noj komori: ⋅ ⋅ ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⇒ H1 = H 2 ⋅ ⋅ ⋅ ⋅ mw ⋅ h3 + mp h2 = mw + m p ⋅ h4 ⇒ ⋅ 196.74 − 58 .6 kg mp = 2.3 ⋅ = 0.11 3062 .48 − 196.74 s dipl.ing. @eqko Ciganovi} ⋅ ⋅ mp = m w ⋅ h4 − h 3 h2 − h4 [email protected] zbirka zadataka iz termodinamike strana 37 prvi zakon termodinamike za proces u turbini: ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⋅ ⋅ ⋅ W T 12 = − ∆ H 12 = − mp ⋅ (h 2 − h1 ) ⋅ W T 12 = −0.11 ⋅ (3062 .48 − 3374 .75 ) =34.35 kW b) ⋅ ⋅ ⋅ ∆ S SI = ∆ S RT + ∆ S o = ... = 0.196 + 0 = 0.196 ⋅ kW K ⋅ Q12 kW ∆ S o= − =0 TO K ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∆ S RT = S izlaz − S ulaz= mp + m w ⋅ s 4 − mp ⋅ s 2 − m w ⋅ s 3 ⋅ ∆ S RT = (0.11 + 2.3 ) ⋅ 0.66 − 0.11 ⋅ 8.19 − 2.3 ⋅ 0 .21 =0.207 kW K 2.32. Pregrejana vodena para stawa 1(p1 =70 bar, t1 =450oC) adijabatski ekspandira u parnoj turbini do stawa 2(p2 =1 bar). Snaga turbine je 200 kW. Nakon ekspanzije para se uvodi u kondenzator u kome se izobarski potpuno kondenzuje (stawe 3=kqu~ala voda). Protok vode za hla|ewe kondenzatora je mw=5 kg/s, stawe vode na ulazu u kondenzator je (p=1 bar, tw1 =20oC), a na izlazu iz kondenzatora je (p=1 bar, tw2 =45oC). Skicirati promene stawa pare (1−2−3) na hs dijagramu i odrediti: a) maseni protok vodene pare (kg/s) b) stepen suvo}e vodene pare na izlazu iz turbine c) stepen dobrote ekspanzije pare u turbini para 1 WT12 3 2 voda 4 dipl.ing. @eqko Ciganovi} 5 [email protected] zbirka zadataka iz termodinamike a) strana 38 ta~ka 4: p4 =1 bar, kJ h4 = hw =83.9 kg t4 =20oC ta~ka 5: p5 =1 bar, kJ h4 = hw =188.4 kg t5 =45oC p1 =70 bar, kJ h1 = hpp =3284.75 , kg t1 =450oC p= 1 bar, kJ h1 =h′ =417.4 kg x=0 ta~ka 1: ta~ka 3: s1 =spp = 6.634 kJ kgK prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ograni~enom isprekidanom linijom: ⋅ ⋅ ⋅ 0 = H2 − H1 + W T12 ⋅ ⇒ ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⋅ ⋅ ⋅ ⋅ ⋅ 0 = mp ⋅ h3 + m w ⋅ h5 − mp ⋅ h1 + m w ⋅ h4 + W T 12 ⋅ m w ⋅ (h 5 − h 4 ) + W T12 5 ⋅ (188 .4 − 83 .9 ) + 200 kg mp = = =0.25 h1 − h3 3284 .75 − 417 .4 s ⋅ b) p2K =1 bar, ta~ka 2K: kJ , kgK s′’ > s2K > s′′” s 2k − s' s"− s' = kJ kgK kJ kgK ta~ka 2K se nalazi u oblasti vla`ne pare s′=1.3026 x 2K = s2K=s1 = 6.634 s′′=7.36 6 .634 − 1.3026 =0.88 7.36 - 1.3026 h2K = hx = h' + x 2k ⋅ (h' '−h') = 417 .4 + 0.88 ⋅ (2675 − 417 .4 ) = 2404.09 h′=417.4 kJ , kgK dipl.ing. @eqko Ciganovi} h′′=2675 kJ kg kJ kgK [email protected] zbirka zadataka iz termodinamike strana 39 c) p2 =1 bar, ta~ka 2: h2 =? prvi zakon termodinamike za proces u turbini: ⋅ ⋅ ⋅ ⋅ ⋅ h2 = h1 − W T 12 ⋅ = 3284 .75 − mp η ex d = ⋅ ⋅ W T 12 = − ∆ H 12 = − mp ⋅ (h 2 − h1 ) Q 12 = ∆ H12 + W T12 200 kJ =2484.75 0.25 kg h1 − h2 3284 .75 − 2484 .75 = =0.91 h1 − h2k 3284 .75 − 2404 .1 h 1 2 2K 3 s dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 40 2.33. U sekundarnom krugu atomskog reaktora proizvodi se qm=4000 t/h suvozasi}ene vodene pare stawa 1(p=70bar). Proizvedena para se, prema skici, deli na dve struje qm1 i qm2. Para masenog protoka qm1 kvazistati~ki adijabatski ekspandira u turbini do stawa 2(p=8 bar). Vla`na para stawa 2 se u odvaja~u te~nosti (toplotno izolovan od okoline) deli na dve struje qm3 (suvozasi}ena para stawe 3) i qm4 (kqu~ala voda, stawe 4). Para stawa 3 se daqe pregreva (p=const) u razmewiva~u toplote do stawa 5(T=250 oC) na ra~un toplote koju oslobodii para qm1 kondenzacijom (p=const) do stawa 6(x=0). Skicirati stawa pare na Ts dijagramu i odrediti: a) masene protoke fluidnih struja, qm1 , qm2 , qm3 i qm4 b) snagu turbine qm 1 qm2 qm1 pregreja~ pare WT12 qm3 2 qm2 6 3 qm4 odvaja~ te~nosti 4 p1 =70 bar, kJ h1 = h′′ =2772 , kg ta~ka 1: ta~ka 2: qm3 p1 =8 bar, 5 x=1 s1 =s′′ = 5.814 s2 =s1 =5.814 kJ kgK kJ kgK kJ kJ , s′′=6.663 kgK kgK s − s' 5 .814 − 2.046 x2 = 2 = =0.8161 s" −s' 6.663 - 2.046 s′=2.046 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 41 ta~ka 3: p1 =8 bar, kJ h3 = h′′ =2769 kg x=1 ta~ka 4: p1 =8 bar, kJ h4 = h′ =720.9 kg x=0 ta~ka 5: p1 =8 bar, kJ h5 = hpp =2947.5 kg T=250oC0 p1 =70 bar, kJ h6 = h′ =1267.4 kg x=0 ta~ka 6: materijalni bilans ra~ve: para koja napu{ta odvaja~ te~nosti: qm = qm1 + qm2 qm3 = qm1 . x2 (1) (2) prvi zakon termodinamike za proces u razmewiva~u toplote: ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⇒ ⋅ ⋅ H1 = H 2 qm 2 ⋅ h1 + qm 3 ⋅ h3 = q m2 ⋅ h6 + q m3 ⋅ h 5 (3) Kombinovawem jedna~ina (1), (2) i (3) dobija se: t t t qm1 =3646.9 , qm2 =353.1 , qm3 = 2976.2 h h h materijalni bilans odvaja~a te~nosti: t qm4 = qm1 − qm3 = 670.7 h qm1 = qm3 + qm4 ⇒ prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ograni~enom isprekidanom linijom: ⋅ ⋅ ⋅ 0 = H2 − H1 + W T12 ⋅ ⇒ ⋅ ⋅ ⋅ Q 12 = ∆ H12 + W T12 ⋅ W T 12 = [qm ⋅ h1 ] − [qm2 ⋅ h 6 + qm 3 ⋅ h5 + q m4 ⋅ h4 ] W T12 = [[4000 ⋅ 2772 ] − [353 .1 ⋅ 1267 .4 + 2976 .2 ⋅ 2947 .5 + 670 .7 ⋅ 720.9 ]] ⋅ 10 3 3600 ⋅ W T12 =384.6 MW dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 42 (2.34.) zadatak za ve`bawe: 2.34. U parno-turbinskom postrojewu (slika) vodena para masenog protoka m=1.2 kg/s ekspandira u turbini visokog pritiska (TVP) od stawa 1(p=1 MPa, t=440oC) do stawa 2(p=0.5 MPa). Po izlasku iz turbine deo pare masenog protoka mA =0.4 kg/s me{a se adijabatski sa vodom stawa (p= 5 bar, tw=20oC). Stawe vode na izlasku iz komore za me{awe je (p= 5 bar, tw=45oC). Preostali deo pare se po izlasku iz turbine visokog pritiska izobarski zagreva do stawa 3(t=400oC), a zatim ekspandira u turbini niskog pritiska (TNP) do stawa 4(p=5 kPa). Ekspanzije u turbinama su adijabatske sa istim stepenom dobrote (ηdex=0.9). Odrediti: a) snagu turbina visokog i niskog pritiska (kW) b) maseni protok vode u komori za me{awe (kg/s) para TVP 1 WT12 2 voda 5 mA 3 TNP WT34 6 4 a) b) ⋅ WT 12 =230.5 kW, ⋅ kg mw =11.35 s ⋅ WT 34 =642.4 dipl.ing. @eqko Ciganovi} kW [email protected] zbirka zadataka iz termodinamike strana 43 PRVI I DRUGI ZAKON TERMODINAMIKE (PUWEWE I PRA@WEWE REZERVOARA) 2.35. U adijabatski izolovan rezervoar zapremine V=30 m3 , u kojem se nalazi vla`na vodena para stawa (p=1.2 bar, x=0.95), uvodi se jednim izolovanim cevovodom voda stawa (p=8 bar, t=15oC), a drugim izolovanim cevovodom suva vodena para stawa (p=30 bar). Stawe radne materije u rezervoaru na kraju procesa puwewa je (p=6 bar, x=0,1). Odrediti masu vode i masu suve pare uvedene u rezervoar. p=1.2 bar, po~etak: x=0.95 upo~etak= ux =u’′ + xp.(u′′” − u′’) = 439 .28 + 0 .95 ⋅ (2512 − 439 .28 ) =2408.4 kJ u’′ = 439.28 , kg kJ kg kJ u”′′ =2512 kg vpo~etak= v x= v’′’ + x p. (v”′′ − v′’)= 0. 0010472 + 0. 95 ⋅ (1.429 − 0. 0010472) =1.3576 v’′ = 0.0010472 mpo~etak = m3 , kg V = vpo~etak ulaz: kraj: v′′”=1.429 m3 kg 30 =22.1 kg 1.3576 p=30 bar, x=1 h = h″=2804 p=8 bar, t=15oC h = h w = 62.8 p = 6 bar, x=0.1 ukraj= ux =u’′ + xk.(u′′” − u′’) = 669.8 + 0.1 ⋅ (2568 − 669.8 ) =859.6 u’′ = 669.8 kJ , kg m3 kg u”′′ =2568 kJ kg kJ kg kJ kg kJ kg vkraj= v x= v’′’ + x k. (v”′′ − v′’)= 0. 0011007 + 0. 1 ⋅ (0. 3156 − 0.0011007) =0.0326 m3 kg m3 m3 , v′′”=0.3156 kg kg V 30 mkraj = = =920.25 kg vkraj 0.0326 v’′ = 0.0011007 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 44 prvi zakon termodinamike za proces puwewa suda: Q12 − W12 = Ukraj − Upo~etak − Hizlaz − Hulaz 0 = mkraj . ukraj − mpo~etak . upo~etak –− mw . hw − m″ . h″ (1) zakon odr`awa mase za proces puwewa suda: mpo~etak + mw + m″ = m kraj + mizlaz (2) kombinovawem jedna~ina (1) i (2) dobija se: mw = ( ) ( mk ⋅ ukraj − h' ' − mp ⋅ up − h' ' )= h w − h' ' 920.25 ⋅ (859. 6 − 2804) − 22. 21⋅ (2408. 4 − 2804) mw = = 649.55 kg 62.8 − 2804 m″ = mkraj − mpo~etak + mw = 920.25 − 22.21 − 649.55 = 248.49 kg 2.36. U verikalnom toplotno izolovanom cilindru, povr{ine popre~nog preseka A=0.1 m2 , nalazi se 0.05 kg vodene pare temperature 180oC, ispod toplotno izolovanog klipa mase koja odgovara te`ini od 20 kN, a na koji spoqa deluje atmosferski pritisak od 0.1 MPa. U cilindar se, kroz toplotno izolovan cevovod, naknadno uvede 0.1 kg vodene pare pritiska 0.4 MPa i temperature 540oC. Zanemariti trewe klipa i odrediti: a) specifi~nu entalpiju i temperaturu vodene pare u cilindru na kraju procesa b) za koliko se podigao klip tokom ekspanzije kraj ∆y po~etak ulaz dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 45 a) po~etak: pp = patm + mT ⋅ g 20 ⋅ 10 3 = 1 ⋅ 105 + = 3 ⋅ 10 5 Pa, A 0 .1 t=180oC up = hp − pp . vp =…...= 2824 − 3 ⋅ 105 ⋅ 10− 3 ⋅ 0.6838 =2618.86 hp = hpp = 2824 kJ , kg mp=0.05 kg p=4 bar, kJ hul = hpp =3572 , kg ulaz: m3 kg V p = mp ⋅ vp = 0.05 ⋅ 0.6838 =0.03419 m3 t=540oC (pregrejana para) mul=0.1 kg mk = mp + mul =0.15 kg prvi zakon termodinamike za proces puwewa: ( ) p ⋅ Vp − Vk = mk ⋅ uk − mp ⋅ up − mul ⋅ hul hk = p ⋅ Vp + mp ⋅ up + mul ⋅ hul mk hk =3322.67 kJ kg vp=vpp = 0.6838 pk = pp = 3 bar, kraj: (pregrejana para) = Q12 − W12 = Uk − Up + Hiz − Hul ⇒ p ⋅ Vp = mk ⋅ hk − mp ⋅ up − mul ⋅ hul 3 ⋅ 10 5 ⋅ 10 − 3 ⋅ 0.03419 + 0 .05 ⋅ 2618 .86 + 0.1 ⋅ 3572 = 0.15 kJ kg kJ , kg h′ < h k < h′′ h′=561.4 h′′ = 2725 kJ kg (stawe kraj je u pregrejanoj pari) tk = tpp = 422.7oC, vk = vpp =1.067 m3 kg V k = mk ⋅ v k = 0.15 ⋅ 1.067 =0.16005 m3 b) ∆y = Vk − Vp A = 0 .16005 − 0.03419 =1.26 m 0 .1 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 46 2.37. Pomi~nim klipom sa tegom koji se kre}e bez trewa odr`ava se konstantan pritisak p=4 bar u vertikalnom cilindru u kojem se nalazi V=500 dm3 vode po~etne temperature t=20oC (slika kao u prethodnom zadatku). Parovodom se u cilindar postepeno uvodi mp=53 kg suvozasi}ene vodene pare pritiska p=6 bar, koja se pre me{awa prigu{uje do pritiska od p=4 bara. Temperatura me{avine (voda) na kraju procesa me{awa iznosi t=80oC. U toku me{awa usled neidealnog toplotnog izolovawa okolini se predaje 1.5 kW toplote. Odrediti vreme trajawa procesa me{awa. p= 4 bar, po~etak: vp = vw = 0.001001 3 m , kg t=20oC hp = hw = 84.1 (voda) kJ kg up = uw = hp − pp ⋅ vp = 84. 1 − 4 ⋅ 105 ⋅ 10−3 ⋅ 0. 001001=83.7 mp = Vp vp = 0 .5 =499.5 kg 0.001001 p= 6 bar, kJ hu = h′′ =2757 kg ulaz: p= 4 bar, kraj: kJ kg x=1 mu= 53 kg t=80oC uk = hk − pk . vk =…...= 335.1 − 4 ⋅ 105 ⋅ 10− 3 ⋅ 0.001028 =334.7 kJ kg kJ m3 , vkraj = vw = 0.001028 kg kg mk = mp + mu = 499.5 + 53 = 552.5 kg, hk= hw = 335.1 V k = mk . vk = 552.5 ⋅ 0.001028 =0.568 m3 prvi zakon termodinamike za proces puwewa rezervoara: Q12 − W12 = Uk − Up + Hiz − Hul ( Q 12 = mk ⋅ uk − mp ⋅ up − mul ⋅ hul + p ⋅ Vk − Vp ) Q12 = 552. 5 ⋅ 334. 7 − 499.5 ⋅ 83. 7 − 53 ⋅ 2757+ 4 ⋅105 ⋅10−3 ⋅ (0.568 − 0.5) =−2980.2 kJ τ= Q12 ⋅ Q12 = −2980 .2 =1987 s − 1.5 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 47 2.38. U otvoren sud (slika) koji sadr`i sme{u ml=15 kg leda i mw=20 kg vode u stawu termodinami~ke ravnte`e, uvedeno je mp=0.8 kg pregrejane vodene pare stawa (p=3 bar, t=340oC). Okolni vazduh stawa O(p=1bar, to=7oC), tokom ovog procesa sme{i u sudu preda Q12 =320 kJ toplote. Zanemaruju}i promenu zapremine (tj. rad koji radno telo vr{i nad okolinom), odrediti promenu entropije sistema tokom ovog procesa. po~etak: t=0oC, y= mw 20 = =0.5714 m w + ml 20 + 15 up = uy ≅ hy= hl + y ⋅ (hw − hl ) = − 332 .4 + 0.5714 ⋅ 332 .4 = −142.47 sp = sl = s l + y ⋅ (s w − s l ) = kJ kg −332 .4 332 .4 kJ + 0.5714 ⋅ =− 0.522 kgK 273 273 mp = ml + mw =20 + 15 =35 kg p=3 bar, t=340oC (pregrejana para) kJ kJ hu = hpp = 3150 , su = spp = 7.835 , mu = 0.8 kg kgK kg ulaz: p=1 bar, kraj: mk= mp + mu= 35 + 0.8 =35.8 kg prvi zakon termodinamike za proces puwewa rezervoara: Q12 − W12 = Uk − Up + Hiz − Hul uk = Q12 + mp ⋅ up + mul ⋅ h ul mk ul < u k < uw yk = Q 12 = mk ⋅ uk − mp ⋅ up − mul ⋅ hul = 320 + 35 ⋅ (− 142.57 ) + 0 .8 ⋅ 3150 kJ =−60.05 35 .8 kg (stawe ″kraj″ je me{avina vode i leda) u k − ul − 60 .05 + 332 .4 = =0.82 uw − ul 0 + 332 .4 sk = sy = s l + y ⋅ (s w − s l ) = dipl.ing. @eqko Ciganovi} −332 .4 332.4 kJ + 0 .82 ⋅ = − 0.219 kgK 273 273 [email protected] zbirka zadataka iz termodinamike ∆S SI = ∆S RT + ∆S O = ...=4.162 − 1.143 =3.019 strana 48 kJ K Q 12 320 kJ =− = −1.143 To 280 K ∆S RT = mp ⋅ s k − s p + mu ⋅ (s k − s u ) = ∆S O= − ( ) ∆S RT = 35 ⋅ (− 0.219 + 0 .522 ) + 0.8 ⋅ (−0 .219 − 7.835 ) =4.162 dipl.ing. @eqko Ciganovi} kJ K [email protected] zbirka zadataka iz termodinamike strana 49 2.39. Zatvoreni rezervoar zapremine V=10 m3 sadr`i kqu~alu vodu i suvu vodenu paru u stawu termodinami~ke ravnote`e na p=20 bar. Te~nost zauzima polovinu zapremine rezervoara. Iz rezervoara fluid mo`e isticati kroz ventil na vrhu i kroz ventil na dnu rezervoara. Dovo|ewem toplote za vreme isticawa temperatura vla`ne pare u rezervoaru se odr`ava stalnom. Odrediti koli~inu dovedene toplote ako je iz rezervoara isteklo 300 kg fluida kroz: a) dowi ventil b) gorwi ventil a) b) a) p=20 bar, po~etak: vp = up=? V 10 m3 =...= =0.0023 mp 4299 .74 kg mp = m′ + m′′ = ... = 4249.53 + 50.21=4299.74 kg V' 5 =…...= = 4249.53 kg v' 0 .0011766 V' ' 5 m' ' = =...= = 50.21 kg v' ' 0 .09958 m' = v′ = 0.0011766 m3 , kg v′′=0.09958 m3 kg up= ux =u’′ + xp.(u′′” − u′’)=...= 906 .1 + 0.0117 ⋅ (2600 − 906 .1) =925.92 u’′ = 906.1 xp = kJ , kg u”′′ =2600 kJ kg kJ kg m' ' 50 .21 = = 0.0117 m'+ m' ' 4249 .53 + 50 .21 Tp = 212.37oC dipl.ing. @eqko Ciganovi} (temperatura kqu~awa za pritisak od p=20 bar) [email protected] zbirka zadataka iz termodinamike strana 50 Tk=Tp=212.37oC, kraj: uk=? mk =mp − miz = 4299.74 − 300 = 3999.74 kg V 10 m3 vk = = = 0.0025 mk 3999 .74 kg v′’ < vk < v”′ ′ xk = v kj − v' v' ' − v' (stawe kraj se nalazi u oblasti vla`ne pare) = 0.0025 − 0.0011766 =0.0134 0.09958 − 0.0011766 uk = ux = =u’′ + xp.(u′′” − u′’)= 906 .1 + 0.0134 ⋅ (2600 − 906 .1) = 928.8 hiz= h′’ = 908.5 kJ kg kJ kg izlaz: mizlaz = 300 kg, napomena: zbog polo`aja ventila iz suda isti~e kqu~ala voda prvi zakon termodinamike za slu~aj pra`wewa suda: Q 12 − W12 = U k − U p + Hiz − H ul ⇒ Q 12 = mk ⋅ u k − mp ⋅ up + miz ⋅ hiz Q12 = 3999 .74 ⋅ 928 .8 − 4299 .74 ⋅ 925 .92 + 300 ⋅ 908 .5 =6293.25 kJ b) po~etak: nema promena u odnosu na pod a) kraj: nema promena u odnosu na pod a) izlaz: miz = 300 kg, napomena: kJ kg zbog polo`aja ventila iz suda isti~e suva para hiz= h′′ =2799 prvi zakon termodinamike za slu~aj pra`wewa suda: Q 12 − W12 = U k − U p + Hiz − H ul ⇒ Q 12 = mk ⋅ u k − mp ⋅ up + miz ⋅ hiz Q12 = 3999 .74 ⋅ 928 .8 − 4299 .74 ⋅ 925 .92 + 300 ⋅ 2799 =573443.25 kJ dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 51 2.40. U zatvorenom, toplotno izolovanom rezervoaru, zapremine V=0.5 m3 nalazi se 30 kg vla`ne vodene pare. Kada, pri zagrevawu, pritisak pare u rezervoaru dostigne vrednost p=5 MPa, biva iskqu~en elektri~ni greja~ stalne snage i istovremeno otvoren sigurnosni ventil na rezervoaru tako da jedan deo vodene pare naglo istekne u okolinu. Po zatvarawu ventila pritisak vodene pare u rezervoaru iznosi 3 MPa. Preostala vla`na para biva potom dogrevana istim elektri~nim greja~em, stalne snage od 800 W. Skicirati promene stawa vodene pare na Ts dijagramu i odrediti: a) masu vla`ne pare u rezervoaru nakon zatvarawa sigurnosnog ventila b) vreme nakon kojeg }e se sigurnosni ventil ponovo otvoriti a) p= 50 bar, po~etak: xp = v p − v' v' ' − v' = v′ = 0.0012857 vp = V 0.5 m3 = 0.0167 = mp 30 kg 0 .0167 − 0.0012857 =0.404 0 .03944 − 0.0012857 m3 , kg v′′=0.03944 m3 kg sp= sx =s’′ + xp.(s′′” − s′’) = ...= 2.921 + 0.404 ⋅ (5.973 − 2 .921) =4.154 s’′ = 2.921 kraj: xk = kJ kgK s”′ ′ = 5.973 p=30 bar, s k − s' s' ' −s' s’′ = 2.646 =...= kJ kgK kJ kgK kJ kgK sk =sp =4.154 kJ kgK 4.154 − 2 .646 =0.426 6.186 − 2.646 kJ s”′ ′ = 6.186 kgK vk= vx =v’′’ + xk. (v”′′ −” v′’)= 0. 0012163 + 0. 426 ⋅ (0. 06665 − 0.0012163) =0.0291 v’′ = 0.0012163 mk = m3 , kg v′′”=0.06665 m3 kg m3 kg V 0. 5 = =17.18 kg vk 0.0291 uk= ux =u’′ + xk.(u′′” − u′’)=...= 1004.7 + 0.426 ⋅ (2604 − 1004. 7) =1686 u’′ = 1004.7 kJ , kg dipl.ing. @eqko Ciganovi} u”′′ =2604 kJ kg kJ kg [email protected] zbirka zadataka iz termodinamike strana 52 b) m3 , kg ta~ka 1=kraj p1 =30 bar, v1 =0.0291 ta~ka 2: p2 =50 bar, v2 = v1 =0.0291 v′ = 0.0012857 m3 , kg v′ < v2 < v′′ x2 = u2 = 1686 kJ kg m3 kg m3 kg (ta~ka 2 je vla`na para) v′′=0.03944 v2 − v' 0.0291 − 0. 0012857 =0.729 v"−v ' 0. 03944 − 0.0012857 u2 = ux =u’′ + x2 .(u′′” − u′’)=...= 1148 + 0. 729 ⋅ (2597 − 1148 ) =2204.32 kJ u’′ = 1148 , kg kJ kg kJ u”′′ =2597 kg prvi zakon termodinamike za proces u zatvorenom termodinami~kom sistemu Q12 = ∆U12 + W12 ⇒ Q12 = mk . (u2 –- u1 ) Q12 = 17. 18 ⋅ (2204. 32 − 1686) =8904.74 kW τ= Q12 ⋅ = Q12 8904.74 =11131 s 0.8 ≅ 3h T 0 = po~etak 1 = kraj 0 2 1 s dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 53 2.41. Toplotno izolovan rezervoar zapremine V=20 m3 , sadr`i vodenu paru po~etnog stawa P(p=2 MPa, T=553 K). Rezervoar je povezan sa toplotno izolovanom parnom turbinom, u kojoj se odvija ravnote`no (kvazistati~ko) {irewe pare (slika). Pritisak pare na izlazu iz turbine je stalan i iznosi piz=0.15 MPa, a proces se odvija dok pritisak pare u rezervoaru ne opadne na pk=0.3 MPa. Zanemaruju}i prigu{ewe paare u ventilu, odrediti koji izvr{i para tokom ovog procesa. WT piz p=20 bar, po~etak: t=280oC 5 −3 up=hp –− pp. vp = ...= 2972 − 20 ⋅ 10 ⋅ 10 kJ , kg hp= hpp = 2972 mp = p=3 bar, kJ kgK s′ < sk < s′′ sp= spp= 6.674 kJ kgK s k − s' s' ' −s' kJ kgK s”′ ′ = 6.992 =...= vk = vx = 0.5694 sk= sp= 6.674 kJ kgK (vla`na para) s’′ = 1.672 mk = m3 , kg V 20 = = 166.67 kg vp 0. 12 kraj: xk = vp= vpp = 0.12 (pregrejana para) kJ ⋅ 0.12 =2732 kg 6. 674 − 1. 672 =0.9402 6.992 − 1. 672 m3 kJ , uk = ux = 2424.09 kg kg V 20 = = 35.12 kg vk 0.5694 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 54 p=1.5 bar, izlaz: s’′ = 1.4336 kJ , kgK siz = sp= 6.674 kJ kgK (vla`na para) s”′ ′ = 7.223 s′ < siz < s′′ xiz = kJ kgK siz − s' 6. 674 − 1.4336 = =0.905 s' ' −s' 7. 223 − 1.4336 hiz= h′ + xiz . (h′′ − h′) =...= 467. 2 + 0.905 ⋅ (2693 − 467.2 ) =2481.55 h’′ = 467.2 kJ , kgK h”′′ = 2693 kJ kg kJ kgK miz= mp −– mk = 166.67 − 35.12 = 131.55 kg prvi zakon termodinamike za slu~aj pra`wewa suda: Q 12 − W12 = U k − U p + Hiz − H ul ⇒ W12 = −mk ⋅ uk + mp ⋅ up − miz ⋅ hiz W12 = −35. 12 ⋅ 2424. 09 + 166. 67 ⋅ 2732 − 131. 55 ⋅ 2481. 55 =43.76 MJ 2.42. U ispariva~u zapremine V=2 m3 , u kome se odvija proces isparavawa vode na ⋅ pritisku p=1 MPa, kontinualno se uvodi mul =10 kg/s kqu~ale vode pritiska p=1 MPa, a iz wega izvodi nastala suva para istog pritiska. Greja~ima, urowenim u ⋅ kqu~alu vodu u ispariva~u, vodi se predaje Q12 = 19.26 MW toplote. Ako se u po~etnom trenutku u ispariva~u na pritisku p=1 MPa nalazila me{avina kqu~ale vode i suve pare u stawu termodinami~ke ravnote`e, a kqu~ala voda pri tom zauzimala 1/10 zapremine ispariva~a, izra~unati vreme potrebno da kqu~ala voda ispuni ceo ispariva~. Zanemariti razmenu toplote sa okolinom. suva para vla`na para kqu~ala voda +Q12 dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike p=10 bar, po~etak: strana 55 x=? m3 m3 , v′′=0.1946 kg kg V' V' ' 0.2 1.8 m' = =… =177.42 kg, m' ' = = = 9.25 kg v' 0 .0011273 v' ' 0 .1946 v′ = 0.0011273 mp= m′ + m′′ =177.42 + 9.25 =186.67 kg xp = m' ' 9 .25 = =0.0496 m'+m' ' 177.42 + 9.25 up= ux =u’′ + xp.(u′′” − u′’)=...= 761.6 + 0.0496 ⋅ (2583 − 761.6 ) =851.94 u’′ = 761.6 kJ , kg u”′′ =2583 p = 10 bar, kraj: vk = v’′ = 0.0011273 mk = 3 m , kg kJ kg kJ kg x=0 uk = u′’ = 761.6 kJ kg V 2 = = 1774.15 kg vk 0.0011273 p = 10 bar, x=0 ⋅ kJ hul = h′’ =762.7 , mul = mul ⋅ τ kg ulaz: p = 10 bar, kJ hiz = h′′” = 2778 kg izlaz: x=1 prvi zakon termodinamike za slu~aj istovremenog puwewa i pra`wewa suda: Q 12 − W12 = U k − U p + H iz − H ul ⋅ Q12 = mk ⋅ uk − mp ⋅ up + miz ⋅ hiz − mul ⋅ hul ⋅ Q 12 ⋅ τ = mk ⋅ uk − m p ⋅ up + m iz ⋅ hiz − mul ⋅ t ⋅ hul zakon o odr`awu mase: ⋅ mp + mul ⋅ τ = mk + miz dipl.ing. @eqko Ciganovi} (1) mp + mul= mk + miz (2) [email protected] zbirka zadataka iz termodinamike strana 56 kombinovawem jedna~ina (1) i (2) dobija se ⋅ ⋅ ⋅ Q 12 ⋅ τ = mk ⋅ uk − mp ⋅ up + mp + m ul ⋅ τ − mk ⋅ h iz − m ul ⋅ t ⋅ hul mk ⋅ uk − mp ⋅ up + m p − m k ⋅ hiz τ= ⋅ ⋅ ⋅ Q 12 − m ul ⋅ h iz + m ul ⋅ hul ( τ= ) 1774.15 ⋅ 761 .6 − 186 .67 ⋅ 851 .94 + (186 .67 − 1774 .15 ) ⋅ 2778 19 .26 ⋅ 10 3 − 10 ⋅ 2778 + 10 ⋅ 762 .7 zadatak za ve`bawe: =3603 s (2.43.) 2.43. Kondenzacija pare vr{i se u prostoru zapremine V=2 m3 pri pritisku od 0.1 MPa. U posudu se kontinualno uvodi 100 kg/h suvozasi}ene vodene pare, a iz we izvodi nastala kqu~ala voda istog pritiska piz=0.1 MPa. Ako se u po~etnom trenutku u posudi na pritisku pp=0.1 MPa nalazila kqu~ala voda i suvozasi}ena para u stawu termodinami~ke ravnote`e, pri ~emu je te~nost zauzimala 1/8 zapremine suda, odrediti vreme potrebno da te~nost ispuni 1/2 zapremine posude. Toplotna snaga koja se razmewuje sa hladwakom iznosi 250 kW. Zanemariti predaju toplote okolini. − Q12 suva para vla`na para kqu~ala voda re{ewe: τ=5.43 s dipl.ing. @eqko Ciganovi} [email protected] zbirka zadataka iz termodinamike strana 1 3. MAKSIMALAN RAD, EKSERGIJA 4/2/!U zatvorenom rezervoaru nalazi se n>21!lh vazduha (idealan gas) stawa 2)q>2/7!cbs-!U>634!L*. Stawe okoline odre|eno je sa P)q>2!cbs-!U>3:9!L*/ Odrediti koliko se najvi{e zapreminskog rada mo`e dobiti dovo|ewem vazduha stawa 1 u ravnote`u sa okolinom stawa O (maksimalan rad, eksergija zatvorenog termodinami~kog sistema). Dobijeni rad predstaviti na qw dijagramu. w2 = S h ⋅ U2 q2 = 398 ⋅ 634 2/7 ⋅ 216 =1/:492! n4 lh wp = S h ⋅ Up qp = 398 ⋅ 3:9 2⋅ 216 =1/9664! n4 lh Xnby!>! n ⋅ [− ∆v2p + Up ⋅ ∆t2p − q p ⋅ ∆w 2p ] Xnby!>! n ⋅ − d w ⋅ (Up − U2 ) + Up U q ⋅ d q mo p − S h mo p U q2 2 − q p ⋅ (w p − w 2 ) 3:9 2 3 − 1/398 ⋅ mo Xnby!>! 21 ⋅ − 1/83 ⋅ (3:9 − 634) + 3:4 ⋅ 2⋅ mo − 2⋅ 21 ⋅ (1/9664 − 1/:492) 634 2/7 Xnby!>!2731!−!2364!,!94!>!561!lK q q 2 P 2 P B ⊕ − , w q B ⊕ w q 2 = P B 2 P B , w dipl.ing. @eqko Ciganovi} w {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 2 4/3/ Termodinami~ki sistem se sastoji od zatvorenog suda u kojem se nalazi kiseonik (idealan gas) stawa 2)q>2!cbs-!u>511pD-!n>2!lh* i okoline stawa P)q>2!cbs-!u>31pD*/ Zapreminski udeo kiseonika u okolnom vazduhu (idealan gas) iznosi sP3 >1/32. Odrediti: a) da li se navedeni termodinami~ki sistem mo`e upotrebiti za dobijawe X>261!lK!sbeb b) koliko bi trebalo da iznosi pritisak u sudu (q2*- uz ostale nepromewene uslove, da bi od sistema mogli dobiti X>261!lK rada povratnim promenama stawa a) w2 = S h ⋅ U2 (q p )P3 wp = = 371 ⋅ 784 6 =2/86! n4 lh 2 ⋅ 21 = sP3 ⋅ q p > 1/32 ⋅ 2 !>!1/32!cbs q2 S h ⋅ Up (q p )P3 = 371 ⋅ 3:4 1/32 ⋅ 21 6 =4/74! n4 lh [ Xnby!>! n ⋅ − ∆v2p + Up ⋅ ∆t2p − (q p )P ⋅ ∆w 2p 3 Xnby!>! n ⋅ − d w ⋅ (Up − U2 ) + Up ] (q p )P3 U ⋅ d q mo p − S h mo U2 q2 − (q p ) ⋅ (w p − w 2 ) P 3 3:4 1/32 3 Xnby!>! 2⋅ − 1/76 ⋅ (3:4 − 784) + 3:4 ⋅ 1/:2⋅ mo − 1/37 ⋅ mo − 1/32⋅ 21 ⋅ (2/86 − 4/74 ) 784 2 Xnby!>!358!−!214/3!−!4:/6!>!215/4!lK X!?!Xnby ⇒! sistem se ne mo`e upotrebiti za dobijawe 261!lK rada, jer najve}i mogu}i rad koji mo`emo dobiti (Eksergija zatvorenog termodinami~kog sistema) iznosi 215/4!lK b) za povratne promene stawa va`i: X>Xnby!>261!lK 2 U Xnby 2 ⋅ d mo p − + d w ⋅ (Up − U2 ) + qp ⋅ (w p − w2 ) ⋅ q2 = (qp )P ⋅ fyq − 3 Sh q U2 n Up 2 3:4 261 2 q2 = 1/32⋅ fyq − ⋅ 1/:2⋅ mo − + 1/76 ⋅ (3:4 − 784) + 1/32⋅ 213 ⋅ (4/74 − 2/86) ⋅ 784 2 3:4 1/37 q2!>2/92!cbs dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 3 3.3. U toplotno izolovanom rezervoaru zapremine W>31!n4 nalazi se vazduh (idealan gas) po~etnog stawa 2)q>31!cbs-!u>381pD*. Rezervoar je povezan sa gasnom turbinom (slika) u kojoj se vazduh {iri kvazistati~ki adijabatski. Pritisak na izlazu iz turbine je stalan i iznosi 4!cbs. Proces traje sve dok pritisak u rezervoaru ne opadne na 9!cbs. a) odrediti radnu sposobnost vazduha u rezervoaru (maksimalan rad) pre otvarawa ventila i predstaviti je grafi~ki u qw i Ut koordinatnim sistemima ako je stawe okoline P)q>2!cbsu>31pD* b) odrediti mehani~ki rad izvr{en u toku procesa (pri tome zanemariti proces prig{ivawa u ventilu) X23 !qj{mb{ a) n2 = w2 = q2 ⋅ W 31 ⋅ 21 6 ⋅ 31 > >367/78!lh 398 ⋅ 654 S h ⋅ U2 S h U2 q2 = 398 ⋅ 654 31 ⋅ 21 6 >!1/189! n4 -! lh [ wP = Xnby!>! n ⋅ − ∆v2p + Up ⋅ ∆t2p − (q p )P ⋅ ∆w 2p 3 S h UP qP = 398 ⋅ 3:4 2 ⋅ 21 6 >!1/952! n4 lh ] Up q − Sh mo p * − qp )w2 − w p * Xnby = n2 ⋅ dw )U2 − Up * + Up )dq mo U q 2 2 Xnby!>! 367/78− 1/83 ⋅ (3:9 − 654) + 3:4 ⋅ 2 ⋅ mo 3:9 2 − 1/398 ⋅ mo − 2 ⋅ 213 ⋅ (1/952 − 1/189) 654 31 Xnby!>!56/38!!,!2:/64!!−2:/69!>!56/33!NK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 4 q U 2 2 B B C P C P w t b) Uj{mb{ = Uqpdfubl q ⋅ j{mb{ q qpdfubl κ −2 κ 4 = 654 ⋅ 31 κ −2 2/5 −2 2/5 = 427 L 2/5 −2 q lsbk κ 9 2/5 Ulsbk = Uqpdfubl ⋅ = 654 ⋅ = 529 L q qpdfubl 31 q lsbk ⋅ W 9 ⋅ 21 6 ⋅ 31 >244/48!lh, nj{mb{>nqp•fubl!−!nlsbk>234/4!lh nlsbk = = S h ⋅ Ulsbk 398 ⋅ 529 prvi zakon termodinamike za proces pra`wewa: R 23 − X23 = Vlsbk − Vqp•fubl + Ij{mb{ − Ivmb{ X23 = −nlsbk ⋅ d w ⋅ Ulsbk + nqp•fubl ⋅ d w ⋅ Uqp•fubl − nj{mb{ ⋅ d q ⋅ Uj{mb{ X23 = −244/48 ⋅ 1/83 ⋅ 529 + 367/78 ⋅ 1/83 ⋅ 654 − 234/4 ⋅ 2 ⋅ 427 >32/36!NK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 5 4/5/!Klipni kompresor ravnote`no (kvazistati~ki) i politropski, sa eksponentom politrope o>2/4, sabija okolni vazduh (idealan gas) stawa 1)q>2!cbs-!U>3:2!L*-!na pritisak q3>5!cbs, i puni toplotno izolovan rezervoar zapremine W>21!n4. Toplotno stawe vazduha u rezervoaru na po~etku procesa puwewa isto je kao i stawe okolnog vazduha 1/ Odrediti: a) masu vazduha koju je potrebno ubaciti u rezervoar da bi pritisak vazduha u rezervoaru dostigao vrednost od 4!cbsb b) eksergiju vazduha (maksimalan rad) u rezervoaru u tom trenutku 2!⇒!4 2 3 X23 a) U2 q2 = U3 q 3 nqp•fubl = o−2 o q U3 = U2 ⋅ 3 q2 ⇒ q qp•fubl ⋅ W S h ⋅ Uqp•fubl > o−2 o 5 > 3:2 ⋅ 2 2/4 −2 2/4 >511/82!L 2 ⋅ 21 6 ⋅ 21 >22/:8!lh 398 ⋅ 3:2 prvi zakon termodiamike za proces puwewa rezervoara: 1= po~etak, 2 = ulaz, 3=kraj R 23 − X23 = Vlsbk − Vqp•fubl + Ij{mb{ − Ivmb{ 1 = nlsbk ⋅ d w ⋅ Ulsbk − nqp•fubl ⋅ d w ⋅ Uqp•fubl − nvmb{ ⋅ d q ⋅ Uvmb{ )2* zakon odr`awa mase za proces puwewa rezervoara: nqp•fubl + nvmb{ = nlsbk + nj{mb{ dipl.ing. @eqko Ciganovi} )3* {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 6 jedna~ina stawa idealnog gasa za zavr{etak puwewa: q lsbk ⋅ W = nlsbk ⋅ S h ⋅ Ulsbk (3) kombinovawem jedna~ina (1) i (2) dobija se: ( ) 1 = nlsbk ⋅ d w ⋅ Ulsbk − nqp•fubl ⋅ d w ⋅ Uqp•fubl − nlsbk − nqp•fubl ⋅ d q ⋅ Uvmb{ )5* kombinovawem jedna~ina )4*!i!)5* dobija se: q lsbk ⋅ W 1 = nlsbk ⋅ d w ⋅ − nqp•fubl ⋅ d w ⋅ Uqp•fubl − nlsbk − nqp•fubl ⋅ d q ⋅ Uvmb{ S h ⋅ nlsbk ( dw ⋅ q lsbk ⋅ W nlsbk = nqp•fubl + Sh ) − nqp•fubl ⋅ d w ⋅ Uqp•fubl d q ⋅ Uvmb{ 1/83 ⋅ nlsbk = 22/:8 + 4 ⋅ 21 ⋅ 21 − 22/:8 ⋅ 1/83 ⋅ 3:2 398 >35/5:!lh 2 ⋅ 511/82 6 nvmb{>nlsbk!−!nqp•fubl!>!35/5:!−!22/:8!>23/63!lh napomena: Ulsbk> q lsbk ⋅ W S h ⋅ nlsbk > 4 ⋅ 21 6 ⋅ 21 >537/94!L 398 ⋅ 35/5: b) okolina (ta~ka O) = ta~ka 1 w4 = S h ⋅ U4 q2 = 398 ⋅ 537/94 4 ⋅ 21 6 kraj (ta~ka kraj) = ta~ka 3 =1/519! S h ⋅ Up 398 ⋅ 3:2 n4 n4 -!!!!!!! w p = = =1/946! lh lh qp 2 ⋅ 21 6 Xnby!>! nlsbk ⋅ [− ∆v 4p + Up ⋅ ∆t 4p − q p ⋅ ∆w 4p ] Xnby!>! n ⋅ − d w ⋅ (Up − U4 ) + Up U q ⋅ d q mo p − S h mo p U4 q4 Xnby!> 35/5: ⋅ − 1/83 ⋅ (3:2 − 537/94) + 3:2⋅ 2 ⋅ mo − q p ⋅ (w p − w 4 ) 3:2 2 − 1/398 ⋅ mo − 2 ⋅ 213 ⋅ (1/946 − 1/519) 537/94 4 Xnby!>!34:6!−!597!−53/8!>!2977/4!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 7 4/6/!Odrediti eksergiju struje vazduha (idealan gas) stawa 2)q2>2/7!cbs-!u2>361pD⋅ n >2!lh0t* i predstaviti je grafi~ki na qw dijagramu. Pod okolinom smatrati vazduh (idealan gas) stawa P)qp>2!cbs-!up>36pD*/ ⋅ ⋅ Fy 2 = n⋅ (− ∆i2p + Up ⋅ ∆t2p ) >!/// ⋅ ⋅ q U Fy2 = n⋅ − dq )Up − U2* + Up )dq mo p − S h mo p * q2 U2 ⋅ ⋅ 3:9 2 Fy2 = 2⋅ − 2 ⋅ )3:9 − 634* + 3:9 ⋅ )2 ⋅ mo − 1/398 ⋅ mo * 634 2/7 ⋅ Fy2 >!336!!−!238/5!>!:8/7!lX q q 2 P 2 , = P ⊕ − w w q 2 , P w dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 8 ⋅ 4/7/ Eksergija toka vazduha (idealan gas), masenog protoka n >1/6!lh0t, koji struji sredwom brzinom ⋅ x>39!n0t, pri stawu vazduha u okolini P)qp>2!cbs-!Up>3:4!L), iznosi Fy 2 >94!lX. Promena entropije okoline, koja bi nastala povratnim (reverzibilnim) promenama stawa vazduha (bez promene ⋅ brzine) na pritisak i temperaturu okoline iznosila bi ∆ T plpmjof>−!1/2!lX0L. a) odredti pritisak i temperaturu vazduha stawa 1 b) grafi~ki prikazati u qw, koordinatnom sistemu eksergiju vazdu{nog toka, ne uzimaju}i u obzir deo koji se odnosi na brzinu a) drugi zakon termodinamike za proces od stawa 1 do stawa O ⋅ ⋅ ⋅ ∆ T tjtufn = ∆ T sbeop ` ufmp + ∆ T plpmjob ⋅ ∆ T2p ⋅ ⋅ lX = − ∆ T plpmjob >1/2! L ⋅ ⇒ ∆ t2p = ⋅ 1 = ∆ T2p + ∆ T plpmjob ⋅ ∆ T2p ⋅ >1/3! n lK lhL ⋅ ⋅ ⋅ x3 Fy 2 = n⋅ (− ∆i2p + Up ⋅ ∆t2p + f l2 ) = n⋅ − dq )Up − U2* + Up ⋅ ∆t2p + 3 ⋅ Fy 2 ⋅ U2 = UP + n − UP ∆t2P − dq ⋅ ⋅ U ∆ T 21!>! n⋅ )dq mo p U2 x3 3 94 39 3 − 3:4 ⋅ 1/3 − ⋅ 21 −4 1 / 6 3 >511!L > 3:4 + 2 ⋅ Up ∆ T2p dq mo U − ⋅ qp 2 n >6/:7!cbs * !!⇒!! q2 = q p ⋅ fyq − S h mo Sh q2 q 2 Fy2 !P w dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 9 4/8/ U horizontalnoj cevi pre~nika e>311!nn ugra|en je greja~ stalne temperature UUJ>711!L. Stawe vazduha u preseku 1 odre|eno je sa 2)q>3!cbs-!U>411!L-!x>31!n0t* a u preseku 2 sa 3)q>3!cbs-!U>511!L*. Stawe okoline odre|eno je veli~iama stawa P)qp>2!cbs-!Up>3:1!L*. Cev je toplotno izolovana od okoline. Odrediti: a) snagu ugra|enog greja~a b) eksergiju vazduha u preseku 1 i preseku 2 c) eksergijski stepen korisnosti procesa u cevi ⋅ + R23 2 3 a) w2 = w3 = S h ⋅ U2 q2 S h ⋅ U3 q3 > 398 ⋅ 411 3 ⋅ 21 6 >1/5416! 398 ⋅ 511 > n4 lh >1/685! 3 ⋅ 21 6 n4 lh ⋅ ⋅ jedna~ina kontinuiteta: n2 = n3 x2 ⋅ B2 x 3 ⋅ B 3 = w2 w3 x 3 = x2 ⋅ ⋅ n= ⇒ w3 1/685 n > 31 ⋅ >!37/78! 1/5416 t w2 e3 π 1/3 3 ⋅ π 31 ⋅ lh 5 = 5 >2/57! t w2 1/5416 x2 ⋅ prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu: ⋅ ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 + ∆Fl23 + ∆Fq23 > n⋅ d q ⋅ (U3 − U2 ) + n⋅ ⋅ R 23 = 2/57 ⋅ 2 ⋅ (511 − 411) + 2/57 ⋅ dipl.ing. @eqko Ciganovi} 31 3 − 37/78 3 3 x 23 − x 33 > 3 ⋅ 21 −4 >256/88!lX {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 10 b) ⋅ ⋅ Fy 2 = n⋅ (− ∆i2p + Up ⋅ ∆t2p + f l2 ) = ⋅ ⋅ Fy2 = n⋅ − dq )Up − U2* + Up ⋅ U q ⋅ d q mo p − S h mo p U q2 2 Fy2 > 2/57 ⋅ − 2⋅ )3:1 − 411* + 3:1 ⋅ 2⋅ mo ⋅ x 23 + 3 3:1 2 313 − 1/398 ⋅ mo + ⋅ 21−4 >95/88!lX 411 3 3 ⋅ Fy 3 = n⋅ (− ∆i 3p + Up ⋅ ∆t 3p + f l3 ) = ⋅ ⋅ Fy 3 = n⋅ − dq )Up − U3 * + Up ⋅ U q ⋅ d q mo p − S h mo p U3 q3 Fy3 > 2/57 ⋅ − 2⋅ )3:1 − 511* + 3:1 ⋅ 2⋅ mo c) ⋅ ⋅ Fy R = R 23 ⋅ x 33 + 3 3:1 2 313 − 1/398 ⋅ mo + ⋅ 21−4 >219/:8!lX 511 3 3 UUJ − Up 711 − 3:1 > 256/88 ⋅ >86/42!lX 711 UUJ drugi zakon termodinamike za proces u otvorenom termodinami~kom sistemu: ⋅ ⋅ ⋅ ∆ T tjtufn = ∆ Tsbeop ` ufmp + ∆ T UJ =.. . ⋅ ⋅ ⋅ q U ∆ T sbeop ` ufmp = ∆ T23 > n⋅ d q mo 3 − S h mo 3 U2 q2 ⋅ ∆ T UJ > 2/57 ⋅ 2 ⋅ mo 511 >1/53! lX 411 L ⋅ 256/88 R 23 lX >−1/35! =− >− 711 L UUJ ⋅ ∆ T tjtufn = 1/53 − 1/35 >!1/29! ⋅ lX L ⋅ Fy h = Up ⋅ ∆ T tjtufn > 3:1 ⋅ 1/29 >63/3!lX ⋅ ηFy = ⋅ ⋅ Fy2 + Fy R − Fy h ⋅ ⋅ Fy 2 + Fy R dipl.ing. @eqko Ciganovi} > 95/88 + 86/42 − 63/3 >1/78 95/88 + 86/42 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 11 4/9. U neizolovanoj komori me{aju se, pri stacionarnim uslovima, dve struje idealnih gasova: kiseonika ⋅ ⋅ B) n B>7!lh0t-!qB>1/29!NQb-!UB>634!L*!i azota!C) n C>4!lh0t-!qC>1/44!NQb-!UC>974!L*. U toku procesa me{awa toplotni protok u okolni vazduh stawa )qp>1/2!NQb-!Up>3:4!L-!sP3>1/32-!sO3>1/8:* iznosi 511 lX. Pritisak me{avine na izlazu iz komore je q>!1/26!NQb. Odrediti brzinu gubitka eksergije u toku procesa me{awa kao i eksergijski stepen korisnosti procesa u me{noj komori. Zanemariti promene makroskopske potencijalne i kineti~ke energije. prvi zadatak termodinamike za proces u otvorenom termodinami~kom sistemu: ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 ⋅ ⋅ R 23 = I3 − I2 ⋅ ⋅ ⋅ ⋅ ⋅ R23 = nB ⋅ dqB + nC ⋅ dqC ⋅ U+ − nB ⋅ dqB ⋅ UB − nC ⋅ dqC ⋅ UC ⋅ + U = ⋅ ⋅ R23 + n B ⋅ d qB ⋅ UB + nC ⋅ d qC ⋅ UC ⋅ ⋅ −511 + 7 ⋅ 1/:2 ⋅ 634 + 4 ⋅ 2/15 ⋅ 974 >711!L 7 ⋅ 1/:2 + 4 ⋅ 2/15 > n B ⋅ d qB + nC ⋅ d qC jedna~ina stawa me{avine idealnih gasova na izlazu iz me{ne komore: ⋅ ⋅ nB ⋅ ShB + nC ⋅ ShC ⋅ U + ⋅ ⋅ W+ = q+ ⋅ W+ = nB ⋅ ShB + nC ⋅ ShC ⋅ U+ ⇒ + q ( ) 7 ⋅ 371 + 4 ⋅ 3:8 ⋅ 711 n4 W+ = >!:/915! t 2/6 ⋅ 216 jedna~ina stawa idealnog gasa za kiseonik )B* na izlazu iz me{ne komore: ⋅ ⋅ q+B ⋅ W+ = nB ⋅ ShB ⋅ U + ⇒ q+B = nB ⋅ ShB ⋅ U + W + > 7 ⋅ 371 ⋅ 711 > 1/:6 ⋅ 216 Qb :/915 jedna~ina stawa idealnog gasa za azot )C* na izlazu iz me{ne komore: qC+ + ⋅ ⋅ W = nC ⋅ ShC ⋅ U ⋅ + ⇒ qC+ = nC ⋅ ShC ⋅ U + W + > 4 ⋅ 398 ⋅ 711 :/915 ⋅ 21−3 > 1/66 ⋅ 21 6 Qb pritisak kiseonika )B* u okolnom vazduhu: 6 6 qP B = sP3 ⋅ qp > 1/32 ⋅ 2 ⋅ 21 > 1/32 ⋅ 21 Qb pritisak azota )C* u okolnom vazduhu: 6 6 qP B = sP3 ⋅ qp > 1/8: ⋅ 2 ⋅ 21 > 1/8: ⋅ 21 Qb dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 12 drugi zakon termodinamike za proces me{awa gasova B!i!C : ⋅ ⋅ ⋅ ∆ T tjtufn = ∆ T sbeop ` ufmp + ∆ T plpmjob =.. . ⋅ ⋅ ⋅ ∆ Tsbeop ` ufmp = ∆ T B + ∆ TC >!///!>!2/86!,!1/57!>!3/32! lX L ⋅ ⋅ q+ 711 1/:6 lX U+ − 1/37 ⋅ mo ∆ T B = n B ⋅ d qB mo − S hB mo B > 7 ⋅ 1/:2 ⋅ mo >2/86 U q L 634 2 / 9 B B ⋅ ⋅ q+ 711 1/66 U+ lX ∆ TC = nC ⋅ d qC mo − S hC mo C > 4 ⋅ 2/15 ⋅ mo − 1/3:8 ⋅ mo >1/57 L UC 974 4/4 qC ⋅ ⋅ ∆ T plpmjob −511 R 23 lX =− >− >2/48! 3:4 L Up ⋅ ∆ T tjtufn = 3/32 + 2/48 >!4/69! ⋅ lX L ⋅ Fy h = Up ⋅ ∆ T tjtufn > 3:4 ⋅ 4/69 >215:!lX ⋅ ⋅ ⋅ Fy 2 = Fy B + Fy C = ... ⋅ ⋅ Fy B = n B ⋅ − d qB ⋅ (Up − UB ) + Up U qp ⋅ d qB ⋅ mo p − S hB ⋅ mo B UB qB ⋅ 3:4 1/32 Fy B = 7 ⋅ − 1/:2 ⋅ (3:4 − 634) + 3:4 ⋅ 1/:2 ⋅ mo − 1/37 ⋅ mo >2422!lX 634 2/9 ⋅ ⋅ Fy C = nC ⋅ − d qC ⋅ (Up − UC ) + Up U qp ⋅ d qC ⋅ mo p − S hC ⋅ mo C UC qC ⋅ 3:4 1/8: Fy C = 4 ⋅ − 2/15 ⋅ (3:4 − 974) + 3:4 ⋅ 2/15 ⋅ mo − 1/3:8 ⋅ mo >2275!lX 974 4/4 ⋅ Fy2 = 2422 + 2275 >!3586!lX ⋅ ηFy = ⋅ Fy2 − Fy h ⋅ Fy2 > 3586 − 215: >1/68 3586 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 13 4/:. U suprotnosmernom razmewiva~u toplote pri qw>3!cbs, biva izobarski zagrevan tok vazduha (idealan gas), od temperature Uw2>524!L do temperature Uw3>654!L, a tok vrelih gasova (sme{a idealnih gasova) biva hla|ena od polaznog stawa H2)qh2>2/6!cbs-!Uh2>724!L* do stawa H3)qh3>2/4!cbs-!Uh3>@*/ Ako su maseni protoci vazduha i vrelih gasova isti, a vreli gasovi imaju iste termofizi~ke osobine kao i vazduh odrediti eksergijski stepen korisnosti procesa u ovom razmewiva~u toplote pri uslovima okoline P)qp>2!cbs-!Up>3:4!L*/ Zanemariti promene makroskopske potencijalne i kineti~ke energije kao i prisustvo hemijske neravnote`e. Uh2 Uh3 Uw2 Uw3 prvi zadatak termodinamike za proces u otvorenom termodinami~kom sistemu: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⇒ R 23 = ∆ I23 + X U23 ⋅ ⋅ I2 = I3 ⋅ n⋅ d q ⋅ Uw2 + n⋅ d q ⋅ Uh2 = n⋅ d q ⋅ Uw3 + n⋅ d q ⋅ Uh3 ⇒ Uh3 = Uw2 + Uh2 − Uw3 > 524 + 724 − 654 >594!L ⋅ ⋅ ⋅ Fy vmb{ = Fy w2 + Fy h2 = ... ⋅ ⋅ U q Fy w2 = n⋅ − d q (Up − Uw2 ) + Up d q mo p − S h mo p U q w w2 ⋅ ⋅ ⋅ 3:4 2 Fy w2 = n⋅ − 2 ⋅ (3:4 − 524) + 3:42 ⋅ mo − 1/398 ⋅ mo = n⋅ 88/82 !lX 524 3 ⋅ ⋅ U q Fy h2 = n⋅ − d q Up − Uh2 + Up d q mo p − S h mo p Uh2 q h2 ( ) ⋅ ⋅ ⋅ 3:4 2 Fy h2 = n⋅ − 2 ⋅ (3:4 − 724) + 3:4 ⋅ 2 ⋅ mo − 1/398 ⋅ mo > n⋅ 248/92!lX 724 2/6 ⋅ ⋅ ⋅ Fy vmb{ = n⋅ (88/82 + 248/92) > n⋅ !326/63!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike ⋅ strana 14 ⋅ Fy hvcjubl = Up ⋅ ∆ T tj = ... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∆ Ttj = ∆ Tsu + ∆ Tp =… ∆ Tsu = ∆ T w + ∆ Th = … ⋅ ⋅ ⋅ ⋅ Uw 3 q 654 lX − S h mo w * = n⋅ 2 ⋅ mo = n⋅ 1/385 L 524 Uw2 qw ⋅ ⋅ Uh3 ∆ T w > n /! )d q mo ∆ Th > n /! )d q mo ⋅ Uh2 − S h mo ⋅ ⋅ ⋅ ⋅ 594 2/4 lX − 1/398 ⋅ mo * = n⋅ 2 ⋅ mo >− n⋅ 1/2:8 L 724 q h2 2/6 q h3 ⋅ ∆ Tsu > n⋅ 1/385!− n⋅ 1/2:8> n⋅ 1/188! ⋅ ⋅ ⋅ ⋅ ∆ Ttj > ∆ Tsu , ∆ Tp > n⋅ 1/188! ⋅ lX L lX L ⋅ Fy hvcjubl = 3:4 ⋅ n⋅ 1/188 >33/67!lX ⋅ ηFy!> ⋅ Fy vmb{ − Fy h ⋅ Fy vmb{ = 326/63 − 33/67 >1/9: 326/63 ⋅ 3.10. Klipni kompresor kvazistati~ki politropski sabija n >1/6!lh0t vazduha (idealan gas) od stawa 2)q>211!lQb-!U>399!L*!do stawa 3)q>611!lQb-!U>513!L*/ Stawe okoline zadato je sa P)qp>211!lQbUp>399!lQb*. Odrediti: a) snagu kompresora b) eksergijski stepen korisnosti procesa c) ako bi se kompresor hladio vodom koja bi pri tom mewala stawe pri stalnom pritisku q>211!lQb od!Ux2>399!L!do!Ux3>414!L a) o−2 o U2 q2 = U3 q 3 ⋅ ⋅ X U23 = n⋅ mo ⇒ o> mo q2 q3 q2 U − mo 2 q3 U3 mo > mo 211 611 211 399 − mo 611 513 >2/37 2/37 o ⋅ S h ⋅ (U2 − U3 ) > 1/6 ⋅ ⋅ 1/398 ⋅ (399 − 513) >−8:/4!lX o −2 2/37 − 2 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 15 b) U q Fy2 = n⋅ (− ∆i2p + Up ⋅ ∆t2p ) > n⋅ − dq)Up − U2* + Up)dq mo p − Sh mo p * >!1!lX U q ⋅ ⋅ ⋅ 2 2 napomena:!q2>qp-!U2>Uq ⋅ ⋅ Fy hvcjubl = Up ⋅ ∆ T tj = ... ⋅ ⋅ ⋅ ∆ Ttj = ∆ Tsu + ∆ Tp =… ⋅ ⋅ U q ∆ Tsu = n⋅ d q ⋅ mo 3 − S h ⋅ mo 3 U2 q2 513 611 X > 1/6 ⋅ 2 ⋅ mo − 1/398 ⋅ mo >−75/32! 399 211 L ⋅ −33/2 X R 23 >87/85! ∆ Tp = − >///> − 399 L Up ⋅ ⋅ ⋅ o−κ 2/37 − 2/5 ⋅ (U3 − U2 ) > 1/6 ⋅ 1/83 ⋅ ⋅ (513 − 399) >−33/2!lX o −2 2/37 − 2 ⋅ X ∆ Ttj >−75/32!,!87/85!>23/64! L ! R 23 = n⋅ d w ⋅ ⋅ Fyhvcjubl = 399 ⋅ 23/64 >4/7!lX ⋅ ⋅ ⋅ Fy vmb{ = Fy 2 + X U23 >8:/4!lX ⋅ ηFy!> ⋅ Fyvmb{ − Fyh ⋅ Fyvmb{ = 8:/4 − 4/7 >1/:6 8:/4 c) ⋅ ⋅ R 23 = n x ⋅ (i x2 − i x3 ) !!!!⇒ lK lh lK ix3!>!236/8! lh ix2!>!73/:6! dipl.ing. @eqko Ciganovi} ⋅ nx lh −33/2 R 23 = > >!1/46! 73/:6 − 236/8 t i x2 − i x3 )voda!q>211!lQb-!U>399!L* )voda!q>211!lQb-!U>399!L* {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 16 4/22/!U vertikalnom cilindru sa grani~nikom (slika) mo`e se trewa) klip sa tegom. U po~etnom trenutku zapremina n4 (ograni~ena klipom sa tegom), ispuwena je kqu~alom vodom makroskopski razvijenom parom u stawu termodinami~ke pritisku q>4!cbs!(vla`na para). Kqu~ala voda zauzima 1% od zapremine cilindra. Maksimalna zapremina cilindra ispod Wnby>3!n4. Odrediti termodinami~ki gubitak rada (gubitak predaji toplote, od izotermnog toplotnog izvora, temperature radnoj materiji u cilindru, ako je wena temperatura na kraju zagrevawa 684!L. Temperatura okoline iznosi Up>411!L. proces zagrevawa na Ut dijagramu. [rafirati na Ut dijagramu predstavqa gubitak eksergije. kretati (bez cilindra W>1/7 i wenom ravnote`e na po~etne klipa iznosi eksergije) pri UUJ!>734!L, procesa Predstaviti povr{inu koja ta~ka 1: q2>4!cbs! y2>@ n# y2 = = /// n#+n( 1/6:5 W# >///> >1/:9!lh n# = 1/7168 w# W( 1/117 >6/6:!lh n( = = /// > 1/1121844 w( n4 lh W′!>!1/12/W!>!1/117!n4 W′!>!1/::/W!>!1/6:5!n4 w′>!1/1121844! w′′>1/7168! n4 lh n# 1/:9 = = 1/26 n#+n( 1/:9 + 6/6: lK lK t2>!3/58!! i2>!996/:5!! lh lhL napomena: n!>!n′!,!n′′!>!7/68!lh y2 = ta~ka 2: q3>q2>4!cbs- w3>wnby!> w′!?!w3!?!w′′ Wnby n4 = 1/414 n lh (ta~ka 2 se nalazi u oblasti vla`ne pare) 1/414 − 1/1121844 w3 − w ( > >1/6 1/7168 − 1/1121844 w #− w ( lK lK - v3!>vy!>2663/3!! -! !!!u3>!ulmk>244/65pD! i3!>iy!>!2754/3!! lh lh y3 = dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 17 u>411pD! ta~ka 3: w′!>!1/1125147! w4!?!w′′ w4!>w3>1/414!! n4 lh n4 n4 - !!!w′′!>!1/13275! lh lh (ta~ka 3 se nalazi u oblasti pregrejane pare) i4!>!iqq!>!4161!! lK lh t4!>!tqq!>!8/29!! lK lhL q4!>!qqq!>!9/6!!cbs vrednosti i4-!t4 i q4 se moraju pro~itati sa it dijagrama za vodenu paru lK v4!>!vqq>!i4!−!q4/!w4!>!4161!−!9/6/216!/!21−3/!1/414!>!38:3/6! lh napomena: Fyhvcjubl!>!Uplpmjob!/!∆Ttjtufn!>!///!>!411!/!:/97!>!3:69!!lK lK L lK ∆ T sbeop!ufmp> n ⋅ ∆t24 !> n ⋅ (t 4 − t2 ) > 7/68 ⋅ (8/29 − 3/58) >!41/:6! L )r23 *q=dpotu + )r34 * w =dpotu R 23 + R 34 i3 − i2 + v 4 − v 3 ∆S UJ = − −n⋅ = −n ⋅ UUJ UUJ UUJ 2754/3 − 996/:5 + 38:3/6 − 2663/3 lK >−32/1:! ∆TUJ!>! − 7/68 ⋅ L 734 ∆Ttjtufn>∆Tsbeop!ufmp!,!∆Tupqmpuoj!j{wps!>!///>41/:6!−!32/1:!>!:/97! U 4 2 3 Up ∆tsu Fyh t ∆tUJ ∆tTJ dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 18 4/23/!U razmewiva~u toplote vr{i se atmosfersko )q>2!cbs*, potpuno isparavawe kqu~ale vode i istovremena potpuna kondenzacija suvozasi}ene vodene pare pri q>4!cbs. Ukoliko toplotna snaga razmewiva~a toplote (interno razmewena toplota izme|u pare i vode) iznosi 3/6!lX, izra~unati eksergijski stepen korisnosti procesa u ovom razmewiva~u toplote pri stawu okoline P)qp>!2!cbs-!up>31pD*/ L2 !2 !3 !4 !5 suva para, q>4!cbs kqu~ala voda,!q>2!cbs L3 !U !3 !2 !5 !4 !t q>!4!cbs lK i2!>!i″!>!3836! lh ta~ka 1: q>!4!cbs lK i3!>!i′!>!672/5! lh ta~ka 2: q>!2!cbs lK i4!>!i′!>!528/5! lh ta~ka 3: q>!2cbs lK i5!>!i″!>!3786! lh y>2 t2!>!t″!>!7/::3! lK lhL y>1 t3!>!t′!>!2/783! lK lhL y>1 t4!>!t′!>!2/4137! lK lhL ta~ka 4: dipl.ing. @eqko Ciganovi} t5!>!t″!>!8/471! lK lhL {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 19 up!>!31pD qp!>!2!cbs lK ip!>!!ix!>!94/:! lh ta~ka O: tp!>!!tx!>!1/3:7! lK lhL prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 ograni~enom konturom 1 (K1): ⋅ ⋅ R 23 = nq ⋅ (i3 − i2 ) ⇒ ⋅ ⋅ nq = −3/6 R 23 lh > >2/26! t i3 − i2 672/5 − 3836 prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ⋅ ⋅ ⋅ R 45 = ∆ I45 + X U245 ograni~enom konturom 2 (K2): ⋅ ⋅ R 45 = n x ⋅ (i 5 − i 4 ) ⇒ ⋅ ⋅ nx = R 45 3/6 lh > >2/22! t i 5 − i 4 3786 − 528/5 ⋅ ηFy = ⋅ Fy vmb{ − Fy hvcjubl ⋅ Fy vmb{ ⋅ > 892/16 − 286/9 >1/88 892/16 ⋅ Fy hvcjubl = Up ⋅ ∆ T tj >///> 3:4 ⋅ 1/7 >286/9!lX ⋅ ⋅ ⋅ ⋅ ⋅ ∆ T tjtufn!>!∆ T sbeop!ufmp!,!∆ T plpmjob!>!///>1/7! ⋅ lX L ∆ T sbeop!ufmp> T j{mb{!−! T vmb{!>!///>!21/1:!−!:/5:>1/7! ⋅ ⋅ lX L ⋅ lX L ⋅ ⋅ ⋅ lX T vmb{!>! nq ⋅ t2 + n x ⋅ t 4 > 2/26 ⋅ 7/::3 + 2/22 ⋅ 2/4137 >:/5:! L T j{mb{!>! nq ⋅ t 3 + n x ⋅ t 5 > 2/26 ⋅ 2/783 + 2/22 ⋅ 8/47 >21/1:! ⋅ ⋅ ⋅ Fy vmb{!>! Fy 2!, Fy 4!>!///>!892/16!,!53/92!>!934/97!lX ⋅ ⋅ ⋅ Fy 2> nq ⋅ (− ∆i2p + Up ⋅ ∆t2p ) >! nq ⋅ [i2 − i p + Up ⋅ (t p − t2 )] ⋅ Fy 2> 2/26 ⋅ [3836 − 94/: + 3:4 ⋅ (1/3:7 − 7/::3)] >892/16!lX ⋅ ⋅ ⋅ Fy 4!> n x ⋅ (− ∆i 4p + Up ⋅ ∆t 4p ) >! n x ⋅ [i 4 − i p + Up ⋅ (t p − t 4 )] ⋅ Fy 4> 2/22 ⋅ [528/5 − 94/: + 3:4 ⋅ (1/3:7 − 2/4137)] >53/92!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 20 ⋅ 3.13.!U ure|aj za pripremu kqu~ale vode (slika) uti~e suva para 2)q>23!cbs*, masenog protoka n 2>1/2 ⋅ lh0t i voda stawa 3)q>5!cbs-!u>71pD*!masenog protoka n 3>@/ Prolaskom kroz razmewiva~ toplote suva para se potpuno kondenzuje )stawe 3*. Nastali kondenzat se prigu{uje na pritisak q3(stawe 4), a zatim izobarski me{a sa vodom (stawe 2). Toplotni gubici razmewiva~a toplote iznose 223!lX. Prestaviti prosese u pojedina~nim ure|ajima (razmewiva~ toplote, prigu{ni ventil, me{na komora) na zasebnim Ut dijagramima i odrediti: ⋅ a) maseni protok vode ( n 2) da bi iz ure|aja isticala kqu~ala voda pritiska q3 (stawe 6) b) temperaturu vode stawa 6!)!u6!* c) eksergijski stepen korisnosti ure|aja ako se okolina defini{e kao voda stawa P!)qp>2!cbs-!u>31pD* !U ⋅ 2 n2 razmewiva~ toplote ⋅ 7 n3 3 6 q>23!cbs q>5!cbs 4 2 7 4 5 6 !t !U !U prigu{ni ventil me{na komora q>23!cbs q>23!cbs q>5!cbs q>5!cbs 4 5 6 5 3 !t 2!−!4 4!−!5 5!,!3!>6! 6!−!7 !t : promena stawa pare pri proticawu kroz razmewiva~ toplote (RT) : promena stawa pare pri proticawu kroz prigu{ni ventil : proces me{awa pare i vode u me{noj komori : promena stawa me{avine pare i vode pri proticawu kroz RT dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 21 a) Prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ⋅ ograni~enom isprekidanom linijom: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ R 23 = I3 − I2 = n2 + n3 ⋅ i 7 − n2 ⋅ i2 − n3 ⋅ i3 ⋅ ⋅ R 23 = ∆ I23 + X U23 ⇒ ⋅ R 23 + n2 ⋅ (i2 − i 7 ) − 223 + 1/2 ⋅ (3896 − 715/8) lh >///> n3 = >1/4! t 715/8 − 362/4 i 7 − i3 ⋅ q2>23!cbs lK i2!>i′′>3896! lh y>2 q3>5!cbs lK i3!>ix>362/4! lh u3>71pD ta~ka 1: t2>t′′!>!7/634! ta~ka 2: t3>tx!>!1/94! lK lhL lK lhL y>1 q7>5!cbs lK lK t2>t′!>!2/888! i7!>i′>715/8! lh lhL ta~ka 6: b) ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 Prvi zakon termodinamike za proces me{awa: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⇒ I2 = I3 n2 ⋅ i 5 + n3 ⋅ i 3 = n2 + n3 ⋅ i 6 ⋅ i6 = ⋅ n2 ⋅ i 5 + n3 ⋅ i3 ⋅ ⋅ >///> n2 + n3 1/2 ⋅ 8:9/4 + 1/4 ⋅ 362/4 lK >499/16! lh 1/2 + 1/4 q7>5!cbs lK i5!>i′>8:9/4! lh ta~ka 4: ta~ka 3: i5>i4!>8:9/4! ta~ka 5: q>5!cbs y>1 lK lh i>499/16! lK lh u6!>!ux!>:4pD dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 22 c) up>31pD qp>2!cbs lK ip!>ix>94/:! lh ta~ka O: tp>tx!>!1/3:7! ⋅ ⋅ lK lhL ⋅ Fy 2> n2 ⋅ (− ∆i2p + Up ⋅ ∆t2p ) >! n2 ⋅ [i2 − i p + Up ⋅ (t p − t2 )] ⋅ Fy 2> 1/2 ⋅ [3896 − 94/: + 3:4 ⋅ (1/3:7 − 7/634)] >98/77!lX ⋅ ⋅ ⋅ Fy 3> n3 ⋅ (− ∆i3p + Up ⋅ ∆t 3p ) >! n3 ⋅ [i3 − i p + Up ⋅ (t p − t 3 )] ⋅ Fy 3> 1/4 ⋅ [362/4 − 94/: + 3:4 ⋅ (1/3:7 − 1/94 )] >4/39!lX ⋅ ⋅ ⋅ Fy vmb{!>! Fy 2,! Fy 3!>98/77!,!4/39!>:1/:5!lX ⋅ ⋅ Fy hvcjubl = Up ⋅ ∆ T tj >///> 3:4 ⋅ 1/2: >66/78!lX ⋅ ⋅ ⋅ ⋅ ⋅ ∆ T tjtufn!>!∆ T sbeop!ufmp!,!∆ T plpmjob!>!///>−1/2:!,!1/49!>!1/2:! lX L ⋅ lX L ⋅ ⋅ ⋅ lX T j{mb{!>! n2 + n3 ⋅ t 7 > (1/2 + 1/4 ) ⋅ 2/888 >1/82! L ∆ T sbeop!ufmp> T j{mb{!−! T vmb{!>!///>!1/82!−!1/:>−!1/2:! ⋅ ⋅ ⋅ T vmb{!>! n2 ⋅ t2 + n3 ⋅ t 3 > 1/2 ⋅ 7/634 + 1/4 ⋅ 1/94 >1/:1! lX L ⋅ R −223 lX >1/49! ∆ T plpmjob!>!−! 23 >− L 3:4 Up ⋅ ⋅ ηFy = ⋅ Fy vmb{ − Fy hvcjubl ⋅ Fy vmb{ dipl.ing. @eqko Ciganovi} > :1/:5 − 66/78 >1/4: :1/:5 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 23 ⋅ 4/25/!U parnu turbinu ulazi n >21!lh0t vodene pare stawa 2)q>3!NQb-!u>471pD). Iz turbine se na ⋅ pritisku q3>1/5!NQb izdvaja, za potrebe nekog tehnolo{kog qspdftb-! n 3>3!lh0t!pare a preostali deo nastavqa ekspanziju do stawa 4)q>1/27!NQb-!y>2*. Stepen dobrote adijabatske ekspanzije do izdvajawa p pare iznosi η23 e >2. Pod okolinom smatrati vodu stawa P)q>1/2!NQb-!u>31 D*. Skicirati promene stawa vodene pare na Ts dijagramu i odrediti: a) snagu turbine b) eksergiju parnih tokova na ulazu u turbinu i oba izlaza iz turbine c) eksergijski stepen korisnosti procesa u turbini 2 !U 2 ⋅ 3 X uvscjob 3 4l !t 4 ta~ka 1: q2>31!cbs lK i2!>iqq4267! lh ta~ka 2: 4 (pregrejana para) lK t2>tqq!>!7/:96! lhL q3>5!cbs i3!>iqq!>3889/27! u>471pD !t3!>!t2!>7/:96! lK lhL (pregrejana para) lK lh q4>2/7!cbs lK i4!>i′′!>37:7! lh !y>2 qp>2!cbs lK ip!>ix>94/:! lh up>31pD ta~ka 3: ta~ka O: dipl.ing. @eqko Ciganovi} (suvo−zasi}ena para) lK t4!>t′′!>!8/313! lhL (voda) lK tp>tx!>!1/3:7! lhL {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 24 a) ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 Prvi zakon termodinamike za proces u turbini: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ X uvscjob = I2 − I3 = n⋅ i2 − n3 ⋅ i 3 − n− n3 ⋅ i 4 ⋅ X uvscjob > 21 ⋅ 4267 − 3 ⋅ 3889/27 − (21 − 3) ⋅ 37:7 >5/55!NX b) ⋅ ⋅ ⋅ Fy 2> n⋅ (− ∆i2p + Up ⋅ ∆t2p ) >! n⋅ [i2 − i p + Up ⋅ (t p − t2 )] ⋅ Fy 2> 21 ⋅ [4267 − 94/: + 3:4 ⋅ (1/3:7 − 7/:96 )] >22/23!NX ⋅ ⋅ ⋅ Fy 3> n3 ⋅ (− ∆i 3p + Up ⋅ ∆t 3p ) >! n3 ⋅ [i3 − i p + Up ⋅ (t p − t 3 )] ⋅ Fy 3> 3 ⋅ [3889/27 − 94/: + 3:4 ⋅ (1/3:7 − 7/:96)] >2/58!NX ⋅ ⋅ ⋅ ⋅ Fy 4> n− n3 ⋅ (− ∆i 4p + Up ⋅ ∆t 4p ) >! n− n3 ⋅ [i 4 − i p + Up ⋅ (t p − t 4 )] ⋅ ⋅ Fy 4> (21 − 3) ⋅ [37:7 − 94/: + 3:4 ⋅ (1/3:7 − 8/313)] >5/82!NX c) ⋅ Bilans eksergije za proces u turbini: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Fy 2 = Fy 3 + Fy 4 + X uvscjob + Fy hvcjubl ⋅ Fy hvcjubl = Fy 2 − Fy 3 − Fy 4 − X uvscjob !>!22/23!−!2/58!−!5/82!−!5/55!>!1/6!NX ⋅ ηFy = ⋅ Fy vmb{ − Fy hvcjubl ⋅ Fy vmb{ ⋅ > 22/23 − 1/6 >1/:7 22/23 ⋅ Fy vmb{!>! Fy 2!>22/23!NX napomena: Do gubitka eksergije se moglo do}i i na uobi~ajen na~in ⋅ ⋅ primenom Hpvz!−!Tupepmjoph! zakona:! Fy h = Up ⋅ ∆ T tjtufn dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 25 ⋅ 4/26/!Pregrejana vodena para stawa 2)q>!7!NQb-!U>844!L-! n >2!lh0t ) {iri se adijabatski u dvostepenoj turbini sa me|uprigu{ivawem (slika), do krajweg stawa 5)U>424!L- vla`na para). ⋅ Stepeni dobrote u turbinama su: ηEUWQ = 2 i ηEUOQ = 1/99 . Deo pare, masenog protoka n B>1/4!lh0t, po izlasku iz turbine visokog pritiska, pri pritisku q3>1/9!NQb odvodi se iz turbine, a preostala para prolaskom kroz prigu{ni ventil adijabatski prigu{uje na pritisak q4>1/4!NQb. Prikazati procese u it koordinatnom sistemu i odrediti snagu dobijenu na zajedni~kom vratilu kao i eksergijski stepen korisnosti procesa u ovoj dvostepenoj turbini. Pod okolinom smatrati vodu stawa P)q>1/2!NQbU>3:4!L*/ !n UWQ UOQ 2 X 3 4 !nB 5 2 i 3 4 5L 5 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 26 u2!>571pD! q2>!71!cbs lK lK t2>tqq!>!7/86! i2!>!iqq!>4435!! lh lhL ta~ka 1: q3>!9!cbs ta~ka 2: i3!>!iqq!>3919/7!! q4>!4!cbs t4>tqq!>!8/289! lK lhL ta~ka 4K: U5L!>!51pD i4!>!i3!>3919/7!! lK lh lK lhL (ta~ka 4K se nalazi u oblasti vla`ne pare) t′!?!t5L!?!t′′ t − t( y 5L = 5L = 1/99 t#−t( U =51p D ηEUWQ = lK lhL lK lh ta~ka 3: U5>51pD ta~ka 4: t3>t2!>!7/86! i4 − i5 i 4 − i 5L ⇒ t5L>t4>!8/289! i5L!>!iy!>!3396! ηEUOQ = 1/99 i 5 = i 4 − ηEUWQ ⋅ )i 4 − j 5L * = i5 = 3919/7 − 1/99 ⋅ )3919/7 − 3396* = 3459 i − i( y5 = 5 = 1/:17 i#−i( U = 51p D lK lh lK lh ⇒ t5!>!ty!>8/65! lK lhL qp>2!cbs up>31pD lK lK tp>tx>1/3:7! ip>ix>94/:! lh lhL ta~ka O: dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 27 Prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ⋅ ⋅ ⋅ ograni~enom isprekidanom linijom: R 23 = ∆ I23 + X U23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ X = I2 − I3 = n⋅ i2 − n B ⋅ i3 − n− n B ⋅ i 5 ⋅ X > 2⋅ 4435 − 1/4 ⋅ 3917/7 − (2 − 1/4 ) ⋅ 3489 >948/9!lX ⋅ ⋅ ⋅ Fy 2> n⋅ (− ∆i2p + Up ⋅ ∆t2p ) >! n⋅ [i2 − i p + Up ⋅ (t p − t2 )] ⋅ Fy 2> 2 ⋅ [4435 − 94/: + 3:4 ⋅ (1/3:7 − 7/86 )] >245:/2!LX ⋅ ⋅ Fy hvcjubl = Up ⋅ ∆ T tj >///> 3:4 ⋅ 1/66 >272/26!lX ⋅ ⋅ ⋅ ⋅ ⋅ ∆ T tjtufn!>!∆ T sbeop!ufmp!,!∆ T plpmjob!>!///>1/57! lX L ⋅ ∆ T sbeop!ufmp> T j{mb{!−! T vmb{!>!///>!8/41!−!7/86>1/66! ⋅ ⋅ T vmb{!>! n⋅ t2 > 2⋅ 7/86 >7/86! lX L lX L ⋅ ⋅ ⋅ ⋅ lX T j{mb{!>! n B ⋅ t 3 + n− n B ⋅ t 5 > 1/4 ⋅ 7/86 + (2 − 1/4 ) ⋅ 8/65 >8/41! L ⋅ ηFy = ⋅ Fy vmb{ − Fy hvcjubl ⋅ Fy vmb{ ⋅ > 245:/2 − 272/26 >1/99 245:/2 ⋅ Fy vmb{!>! Fy 2!>245:/2!NX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 28 4/27/ Pregrejana vodena para )1/2!lh0t* stawa 2)q>91!cbs-!u>571pD* ulazi u parno turbisnki blok gde se najpre kvazistati~ki adijabatski {iri u turbini visokog pritiska do stawa 3)q>21!cbs*. Zatim se vodenoj pari stawa 2 u dogreja~u izobarski dovodi toplota od toplotnog izvora stalne temperature UUJ>571pD sve do uspostavqawa toplotne ravnote`e (stawe 3). Nakon toga se para kvazistati~ki adijabatski {iri u turbini niskog pritiska do stawa 5)q>2!cbs*. Pod okolinom smatrati vodu stawa P)q>1/2!NQb-!U>3:4!L*/!Skicirati procese sa vodenom parom na it dijagramu i odrediti: a) mehani~ku snagu parno turbinskog bloka kao i toplotnu snagu dogreja~a pare b) ireverzibilnost procesa (gubitak eksergije) u parno turbinskom bloku c) eksergijski stepen korisnosti procesa u parnoturbinsom bloku 2 ⋅ X U 23 3 4 ⋅ R 34 ⋅ X U 45 5 i 2 3 4 5 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 29 u2!>571pD! q2>!91!cbs lK lK t2>tqq!>!7/699! i2!>!iqq!>43:7!! lh lhL ta~ka 1: ta~ka 2: q3>!21!cbs i3!>!i′′!>3889!! lK lh t3>t2!>!7/699! lK lhL u4!>!571pD q4>!21!cbs lK lK t4>tqq!>!8/756! i4!>!iqq!>44:3!! lh lhL ta~ka 3: q5!>!2!cbs ta~ka 4: i5!>!iqq!>!38:3/3! t5>t4>!8/756! lK lhL lK lh up>31pD qp>2!cbs lK lK tp>tx>1/3:7! ip>ix>94/:! lh lhL ta~ka O: a) Prvi zakon termodinamike za proces u turbini visokog pritiska: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 ⇒ ⋅ X U23 = n⋅ (i2 − i3 ) ⋅ X U23 = 1/2 ⋅ (43:7 − 3889) >62/9!lX Prvi zakon termodinamike za proces u turbini niskog pritiska: ⋅ R 45 = ∆ I45 + X U 45 ⇒ ⋅ X U 45 = n⋅ (i 4 − i 5 ) ⋅ X U 45 = 1/2 ⋅ (44:3 − 38:3/3) >71!lX ⋅ ⋅ ⋅ X = X U23 + X U 45 >222/9!lX ⋅ Prvi zakon termodinamike za proces u dogreja~u pare: ⋅ ⋅ ⋅ R 34 = ∆ I34 + X U34 ⇒ ⋅ R 34 = n⋅ (i 4 − i3 ) ⋅ R 34 = 1/2 ⋅ (44:3 − 3889) >72/5!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 30 b) ⋅ ⋅ ⋅ Js = Fy hvcjubl = Up ⋅ ∆ T tj >///> 3:4 ⋅ 33 >7/56!lX ⋅ ⋅ ⋅ ⋅ ⋅ ∆ T tjtufn!>!∆ T sbeop!ufmp!,!∆ T upqmpuoj!j{wps!>!///>!−94/8!,!216/8!>!33! ⋅ ∆ T sbeop!ufmp> T j{mb{!−! T vmb{!>!///>!875/6!−769/9>216/8! ⋅ X L X L ⋅ X L ⋅ ⋅ X T vmb{!>! n⋅ t2 > 1/2 ⋅ 7/699 >769/9! L T j{mb{!>! n⋅ t 5 > 1/2 ⋅ 8/756 >875/6! ⋅ R 72/5 ⋅ 21 4 X >!−94/8! ∆ T upqmpuoj!j{wps!>!−! 34 >− 844 L UUj ⋅ c) ⋅ ⋅ ⋅ Fy 2> n⋅ (− ∆i2p + Up ⋅ ∆t2p ) >! n⋅ [i2 − i p + Up ⋅ (t p − t2 )] ⋅ Fy 2> 1/2 ⋅ [43:7 − 94/: + 3:4 ⋅ (1/3:7 − 7/699)] >247/96!LX ⋅ ⋅ Fy R = R 34 ⋅ ⋅ ηFy = UUJ − Up 844 − 3:4 >47/97!lX > 72/5 ⋅ 844 UUJ ⋅ ⋅ Fy2 + Fy R − Fy h ⋅ ⋅ Fy 2 + Fy R zadatak za ve`bawe: > 247/96 + 47/97 − 7/56 >1/:7 247/96 + 47/97 (3.17.) ⋅ 4/28/ Kompresor usisava n =83!lh0i pare amonijaka stawa 2)q>366/:!lQb-!y>2* i sabija je adijabatski do stawa 3)q>21!cbs-!U>511!L*/ Ako za okolinu smatramo amonijak stawa P)U>331!L-!y>1* odrediti eksergijski stepen korisnosti procesa u kompresoru. re{ewe: ηFy>1/99 dipl.ing. @eqko Ciganovi} ⋅ ⋅ ⋅ )! X >7/13!lX-! Fy 2 = 5/45 lX-! Fy h >2/38!lX!* {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 1 PRVI I DRUGI ZAKON TERMODINAMIKE (KOMBINOVANI PROBLEMI) 5/2/!U toplotno izolovanom rezervoaru nalazi se!211!lh!vode!)dx>5/29!lK0)lhL**!po~etne temperature Ux>3:4!L/!Komad bakra!)dDv>1/49!lK0)lhL**!mase!51!lh, po~etne temperature!UDv>469!L!i komad gvo`|a!)dGf>1/57!lK0)lhL**!mase!31!lh, po~etne temperature!UGf>454!L-!naglo se unesu u rezervoar sa vodom. U momentu uno{ewa u rezervoaru se ukqu~uje me{alica vode snage!711!X, koja radi dok se ne uspostavi stawe termi~ke ravnote`e!U+>3::!L/!Odrediti: a) vreme rada me{alice b) promenu entropije izolovanog sistema tokom navedenog procesa Dv Gf I3P a) prvi zakon termodinamike za proces u zatvorenom termodinami~kom ⇒ XU23>V2!−!V3 sistemu: R23!>!∆V23!,!XU23 V2 = n x ⋅ d x ⋅ Ux + nDv ⋅ d Dv ⋅ UDv + nGf ⋅ d Gf ⋅ UGf V2 = 211 ⋅ 5/29 ⋅ 3:4 + 51 ⋅ 1/49 ⋅ 469 + 31 ⋅ 1/57 ⋅ 454 >242182/3!lK V 3 = n x ⋅ d x ⋅ U + + nDv ⋅ d Dv ⋅ U + + nGf ⋅ d Gf ⋅ U + V 3 = 211 ⋅ 5/29 ⋅ 3:: + 51 ⋅ 1/49 ⋅ 3:: + 31 ⋅ 1/57 ⋅ 3:: >243388/7!lK XU23!>!242182/3!−!243388/7!>!−2317/5!lK τ= XU23 − 2317/5 = >3121/78!t ⋅ − 711 ⋅ 21 −4 X U23 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 2 b) ∆TTJ!>!∆TSU!,!∆TP!>///!>5/58! lK L ∆TSU!>!∆Tx!,!∆TDv!,!∆TGf!>///>9/58!−!3/85!−!2/37!!>!5/58! U+ ∆T x = n x ⋅ ∫ lK L d x ⋅ eU U+ 3:: lK = n x ⋅ d x mo = 211 ⋅ 5/29 ⋅ mo >9/58! L U Ux 3:4 Ux U+ ∆T Dv = nDv ⋅ ∫ d Dv ⋅ eU U+ 3:: lK >−3/85! = nDv ⋅ d Dv mo = 51 ⋅ 1/49 ⋅ mo U UDv 469 L ∫ d Gf ⋅ eU U+ 3:: lK >−2/37! = nGf ⋅ d Gf mo = 31 ⋅ 1/57 ⋅ mo L U UGf 454 UDv U+ ∆T Gf = nGf ⋅ UGf 5/3/!U kalorimetarskom sudu, zanemarqivog toplotnog kapaciteta, nalazi se te~nost polazne temperature UU>3:1!L!)stalnog toplotnog kapaciteta D>2/36!lK0L*/!U sud je unet bakarni uzorak mase nC>1/26!lh!i polazne temperature!UC>484!L/!Zavisnost specifi~nog toplotnog kapaciteta za bakar dC U od temperature data je izrazom: ! /Tokom uspostavqawa = 1/498 + 1/76: ⋅ 21 −5 ⋅ [lK 0 (lhL*)] [L ] toplotne ravnote`e u kalorimetru, okolini stalne temperature!Up>394!L-!predato je!6% od koli~ine toplote koju je predao bakarni uzorak. Odrediti: a) temperaturu u kalorimetarskom sudu u trenutku uspostavqawa toplotne ravnote`e b) promenu entropije izolovanog sistema od polaznog stawa do stawa uspostavqawa toplotne ravnote`e u kalorimetru. a) oznake koje se koriste u daqem tekstu re{ewa: (R23 )C (R23 )p (R23 )U US koli~ina toplote koju bakar predaje te~nosti u sudu koli~ina toplote koju bakar predaje okolini koli~ina toplote koju te~nost prima od bakra temperatura u kalorimetarskom sudu u trenutku uspostavqawa toplotne ravnote`e dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 3 prvi zakon termodinamike za proces sa bakrom: US (R23 )C , (R23 )p > nC ⋅ ∫[ ] 1/498 + 1/76: ⋅ 21 −5 U ⋅ eU UC (R23 )C , (R23 )p > nC ⋅ 1/498 ⋅ (US − UC ) + 1/76: ⋅ 21 −5 US3 − UC3 3 )2* prvi zakon termodinamike za proces sa te~no{}u US (R23 )U > ∫ D U ⋅ eU > D U ⋅ (US − UU ) )3* UU interno razmewena toplota izme|u bakra i te~nosti: (R23 )C >− (R23 )U )4* (R23 )p > 1/16 ⋅ [(R23 )C + (R23 )p ] uslov zadatka: )5* kombinovawem jedna~ina!)2*-!)3*-!)4*!j!)5*!dobija se: US!>3:4/8!L- (R23 )U >5736!K- (R23 )C >−5736!K- (R23 )p >−354!K b) K L K ∆TSU!>!∆TU!,!∆TC!>!///>!26/96!−!25/77!>!2/2:! L ∆TTJ!>!∆TSU!,!∆TP!>!///>!2/2:!,!1/97!>!3/16! US ∆T U = ∫ U D(U ) ⋅ eU 3:4/8 K >26/96! = D U ⋅ mo S = 2/36 ⋅ mo L U UU 3:1 UU US ∆TC = nC ⋅ ∫ d(U ) ⋅ eU = nC ⋅ U UC US ∫ (1/498 + 1/76: ⋅ 21 U ) ⋅ eU = .5 U UC U K n ⋅ 1/498 ⋅ mo S + 1/76: ⋅ 21−5 ⋅ (US − UC ) = /// = −25/77 UC L (R23 )p 354 K ∆T P = − =− >1/97! L UP 394 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 4 5/4/!Meteor temperature!U>4111!L-!brzinom x>21!ln0t ule}e u ledeni breg temperature!U>384!L/ Masa meteora je!nn>21!lh-!a specifi~ni toplotni kapacitet!dn>1/9!lK0lhL/!Odrediti: a) koli~inu toplote koju meteor preda ledenom bregu c* promenu entropije izolovanog sistema koji ~ine meteor i ledeni breg d* masu otopqenog leda (toplota topqewa leda iznosi s>443/5!lK0lh) meteor x>21!ln0t ledeni breg a) prvi zakon termodinamike za proces koji se de{ava sa meteorom: R23!>!∆V23!,!X23!,!∆Fl23 R23 = nn ⋅ dn ⋅ (Un3 − Un2) + n ⋅ R 23 = 21 ⋅ 1/9 ⋅ (384 − 4111) − 21 ⋅ (21 ⋅ 21 ) 4 3 3 x33 − x23 3 ⋅ 21 −4 >− 6/329 ⋅ 219 lK b) ∆Ttjtufn = ∆Tnfufps + ∆Tmfe >///>−2:/286!,2:22/466>29:9/29! ∆Tnfufps = nn ⋅ dn mo ∆Tmfe = lK L 384 Un3 lK > 21 ⋅ 1/9 ⋅ mo >!−2:/286! 4111 Un2 L R23 6/329 ⋅ 216 lK >2:22/46! > Um 384 L c) R23 = nm ⋅ sm ⇒ dipl.ing. @eqko Ciganovi} nm = R23 6/329 ⋅ 216 >2681!lh > sm 443/5 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 5 5/5/!U rezervoar sa nx>61!lh!vode!)dx>5/2:!lK0lhL*-!temperature!Ux>394!L- uroni se zatvorena boca, na~iwena od ~elika)d•>1/59!lK0lhL*-!sa!Wl>21!litara kiseonika (idealan gas). Masa ~eli~ne boce zajedno sa kiseonikom je!n•!,!nC>!31!lh/!Pre urawawa temperatura kiseonika i boce je!Ul>U•>474 L-!a pritisak kiseonika u boci je!ql>26!NQb/!Sistem koji se sastoji od vode i boce sa kiseonikom mo`e se smatrati izolovanim. Temperatura okolnog vazduha je!Up>3:4!L-!pritisak!qp>2!cbs-!a zapreminski (molarni) udeo kiseonika u okolnom vazduhu je!32&/!Zanemaruju}i razmenu toplote sa okolinom odrediti: a) temperaturu u sudu u trenutku uspostavqawa toplotne ravnote`e b) radnu sposobnost kiseonika u boci u trenutku postizawa toplotne ravnote`e a) prvi zakon termodinamike za proces koji po~iwe urawawem boce a zavr{ava se uspostavqawem toplotne ravnote`e; R23!>!∆V23!,!X23 ⇒ V2!>!V3 V2 = n x ⋅ d x ⋅ Ux + n • ⋅ d • ⋅ U• + nl ⋅ d wL ⋅ UL V 3 = n x ⋅ d x ⋅ U + + n • ⋅ d • ⋅ U + + nl ⋅ d wL ⋅ U + U+ = n x ⋅ d x ⋅ Ux + n• ⋅ d • ⋅ U• + nl ⋅ d wL ⋅ UL >/// n x ⋅ d x + n • ⋅ d • + nl ⋅ d wL jedna~ina stawa idealnog gasa za kiseonik u boci na po~etku procesa: q ⋅W 26 ⋅ 21 7 ⋅ 21 ⋅ 21 −4 = nl = l q l ⋅ Wl = nl ⋅ S hl ⋅ Ul ⇒ >2/6:!lh S hl ⋅ Ul 371 ⋅ 474 n•!>! (n • + nl ) −!nl!>!31!−!2/6:!>29/52!lh U+ = 61 ⋅ 5/2: ⋅ 394 + 29/52 ⋅ 1/59 ⋅ 474 + 2/6: ⋅ 1/76 ⋅ 474 >397/7!L 61 ⋅ 5/2: + 29/52 ⋅ 1/59 + 2/6: ⋅ 1/76 napomena: ! U+!− temperatura u boci u trenutku uspostavqawa toplotne ravnote`e dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 6 b) jedna~ina stawa idealnog gasa za kiseonik u boci u trenutku uspostavqawa toplotne ravnote`e: q2 ⋅ Wl = nl ⋅ S hl ⋅ U2 q2 = nl ⋅ S hL ⋅ U2 W = 2/6: ⋅ 371 ⋅ 397/7 21 ⋅ 21 −4 >22/96!NQb odre|ivawe pritiska kiseonika u okolnom vazduhu: q lp = sL ⋅ q p >1/132!NQb odre|ivawe radne sposobnosti kiseonika u boci u trenutku uspostavqawa Xnby = n ⋅ (−∆v21 + Up ⋅ ∆t2p − q p ⋅ ∆w 2p ) toplotne ravnote`e: qp U Xnby = nL ⋅ dlw ⋅ (U2 − UP ) + UP ⋅ dq ⋅ mo P − Sh ⋅ mo L + qLp ⋅ (w2 − w p ) = 761 lK q2 U2 w2 = wp = S hl ⋅ U2 q2 S hl ⋅ Up q lp = 371 ⋅ 397/7 22/96 ⋅ 21 7 = 371 ⋅ 3:4 1/132 ⋅ 21 7 >!1/1174!! n4 lh >!4/7387!! n4 lh napomena: U delu zadatka pod b) radi lak{e preglednosti veli~ine stawa kiseonika u boci u trenutku uspostavqawa toplotne ravnote`e obele`ene su indeksom!2 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 7 ⋅ 5/6/!Radna materija u zatvorenom sistemu vr{i neki proces pri ~emu joj se u svakoj sekundi dovodi! R >4 ⋅ lK0t!toplote i odvodi zapreminski rad! X )lK0t*-!koji se u toku vremena mewa po zakonu: ⋅ X 12 τ = 3/5 ⋅ [lX] [i] ){b!!1! < τ ≤ 2 i * ⋅ X 23 >,3/5 [lX] ){b!!τ!?!2!i* ⋅ b* odrediti brzinu promene unutra{we energije sistema-! ∆ V23 )lX*-!u trenutku!vremena!τ>1/7!i b) odrediti promene unutra{we energije sistema-!∆V23!)lK*-!u toku prva dva ~asa ⋅ ! X- [lX ] τ-! [i] 2 3 a) ⋅ ⋅ ⋅ ∆ V23 = R 23 − X 23 = 4 − 3/5 ⋅ τ = 4 − 3/5 ⋅ 1/7 = 2/67 lX b) 2 X12 = 2 ∫ X (τ) ⋅ eτ = ∫ X (τ) ⋅ eτ = 3/5 τ 1 3 X23 = ∫ 3/5 ⋅ τ ⋅ eτ = 3/5 τ3 3 2 = 2/3 lXi 1 1 3 = 3/5 lXi 2 2 Xp3!>!X12!,!X23!>!4/7!lXi!>!23:71!lK 3 R 13 = ∫ ⋅ R(τ) ⋅ eτ = 4 ⋅ 3 = 7 lXi = 32711 lK 1 ∆V13>!R13!−!X13!>!9751!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 8 5/7/!Toplotne karakteristike neke radne materije zadate su zavisnostima: q!/!w!>!B!/!U v!>!C!/!U!,!D!/!U3!,!E gde je!B>!3:8!K0)lhL*-!C>7:8!K0)lhL*-!D>!1/196!K0)lhL3*-!E!>!dpotu-!a!q-!w-!U!j!u su veli~ine stawa u osnovnim jedinicama!TJ. Radna materija mewa svoje toplotno stawe kvazistati~ki adijabatski od stawa 2)q2!>!1/2!NQb-!U2>511!L*!do stawa!3!)U3>2451!L*/ b* izvesti jedna~inu kvazistati~ke adijabatske promene stawa radne materije u obliku:!q>g)U* c* odrediti pritisak radne materije u stawu!3 b* prvi zakon termodinamike za proces sa radnim telom (diferencijalni oblik) δr = ev + q ⋅ ew )2* e(q ⋅ w ) = q ⋅ ew + w ⋅ eq )3* diferencijal proizvoda: kombinovawem jedna~ina!)2*!i!)3) sa toplotnim karakteristikama radne materije dobija se: 1!>!ev!, e(q ⋅ w ) − w ⋅ eq ( ⇒ ev!,! e(q ⋅ w ) >! w ⋅ eq ) eq q eq e B ⋅ U + C ⋅ U + D ⋅ U3 + E = B ⋅ U ⋅ q e C ⋅ U + D ⋅ U 3 + E + e(B ⋅ U ) = B ⋅ U ⋅ ( ) B +C U 3D q ⋅ mo + ⋅ (U − U2 ) = mo B U2 B q2 B + C + 3D ⋅ U eU eq ⋅ = q B U q = q2 ⋅ f B +C U 3D ⋅mo + ⋅(U − U2 ) B U2 B q = 1/2 ⋅ 21 7 ⋅ f ⇒ q = 1/2 ⋅ 21 7 3:8 + 7:8 U 3⋅1/196 ⋅mo + ⋅(U − 511 ) 3:8 511 3:8 ⋅f 3:8 + 7:8 U 3⋅1/196 ⋅mo + ⋅(U − 511 ) 3:8 511 3:8 b) ako u izvedenu jedna~inu stavimo!U>U3>2451!K, kao i vrednosti za navedene konstante!)B-!C!j!D*!dobija se: q 3 = 1/2 ⋅ 21 7 ⋅ f 3:8+ 7:8 2451 3⋅1/196 ⋅mo + ⋅(2451− 511 ) 511 3:8 3:8 >:/9!NQb dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 1 5. DESNOKRETNI KRU@NI PROCESI 6/2/ Koliko se korisnog (neto) rada mo`e najvi{e dobiti ako toplotni izvor temperature (UUJ=450 K) predaje toplotnom ponoru temperature (UUQ=300 K) R=800 kJ toplote, ako se izme|u toplotnog izvora i toplotnog ponora ukqu~i desnokretna toplotna ma{ina. Xepcjkfo !Repw !!!UJ Radno telo !Rpew !!UQ Xqplsfubokb Najvi{e korisnog rada se mo`e dobiti ako desnokretna tolotna ma{ina radi po Karnoovom desnokretnom ciklusu. U UUJ UUQ !t R EPW + R PEW U − UUQ = UJ R EPW UUJ η =ηK ⇒ Repw = − Rpew ⋅ UUJ 561 = 911 ⋅ = 2311!lK 411 U UQ ⇒ Xofup!>!Repw!,!Rpew!>!2311!−!911!>!511!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 2 6/3/ Radna supstanca vr{i potpuno povratni proces izme|u toplotnog izvora stalne temperature UUJ>2111!L i toplotnog ponora promenqive temperature. Toplotni kapacitet toplotnog ponora iznosi DUQ>311!lK0L, a temperatura toplotnog ponora se mewa od UUQ2>411!L do UUQ3>@ U toku obavqawa kru`nog proces toplotni izvor je radnoj supstanci predao 211!NK toplote. Odrediti: a) koristan rad kru`nog procesa b) termodinami~ki stepen korisnosti kru`nog procesa a) (∆T tjtufn )23 = ∆T23 − R epw UUJ (1) (∆T tjtufn )45 = ∆T 45 − R pew (UUQ )mo (2) sabirawem jedna~ina (1) i (2) dobija se: 1=− R epw R pew − (UUQ )mo UUJ ⇒ 2 R epw ⋅ UUQ3 = UUQ2 ⋅ fyq D UQ UUJ 1=− R epw D UQ ⋅ (UUQ2 − UUQ3 ) − UUQ2 − UUQ3 UUJ U mo UQ2 UUQ3 2 211 ⋅ 21 4 > 411 ⋅ fyq ⋅ 311 2111 >5:5/7!L R pew = D UQ ⋅ (UUQ2 − UUQ3 ) > 311 ⋅ (411 − 5:5/7 ) >−49/:!NX Xlps!>!Repw!,!Rpew!>!211!−!49/:!>!72/2!lX c* ηC = Xlps 72/2 > >1/72 R EPW 211 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 3 6/4/ Proveriti koji od dva prikazana kru`na procesa A i B ima ve}i stepen korisnog dejstva, ako je ∆t (vidi sliku) jednako za oba procesa. Pri kojoj temperaturi toplotnog ponora UUQ, a pri nepromeqenoj temperaturi toplotnog izvora UUJ>600 K, bi stepen korisnog dejstva kru`nog procesa B bio dva puta ve}i od stepena korisnog dejstva kru`nog procesa A. Svi procesi sa radnom telom su ravnote`ni. B U ∆t 2 600 C U 3 3 600 ∆t03 ∆t ∆t03 100 100 4 t ciklus A: UUj = 711 K, 2 4 t UUQ = 211 K R epw = R 23 = UUJ ⋅ ∆T R pew = R 34 + R 45 = ηB = ciklus B: R EPW + R PEW R EPW UUj = 711 K, R epw = R 23 + R 34 = ηC = UUJ + UUQ − ∆T UUJ + UUQ − ∆T UUJ + UUQ ⋅ + ⋅ = ⋅ (− ∆T) 3 3 3 3 3 U + UUQ 711 + 211 UUJ ⋅ ∆T + UJ ⋅ (− ∆T) 711 − 3 3 >1/53 > > UUJ ⋅ ∆T 711 R EPW + R PEW R EPW UUQ = 211 K UUJ + UUQ ∆T UUJ + UUQ ∆T UUJ + UUQ R pew = R 42 = UUQ ⋅ (−∆T) ⋅ + ⋅ = ⋅ ∆T 3 3 3 3 3 UUJ + UUQ 711 + 211 − 211 ⋅ ∆T − UUQ ⋅ ∆T + 3 3 >1/82 > > UUJ + UUQ 711 + 211 ⋅ ∆T 3 3 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike ηB = UUJ − UUJ + UUQ 3 UUJ 3 ⋅ η B = ηC ⇒ strana 4 UUJ + UUQ − UUQ 3 ηC = UUJ + UUQ 3 UUJ + UUQ UUJ + UUQ UUJ − − UUQ 3 3 3⋅ = UUJ + UUQ UUJ 3 ⇒ UUQ >1!L zadatak za ve`bawe: (1.4.) 6/5/ Proveriti koji od dva prikazana kru`na procesa A i B ima ve}i stepen korisnog dejstva, ako je ∆t (vidi sliku) jednako za oba procesa. U oba slu~aja temperatura toplotnog izvora iznosi UUJ>800 K, a temperatura toplotnog ponora UUQ=300 K. Svi procesi sa radnom materijom su ravnote`ni. B 1000 900 800 C T, K 1000 900 UUJ 800 4 700 700 600 600 3 500 400 300 5 300 2 200 ∆t03 100 s, J/(kgK) η B =1/444 dipl.ing. @eqko Ciganovi} 3 5 UUQ 2 200 ∆t03 100 0 s, J/(kgK) ∆t ∆t re{ewe: 4 UUJ 500 400 UUQ 0 T, K ηC >1/397 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 5 6/6/ Dvoatomni idealan gas obavqa proces gasnoturbinskog postrojewa koji se sastoji od dve izobare i dve adijabate (Xulov ciklus). Stawe radnog tela na ulazu u kompresor je 1(q>2!cbs-!u>26pD), na izlazu iz kompresora 2(q>6!cbs) i na ulazu u turbinu 3(u4>891pD). Stepen dobrote adijabatske kompresije je fy ηlq e =0.83, a stepen dobrote adijabatske ekspanzije η e =0.85. Odrediti: a) termodinami~ki stepen korisnog dejstva ovog ciklusa (η) b) termodinami~ki stepen korisnog dejstva ovog ciklusa za slu~aj maksimalne mogu}e rekuperacije toplote (η′) a) κ −2 2/5 −2 κ U3L!>!U2 ⋅ q 3L > 399 ⋅ 6 2/5 >!567/25!L q 2 2 U −U 567/25 − 399 U3!>!U2!,! 3L lq 2 !>! 399 + >5:1/69!L 1/94 ηe κ −2 2/5 −2 κ > 2164 ⋅ 2 2/5 >!775/95!L U5L!>!U4 ⋅ q 5L q 6 4 fy U5!>!U4!, η e ⋅ )U5l!−U4*!>!2164!, 1/96 ⋅ )775/95!−!2164*!>834/18!L η!>! U − U3 + U2 − U5 R epw + R pew 2164 − 5:1/69 + 399 − 834/18 >1/34 >///> 4 !>! R epw U4 − U3 2164 − 5:1/69 Repw!>!n!/!)r34*q>dpotu!>!n!/!dq!/!)!U4!−U3!* Rpew!>!n!/!)r52*q>dpotu!>!n!/!dq!/!)!U2!−U5!* Repw !3 !4 X23 X45 !2 !5 Rpew dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 6 b) Repw′ !3 X23 !2 !B !C R E K U P E R A T O R !4 X45 !5 Rpew′ op{ti uslov rekuperacije: U5!?!U3 uslov maksimalne rekuperacije: UB!>!U3! η′!>! )UC!>!U5* R epw (+R pew ( U − UC + U2 − UB 2164 − 834/18 + 399 − 5:1/69 >!1/4: >///> 4 !> R epw ( U4 − UC 2164 − 834/18 Repw′!>!n!/!)rC4*q>dpotu!>!n!/!dq!/!)!U4!−UC!* Rpew′!>!n!/!)rB2*q>dpotu!>!n!/!dq!/!)!U2!−UB!* U 4 U 4 5 !C 3 3L 5L t dipl.ing. @eqko Ciganovi} 5 3 2 bez rekuperacije Rsfl 2 B t sa rekuperacijom {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 7 6/7/ Sa vazduhom (idealan gas) kao radnim telom izvodi se idealan Xulov desnokretni ciklus (sve promene stawa su kvazistati~ke). Ekspaznzija je dvostepenom sa me|uzagrevawem radnog tela, a kompresija je dvostepena sa me|uhla|ewem (slika). Ako je qnby>27!cbs, qnjo>2!cbs!i ako je stepen q q q q kompresije u oba kompresora i stepen ekspanzije u obe turbine isti ( 8 = 2 = 3 = 5 ) i ako se q7 q 9 q4 q6 toplota dovodi od toplotnog izvora temperatura UUJ>U3>U5>711!L- a predaje toplotnom ponoru temperature UUQ>U7>U9>361!L, skicirati ciklus na Ut dijagramu i odrediti stepen korisnog dejstva ciklusa (η). 2 3 5 9 8 4 7 6 3 U 5 6 2 9 dipl.ing. @eqko Ciganovi} 4 8 7 t {fmlp@fvofu/zv zbirka zadataka iz termodinamike qnjo!>!q7>!q6!>!2!cbs strana 8 qnby!>!q2>!q3!>!27!cbs q3 q 5 = q4 q6 ⇒ q4>q5!>!5!cbs q 8 q2 = q7 q9 ⇒ q2>q9!>!5!cbs ⇒ q U2 = U9 ⋅ 2 q9 ⇒ q U4 = U3 ⋅ 4 q3 ⇒ q U6 = U5 ⋅ 6 q5 ⇒ q U8 = U7 ⋅ 8 q7 U2 q2 = U9 q 9 U3 q3 = U4 q 4 U5 q 5 = U6 q 6 U7 q 7 = U8 q 8 η!>! κ −2 κ κ −2 κ κ −2 κ κ −2 κ κ −2 κ 27 = 361 ⋅ 5 κ −2 κ κ −2 κ κ −2 κ 2/5 −2 2/5 5 = 711 ⋅ 27 2 = 711 ⋅ 5 5 = 361 ⋅ 2 = 482/6!L 2/5 −2 2/5 2/5 −2 2/5 2/5 −2 2/5 = 514/8!L = 514/8!L = 482/6!L U − U2 + U5 − U4 + U7 − U6 + U9 − U8 R epw + R pew >!///> 3 !>!1/46 R epw U3 − U2 + U5 − U4 Repw!>!n![)r23*q>dpotu!,!)r45*q>dpotu!]>!n!/!dq!/!)!U3!−!U2!,!U5!−!U4!* Rpew!>!n![)r67*q>dpotu!,!)r89*q>dpotu!]>!n!/!dq!/!)!U7!−!U6!,!U9!−!U8!* zadatak za ve`bawe: (1.7.) 6/8/ U energetskom postrojewu za proizvodwu elektri~ne energije primewen je rekuperativni desnokretni gasnoturbinski ciklus (Xulov ciklus) sa vazduhom (idealan gas) kao radnim telom. U kompresoru se 311!lh0i radnog tela temperature 91pD adijabatski komprimuje od 1/4!NQb do 1/9!NQb, sa stepenom dobrote ηelq>1/97. Dovo|ewem toplote radno telo se zatim zagreva do 891pD i odvodi u turbinu, gde adijabatski ekspandira sa stepenom dobrote ηefy>1/:. Za vreme odvo|ewa toplote rekuperi{e se 91& od koli~ine toplote koja bi se u najpovoqnijem slu~aju mogla rekuperisati. Skicirati proces u Ut kooedinatnom sistemu i odrediti a) stepen korisnog dejstva ciklusa b) teorijsku snagu koja stoji na raspolagawu za pogon generatora, ako se turbina i kompresor nalaze na istom vratilu a) b) η!>!1/44 Q!>!6/6!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 9 6/9/ Dvoatomni idealan gas obavqa teorijski (idealan) Otov kru`ni proces izme|u temperatura Unby>U4>UUJ>2111!L i Unjo>U2>UUQ>3:1!L. Odrediti stepen kompresije )ε>w20w3* tako da korisna ⋅ snaga motora bude najve}a kao i snagu motora ako je molski protok gasa kroz motor o >:!npm0t. ⋅ Xofup = R epw + R pew = ...= o⋅ (Nd w ) ⋅ (U4 − U3 + U2 − U5 ) ⋅ Repw!>!n!/!)r34*w>dpotu!>! o⋅ (Nd w ) ⋅ (U4 − U3 ) ⋅ Rpew!>!n!/!)r52*w>dpotu!>! o⋅ (Nd w ) ⋅ (U2 − U5 ) U2 w 3 = U3 w 2 κ −2 U4 w 5 = U5 w 4 κ −2 w U3 = U2 ⋅ 2 w3 ⇒ w U5 = U4 ⋅ 4 w5 ( ⋅ κ −2 ⇒ Xofup = o⋅ (Nd w ) ⋅ U4 − U2 ⋅ ε κ −2 + U2 − U4 ⋅ ε2− κ = U2 ⋅ ε κ −2 κ −2 = U4 ⋅ ε2− κ ) [ ] ⋅ ∂Xofup = o⋅ (Nd w ) ⋅ − U2 ⋅ (κ − 2) ⋅ ε κ −3 − U4 ⋅ (2 − κ ) ⋅ ε − κ ∂ε ∂Xofup ⇔ − U2 ⋅ (κ − 2) ⋅ ε κ −3 − U4 ⋅ (2 − κ ) ⋅ ε − κ = 1 =1 ∂ε 2 2 U 3 κ −3 2111 3⋅2/5 −3 ε = 4 > U2 ⋅ (κ − 2) ⋅ ε = U4 ⋅ (κ − 2) ⋅ ε , >!5/8 3:1 U2 Qsj!tufqfov!lpnqsftjkf!ε>5/8!npups!ptuwbsvkf!obkwf~v!tobhv κ −3 −κ X Xnby ε>5/8 dipl.ing. @eqko Ciganovi} ε {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 10 ( ) Xnby = : ⋅ 21 −4 ⋅ 31/9 ⋅ 2111 − 3:1 ⋅ 5/82/5 −2 + 3:1 − 2111 ⋅ 5/82−2/5 >51!lX Nbltjnbmob!tobhb!npupsb!j{optj! Xnby >51!lX U 4 UJ 3−4;!w>dpotu 5−2;!w>dpotu 3 5 UQ 2 t 6/:/ Radna materija (idealan gas) obavqa idealan Xulov kru`ni ciklus izme|u temperatura U3>UUJ>2144 L i U5>UUQ>3:2!L. Odrediti temperaturu radne materije posle kvazistati~ke izentropskog sabijawa u kompresoru (U2), odnosno posle kvazistati~ke izentropske ekspanzije u turbini (U4), tako da koristan rad (rad na zajedni~kom vratilu) ima maksimalnu vrednost. U 3 UJ 2−3;!q>dpotu 4−5;!q>dpotu 2 4 5 UQ t Xlpsjtubo!>!Repw!,!Rpew!>!///!>n!/!dq!/!)!U3!−!U2!,!U5!−!U4!*!>!/// Repw!>!n!/!)r23*q>dpotu!>!n!/!dq!/!)!U3!−U2!* Rpew!>!n!/!)r45*q>dpotu!>!n!/!dq!/!)!U5!−U4!* dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike U2 q2 = U5 q 5 U ⋅U U2 = 3 5 U4 κ −2 κ U3 q3 = U4 q 4 ⊕ strana 11 κ −2 κ q2 q5 ⊕ q3 = q4 U2 U = 3 U5 U4 ⇒ ⇒ ⇒ Xlpsjtubo!>!n!/!dq!/!)!U3!− ∂Xlpsjtop = n ⋅ dq ∂U4 U3 ⋅ U5 ,!U5!−!U4!* U4 U ⋅U ⋅ 3 3 5 − 2 -! U 4 U4 = U3 ⋅ U5 > 2144 ⋅ 3:2 >659/4!L ∂Xlpsjtop =1 ∂U4 !!!!!!! U2 = U3 ⋅ U5 ⇔ U43 − 2 >1 U3 ⋅ U5 2144 ⋅ 3:2 >!659/4!L > U4 659/4 X Xnby U4 U4>659/4 6/21/ Dvoatomni idealan gas obavqa realni desnokretni kru`ni proces gasnoturbinskog bloka (Xulov) izme|u temperatura Unby>6:6pD i Unjo>26pD. Molski protok gasa kroz postrojewe iznosi 31!npm0t/!). fy Stepen dobrote adijabatske kompresije je ηlq e =0.88, a stepen dobrote adijabatske ekspanzije η e =0.88. Odrediti maksimalnu snagu gasnoturbinskog bloka pri datim uslovima. 4 U 5 3 3L 5L 2 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 12 Korisno dobijen rad ima najve}u vrednost (vidi prethodni zadatak) kada je: U3l = U2 ⋅ U4 >!611!L U5l = U2 ⋅ U4 !>!611!L U3l Me|utim u ovom zadatku su adijabatska kompresija i adijabatska ekspanzija neravnote`ni (nekvazistati~ki) procesi. Uzimawem te ~iwenice u obzir dobija se: U3L − U2 U3!>!U2!,! ηlq e !>! 399 + 611 − 399 >639/:!L 1/99 U5!>!U4!, η fy e ⋅ )U5l!−U4*!>!979!, 1/99 ⋅ )611!−!979*!>655/27!L Xlpsjtubo!>!Repw!,!Rpew!>!/// ⋅ ( ) ⋅ ( ) Repw!>!n!/!)r34*q>dpotu!>!n!/!dq!/!)!U4!−U3!*!> o⋅ Nd q ⋅ (U4 − U3 ) Rpew!>!n!/!)r52*q>dpotu!>!n!/!dq!/!)!U2!−U5!*!> o⋅ Nd q ⋅ (U2 − U5 ) ⋅ ( ) Xlpsjtubo> o⋅ Ndq ⋅ (U4 − U3 + U2 − U5 ) > Xlpsjtubo!>Xnby!>! 31 ⋅ 21 −4 ⋅ (3:/2) ⋅ (979 − 639/: + 399 − 655/27 ) >59/38!lX zadatak za ve`bawe: (1.11.) 6/22/ Sa troatomnim idealnim gasom obavqa se Eriksonov desnokretni kru`ni proses sa izme|u temperatura Unby>UUj>711!L!i Unjo>UUQ>511!L. Odrediti stepen korisnog dejstva ovog ciklusa za slu~aj maksimalno mogu}e rekuperacije toplote i {rafirati na Ut dijagramu povr{nu koja odgovara rekuperisanoj toploti. re{ewe: η=0.33 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 13 6/23/ Nekom idealnom gasu dovodi se pri kvazistati~koj izotermskoj ekspanziji (2.3) R23>411!lK toplote od izotermnog toplotnog izvora temperature UUJ>2111!L, pri ~emu entropija idealnog gasa poraste za ∆T23>1/6!lK0L. Pri kvazistati~koj promeni stawa (3.4) entropija idealnog gasa opada linearno u Ut koordinatnom sistemu i pri tom se toplota predaje izotermnom toplotnom ponoru temperature UUQ>3:4 L sve dok se ne uspostavi stawe termodinami~ke ravnote`e. Od stawa (4) do po~etnog stawa (2) dolazi se kvazistati~kom izentropskom kompresijom. Skicirati promene stawa idealnog gasa u Ut koordinatama i odrediti: a) stepen korisnog dejstva ovog kru`nog ciklusa b) odrediti promenu entrpopije sistema (lK0L) c) {rafirati na Ut dijagramu povr{inu ekvivalentnu korisno dobijenom radu U UJ 2 3 UQ 4 t b* η= R epw + R pew = /// = 1/37 R epw )37&* R epw = R23 = 411 lK T3 R epw = R 23 = ∫ U)t*eT = U3 ⋅ ∆T23 ⇒ U3 = R epw 411 = = 711 L 1/6 ∆T23 T2 T4 R pew = R 34 = ∫ U)t*eT = U + U4 U3 + U4 ⋅ ∆T 34 = 3 ⋅ )−∆T23 * 3 3 T3 R pew 711 + 3:4 = ⋅ )−1/6* = −334/4 lK 3 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 14 c* ∆T tjtufn = ∆Tsbeopufmp + ∆T UJ + ∆T UQ = /// = −1/4 + 1/87 = 1/57 ∆T UJ = − lK lhL R epw 411 lK =− = −1/41 UUJ 2111 L ∆T UQ = − R pew lK − 334/4 =− = 1/87 UUQ 3:4 L d* Xlpsjtubo!>!Repw!,!Rpew!>!Repw!−! R pew Princip {rafirawja korisnog rada na Ut dijagramu je princip oduzimawa povr{ina koje predstavqaju dovedenu (Repw* i odvedenu )Rpew*!toplotu. U U 2 3 3 4 t t − Repw R pew U 2 3 > 4 t Xlpsjtubo dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 15 6/24/ Radna susptancija (idealan gas) obavqa desnokretni kru`ni proces koji se sastoji iz izobarskog dovo|ewa toplote, kvazistati~ke (ravnote`ne) adijabatske ekspanzije, izotermskog odvo|ewa toplote i kvazistati~ke (ravnote`ne) adijabatske kompresije. Toplota se radnoj supstanciji predaje od dimnih gasova (idealan gas), koji se pri tome izobarski hlade (Cp=1.06 kJ/K), od po~etne temperature!uh2>:11pD. Od radne susptancije, okolini stalne temperature up>29pD- predaje se 411!lK!toplote na povratan na~in. Odrediti stepen korisnosti ovog kru`nog procesa i skicirati ga u Ut i qw koordinatnom sistemu. U q 2 3 3 2 5 4 5 4 t w Rpew!>!R45!>!−!411!lK T5 R pew = R 45 = ∫ U)t*eT = U4 ⋅ ∆T 45 ⇒ ∆T 45 = R epw − 411 lK = = −2/14 U4 3:2 L T4 ∆T23!>!−!∆T45!>!2/14! ( (∆T tjtufn )23 (∆T ejn o hbt lK L = ∆T23 + ∆T ejno hbt ) 23 = n eh ⋅ S h ⋅ mo ) q eh3 q eh2 ∆T ejnoj hbt UEH3 = UEH2 ⋅ fyq D qEH 23 ( !!!!!!!⇒!!!!!!! ∆T ejno hbt − D qEH ⋅ mo UEH3 UEH2 ) 23 = −∆T23 >2/14! lK L ⇒ > 2284 ⋅ fyq − 2/14 >554/:!L 2/17 Repw!>!R23!>−!REH!>! − D qEH ⋅ (UEH3 − UEH2 ) > − 2/17 ⋅ (554/: − 2284 ) >883/96!lK η!>! R epw + R pew 883/96 . 411 >1/72 > R epw 883/96 zadatak za ve`bawe (1.14.) 6/25/ Vazduh (idealan gas) vr{i slede}i kru`ni proces. Od po~etnog stawa (U2>411!L) vr{i se kvazistati~ka promena stawa po zakonu prave linije u Ut koordinatnom sistemu pri ~emu se radnom telu dovodi toplota od toplotnog izvora stalne temperature UUJ>U3?U2, pri ~emu je w2>w3. Nakon toga vr{i se kvazistati~ka izentropska ekspanzija do po~etne temperature. Kru`ni proces se zatvara kvazistati~kom izotermom. Stepen korisnog dejstva ovog ciklusa iznosi η>1/36. Skicirati ciklus na Ut dijagramu i odrediti promenu entropije izolovanog sistema za najpovoqniji polo`aj temperatura toplotnog izvora i toplotnog ponora. re{ewe: ∆ttjtufn!>!85! dipl.ing. @eqko Ciganovi} K lhL {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 16 6/26/ Vazduh (idealan gas) u prvom slu~aju obavqa desnokretni Xulov kru`ni proces. U drugom slu~aju pri istom odnosu pritisaka qnby0qnjo>4, istoj dovedenoj koli~ini toplote i istoj Unby>:84!L, izentropska kompresija zamewuje se izotermskom kompresijom, pri temperaturi Unjo>4:6!L. Sve promene stawa vazduha su ravnote`ne. a) odrediti termodinami~ke stepene korisnosti kru`nih procesa za oba slu~aja b) odrediti termodinami~ke stepena korisnosti, ako se u oba prethodna slu~aja obavqaju kru`ni procesi sa potpunim regenerativnim zagrevawem radne materije b* U 4 U 4 Unby Unby 3 3 5 5 Unjo 2′ 2 t q3!>!q4!>!qnby! ! κ −2 κ q U5!>!U4! ⋅ 5 q4 q U2!>!U3! 2 q3 κ −2 κ q2!>!q5!>!qnjo 2/5 −2 2 2/5 = ! :84 ⋅ 4 4 = 4:6 ⋅ 2 dipl.ing. @eqko Ciganovi} t 2/5 −2 2/5 = 821/:!L = !399/7!L {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 17 prvi slu~aj: ηJ!>! r epw + r pew 689 − 553/4 = !1/38 = ///!> 689 r epw repw!>!r34!>!dq!/!)!U4!−!U3!*!>! 2 ⋅ (:84 − 4:6 ) >689!! lK lh rpew!>!r52!>!dq!/!)!U2!−!U5!*!> 2 ⋅ (399/7 − 821/: ) >−!533/4! lK lh drugi slu~aj: ηJJ!>! 689 − 551/5 repw + rpew = !1/35 = ///!> 689 repw lK lh lK rpew!>!r52′!,!r2′3!>!///!>!−426/:!−!235/6!>−!551/5!! lh lK r52′!>!dq!/!)!U2′!−!U5!*!>! 2 ⋅ (4:6 − 821/: ) >−!426/:! lh q 2 lK r2′3!>!U2′!/!Sh!/!mo! 2( = 4:6 ⋅ 1/398 ⋅ mo >−235/6! q3 4 lh repw!>!r34!>!dq!/!)!U4!−!U3!*!> 2 ⋅ (:84 − 4:6 ) >!689!! c* u oba slu~aja maksimalna rekuperisana toplota je jednaka i iznosi: lK rsfl!>!r52′!>!−!427! lh prvi slu~aj: r epw (+r pew ( = ///!>!1/6: r epw ( lK repw′!>!repw!.! q rek !>!373! lh ηJ′!>! lK rpew′!>!rpew!,! q rek !>!−!217! lh drugi slu~aj: r epw (+r pew ( = ///!>!1/63 r epw ( lK repw′!>!repw!.! q rek !>!373! lh ηJJ′!>! dipl.ing. @eqko Ciganovi} rpew′!>!rpew!,! q rek !>!−!217! lK lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 18 6/27/ Ciklus gasne turbine koji radi sa troatomnim idealnim gasom kao radnim telom sastoji se iz izotermskog kvazistati~kog sabijawa (2.3), izohorskog dovo|ewa toplote (3.4), adijabatske ekspanzije (4. 5) i izobarskog odvo|ewa toplote (5.2). Ako je odnos pritisaka )q40q5*>9/5 i )q30q2*>4/6- odrediti termodinami~ki stepen korisnosti kru`nog procesa (η) za slu~aj da je adijabatska ekspanzija (4.5): a) kvazistati~ka b) nekvazistati~ka sa stepenom dobrote ekspanzije ηefy>1/:6 a) !4 !U !5l !2 !3 !t q3!>!4/6/q2 U3!>!U2 U3 q3 = U4 q 4 U4 = U3 ⋅ ⇒ q U5l!>!U4! 5l q4 κ −2 κ q4 9/5 ⋅ q2 = U2 ⋅ = 3/5 ⋅ U2 q3 4/6 ⋅ q2 q2 = 3/5 ⋅ U2 ⋅ 9/5 ⋅ q2 κ −2 κ 2 = 3/5 ⋅ U2 ⋅ 9/5 2/39 −2 2/39 = 2/6!/U2 R epw = n ⋅ (r34 )w =dpotu = o ⋅ [(Nd w ) ⋅ (U4 − U3 )] !>!)Ndw*!/!2/5!/!U2 [ ] q R pew = n ⋅ (r 5l2 )q = dpotu + (r23 )U = dpotu > o ⋅ Nd q ⋅ (U2 − U5l ) + NS h ⋅ U2 ⋅ mo 2 q3 ( ( ) ( ) ) 2 R pew = o ⋅ Nd q ⋅ (− 1/6 ⋅ U2 ) + NS h ⋅ U2 ⋅ mo ! 4/6 + R pew R η!>! epw =! R epw ) ⇒ (Nd w ) ⋅ 2/5 ⋅ U2 − (Ndq ) ⋅ 1/6 ⋅ U2 + (NSh ) ⋅ U2 ⋅ mo 2 4/6 (Nd w ) ⋅ 2/5 ⋅ U2 3:/2 ⋅ 2/5 − 48/5 ⋅ 1/6 + 9/426 ⋅ mo η>! ( 3:/2 ⋅ 2/5 dipl.ing. @eqko Ciganovi} !> 2 4/6 >1/396 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 19 b) !4 !U !5 !5l !3 !2 !t ηfy e = U4 − U5 !⇒ U4 − U5l U5 = U4 − ηfy e ⋅ (U4 − U5l ) ⇒ U5 = 3/5 ⋅ U2 − 1/:6 ⋅ (3/5 U2 − 2/6 ⋅ U2 ) !>!2/66!/U2 R epw = n ⋅ (r34 )w =dpotu = o ⋅ [(Nd w ) ⋅ (U4 − U3 )] !>!)Ndw*!/!2/5!/!U2 [ ] ( q R pew = n ⋅ (r 52 )q = dpotu + (r23 )U = dpotu > Nd q ⋅ (U2 − U5 ) + NS h ⋅ U2 mo 2 ! q 3 ( ( ) ) ( ) ) 2 R pew = o ⋅ Nd q ⋅ (− 1/66 ⋅ U2 ) + NS h ⋅ U2 mo ! 4 /6 + R pew R η!>! epw =! R epw (Nd w ) ⋅ 2/5 ⋅ U2 − (Ndq )⋅ 1/66 ⋅ U2 + (NSh )⋅ U2 ⋅ mo 2 4/6 (Nd w ) ⋅ 2/5 ⋅ U2 3:/2 ⋅ 2/5 − 48/5 ⋅ 1/66 + 9/426 ⋅ mo η>! 3:/2 ⋅ 2/5 dipl.ing. @eqko Ciganovi} !> 2 4/6 >1/35 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 20 6/28/ Vazduh (idealan gas) obavqa desnokretni kru`ni proces koji se sastoji od dve kvazistati~ke (ravnote`ne) izentrope i dve nekvazistati~ke (neravnote`ne) izoterme, izme|u temperatura Unjo>411!L i Unby>911!L. Pritisak vazduha na kraju izotermske kompresije iznosi q2>1/2!NQb, a na kraju izotermske ekspanzije iznosi q4>1/9!NQb. Temperature toplotnog izvora i toplotnog ponora su stalne i iznose UUJ>961!L i UUQ>391!L. Odrediti: a) termodinami~ki stepen korisnosti kru`nog procesa, ako promena entropije izolovanog sistema za proces dovo|ewa toplote iznosi 71!K0)lhL*- odnosno promena entropije izolovanog sistema za proces odvo|ewa toplote iznosi 211!K0lhL b) promenu entropije izolovanog sistema (koji sa~iwavaju toplotni izvor, toplotni ponor, i radno telo) za slu~aj da se sve promene stawa odvijaju kvazistati~ki (ravnote`no) a) U UJ 3 U nby 4 Unjo 2 5 UQ t repw + rpew = /// repw repw!>!r34!>!/// η!>! rpew!>!r52!>!/// q3!>!q2 ⋅ U3 U 2 κ 2/5 κ −2 > 2 ⋅ 21 6 ⋅ 911 2/5 −2 >!42/216!Qb 411 proces 2-3: ∆t34!>! dq mo U4 q 9 K = 49:! − S h mo 4 = − 398 mo 42 U3 q3 lhL (∆T tjtufn )34 !>!∆t34!−! r 34 UUJ r34> 961 ⋅ (49: − 71) >38:/76! dipl.ing. @eqko Ciganovi} ⇒ r34!>!UUJ ⋅ (∆t 34 − (∆t tjtufn ) ) 34 lK lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike q5!>!q4 ⋅ U5 U 4 strana 21 κ 2/5 κ −2 > 9 ⋅ 21 6 ⋅ 411 2/5 −2 >!1/37!/216!Qb 911 proces 4-1: ∆t52!>! d q mo U2 q 2 K = −49:! − S h mo 2 = − 398 mo !)uo~iti da je!∆t52>−∆t23* 1/37 U5 q5 lhL (∆T tjtufn )52 >!∆t52!−! r52 ⇒ Uuq r52>! 391 ⋅ (−49: − 211) >−!247/:3! r52!>!UUQ ⋅ (∆t 52 − (∆t tjtufn )52 ) kJ kg lK lh lK rpew!>!r52!>!−!247/:3! lh repw!>!r34!>!38:/76! η!>! repw + rpew 38:/76 − 247/:3 !>!1/62 = repw 38:/76 b) repw′!>! (r 34 )U =dpotu > U3 ⋅ S h mo rpew′!>! (r 52 )U =dpotu > U5 ⋅ Sh mo q3 42 lK = 911 ⋅ 398 ⋅ mo = 422! 9 lh q4 2 lK q5 = −227! = 391 ⋅ 398 ⋅ mo 1/37 lh q2 ∆t tjtufn = ∆t sbeopufmp + ∆t UJ + ∆t UQ = /// = −476/: + 525/4 = 59/5 ∆t UJ = − repw 422 K =− = −476/: UUJ 961 lhL ∆t UQ = − −227 rpew K =− = 525/4 UUQ 391 lhL dipl.ing. @eqko Ciganovi} K lhL {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 22 6/29/ Parno turbinsko postrojewe radi po idealnom Rankin−Klauzijus–ovom kru`nom procesu izme|u qnjo>1/2!cbs!i qnby>21!cbs. U kondenzatoru, se rashladnoj vodi predaje toplota i pri tom se rashladna ⋅ voda n x >4!lh0t, zagreje od stawa B)q>2!cbs-!u>21pD* do stawa B!)q>2!cbs-!u>31pD*/ Snaga napojne pumpe iznosi 0.2!lX. Skicirati kru`ni proces na Ut dijagramu i odrediti: a) termodinami~ki stepen korisnog dejstva ciklusa b) snagu turbine 2 U 3 3 2 5 4 C 5 4 B t a) q>1/17!cbs- ta~ka 4: lK i5!>!2:2/:! lh i2!>!2:4/72!!! (kqu~ala te~nost) lK t5!>!1/75:3! lhL q!>21!cbs- ta~ka 1: y>1 t>1/75:3! lK )te~nost* lhL lK lh q!>2!cbs ta~ka 3: ⋅ ⋅ ⋅ ⋅ ⋅ X 23 = − ∆ I23 > − nq ⋅ (i2 − i 5 ) > X q ⋅ nq = ⋅ ⋅ R 23 = ∆ I23 + X 23 Prvi zakon termodinamike za proces u pumpi: ⇒ ⋅ lh −1/2 XQ > >6/: ⋅ 21 −3 t i 5 − i2 2:2/: − 2:4/72 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 23 ⋅ Prvi zakon termodinamike za proces u kondenzatoru: ⋅ ⋅ I2 = I3 ⋅ ⋅ ⋅ nq ⋅ i 5 + n x ⋅ (iC − i B ) ⋅ ⋅ >///>! 6/: ⋅ 21 −3 ⋅ 2:2/: + 4 ⋅ (95 − 53) >3422/4! 6/: ⋅ 21 −3 nq lK t4!>8/3:6! lh )q>1/2!cbs-!i>3422/4! ta~ka A: q!>21!cbs- u>21pD ⇒ ta~ka C: q!>21!cbs- u>31pD ⇒ ta~ka 2: q!>21!cbs- t>8/3:6! i3!>!4266/6!!! ⋅ nq ⋅ i 4 + n x ⋅ i B > n q ⋅ i 5 + n x ⋅ i C ⇒ ⋅ i4!>! ⋅ ⋅ R 23 = ∆ I23 + X 23 lK lh lK * lh lK lhL lK lh lK iC!>!95! lh iB!>!53! )pregrejana para* lK lh a) ⋅ η= ⋅ R epw + R pew ⋅ >!///>! R epw ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 285/8 − 236 >1/39 285/8 R epw = R 23 = n q ⋅ (i 3 − i2 ) > 6/: ⋅ 21 −3 ⋅ (4266/6 − 2:4/72) >285/8!lX R epw = R 45 = n q ⋅ (i 5 − i 4 ) > 6/: ⋅ 21 −3 ⋅ (2:2/: − 3422/4 ) >−236!lX b) ⋅ Prvi zakon termodinamike za proces u turbini: ⋅ ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⋅ X 23 = − ∆ I23 > − nq ⋅ (i 4 − i 3 ) > − 6/: ⋅ 21 −3 ⋅ (3422/4 − 4266/6 ) >61!lX> X uvs dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 24 6/2:/ U parnom kotlu uz konstantan pritisak od q>51!cbs od vode temperature 41pD proizvodi se vodena para temperature u>611pD. Ta para izentropski (ravnote`no) ekspandira u turbini do pritiska od q>1/17!cbs, a zatim se odvodi u kondenzator. Napojna pumpa vra}a u kotao pothla|en kondenzat. Toplota potrebna za proizvodwu pare u parnom kotlu obezbe|uje se hla|ewem dimnih gasova (idealan gas) od po~etne temperature 2711pD do temperature od 311pD. Koli~ina dimnih gasova je 6611!lnpm0i- a wihov zapreminski sastav 29&!DP3-!:&P3-!84&O3 . Skicirati promene stawa vodene pare na Ut dijagramu i odrediti: a) termodinami~ki stepen korisnog dejstva kru`nog procesa c* snagu turbine 3 U 2 4 5 t ta~ka 1: q!>51!cbsu>41pD lK lK - !t2>1/544! i2!>!23:/4! lhL lh )te~nost* q>51!cbsu>611pD lK lK - t3!>!8/198! i3!>!4556! lhL lh (pregrejana para) ta~ka 2: ta~ka 3: q!>1/17!cbs- y4!>!1/95- i4!>!3291/6!!! ta~ka 4: q!>1/17!cbs- i5!>!236/:!!! lK lhL (vla`na para) lK lhL (te~nost) t4>!t3!>!8/198! lK lh t5>!t2>!1/544! lK lh dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike η!>! strana 25 repw + rpew 4426/8 − 3165/7 = ///!> = !1/49 4426/8 repw lK lh lK rpew!>!r45!>i5!−!i4!>!236/:!−!3291/6>−3165/7! lh repw!>!r23!>!i3!!−!i2!>!4556!−!23:/4!>!4426/8! c* analiza dimnih gasova: N eh = sDP3 ⋅ NDP3 + sP3 ⋅ NP3 + sO3 ⋅ NO3 > 1/29 ⋅ 55 + 1/1: ⋅ 43 + 1/84 ⋅ 39 > Neh!>42/35! d qeh = lh lnpm ( ) 2 ⋅ sDP3 ⋅ NDP3 ⋅ d qDP3 + sP3 ⋅ NP3 ⋅ d qP3 + sO3 ⋅ NO3 ⋅ d qO3 > N eh 2 lK ⋅ (1/29 ⋅ 55 ⋅ 1/96 + 1/1: ⋅ 43 ⋅ 1/:2 + 1/84 ⋅ 39 ⋅ 2/15 ) >1/:9! 42/35 lhL ⋅ 6611 lh ⋅ 42/35 >58/8! = o eh ⋅ N eh > 4711 t d qeh = ⋅ n eh ⋅ prvi zakon termodinamike za proces u parnom kotlu: ⋅ ⋅ ⋅ ⋅ nq ⋅ i2 + n eh ⋅ d qeh ⋅ Uh2 = nq ⋅ i 3 + n eh ⋅ d qeh ⋅ Uh3 ⋅ nq = ⋅ n eh ⋅ d qeh ⋅ )Uh2 − Uh3 * i3 − i2 > ⋅ ⋅ ⋅ ⇒ ⋅ ⋅ ⋅ 58/8 ⋅ 1/:9 ⋅ )2711 − 311* lh >2:/85! 4556 − 23:/4 t Prvi zakon termodinamike za proces u turbini: ⋅ ⋅ R 23 = ∆ I23 + X 23 R 23 = ∆ I23 + X 23 ⋅ X 23 = − ∆ I23 > − nq ⋅ (i 4 − i 3 ) > −2:/85 ⋅ (3291/6 − 4556 ) >36!NX> X uvs dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 26 6/31/ Parnoturbinsko postrojewe radi po Rankin-ovom kru`nom procesu. Stepen dobrote adijabatske ekspanzije u turbini iznosi ηefy>1/9, a stepen dobrote adijabatske kompresije u pumpi iznosi ηelq>1/:7. Stawe vodene pare na ulazu u turbinu je q>51!cbs i u>431pD, a pritisak u kondenzatoru kf!q>1/13!cbs. Skicirati promene stawa vodene pare na Ut i it dijagramu i odrediti: a) termodinami~ki stepen korisnog dejstva ciklusa (η) b) termodinami~ki stepen korisnog dejstva Karnoovog ciklusa koji radi izme|u istih temperatura toplotnog izvora i toplotnog ponora )ηL* i U 3 3 2L 2 2 4L 2L 5 t 4L 4 4 t 5 b* q>51!cbs- ta~ka 2: i3>!4121! lK lh t3>!7/557! ta~ka 3k: q!>1/13!cbs- y4l!>!1/84- i4l!>!2979/:!!! ta~ka 3: q!>1/13!cbs- ηfy e = i3 − i 4 i3 − i4l u>431pD ⇒ (pregrejana para) lK lhL t>7/557! lK lhL lK lh ηefy>1/9 i4!>!i3!−! ηfy e (i3 − i 4l ) = i4!>!4121!−! 1/9 ⋅ (4121 3 − 2979/: ) = 31:8/2! ta~ka 4: q>1/13!cbs- lK i5!>!84/63! lh dipl.ing. @eqko Ciganovi} (vla`na para) y>1 lK ! (vla`na para) lh (kqu~ala te~nost) lK t5!>!1/3:1:! lhL {fmlp@fvofu/zv zbirka zadataka iz termodinamike q!>51!cbs- ta~ka 1k: i2l!>!88/:7!!! ta~ka 1: i 5 − i2l ηlq e = i 5 − i2 strana 27 t>1/3:1:! lK )te~nost* lhL lK lh ηelq>1/:7 i −i lK i2!>!i5!.− 5 lq 2l = 89/25! lh ηe q!>51!cbs- ⇒ 84/63 − 89/25 lK = 89/25! (te~nost) 1/:7 lh + rpew r 3:42/: − 3134/7 = ///!> = !1/42 η!>! epw 3:42/: repw lK lK rpew!>!r45!>i5!−!i4!>!−!3134/7! repw!>!r23!>!i3!!−!i2!>!3:42/:! lh lh i2!>!84/63!.− c* UUJ − UUQ 6:4 − 3:1/6 = 1/62 = ///!> 6:4 UUJ UUJ!>!U3!>!6:4!L UUQ!>!U4!>!U5!>!)Ulmk*q>1/13!cbs!>!3:1/6!L ηL!>! 6/32/ Idealni Rankin-Klauzijusov ciklus obavqa se sa vodenom parom izme|u pritisaka qnjo>1/15!cbs i qnby>51!cbs, sa pregrejanom vodenom parom (u>571pD*!na ulazu u turbinu. Za rekuperativno zagrevawe napojne vode (u zagreja~u me{nog tipa), do temperature od uC>215/9pD, iz turbine se pri pritisku pe ⋅ q4>2/3!cbs oduzima deo qbsf!) n 4>291!lh0i*!(slika). Zanemaruju}i radove napojnih pumpi, skicirati proces na Ut dijagramu i odrediti: a) termodinami~ki stepen korisnosti ovog kru`nog procesa b) snagu parne turbine Repw !2 !3 !C !4 Xuvs !B !6 !5 Rpew dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 28 U 3 2 B 4 C 6 5 t b* u>571pD q>51!cbs- ta~ka 2: (pregrejana para) lK lK - t3!>!7/:76! i3!>!4464! lhL lh ta~ka 3: q!>2/3!cbs- y4!>!1/:5- i4!>!3659/5!!! ta~ka 4: q>1/15!cbs- y5!>!1/92- i5!>!31:2/9!!! t>7/:76! lK lhL (vla`na para) lK lhL (vla`na para) lK lh t>7/:76! lK lh q>1/15!cbsy>1 lK lK -t6!>!1/5336! i6!>!232/53! lhL lh ta~ka 5: ta~ka A = ta~ka 5 q>!2/3!cbs ta~ka B: iC!>!54:/5! (kqu~ala te~nost) (jer se zanemaruje rad pumpe) u>215/9pD )kqu~ala te~nost) lK lh ta~ka 1 = ta~ka B! dipl.ing. @eqko Ciganovi} (jer se zanemaruje rad pumpe) {fmlp@fvofu/zv zbirka zadataka iz termodinamike ⋅ η= ⋅ R epw + R pew ⋅ >!///>! R epw ⋅ ⋅ strana 29 2218/28 − 761/34 >1/52 2218/28 ⋅ R epw = R 23 = n⋅ (i 3 − i2 ) > 1/49 ⋅ (4464 − 54:/5 ) >2218/28!lX ⋅ ⋅ ⋅ ⋅ Rpew = R 56 = n− n4 ⋅ (i6 − i5 ) > (1/49 − 1/16 ) ⋅ (232/53 − 31:2/9 ) >−761/34lX prvi zakon termodinamike za proces u me{nom zagreja~u vode: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⇒ ⋅ ⋅ I2 = I3 ⋅ ⋅ ⋅ ⋅ i − iB ⋅ ⋅ n− n 4 ⋅ i B + n 4 ⋅ i 4 = n⋅ iC ⇒ n = n4 ⋅ 4 i C − iB ⋅ ⋅ i − iB 3659/5 − 232/53 lh >1/49! > 1/16 ⋅ n = n4 ⋅ 4 54:/5 − 232/53 t iC − i B c* ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u parnoj turbini: R 23 = ∆ I23 + X 23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ X 23 = − ∆ I23 > I2 − I3 > n⋅ i 3 − n 4 ⋅ i 4 + n− n 4 ⋅ i 5 >567/:5!lX> X uvs 6/33/ Vodena para obavqa Rankin-Klauzijusov ciklus (slika kao u prethodnom zadatku) izme|u pritisaka qnjo>1/2!cbs i qnby>2!cbs. U kotlu se voda zagreva i isparava. Suvozasi}ena vodena para ulazi u turbinu gde ekspandira kvazistati~ki adijabatski. Pri ekspanziji se iz turbine oduzima jedan deo pare na pritisku od q>1/4!cbs i koristi za rekuperativno zagrevawe napojne vode u me{nom zagreja~u od temperature koja vlada u kondenzatoru do temperature od 7:/23pD. Zanemaruju}i radove napojnih pumpi odrediti snagu turbine ako kotao proizvodi 2!lh0t pare i skicirati procese na Ut dijagramu. U 2 B 3 4 C 6 5 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 30 q>2!cbsy>2 lK lK - t3!>!8/47! i3!>!3786! lhL lh ta~ka 2: ta~ka 3: q!>1/4!cbs- y4!>!1/:5- i4!>!3595/:!!! ta~ka 4: q>1/2!cbs- y5!>!1/9:- i5!>!3431/:!!! ta~ka 5: q>1/2!cbs- (suva para) t>8/47! lK lhL (vla`na para) lK lhL (vla`na para) lK lh t>8/47! lK lh y>1 (kqu~ala te~nost) lK i6!>!2:2/:! lh ta~ka A = ta~ka 5! (jer se zanemaruje rad pumpe) q>!1/4!cbs- ta~ka B: iC!>!39:/4! u>7:/23pD (kqu~ala te~nost) lK lh ta~ka 1 = ta~ka B! (jer se zanemaruje rad pumpe) prvi zakon termodinamike za proces u me{nom zagreja~u vode: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⇒ ⋅ ⋅ I2 = I3 ⋅ ⋅ ⋅ ⋅ n− n 4 ⋅ i B + n 4 ⋅ i 4 = n⋅ iC ⋅ 39:/4 − 2:2/3 lh n4 > 2 ⋅ >1/154! 3595/: − 2:2/3 t ⇒ ⋅ ⋅ n 4 = n⋅ iC − i B i4 − i B ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u parnoj turbini: R 23 = ∆ I23 + X 23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ X 23 = − ∆ I23 > I2 − I3 > n⋅ i 3 − n 4 ⋅ i 4 + n− n 4 ⋅ i 5 >!453!lX!> X uvs dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 31 6/34/ Parno turbinsko postrojewe (slika), radi po Rankinovom kru`nom procesu. U parnoj turbini nekvazistati~ki adijabatski {iri se pregrejana vodena para stawa 3)q>36!cbs-!u>571pD* do pritiska q5 >1/15!cbs. Deo pare pri pritisku q4>4!cbs!se oduzima iz turbine radi regenerativnog zagrevawa napojne vode (u zagreja~u vode povr{inskog tipa) od temperature!)uLMK*Q5!do temperature )uLK*Q4. Ako prvi deo turbine (do oduzimawa pare) radi sa stepenom dobrote ηefy>1/:!i masenim protokom ⋅ ⋅ n >23/6!lh0t!i ako je korisna snaga turbine X uvs >22!NX, zanemaruju}i rad napojnih pumpi odrediti: a) toplotni protok koji para predaje okolini u kondenzatoru b) stepen dobrote adijabatske ekspanzije u drugom delu turbine (nakon oduzimawa pare) c) termodinami~ki stepen korisnog dejstva ciklusa d) skicirati procese sa vodenom parom na Ut dijagramu Repw !2 !3 !C ⋅ ⋅ n !4 n4 Xuvs ⋅ ⋅ n− n 4 !B !6 !5 Rpew U !3 2 B 4 C 6 dipl.ing. @eqko Ciganovi} !4l 5l !5 !t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 32 u>571pD lK t3!>!8/313! lhL q>36!cbs- ta~ka 2: lK i3!>!4484! lh q!>4!cbs- ta~ka 3k: i4l!>!3927/:!!! lK lhL (pregrejana para) lK lh q!>4!cbs- ta~ka 3: i4!>!3982/8!!! t>8/313! (pregrejana para) lK lh t4!>8/433! q>1/15!cbs- ta~ka 4k: y5l!>!1/97- ηfy e = i3 − i 4 >1/: i3 − i4l lK lhL t>8/433! i5l!>!3324/5!!! q>1/15!cbs- ta~ka 5: lK lhL (vla`na para) lK lh y>1 (kqu~ala te~nost) lK i6!>!232/53! lh ta~ka A = ta~ka 5! (jer se zanemaruje rad pumpe) q>!1/15!cbs- ta~ka B: y>1 (kqu~ala te~nost) lK iC!>!672/5! lh ta~ka 1 = ta~ka B! (jer se zanemaruje rad pumpe) prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ograni~enom isprekidanom konturom: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⇒ ⋅ ⋅ ⋅ ⋅ ⋅ n− n 4 ⋅ i B + n 4 ⋅ i 4 = n⋅ iC ⋅ 672/5 − 232/53 lh >3! n 4 > 23/6 ⋅ 3982/8 − 232/53 t dipl.ing. @eqko Ciganovi} ⋅ I2 = I3 ⇒ ⋅ ⋅ n 4 = n⋅ iC − i B i4 − i B {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 33 ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u parnoj turbini: R 23 = ∆ I23 + X 23 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ X 23 = − ∆ I23 > I2 − I3 > n⋅ i 3 − n 4 ⋅ i 4 + n− n 4 ⋅ i 5 >! X uvs ⋅ i5!>! ⋅ ⋅ n⋅ i 3 − X uvs − n 4 ⋅ i 4 ⋅ ⋅ n− n4 i′!=!i5!!=!i″ > 23/6 ⋅ 4484 − 22 ⋅ 21 4 − 3 ⋅ 3982/8 lK >3531/:! 23/6 − 3 lh ta~ka 4 je u vla`noj pari b* ⋅ ⋅ ⋅ ⋅ R lpoe!>! R 56> n− n4 ⋅ (i 6 − i 5 ) !>! 2(23/6 − 3 ) ⋅ (232/53 − 3531/: ) >−35/2!NX c* ηfy e = i4 − i 5 3982/8 − 3531/: > >1/79 i4 − i5l 3982/8 − 3324/5 c) ⋅ ⋅ R epw + R pew η= ⋅ >!///>! R epw ⋅ ⋅ 46/2 − 35/2 >1/42 46/2 ⋅ R epw = R 23 = n⋅ (i 3 − i2 ) > 23/6 ⋅ (4484 − 672/5 ) >46/2!NX ⋅ ⋅ ⋅ ⋅ R epw = R 56 = n− n 4 ⋅ (i 6 − i 5 ) > (23/6 − 3 ) ⋅ (232/53 − 3531/: ) >−!35/2!NX 6/35/ Sa vodenom parom kao radnim telom, izvr{ava se Rankin−Klauzijus−ov kru`ni proces sa maksimalnom regeneracijom toplote. Regeneracija toplote, koja se odvija sa beskona~no mnogo predajnika toplote povr{inskog tipa, naizmeni~no povezanih sa beskona~no mnog toplotno izolovanih turbina, vr{i se sa ciqem predgrevawa napojne vode pre ulaza u parni kotao. Kru`ni proces se odvija izme|u pritisaka qnjo>1/16!cbs i qnby>61!cbs i najve}om temperaturom u tokou procesa od unby>511pD. Kotao ⋅ proizvodi n >1/2!lh0t!pare, a procesi u turbinama su ravnote`ni (kvazistati~ki). Skicirati proces na Ts dijagramu i zanemaruju}i rad napojne pumpe, odrediti: a) termodinami~ki stepen korisnosti kru`nog procesa b) snagu turbine visokog pritiska, UWQ c) snagu turbine niskog pritiska, UOQ, (sve turbine osim prve) d) relativno pove}awe stepena korisnog dejstva (%) u odnosu na ciklus bez regeneracije toplote(sa samo jednom turbinom) dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 34 U U 3 Unby 2 4 B B 4 2 qnby 5 qnjo 6 5 t t napomena: {rafiran povr{ina (ispod linije A−1) i povr{ina ispod stepenaste linije 3−4 je jednaka i predstavqa maksimalno mogu}u regenerisanu (rekuperisanu) toplotu u ovom ciklusu q>1/16!cbsy>1 lK lK -! t6>!1/5872 i6!>!248/94! lhL lh ta~ka 5: ta~ka A = ta~ka 5! (jer se zanemaruje rad pumpe) q>61!cbsy>1 lK lK t2>3/:32! i2!>!2265/5! lhL lh ta~ka 1: u>511pD lK t3!>!7/75! lhL q>61!cbs- ta~ka 2: lK i3!>!42:4! lh (kqu~ala te~nost) !u2>374/:2pD (pregrejana para) u4>!u2>374/:2pD-!!!!!t4>t3!>!7/75! ta~ka 3: i4!>!3:51! (kqu~ala te~nost) lK lh lK lhL (pregrejana para) (ova vrednost se ~ita sa it dijagrama za vodenu paru) dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 35 ∆t45!>!−∆tB2!(uslov ekvidistantnosti) q>1/16!cbs- ta~ka 4: t5!−!t4!>!tB!−!t2!!!!!⇒!!!!!t5!>!tB!−!t2!,!t4!>1/5872!−!3/:32!,7/75!>5/2:6! y5>1/58 !i5>2387/8 lK lhL lK lh a) η!>! repw + rpew 3349/7 − 2249/: = ///!> = !1/55 3349/7 repw lK lh lK rpew!>!r56!>i6!−!i5!>!248/94!−!2387/8>−2249/:! lh repw!>!r23!>!i3!!−!i2!>!42:4!−!2265/5!>!3149/7! c* prvi zakon termodinamike za proces u UWQ: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⋅ ⋅ X 23 = − ∆ I23 > I2 − I3 > n⋅ (i3 − i 4 ) >! 1/2⋅ (42:4 − 3:51) >36/4!lX!> X UWQ d* prvi zakon termodinamike za proces u UOQ: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⋅ ⋅ X 23 = R 23 − ∆ I23 > R sfl − ∆ I23 > n⋅ (i B − i2 ) − n⋅ (i 5 − i 4 ) >! X UOQ ⋅ ⋅ X UOQ > 1/2 ⋅ (248/94 − 2265/5 ) − 1/2 ⋅ (2387/8 − 3:51) >75/8!lX!> X UOQ e* U 3 B 6 C t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike η′!>! strana 36 r epw (+r pew ( 4166/28 − 29:1/18 = ///!> = !1/49 r epw ( 4366/28 lK lh lK rpew′>!rC6!>i6!!−!iC!>!248/94!−!3138/:>−29:1/18! lh repw′!>!rB3!>!i3!!−!iB!>!42:4!−!248/94!>!4166/28! ta~ka C qC>!1/16!cbs-!!!!!tC!>t3!>!7/75! y4!>!1/89- i4!>!3138/:! η′!;!211!>!)!η!−!η′!*!;!y lK lhL (pregrejana para) lK lh ⇒ y= η − η( 1/55 − 1/49 ⋅ 211 >26/9& > η( 1/49 zadatak za ve`bawe (1.25.) 6/36/ Parni kotao proizvodi paru stawa 3)q>31!cbs-!u>471pD*/!Para se po izlasku iz kotla deli: jedan deo ide u turbinu, a drugi deo se prigu{uje. Prigu{ena para se zatim me{a sa onom koja je kvazistati~ki adijabatski ekspandirala u turbini, a dobijena me{avina odvodi u kondenzator u kojoj se kondezuje na 231pD. Dobijeni kondenzat se pumpom vra}a u kotao. Snaga turbine iznosi 2!NX, a toplota predana okolini u kondenzatoru iznosi 6/:!NX. Skicirati procese sa paroma na Ut koordinatnom sistemu i odrediti: a) koliko pare proizvodi kotao, koliko se prigu{uje a koliko ide u turbinu b) termodinami~ki stepen korisnosti ovog postrojewa ,R23 2 3 XQ XUVS 4 7 5 6 −R67 ⋅ re{ewe: nlpubp >3/7 lh ⋅ lh ⋅ lh -! n uvscjob >2/:5 - n wfoujm >1/77 -!η>1/25 t t t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 37 6/37/ Vodena para stawa 2)u>511pD-!q>91!cbs*!kvazistati~ki izentropski ekspandira u turbini visokog pritiska do stawa!4)q>5!cbs*-!posle ~ega joj se izobarski dovodi r45>599!lK0lh toplote. Nakon dovo|ewa toplote para kvazistati~ki izentropski ekspandira u turbini niskog pritiska do stawa )q>1/19!cbs*/ Proces se daqe nastavqa po idealnom Rankinovom ciklusu (slika). Skicirati ciklus na Ut dijagramu i odrediti termodinami~ki stepen korisnosti ovog kru`nog procesa. 2 3 ,R23 XUWQ 5 4 XQ ,R45 XUOQ 7 6 −R67 U 3 5 2 4 7 6 t ta~ka 2: u>511pD lK t3!>!7/469! lhL q>91!cbs- lK i3!>!4246! lh dipl.ing. @eqko Ciganovi} (pregrejana para) {fmlp@fvofu/zv zbirka zadataka iz termodinamike ta~ka 3: q!>5!cbs- y4!>!1/9:- i4!>!3625!!! ta~ka 4: q!>5!cbs- i5!>!4113!!! lK lh y6!>!1/:1- q>1/19!cbs- lK -! i7!>!284/:! lh r45>599! lK lh (vla`na para) lK lh lK lhL t6!>t5>8/558! (pregrejana para) lK lhL (vla`na para) lK lh y>1 (kqu~ala te~nost) lK t7>!1/6:38 lhL q!>91!cbs- ta~ka 1: η!>! lK lhL i6!>!3446/9!!! ta~ka 6: i2!>!293/7!!! t>7/469! t5>8/558! q>1/19!cbs- ta~ka 5: strana 38 t2>!t7>!1/6:38! lK lhL (te~nost) lK lh repw + rpew 4551/5 − 3268/2 = ///!> = !1/48 4551/5 repw repw!>!r23!,!r45!>!i3!!−!i2!,!r45!>!4246!−!293/7!,!599!>!4551/5! rpew!>!r67!>!i7!−!i6!>!284/:!−!3446/9>−3268/2! dipl.ing. @eqko Ciganovi} lK lh lK lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 39 6/38/ Parno turbinsko postrojewe radi po Rankin-Klauzijus-ovom kru`nom procesu sa dvostepenim adijabatskim {irewem vodene pare. Pregrejana vodena para stawa 2)q2>211!cbs-!u2>551pD* {iri se u turbini visokog pritiska nekvazistati~ki, sa stepenom dobrote ηEUWQ>1/:, do pritiska!q3>6!cbs. Potom se para izobarski zagreva do temperature u4>411pD, nakon ~ega se, u turbini niskog pritiska, nekvazistati~ki {iri, sa stepenom dobrote ηEUOQ>1/9, do pritiska q5>1/16!cbs, koji vlada u kondenzatoru. a) da li je termodinami~ki stepen korisnosti ovog kru`nog procesa mogu}e dosti}i u RankinKlauzijus-ovom kru`nom procesu sa jednostepenim adijabatskim {irewem vodene pare stawa 2 do pritiska q5, uz maksimalno pove}awe stepena dobrote procesa u turbini b) koliko mimimalno mora da iznosi stepen dobrote jednostepene adijabatske ekspanzije da bi dostigli stepen korisnog dejstva koji ima navedeni ciklus sa dvostepenom adijabatskom ekspanzijom U svim slu~ajevima zanemariti rad napojne pumpe. 2 !i 4 3l 3 5l 5 1 6 !t ta~ka 1: u>551pD q>211!cbs- (pregrejana para) lK lK - t2!>!7/488! i2!>!4322! lhL lh ta~ka 2k: q!>6!cbs- y3l>1/:2- i3l!>!366:/3! dipl.ing. @eqko Ciganovi} t3l>t2>7/488! lK lhL (vla`na para) lK lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike ta~ka 2: strana 40 ηeuwq = q!>6!cbs- i3!>! i2 − η euwq ⋅ (i2 − i 3l ) >3735/5!!! ta~ka 3: i2 − i3 >1/: i2 − i3l lK lh (vla`na para) u>411pD q>6!cbs- (pregrejana para) lK lK - t4!>!8/574! i4!>!4173! lhL lh ta~ka 4k: q>1/16!cbs- y5l!>!1/99- i5l!>!3381/3! ta~ka 4: q!>1/16!cbs- t>8/574! q>1/16!cbs- (vla`na para) lK lh ηeuoq = i5!>! i 4 − η euoq ⋅ (i 4 − i 5l ) >3544/6! ta~ka 5: lK lhL i2 − i3 >1/9 i2 − i3l lK lh y>1 (vla`na para) (kqu~ala te~nost) lK i6!>!248/94! lh ta~ka 0 = ta~ka 5: η!>! (jer se zanemaruje rad pumpi) repw + rpew 4621/9 − 33:6/67 = ///!> = 1/46 repw 4621/9 repw!>!r12!,!r34>!i2!−!i1!,!i4!−!i3!>!4322−248/94!,!4173!−3735/5>4621/9! rpew!>!r56!>!i6!−!i5!>!248/94!−!3544/6!>−!33:6/67! dipl.ing. @eqko Ciganovi} lK lh lK lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 41 ciklus sa jednostepenom ekspanzijom sa maksimalnim stepenom dobrote!ηe>2 2 !i B 1 6 !t ta~ka A:! q!>1/16!cbs- yB>1/85- iB!>!2:41/:!!! η′!>! ( ( + rpew repw ( repw = ///!> t>7/488! kJ (vla`na para) kgK lK lh 4184/3 − 28:4/26 = !1/53 4184/3 ( repw !>!r12!>!i2!−!i1!>!4322−248/94!!>!4184/3! lK lh ( rpew !>!rB6!>i6!−!iB!>!248/94!−!2:41/:!>−!28:4/26! lK lh kako je η′!?!η- u ciklusu sa jednostepenom adijabatskom ekspanzijom sa maksimalnim pove}awem stepena dobrote ekspanzije ( ηfy e = 1) mo`e se dosti}i stepen korisnog dejstva navedenog ciklusa sa dvostepenom adijabatskom ekspanzijom. dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 42 c*! ciklus sa jednostepenom adijabatskom ekspanzijom sa stepenom dobrote ekspanzije ηnjo e 2 !i B C 1 6 !t η>1/42 (( r epw !>!r12!>!i2!−!i1 (( r pew >!rC6!>i6!−!iC !η!>! (( (( r epw + r pew (( r epw = i2 − i1 + i6 − iC i2 − i1 ⇒ iC> i2 − i 1 + i 6 − η ⋅ (i2 − i 1 ) iC!> 4322 − 248/94 + 248/94 − 1/42 ⋅ (4322 − 248/94 ) >!3369/4! ηnjo = e lK lh i2 − iC 4322 − 3369/4 > >1/85 4322 − 2:41/: i2 − i B dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 43 6/39/ Parno turbinsko postrojewe radi sa dvostepenim {irewem i me|uzagrevawem pare uz jednostepeno regenerativno zagrevawe napojne vode od temperature koja vlada u kondenzatoru do temperature od uC>323pD (slika). Zanemaruju}i radove napojnih pumpi i ako je: − pritisak pare u kondenzatoru 7!lQb − pritisak pare u kotlu 23!NQb − pritisak pare na izlazu iz turbine visokog pritiska q>5!NQb − temperatura pare na ulazu u turbinu visokog pritiska u>641pD − temperatura pare na ulazu u turbinu niskog pritiska u>641pD ⋅ − protok pare kroz turbinu visokog pritiska n =1/5!lh0t ⋅ ⋅ − protok pare kroz turbinu niskog pritiska n− n4 =1/4!lh0t − stepen dobrote adijabatske ekspanzije u turbini niskog pritiska ηeuoq>1/93 a) odrediti stepen dobrote adijabatske ekspanzije u turbini visogog pritiska, ηeuwq b) odrditi termodinami~ki stepen korisnog dejstva kru`nog procesa c) skicirati promene stawa vodene pare na hs dijagramu 2 3 ⋅ n R23 XUWQ C ⋅ n4 4 5 R45 B 7 XUOQ 6 R67 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike a) η euwq = strana 44 i3 − i4 4537 − 4286/6 = ///> = 1/87 4537 − 41:8/7 i 3 − i 4l lK i3!>!4537! lh u>!641pD lK t3!>!7/6996! lhL ta~ka 3k: q!>51!cbs- q>231!cbs- ta~ka 2: i4l!>!41:8/7!!! t>7/6996! (pregrejana para) lK (pregrejana para) lhL lK lh q!>51!cbs ta~ka 3: prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ograni~enom isprekidanom konturom: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⇒ ⋅ ⋅ ⋅ ⋅ ⋅ n− n 4 ⋅ i B + n 4 ⋅ i 4 = n⋅ iC ta~ka 6: q>!1/17!cbs- ⋅ I2 = I3 ⇒ i4 = ⋅ ⋅ ⋅ n⋅ iC − n− n 4 ⋅ i B ⋅ >/// n4 y>1 (kqu~ala te~nost) lK i7!>!262/6! lh ta~ka A = ta~ka 6 ta~ka B: q!>!51!cbs- (jer se zanemaruje rad pumpi) u>!323pD (voda) lK iC!>!:18/6! lh i4 = 1/5 ⋅ :18/6 − 1/4 ⋅ 262/6 lK >!4286/6! 1/2 lh dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 45 b) ⋅ η= ⋅ R epw + R pew ⋅ >!///>! R epw 2219/46 − 797/8 >1/49 2219/46 ⋅ ⋅ ⋅ ⋅ ⋅ R epw = R 23 + R 45 = n⋅ (i 3 − i2 ) + n− n 4 ⋅ (i 5 − i 4 ) > ⋅ ⋅ R epw > 1/5 ⋅ (4537 − :18/6 ) + 1/4 ⋅ (4625 − 4288/6 ) >2219/46!lX ⋅ ⋅ ⋅ ⋅ R pew = R 67 = n− n 4 ⋅ (i 7 − i 6 ) > 1/4 ⋅ (262/6 − 3551/5 ) >−!797/8!lX u>641pD ta~ka 4: q>51!cbs- lK i5!>!4625! lh lK t5!>!8/2856! lhL ta~ka 5k: q!>1/17!cbs- y6l!>!1/96- i6l!>!3315/8!!! ta~ka 5: q>1/17!cbs- t>8/2856! (pregrejana para) lK lhL (vla`na para) lK lh ηeuoq = i 5 − i6 i5 − i6l i6!>!i5!−! η euoq ⋅ (i 5 − i 6l ) = 4625!−! 1/93 ⋅ (4625 − 3315/8 ) = 3551/5! ta~ka 1 = ta~ka B lK lh (jer se zanemaruje rad pumpi) 5 3 i 4 4l 6 6l 2 C B 7 dipl.ing. @eqko Ciganovi} t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 46 ⋅ 6/3:/ Parni kotao proizvodi n =31!u0i pare stawa 2)q3>27!cbs-!u3>511pD*/ Para u turbini ekspandira ⋅ u dva stepena. Nakon prvog stepena, deo pare ( n4 )se odvodi za potrebe nekog spoljnog predajnika toplote u kojem se vr{i potpuna kondenzacija pare na u>291pD pri ~emu se od pare odvodi 3!NX toplote. Tako nastalo kondenzat se ne vra}a u kotao, nego ispu{ta u okolinu, a umesto wega se u kotao dodaje ista koli~ina vode iz okoline stawa )q>2!cbs-!u>26pD*. Ostatak pare ekspandira u drugom stepenu turbine a zatim odvodi u kondenzator, u kome vlada temperatura od 41pD. Ekspanzije u turbinama su ravnote`ne (kvazistati~ke) i adijabatske. Zanemaruju}i snage napojnih pumpi, skicirati proces na Ts dijagramu i odrediti: ⋅ a) maseni protok sve`e vode, n4 b) ukupnu snagu koja se dobije u turbinama c) termodinami~ki stepen korisnog dejstva ciklusa 3 5 4 ,R23 −R47 −R56 2 7 1 6 U 3 4 2 6 7 5 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 47 u>!511pD ta~ka 2: q>27!cbs- lK i3!>!4364! lh lK t3!>!8/344! lhL ta~ka 3: q!> (q)u =291p D >21!cbs- t4>!t3!>!8/344! i4!>!4228/4!!! lK lhL (pregrej. para) lK lh ta~ka 4: u>!41pD y5!>1/96 i5!>!32:2/5! ta~ka 5: u>!41pD- lK i6!>!236/82! lh ta~ka 1: i2!>!239/2!!! (pregrejana para) t5!>!t4>!t3!>!8/344! lK (vla`na para) lhL lK lh y>1 (kqu~ala te~nost) lK t6!>1/5477! lhL q!>27!cbs- t2>!t6!>!1/5477! u>!291pD- y>1 lK lhL (te~nost) lK lh ta~ka 6: (kqu~ala te~nost) lK i7!>!874/2! lh b* prvi zakon termodinamike za proces u spoqnom predajniku toplote: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⇒ ⋅ ⋅ R qsfebkojlb = n4 ⋅ (i 7 − i 4 ) ⋅ lh − 3 ⋅ 21 4 R qsfebkojlb >1/96 > n4 = 874/2 − 4228/4 t i7 − i4 ⋅ b) prvi zakon termodinamike za proces u turbini visokog pritiska: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⇒ ⋅ ⋅ X uwq = n⋅ (i 3 − i 4 ) > 31 ⋅ 21 4 ⋅ (4364 − 4228/4 ) 4711 ⋅ X uwq >1/86!NX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 48 prvi zakon termodinamike za proces u turbini niskog pritiska: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⇒ ⋅ 31 ⋅ 21 4 ⋅ ⋅ X uoq = n− n4 ⋅ (i 4 − i 5 ) > − 1/96 ⋅ (4228/4 − 32:2/5 ) > 4711 ⋅ X uwq >5/47!NX c) prvi zakon termodinamike za proces u parnom kotlu: ⋅ ⋅ ⋅ ⇒ R 23 = ∆ I23 + X 23 ⋅ ⋅ R lpumb = n⋅ (i3 − i2 ) > 31 ⋅ 21 4 ⋅ (4364 − 239/2) 4711 ⋅ R lpumb >28/47!NX ⋅ η= ⋅ X uwq + X uoq ⋅ > R lpumb 1/86 + 5/47 >1/3: 28/47 zadatak za ve`bawe (1.30.) 6/41/ Parno turbinsko postrojewe radi po Rankin−Klauzijus−ovom kru`nom procesu sa dvostepenim adijabatskim {irewem vodene pare(slika kao u zadatku 1.26) . Pregrejana vodena para stawa 3)q>21 NQb-!u>551pD* {iri se u turbini visokog pritiska nekvazistati~ki, sa stepenom dobrote η euwq >1/:, do pritiska od q4>1/6!NQb. Potom se izobarski zagreva do temperature od u5>411pD, nakon ~ega se, u turbini niskog pritiska, {iri nekvazistati~ki, sa stepenom dobrote η euoq >1/9 do pritiska od q6>1/116!NQb, koji vlada u kondenzatoru. Skicirati proces na it dijagramu i zanemaruju}i snage napojnih pumpi odredit stepen korisnosti posmatranog kru`nog procesa. re{ewe: η>1/476 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 1 6. LEVOKRETNI KRU@NI PROCESI 7/2/ Odrediti minimalan rad koji treba ulo`iti da se od nekog tela, konstantne temperature u>!−24pD, oduzme 21!lK!toplote i preda okolnom vazduhu, konstantne temperature od 48pD. Koliko se toplote u tom slu~aju predaje okolnom vazduhu. Najmawe rada se mora ulo`iti ako levokretna tolotna ma{ina radi po Karnoovom levokretnom ciklusu (sve promene stawa radne materije su povratne). U 4 3 5 2 UUQ UUJ !t UUJ>−24pD!>!371!LR epw Xofup = UUQ>48pD>421!L- Repw!>21!lK Uuq − Uuj Uuj 421 − 371 !> 21 ⋅ !!!!!! ⇒ !!!!!! Xofup = R epw ⋅ >2/:3!lK Uuq − Uuj 371 Uuj R pew >!Repw!,! Xofup !>!21!,!2/:3!>!22/:3!lK 7/3/ Rashladni ure|aj (slika) koristi kao radnu materiju vazduh (idealan gas) i radi po levokretnom kru`nom Xulovom procesu. Stawe vazduha na ulazu u izentropski kompresor je 2)u2>−21pD-!q2>2!cbs*- a na izlazu iz kompresora 3)q3>5!cbs*/!Temperatura vazduha na ulazu u izentropsku turbinu je u4>31pD. Maseni protok vazduha kroz rashladni ure|aj 2311!lh0i a sve promene stawa radne materije su ravnote`ne (kvazistati~ke). Skicirati promene stawa vazduha na Ut dijagramu i odrediti: a) rashladni efekat instalacije )lX* b) koeficijent hla|ewa instalacije, εi c) ako je svrha rashladnog ure|aja proizvodwa leda temperature um>−4pD od vode temperature ux>21pD, odrediti masu proizvedenog leda za vreme od τ>2!i dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 2 U 4 3 3 3 2 5 5 2 !!!ledomat t a) U3!>!U2 ⋅ q 3 q 2 U5!>!U4 ⋅ q 5 q 4 ⋅ ⋅ κ −2 κ κ −2 κ > 374 ⋅ 5 2 > 3:4 ⋅ 2 5 ⋅ 2/5 −2 2/5 2/5 −2 2/5 R epw = R 52 = n⋅ d q ⋅ (U2 − U5 ) > >!4:1/9!L >2:8/3!L 2311 ⋅ 2 ⋅ (374 − 2:8/3 ) >32/:4!lX 4711 b) ⋅ εi!>! R epw ⋅ X ofup ⋅ = ///!> 32/:4 >!3/16 21/78 ⋅ ⋅ ⋅ X ofup > X lpnqsftps!, X uvscjob!> n⋅ d q ⋅ (U2 − U3 + U4 − U5 ) ⋅ X ofup > 2311 ⋅ 2 ⋅ (374 − 4:1/9 + 3:4 − 2:8/3 ) !>!−21/78!lX 4711 c) ⋅ 32/:4 ⋅ 4711 R epw ⋅ τ nmfe = = /// = >318/6!lh 53 + 449/5 i x − im lK )q>!2!cbs-!u>21pD* ix!>!53! lh im = d m ⋅ (Um − 384 ) − sm > 3 ⋅ (−4 ) − 443/5 >−449/5! dipl.ing. @eqko Ciganovi} lK lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 3 7/4/ Helijum (idalan gas) obavqa realan levokretni Xulov proces sa potpunim rekuperativnim (regenegrativnim) zagrevawem radne materije. Rashladna snaga ovog postrojewa je 33!lX. Temperatura u rashladnoj komori je stala i jednaka je temperaturi na ulazu u gasnu turbinu UUJ>U4!>356!L>dpotu. Temperatura okoline je stalna i jednaka temperaturi na ulazu u kompresor UUQ>U2>431!L. Odnos q pritiska na ulazu i izlazu iz gasne turbine iznosi 4 >3/2. Stepeni dobrote u adijabatskom q5 fy kompresoru i adijabatskoj turbini su jednaki i iznose ηlq e = η e >1/93. Prikazati ovaj proces u Ut koordinatnom sistemu i odrediti: a) neto snagu potrebnu za pogon ovog postrojewa b) faktor hla|ewa ovog postrojewa 4 !C 5 R E K U P E R A T O R !B 3 Rpew 2 Repw 3 U 3l B 2 !Rsfl C 4 5l !UQ !UJ 5 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 4 a) κ −2 2/78 −2 κ >! 431 ⋅ (3/2) 2/78 >541/:!L U3L!>!U2 ⋅ q 3L q 2 U −U 541/:6 − 431 U3!>!U2!,! 3L lq 2 !>! 431 + >566/4!L 1/93 ηe κ −2 2/78 −2 κ > 356 ⋅ 2 2/78 >293/2!L U5L!>!U4 ⋅ q 5L q 3/2 4 U U5!>!U4!, η e ⋅ (U5l − U4 ) !>! 356 + 1/93 ⋅ (293/2 − 356 ) >2:4/5!L ⋅ ⋅ ⋅ ⋅ R epw = R 5C = n⋅ d q ⋅ (UC − U5 ) ⇒ ⋅ n= ⋅ R epw n= > d q ⋅ (UC − U5 ) 33 lh >9/3!/21.3! 6/3 ⋅ (356 − 2:4/5 ) t ⋅ ⋅ ⋅ ⋅ X ofup > X lpnqsftps!, X uvscjob!> n⋅ d q ⋅ (U2 − U3 + U4 − U5 ) ⋅ X ofup > 9/3 ⋅ 21 −3 ⋅ 6/3 ⋅ (431 − 566/4 + 356 − 2:4/5 ) !>!−46/8!lX UC>U3, uslov potpune (maksimalne) regeneracije (rekuperacije) toplote za Xulov ciklus napomena: b) ⋅ εi!>! R epw ⋅ > ⋅ R pew − R epw ⋅ ⋅ 33 >!1/73 68/8 − 33 ⋅ R pew = R 3 B = n⋅ d q ⋅ (UB − U3 ) > 9/3 ⋅ 21 −3 ⋅ 6/3 ⋅ (431 − 566/4 ) >−68/8!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 5 7/5. Rashladno postrojewe (slika) koristi kao radni fluid freon 12 )S23*/ Temperatura isparavawa je 354!L, a teperatura kondenzacije 426!L. Snaga kompresora u kojem se vr{i kvazistati~ko adijabatsko sabijawe freona iznosi 1/94!lX/ Skicirati promene stawa S23 u Ut i it koordiantnom sistemu i odrediti: ⋅ a) rashladni kapacitet ) R epw* i koeficijent hla|ewa ovog postrojewa )εi) b) ako bi se kqu~ala te~nost S23 pre prigu{ivawa podhladila za ∆U>21!L koliko bi tada iznosio ⋅ - ⋅- rashladni kapacitet ) R epw * i koeficijent hla|ewa ovog postrojewa ) ε i ) koeficijent hla|ewa c) na Ut dijagramu {rafirati povr{inu koja predstavqa pove}awe rashladnog kapaciteta postrojewa usled pothla|ivawem kondenzata pre prigu{ivawa 4 3 ⋅ ⋅ R pew n ⋅ X lq ⋅ 5 2 n ⋅ n⋅ y 5 ⋅ n ⋅ (2 − y 5 ) ⋅ R epw 3 i U 3 4 2 4 5 2 t dipl.ing. @eqko Ciganovi} 5 t {fmlp@fvofu/zv zbirka zadataka iz termodinamike ! strana 6 U>354!L>!−!41pD ta~ka 1: lK i2!>!752/92! lh y>2 lK t2!>!2/6993! lhL q!>!)q*Ul>426L!>!21/28!cbs ta~ka 2: i3!>!794/1:! t!>!t2!>!2/6993! lK lhL lK lh U>426!L>53pD ta~ka 3: y>1 lK i4!>!652/58! lh i5!>!i4!>!652/58! ta~ka 4: lK lh a) ⋅ ⋅ ⋅ ⋅ ⋅ R epw = R 52 = n⋅ (i2 − i 5 ) >///> 3 ⋅ 21 −3 ⋅ (752/92 − 652/58 ) >3!lX X lq = X u23 ⋅ εi!>! R epw ⋅ X lq = ⋅ −1/94 lh X lq > 3 ⋅ 21 −3 = n⋅ (i2 − i 3 ) !!!!!!⇒!!!!!! n = > 725/92 − 794/1: t i2 − i3 ⋅ ⋅ 3 >3/52 1/94 b) 3 i U 3 4 2 4 B C 5 B 2 t dipl.ing. @eqko Ciganovi} C 5 t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 7 ta~ka A: iB! ≅ !)i′*Ub>416!L!>!642/22! ta~ka B: iC!>!iB!>!642/22! ⋅ - ⋅ lK lh lK lh ⋅ R epw = R C2 = n⋅ (i2 − iC ) > 3 ⋅ 21 −3 ⋅ (752/92 − 642/22) >3/32!lX ⋅ - εi!>! R epw ⋅ X lq = 3/32 >3/78 1/94 U 3 4 B 2 5 C t ⋅ ∆ R epw ⋅ 6.5. Levokretni kru`ni proces obavqa se sa n =711!lh0i amonijaka )OI4* , izme|u Unjo>−24pD i qnby>2!NQb. U toplotno izolovan kompresor ulazi suva para koja se nekvazistati~ki sabija do stawa 3)U3>211pD*/ Po izlasku iz kondenzatora vr{i se pothla|ivawe do temperature od 26pD. Skicirati proces na Ut dijagramu i odrediti: a) koeficijent hla|ewa b) za koliko bi se pove}ala vrednost koeficijenta hla|ewa )&*, ako bi sabijawe u kompresoru bilo kvazistati~ko c) u{tedi u snazi za pogon kompresora u slu~aju kvazistai~kog sabijawa u odnosu na stvarno nekvazistati~ko sabijawe )lX* i u Ut koordinatnom sistemu {rafirati povr{inu ekvivalentnu toj u{tedi dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 8 U 3 3l 4 2 5 t a) u!>!−24pD ta~ka 1: lK i2!>!3318! lh t2!>!21/5:3! q!>!21!cbs ta~ka 2: i3!>!3552/6! q>21!cbs lK i4! ≅ !)i′*u>26pD!>!2141/2! lh u!>211pD u>26pD i5!>!i4!>!2141/2! ta~ka 4: ⋅ - R epw ⋅ = ///!> X lq ⋅ ⋅ ⋅ ⋅ lK lhL lK lh ta~ka 3: εi!>! y>2 lK lh 2:7/26 >6 4:/19 ⋅ 711 ⋅ (3318 − 2141/2) >2:7/26!lX 4711 ⋅ 711 = n⋅ (i2 − i 3 ) > ⋅ (3318 − 3552/6 ) >−4:/19!lX 4711 R epw = R 52 = n⋅ (i2 − i 5 ) > X lq = X u23 U 3 4 5 dipl.ing. @eqko Ciganovi} 2 t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 9 b) i3l>3513/:! ⋅ - R epw = ///!> ⋅ X lq ⋅ lK lhL lK lh ⋅ εi!>! t!>!t2>21/5:3! q>21!cbs ta~ka 2k: 2:7/26 >7 43/76 ⋅ X lq = X u23l = n⋅ (i2 − i 3l ) > 711 ⋅ (3318 − 3513/: ) >−43/76!lX 4711 ε 7 ∆ε i (&) = i − 2 ⋅ 211& !> − 2 ⋅ 211& >31& εi 6 d* ⋅ ⋅ - ⋅ ∆ X lq !>! X lq !.! X lq !>!7/54!lX U 3 3l ∆Xlq 4 5 2 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 10 7/7/ Amonija~ni kompresorski rashladni ure|aj sa prigu{nim ventilom radi izme|u pritisaka qnjo>4/92:!cbs!i!qnby>26!cbs. Kompresor usisava suvozasi}enu paru amonijaka i kvazistati~ki adijabatski je sabija. Ure|aj je projektovan tako da iz prostorije koju hladi oduzima 61!lX toplote. Odrediti: a) snagu kompresora c* koliko bi trebalo da iznosi stepen suvo}e vla`ne pare koja napu{ta kondenzator da bi koeficijent hla|ewa iznosio εh=0 a) q>4/92:!cbs ta~ka 1: lK i2!>!332:! lh ta~ka 2: i3!>!3528/6! y>2 t2!>!21/465! lK lhL q!>26!cbs t!>!t2!>!21/465! q>26!cbs y>1 lK lhL lK lh ta~ka 3: lK i4!>!2255/2! lh i5!>!i4!>!2255/2! ta~ka 4: ⋅ ⋅ ⋅ ⋅ R epw = n⋅ (i2 − i 5 ) ⇒ lK lh ⋅ ⋅ 61 lh R epw n= > > 5/76 ⋅ 21 −3 t i2 − i 5 332: − 2255/2 ⋅ X lq = X u23 = n⋅ (i2 − i 3 ) > 5/67 ⋅ 21 −3 ⋅ (332: − 3528/6 ) >−:/16!lX b) i 4( = i2 ⇒ i 332: − 2255/2 i − i( y 4 = 2 >1/:8 > i( (−i( q=26cbs 3363 − 2255/2 3 4′ 2 4 5 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 11 7/8/!Levokretni kru`ni proces sa pothla|ivawem, prigu{ivawem, isparavawem i pregrevawem pare pre ulaska u kompresor obavqa se sa freonom 12 )S23*- kao radnim telom (slika). Rashladni kapacitet postrojewa je 6/9!lX, a snaga kompresora, koji vr{i nekvazistati~ko sabijawe pare freona, je 3!lX. Radna materija obavqa ciklus izme|u pritisaka qnjo>1/2!NQb i qnby>1/7!NQb i pri tom dosti`e maksimalnu temperaturu od 71pD. Temperatura pothla|ivawa je 27pD. Skicirati promene stawa radnog tela na qw i Ut dijagramu i odrediti: a) stepen dobrote adijabatske kompresije b) {rafirati na Ut dijagramu potrebnu snagu kompresora LE!,!QI 4 3 5 JT!,!QH 2 3 U 3l 4 5 2 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike ta~ka 2: strana 12 q!>!7!cbs u!>!71pD q>7!cbs u>27pD lK i3!>!7:1/6! lh ta~ka 3: lK i4! ≅ !)i′*u>27pD!>!626/3:! lh ta~ka 4: i5!>!i4!>!626/3:! ta~ka 1: q2!>!2!cbs ⋅ ⋅ R epw >6/9!lX ⋅ ⋅ ⋅ ⋅ lK lh X lq >−3!lX ⋅ R epw = R 52 = n⋅ (i2 − i 5 ) ⋅ X lq = X u23 = n⋅ (i2 − i 3 ) )2* )3* Kombinovawem jedna~ina (1) i (2) dobija se:!i2!>!756/7! t2!>!2/716! lK -! lh n>55/6! h t lK lhL q!>!7!cbs ta~ka 2k: i3l!>!789/8! t!>!t2!>!2/716! lK lhL lK lh b* ηlq e = i2 − i3l 756/7 − 789/8 !>! >1/85 i2 − i3 756/7 − 7:1/6 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 13 b) 3 U 3 U 3l 3l 4 4 2 2 5 5 t t ⋅ ⋅ R pew R epw ⋅ ⋅ ⋅ X lq = R pew − R epw 3 U 3l 4 2 2 5 t ⋅ X lq dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 14 7/9/!Levokretna instalacija radi sa amonijakom kao radnim telom. Rashladni kapacitet postrojewa je 51!lX. Temperatura isparavawa je −44pD, pritisak u kondenzatoru 6!cbs-!a temperatura prehla|ivawa −4pD. Toplota oslobo|ena prehla|ivawem kondenzata koristi se za pregrevawe suve pare amonijaka, tako da u kompresor ulazi pregrejana para koja se sabija nekvazistati~ki adijabatski sa stepenom dobrote ηLQ e >1/9. Predstaviti kru`ni proces na Ut dijagramu i odrediti: a) maseni protok amonijaka kroz instalaciju )lh0t* b) snagu kompresora )lX* 5 4 3 6 7 2 U 3 3L 4 5 6 2 7 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike ta~ka 3: i4>:88/:6! strana 15 q>6!cbs-! y>1 q>!6!cbs-! U>381!L lK lh ta~ka 4: lK i5>:56/8!! lh ta~ka 5: i6!>!i5>:56/8!! ta~ka 6: U>351!L- lK lh y>2 lK i7!>!3288! lh i4!−!i5!>!i2!−!i7! i2>!i4!−!i5!,!i7 i2>!:88/:6!−!:56/8!,!3288!>!331:/36 q3L>6!cbs-! ta~ka 2K: i3l>3537! lK lh t3>!t2>21/:! t2>21/:! lK lhL lK lhL lK lh ηLQ e >1/9 q3>!6!cbs-! ta~ka 2: ηLQ e > −∆i45!>!∆i72 q2!>!q7!>2/7647!cbs ta~ka 1: i2 − i 3L i −i 331:/36 − 3537 lK i 3 = i2 − 2 LQ 3L > 331:/36 − >3591/2:! i2 − i 3 1 / 9 lh ηe a) ⋅ ⋅ R epw = n⋅ (i 7 − i 6 ) ⇒ ⋅ ⋅ lh R epw 51 > 4/36 ⋅ 21 −3 n= = t i7 − i6 3288 − :56/8 b) ⋅ ⋅ M lpnq = n⋅ (i2 − i3 ) = 4/36 ⋅ 21 −3 ⋅ (331:/36 − 3591/2: ) >!−9/9!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 16 7/:/!Rashladno postrojewe (slika) radi, sa freonom 12 kao radnim telom, izme|u pritisaka q2>366!lQb i q3>2!NQb. U kompresoru snage 2/4!lX nekvazistati~ki adijabatski sabija se pare freona pri ~emu specifi~na entropija freona (usled mehani~ke neravnote`e) poraste za ∆t23>4/3!K0lhL. Odrediti: a) rashladnu snagu postrojewa (lX) b) koeficijent hla|ewa postrojewa c) {rafirati na Ut dijagramu povr{inu koja koja je evivalentna rashladnoj snazi postrojewa !kondenzator 4 3 2 5 ispariva~ 6 7 b* q>3/66!cbs y>2 lK lK t2!>!2/6829! i2!>!764/12! lhL lh ta~ka 1: ta~ka 2: i3!>!789/6! q!>!21!cbs t>t2!,!∆t23!>!2/686! q>21!cbs y>1 lK lhL lK lh ta~ka 3: lK i4!>!651/84! lh dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 17 Prvi zakon termodinamike za proces u odvaja~u te~nosti: ⋅ ⋅ ⋅ / ⋅ ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⋅ ⋅ n⋅ i 4 + n⋅ i 7 = n⋅ i 5 + n⋅ i2 X lq = X u23 ⋅ ⋅ ⇒ I2 = I3 ⇒ i7!−!i5!>!i2!−!i4 ⋅ X lq lh −2/4 = n⋅ (i2 − i 3 ) !!!!!!⇒!!!!!! n = > > 6/2 ⋅ 21 −3 764/12 − 789/6 t i2 − i3 ⋅ ⋅ ⋅ ⋅ ⋅ R epw = R 67 = n⋅ (i 7 − i 6 ) = n⋅ (i 7 − i 5 ) = n⋅ (i2 − i 4 ) ⇒ ⋅ R epw > 6/2 ⋅ 21 −3 ⋅ (764/12 − 651/84 ) >6/84!lX b) ⋅ εi!>! R epw ⋅ X lq =! 6/84 >!5/5 2/4 c) 3 3l U 4 5 ⋅ 7 R sfl !!2 6 t ⋅ R epw dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 18 ⋅ 7/21/!Levokretni kru`ni proces sa amonijakom kao radnim telom ) n >1/12!lh0t* odvija se izme|u qnjo>2 cbs i qnby>36!cbs. Kompresija je ravnote`na izentropska i dvostepena. Stepen povi{ewa pritiska u oba q q stepena je jednak ( 3 = 5 ) . Na ulazu u kompresor niskog pritiska (stawe 1) para amonijaka je q2 q 4 suvozasi}ena. Nakon prvog stepena kompresije para amonijaka se hladi do temperature od T>431!L/ Skicirati proces na Ut dijagramu i odrediti: a) rashladni efekat instalacije koja radi po ovom ciklusu (lX) b) snagu kompresora niskog pritiska i snagu kompresora visokog pritiska )lX* c) koeficijent hla|ewa )εi* d) procentualno pove}awe koeficijenta hla|ewa koje je ostvareno dvostepenom kompresijom (u odnosu na jednostepenu kompresiju izme|u istih pritisaka i istog stawa na ulazu u kompresor) e) na Ut dijagramu {rafirati povr{inu koja predstavqa u{tedu u snazi kompresora usled dvostepene kompresijeϕ 6 5 ⋅ X lwq ⋅ R 56 ⋅ n 3 4 ⋅ n ⋅ ⋅ ⋅ X loq R 34 2 n⋅ y 7 7 ⋅ n⋅ (2 − y 7 ) ⋅ Repw dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 19 U 5 6 3 4 2 7 t q>2!cbs ta~ka 1: lK i2!>!3272! lh t2!>!22/14! t>t2>22/14! lK lhL lK lh q!>6!cbs ta~ka 3: U>431!L lK t4!>!21/74! lhL lK i4!>!3444! lh ta~ka 4: i5!>!3739! lK lhL q!>! q2 ⋅ q 5 >6!cbs ta~ka 2: i3!>!3584! y>2 lK lhL q!>36!cbs t!>21/74! q>36!cbs y>1 q>2!cbs i>!i6!>!2353! lK lh ta~ka 5: lK i6!>!2353! lh ta~ka 6: dipl.ing. @eqko Ciganovi} lK lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 20 b* ⋅ ⋅ ⋅ R epw = R 72 = n⋅ (i2 − i 7 ) = 1/12 ⋅ (3272 − 2353) >:/2:!lX c* ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ X loq = X u23 = n⋅ (i2 − i3 ) > 1/12 ⋅ (3272 − 3584) >−4/23!lX X lwq = X u45 = n⋅ (i 4 − i 5 ) > 1/12 ⋅ (3444 − 3739 ) >−3/:6!lX d* ⋅ R epw εi!>! ⋅ =! ⋅ X loq + X lwq :/2: >!2/6 4/23 + 3/:6 e* U B 6 2 7 t q!>36!cbs ta~ka A: iB!>!3915/3! ⋅ t!>22/14! lK lhL lK lh ⋅ ⋅ X lq = X u2B = n⋅ (i2 − i B ) > 1/12 ⋅ (3272 − 3915 ) >−7/54!lX ⋅ ε i- !>! R epw ⋅ X lq =! :/2: >!2/54 7/54 ε 2/6 ∆ε i (&) = i- − 2 ⋅ 211& !> − 2 ⋅ 211& >8/25& ε 2/54 i dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 21 f* U B 5 ⋅ ∆X 6 3 4 2 7 t zadaci za ve`bawe: (2.11. − 2.12.) 7/22/!U komori za hla|ewe potrebno je odr`avati stalnu temperaturu od −26pD, pri ~emu temperatura spoqa{weg (okolnog) vazduha iznosi 41/4pD. Toplotni dobici kroz zidove komore iznose 91!lK0t. Za hla|ewe komore primeweno je kompresiono rashladno postrojewe bez pothla|ivawa kondenzata i sa wegovim prigu{ivawem. Pri tome kompresor usisava suvu paru freona 22 )S33*!i sabija je adijabatski. Odrediti minimalnu snagu za pogon rashladnog postrojewa kao i faktor hla|ewa. Skicirati promene stawa freona na Ut i it dijagramu. ⋅ re{ewe: X l >28/5!lX- εi>5/7 7/23/ U postrojewe koje radi po levokretnom kru`nom procesu, kondenzuje se i pothla|uje amonijak pri pritisku od q>2!NQb. Te~ni rashladni fluid ulazi u prigu{ni ventil pri temperaturi od 28pD, gde se prigu{uje do temperature isparavawa u>−34pD. Kompresor, u kojem se obavqa adijabatsko sabijawe radi lq sa stepenom dobrote η e >1/9, usisava suvu paru, koja od stawa vla`ne pare prelazi u stawe suve pare na ra~un pothla|ivawa te~ne faze. Snaga kompresora je 67!lX. Odrediti rashladnu snagu ovog postrojewa i u Ut koordinatnom sistemu {rafirati povr{inu ekvivalentnu snazi za pogon kompresora. ⋅ re{ewe: R epw!>!29:/7!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 22 7/24/ Kaskadna rashladna instalacija (slika), sastoji se iz me|usobno spregnutog “kola visoke temperature” i “kola niske temperature”. “Kola” su spregnuta preko toplotno izolovanog predajnika toplote, u kome rashladni fluid kola niske temperature (preko kondenzatora kola niske temperature) u potpunosti predaje toplotu rashladnom fluidu kola visoke temperature (preko ispariva~a kola visoke temperature). Kolo visoke temperature radi sa freonom 11 )S22*, izme|u pritisaka qnjo>q{)−45pD* i ⋅ qnby>1/3!NQb i masenim protokom n 2>1/45!lh0t. Kolo niske temperature radi sa freonom 22 )S33*izme|u pritisak qnjo>q{)−:1pD* i qnby>1/3!NQb. Izra~unati stepen (koeficijent) hla|ewa ovog postrojejwa, ako oba kola rade bez pothla|ivawa kondenzata i sa kvazistati~kom adijabatskom kompresijom suvozasi}ene pare. 3 4 kolo visoke temperature ⋅ X lwu S22 5 4′ 2 3′ kolo niske temperature ⋅ X lou S33 5′ 2′ ⋅ lh n S22!>!1/45! kolo visoke temperature: t y>2 ta~ka 1: u!>!−45pD lK lK t2!>!2/8415! i2!>!783/86! lhL lh ta~ka 2: i3!>!841! q!>!3!cbs t!>!t2!>2/8415! q!>!3!cbs y>1 lK lhL lK lh ta~ka 3: lK i4!>!651! lh ta~ka 4: i5!>!i4!>!651! dipl.ing. @eqko Ciganovi} lK lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 23 kolo niske temperature: u!>!.!:1pD ta~ka 1′: lK i2′!>!774/:7! lh t2′!>!2/::74! q>3!cbs ta~ka 2′: i3′!>!863! y>2 lK lhL t!>!t2′!>!2/::74! lK lhL lK lh q!>!3!cbs ta~ka 3′: y>1 lK i4′!>!582/3! lh i5′!>!i4′!>!582/3! ta~ka 4′: lK lh prvi zakon termodinamike za toplotno izolovani predajnik toplote ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⋅ ⋅ ⇒ ⋅ / ⋅ nS33 ⋅ i 3( + nS22 ⋅ i 5 = nS33 ⋅ i 4( + nS22 ⋅ i2 ⋅ nS33 = 1/45 ⋅ ⋅ ⋅ I2 = I3 ⇒ ⋅ ⋅ nS33 = nS22⋅ i2 − i 5 i 3( − i 4 ( kg 783/6 − 651 >1/27! 863 − 582/3 s ⋅ ⋅ R epw = R 5 (2( = nS33 ⋅ (i2( − i 5 ( ) = 1/27 ⋅ (774/:7 − 582/3 ) = 41/9!lX ⋅ ⋅ ⋅ X loq = X u2(3( = nS33 ⋅ (i2( − i3( ) > 1/27 ⋅ (774/:7 − 863) >−25/2!lX ⋅ ⋅ ⋅ X lwu = X u23 = nS22 ⋅ (i2 − i3 ) > 1/45 ⋅ (783/86 − 841) >−2:/6!lX ⋅ εi!>! R epw ⋅ ⋅ =! X lou + X lwu dipl.ing. @eqko Ciganovi} 41/9 >!1/:3 25/2 + 2:/6 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 24 7/25/!Rashladno postrojewe sa dva prigu{na ventila, dva odvaja~a te~nosti, dva kompresora i jednim ⋅ ispariva~em prikazano je na slici. Ako iz kondenzatora rashladnog postrojewa (stawe 1) izlazi n =1/2 lh0t kqu~alog freona 12 temperature 41pD, i ako se prvim prigu{nim ventilom sni`ava pritisak freona na q>281!lQb, a drugim na q>31!lQb, skicirati proces u it koordinatnom sistemu i odrediti rashladni kapacitet postrojewa. 1 7 5 n 6 4 2 3 ispariva~ 5 7 i 4 6 2 1 3 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike ta~ka 0: strana 25 u>41pD y>1 q!>!2/8!cbs i!>!i1!>!63:/19! q!>1/3!cbs i3!>!)!i′!*q>2/8!cbs!>!595/6! lK i1!>!63:/19! lh ta~ka 1: lK lh y2!>!1/38 ta~ka 2: y3!>!1/32 s!>!291/44! q!>1/3!cbs ta~ka 3: lK lh lK lh y>1 lK i4!>!737/6! lh 1. na~in: ⋅ ⋅ R epw = n⋅ (2 − y 2 ) ⋅ (2 − y 3 ) ⋅ (s )q=1/3cbs > 1/2 ⋅ (2 − 1/38) ⋅ (2 − 1/32) ⋅ 291/34 >21/5!lX 2. na~in: ⋅ ⋅ R epw = n⋅ (2 − y2 ) ⋅ (i 4 − i 3 ) > 1/2 ⋅ (2 − 1/38) ⋅ (737/6 − 595/6 ) >21/5!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 26 7/26/!Freon 12 (R12) kao rashladni fluid obavqa levokretni ciklus sa dvostepenim isparavawem (slika). U nisko−temperaturskom ispariva~u vlada pritisak 2!cbs, u visoko-temperaturskom ispariva~u 4!cbs, a u kondenzatoru 9!cbs. Kondenzovani fluid (stawa 6) se razdvaja na dve struje i svaka od wih se adijabatski prigu{uje u odgovaraju}em prigu{nom ventilu (do stawa 7 odnosno stawa 8). Suva para (stawa 2) iz visoko−temperaturskog ispariva~a (VTI) se adijabatski prigu{uje do pritiska 1 bar (stawe 3) i zatim izobarski me{a sa suvom parom (stawa 1) iz nisko−temperaturskog ispariva~a (NTI). Dobijena me{avina (stawa 4) se kvazistati~ki izentropski sabija u kompresoru do stawa 5. Ako je rashladni kapacitet visokotemperaturskog ispariva~a 25!lX, a niskotemperaturskog 8!lX, skicirati promene stawa freona 12 na Ut dijagramu i odrediti: a) masene protoke rashladnog fluida kroz oba ispariva~a b) snagu kompresora c) faktor hla|ewa rashladnog postrojewa 7 6 VTI 8 3 NTI 9 4 2 5 6 U 7 3 8 4 9 2 5 t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 27 a) ta~ka 6: q!>!9!cbs y>1 ta~ka 7: i8!>!i7!>!642/6! ta~ka 8: i9!>!i8!>!i7!>!642/6! ta~ka 2: q!>!4!cbs y>2 ta~ka 1: q!>!2!cbs y>2 i>642/6! lK lh lK lh lK lh lK lh lK i2!>!752/2! lh i3!>!766/69! ⋅ ⋅ 8 R ouj lh n ouj!>! >! >1/17! 752/2 − 642/6 t i2 − i 9 ⋅ ⋅ 25 R wuj lh n wuj!>! > >!1/22! t i 3 − i 8 766/69 − 642/6 b) lK lh i!>@ ta~ka 3: i4!>!i3!>!766/69! ta~ka 4: q>!4!cbs prvi zakon termodinamike za me{awe fluidnih struja: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X 23 ⋅ ⋅ n wuj ⋅ i 4 + nouj ⋅ i2 = n wuj + nouj ⋅ i 5 ⋅ i5 = ⋅ ⇒ ⋅ ⋅ ⇒ 1/22 ⋅ 766/69 + 1/17 ⋅ 752/2 lK >761/5! 1/22 + 1/17 lh q!>!9!cbs ta~ka 5: ⋅ I2 = I3 t!>!t5!>!2/734! i5 = ⋅ n wuj ⋅ i 4 + nouj ⋅ i2 ⋅ ⋅ n wuj + nouj lK t5!>!2/734! lhL lK lhL i6!>!799/2! lK lh ⋅ ⋅ ⋅ X lq = nouj + nouj ⋅ (i 5 − i 6 ) > (1/17 + 1/22) ⋅ (761/5 − 799/2) >−7/5!lX c) ⋅ εi!>! R epw ⋅ X lq ⋅ =! ⋅ R ouj + R wuj ⋅ X lq dipl.ing. @eqko Ciganovi} !!> 8 + 25 >!4/4 7/5 {fmlp@fvofu/zv zbirka zadataka iz termodinamike zadatak za ve`bawe: strana 28 (2.16.) 7/27/ Za potrebe hla|ewa dve odvojene rashladne komore koristi se levokretni kru`ni proces sa zajedni~kim kondenzatorom (KD) ,pri ~emu je rashladni fluid freon 12. U nisko temperaturskom ispariva~u (NTI) vlada temperatura od −41PD, u visoko temperaturskom ispariva~u (VTI) temperartura −2PD, dok je pritisak u kondenzatoru 1/8:42!NQb. Kondezovani fluid (stawa 6) razdvaja se na dve struje i svaka od wih se adijabatski prigu{uje u odgovaraju}em ventilu (do stawa 7 odnosno stawa 8). Suva para (stawa 1) iz nisko temperaturskog ispariva~a se kvazistati~ki adijabatski sabija u prvom kompresoru do pritiska koji vlada u visoko temperaturskom ispariva~u (stawe 3) i zatim izobarski me{a sa suvom parom (stawa 2) iz visoko temperaturskog ispariva~a. Dobijena me{avina se kvazistati~ki adijabatski sabija u drugom kompresoru do temperature od 51PD (stawe 5). Ako je maseni protok rashladnog fluida kroz nisko temperaturski ispariva~ 1/174!lh0t, a kroz visoko temperaturski ispariva~ 1/224!lh0t, odrediti: a) rashladne snage oba ispariva~a b) snage oba kompresora c) koeficijent hla|ewa rashladnog postrojewa KD 7 6 VTI 8 3 NTI 9 ⋅ a) R ouj!>8!lX⋅ b) X u24 >!−2/29!lX c) εi!>!6 2 4 5 ⋅ ! R wuj>25!lX ⋅ X u 56 >!−4!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 29 7/28. U toplotnoj pumpi, radna materija obavqa levokretni kru`ni proces koji se sastoji od ravnote`nog (kvazistati~kog) adijabatskog sabijawa, izotermskog ravnote`nog (kvazistati~og) sabijawa, ravnote`nog (kvazistati~kog) adijabatskog {irewa i ravnote`nog (kvazistai~kog) izotermnog {irewa. Maksimalna odnosno minimalna temperatura radne materije iznose: Unby>!431!L i Unjo>!391!L, a temperature toplotnog izvora odnosno toplotnog ponora su stalne i iznose Uuj>!3:1!L i Uuq>!421!L. Nepovratnost predaje toplote radnoj materiji iznosi ∆TJ!>!6!K0L. Predstaviti proces u Ut koordinatnom sistemu i odrediti: a) nepovratnost predaje toplote toplotnom ponoru b) koeficijent grejawa toplotne pumpe U Unby 4 3 !Uuq !Uuj Unjo 5 2 t a) ∆TJ!>! (∆T tj )52 = (∆Tsu )52 − (∆T tj )52 Repw!>! 2 Unjo − 2 Uuj R epw R R !>! epw − epw !!!!!!! Uuj Unjo Uuj 6 !> 2 2 − 391 3:1 ⇒ >!51/7!lK Rpew!>!R34!> Unby ⋅ (∆T SU )34 >///!> 431 ⋅ (−1/256 ) >!−57/5!lK (∆TSU )34 = −(∆T SU )52 = − (∆Ttj )34 = (∆Tsu )34 − R pew Uuq R epw 51/7 K >−256 =− L Unjo 391 !>! − 256 − .57511 K >!5/79! 421 L b) εh!>! R pew R pew − R epw > 57/5 >!9 57/5 − 51/7 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 30 7/29/!Dve toplotne pumpe me|usobno spojene redno (slika) rade po idealnom Karnoovom kru`nom procesu. Toplotna pumpa 2 uzima 511!lK toplote od toplotnog izvora stalne temperature UUJ>411!L. Toplotu odvedenu od toplotne pumpe 2 preuzima toplotna pumpa 3, koja predaje toplotu toplotnom ponoru stalne temperature UUQ>2311!L. Ako obe toplotne pumpe rade sa istim faktorom grejawa odrediti: a) temperaturu radne materije pri kojoj se vr{i razmena toplote izme|u dve toplotne pumpe, UY b) neto mehani~ke radove koji se dovode radnoj materiji u toplotnoj pumpi, 2(UQ2) i toplotnoj pumpi, 3(UQ3) TOPLOTNI Repw IZVOR Ry Rpew UQ2 UQ3 X2 X3 TOPLOTNI PONOR a) ε h2 = UY UY − UUJ ε h2 = ε h3 UY = ε h3 = ⇒ UUQ UUQ − UY UY UUQ > UY − UUJ UUQ − UY ⇒ UUJ ⋅ UUQ > 411 ⋅ 2311 >711!L b) ε h2 = εh2!>! UY 711 > >3 711 − 411 UY − UUJ RY R Y − R epw ⇒ ε h3 = RY = ε h2 ε h2 − 2 UUQ 2311 > >3 2311 − 711 UUQ − UY ⋅ R epw >911!lK X2> R Y − R epw >911!−!511!>!511!lK εh3!>! R pew R pew − R Y ⇒ R pew = ε h3 ε h3 − 2 ⋅ R Y >2711!lK X3> R pew − R Y >2711!−!911!>!911!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 31 7/2:/!Izobarskim odvo|ewem toplote od 4!lh vodene pare stawa (y>1/8-!q>31!lQb) sve dok se ne postigne stawe kqu~ale te~nosti, pomo}u levokretnog kru`nog procesa u postrojewu sa toplotnom pumpom, toplota se predaje vodoniku (idealan gas). Masa vodonika je 29!lh, a po~etna temperatura :6pD. Vodonik se nalazi u zatvorenom sudu. Koeficijent grejawa toplotne pumpe je εh>2/9. Odrediti krajwu temperaturu vodonika u sudu kao i snagu kompresora ako toplotna pumpa radi jedan sat. Koli~ina toplote koja se oduzme od vodene pare u procesu kondenzacije )Rqbsb* istovremeno predstavqa dovedenu toplotu za toplotnu pumpu )Repw* Repw!>!Rqbsb!>!nqbsb!/!)iy!−!i′*!>!///!> 4 ⋅ (2:12/83 − 362/5 ) >!5:62!lK iy!>!i′!,!y/!)i′′!−!i′*!>!!///!> 362/5 + 1/8 ⋅ (371: − 362/5 ) >2:12/83! i′!>!362/5! lK -! lh i′′!>!371:! lK -! lh lK lh )q!>!1/3!cbs* Koli~ina toplote koju primi vodonik )RW*!istovremeno predstavqa odvedenu toplotu za toplotnu pumpu!)Rpew* εh!>! R pew R pew − R epw R pew = ⇒ R pew = εh εh − 2 ⋅ R epw 2/9 ⋅ 5:62>!2224:/86!lK!>!RW 2/9 − 2 RW!>!nw!/!dw!)!Uw3!.!Uw2* !!!!!! UW3> 479 + ⇒ !!!!!!Uw3!> UW2 + RW > nw ⋅ d W 2224:/86 >!538/62!L 29 ⋅ 21/5 XL!>! R pew − R epw = 7299/86!lK • XL = XL 7299/86 = 2/83!lX > 4711 τ dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 32 7/31. Instalacija toplotne pumpe (slika) radi sa ugqendioksidom (idealan gas) kao radnim fluidom po Xulovom kru`nom procesu izme|u qnjo>1/2!NQb i qnby>1/5!NQb. Stepen dobrote adijabatske kompresije je ηlq>!1/:7, a stepen dobrote adijabatske ekspanzije ηfy>!1/:3. Svrha toplotne pumpe je da se u prostoriji odr`ava temperatura UUQ>28pD pri temperaturi okolnog vazduha UUJ>1pD. Pri tome se iz okoline radnom telu dovodi 311!lK0t toplote. Usvojiti da se ugqendioksid ispred kompresora zagreva do temperature koja vlada u okolini, a ispred ekspanzionog ure|aja hladi do temperature koja vlada u prostoriji. Odrediti faktor grejawa toplotne pumpe kao i snagu kompresora i snagu ekspanzionog ure|aja (turbine). U grejana prostorija 3 3l 4 3 4 2 5 5l t κ −2 2 5 2/39 −2 κ >!384 ⋅ 5 2/39 >!47:/82!L U3L!>!U2 ⋅ q 3L q 2 2 U −U 47:/82 − 384 !>484/85!L U3!>!U2!,! 3L lq 2 !>!384!,! 1/:7 η U5L!>!U4 ⋅ q 5L q 4 κ −2 κ >!3:1 ⋅ 2 5 2/39 −2 2/39 >!325/25!L U5!>!U4!,!ηfy!/)U5l!.!U4*!>!3:1!,!1/:3 ⋅(325/25 − 3:1) !>331/32!L ⋅ ⋅ ⋅ R epw = R 52 = n⋅ d q ⋅ (U2 − U5 ) ⋅ n= ⋅ ⇒ ⋅ R epw 311 lh > >5/57! d q ⋅ (U2 − U5 ) 1/96 ⋅ (384 − 331/32) t ⋅ ⋅ R pew = R 34 = n⋅ d q ⋅ (U4 − U3 ) > 5/57 ⋅ 1/96 ⋅ (3:1 − 484/85 ) >−428/57!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 33 ⋅ R pew εh!>! ⋅ >! ⋅ R pew − R epw ⋅ ⋅ 428/57 >3/8 428/57 − 311 ⋅ X lpnqsftps!>! X u23 > n ⋅ d q ⋅ (U2 − U3 ) > 5/57 ⋅ 1/96 ⋅ (384 − 484/85 ) >−492/:!lX ⋅ ⋅ ⋅ X uvscjob!>! X u45 > n ⋅ d q ⋅ (U4 − U5 ) > 5/57 ⋅ 1/96 ⋅ (3:1 − 331/32) >!375/68!lX 7/32/!Toplotna pumpa koja se koristi za zagrevawe vazduha (idealan gas) od Uw2>66pD!do Uw3>71pD! na ra~un hla|ewa vode od (q>2!cbs- Ux2>29pD*!do!)q>2!cbs-!Ux3>25pD*, radi izme|u pritisaka qnjo>5/66!cbs i!qnby>27/83!cbs, sa freonom 12 )S23* kao radnim telom, po idealnom Rankin−Klauzijusovom kru`nom procesu sa prigu{ivawem te~ne faze,. Protok vode kroz ispariva~ toplotne pumpe je 2/6!lh0t/ Skicirati promene stawa freona 12 na Ut!i!it dijagramu i odrediti faktor grejawa toplotne pumpe, snagu kompresora kao i maseni protok vazduha kroz kondenzator toplotne pumpe. vazduh 4 3 S23 5 2 3 voda 3 U i 4 2 4 5 5 2 t dipl.ing. @eqko Ciganovi} t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 34 q>5/66!cbs ta~ka 1: lK i2!>!771/95! lh t2!>!2/675! ta~ka 2: i3!>!795/13! y>2 lK lhL q>27/83!cbs t!>!t2!>2/675! q>27/83!cbs y>1 lK lhL lK lh ta~ka 3: lK i4!>!677/2! lh i5!>!i4!>!677/2! ta~ka 4: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ lK lh R epw = R 52 = n g ⋅ (i2 − i 5 ) >!/// R pew = R 34 = n g ⋅ (i 4 − i3 ) >!/// ⋅ R pew εh = ⋅ > ⋅ R pew − R epw i4 − i3 i 4 − i 3 − i2 − i 5 > 677/2 − 795/13 677/2 − 795/13 − 771/95 − 677/2 >6/19 prvi zakon termodinamike za proces u ispariva~u toplotne pumpe: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 ⋅ ⋅ ⋅ ⇒ ⋅ ⋅ n x ⋅ i x2 + n g ⋅ i 5 = n x ⋅ i x3 + n g ⋅ i2 ⋅ ⋅ ng = nx ⋅ ⋅ I2 = I3 ⇒ i x2 − i x3 86/46 − 69/71 lh >1/376! > 2/6 ⋅ 771/95 − 677/2 t i2 − i 5 napomena: lK lh lK ix3!>!69/71! lh ix2!>!86/46! dipl.ing. @eqko Ciganovi} )q!>!2!cbs-!u>29pD* )q!>!2!cbs-!u>25pD* {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 35 prvi zakon termodinamike za proces u kompresoru toplotne pumpe: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 ⇒ ⋅ ⋅ ⋅ X U23 = −∆ I23 = − n g ⋅ (i3 − i2 ) ⋅ X U23 = −1/376 ⋅ (795/13 − 771/95 ) >−7/25!lX prvi zakon termodinamike za proces u kondenzatoru toplotne pumpe: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X U23 ⋅ ⇒ ⋅ ⋅ ⋅ I2 = I3 ⋅ ⋅ n w ⋅ d q ⋅ Uw2 + n g ⋅ i 3 = n w ⋅ d q ⋅ Uw3 + n g ⋅ i 4 ⋅ ⋅ nw = ng ⋅ ⇒ i3 − i 4 795/13 − 677/2 lh >7/36! > 1/376 ⋅ d q ⋅ (Uw3 − Uw2 ) 2 ⋅ (71 − 66 ) t 7/33/!Termodinami~ki stepen korisnosti Xulovog kru`nog procesa (2−3−4−5−2), koji obavqa vazduh (idealan gas) iznosi η =0.3. Koliki bi bio faktor grejawa toplotne pumpe, kada bi metan (idealan gas) obavqao levokretni Xulov kru`ni procec izme|u istih stawa )2−5−4−3−2*. desnokretni levokretni U U 4 4 5 5 3 3 2 2 t dipl.ing. @eqko Ciganovi} t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 36 desnokretni kru`ni proces: R epw = R 34 = n ⋅ d q ⋅ (U4 − U3 ) R pew = R 52 = n ⋅ d q ⋅ (U2 − U5 ) η!>! U − U3 + U2 − U5 R epw + R pew ! >! 4 R epw U4 − U3 )2* levokretni kru`ni proces: R epw = R 25 = n ⋅ d q ⋅ (U5 − U2 ) R pwe = R 43 = n ⋅ d q ⋅ (U3 − U4 ) !!!εh!>! R pew R pew − R epw > U3 − U4 U3 − U4 − U5 + U2 pore|em izraza (1) i (2) uo~ava se: zadatak za ve`bawe: > U4 − U3 U4 − U3 − U5 + U2 εh = )3* 2 2 >4/44 > η 1/4 (2.23.) 7/34. Toplotna pumpa radi, sa vodenom parom kao radnim fluidom, po realnom levokretnom Rankin−Klauzijusovom kru`nom procesu bez podhla|ivawa kondenzata izme|u pritisaka qnjo>9!lQb!i qnby>1/7!NQb. U kompresor ulazi suvozasi}ena vodena para, a na izlazu iz kompresora temperatura pare je 811pD. Kao izvor toplote koristi se otpadna voda nekog industrijskog procesa, temperature 61pD>dpotu, koja predaje vodenoj pari 2311!lX toplote. Potro{a~ toplote (toplotni ponor) nalazi se na temperaturi 261pD>dpotu. Odrediti: a) koli~inu toplote koja se predaje potro{a~u (lX) b) koeficijent grejawa toplotne pumpe )εh* c) promenu entorpije sistema koji sa~iwavaju radna materija, toplotni izvor i toplotni ponor ⋅ a) R pew >3161/4!lX b) εh!>!3/5 c) ∆ T tj!>!2/24! ⋅ lX L dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 1 VLA@AN VAZDUH 8/2/!U sudu zapremine!W>1/96!n4!nalazi se!nww>2/12!lh!nezasi}enog vla`nog vazduha stawa!)q>2!cbsu>31pD*/!Odrediti: a) masu suvog vazduha u sudu i masu vodene pare u sudu b) pritisak suvog vazduha i pritisak vodene pare u sudu c) gustinu suvog vazduha, gustinu vodene pare i gustinu vla`nog vazduha u sudu lhI3 P d) sadr`aj vlage (apsolutnu vla`nost) vla`nog vazduha, lhTW e) relativnu vla`nost vla`nog vazduha f) specifi~nu entalpiju vla`nog vazduha a) nww!>!ntw!,!nI3P )2* ( ) q ⋅ W = nTW ⋅ S hTW + nI3PS hI3P ⋅ U )3* re{avawem sistema jedna~ina (1) i (2) dobija se; 2⋅ 216 ⋅ 1/96 2 2 q⋅W n tw = > >2!lh − 2/12⋅ 573 ⋅ − n ww ⋅ S hI3P ⋅ − U S S 3:4 398 573 − htw hI3P nI3P!>!nww!−!ntw!>!2/12!−!2!>1/12!lh b) q TW = nTW ⋅ S hTW U q I3P = = W nI3P ⋅ S hI3P U W 2 ⋅ 398 ⋅ 3:4 = :9:41!Qb 1/96 = 1/12 ⋅ 573 ⋅ 3:4 = 26:3!Qb 1/96 c) ρtw> !! nTW q TW :9:41 lhTW = = >2/287! W S hTW U 398 ⋅ 3:4 n4 !ρI3P> nI3P W = q I3P S hI3P U = lhI3 P 26:3 >1/119! 573 ⋅ 3:4 n4 ρww!>!ρtw!,!ρI3P!>2/287!,!1/119!>2/195!! lhWW n4 d) y> nI3P nTW = NI3P NTW ⋅ q I3P q − q I3P dipl.ing. @eqko Ciganovi} = lhI3 P 29 26:3 ⋅ >1/12! 6 3: 2 ⋅ 21 − 26:3 lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 2 e) ϕ> q I3P (qqt )U =31p D = 26:3 >1/79 3448 f) i = d qTW ⋅ u + y ⋅ )2/97 ⋅ u + 3611* = 2 ⋅ 31 + 1/12 ⋅ (2/97 ⋅ 31 + 3611) >56/48! lK lhTW 8/3/!Odrediti temperaturu!vla`nog vazduha ~ije je stawe pri!q>2!cbs!zadato na na~in: lhI3 P a) y>1/13! !)apsolutna vla`nost*-!ϕ>1/9!(relativna vla`nost) lhTW b) Uwu>31pD!)temperatura vla`nog termometra*-!Us>21pD!)ta~ka rose* a) q I3P = y NI3P NTW q qt = q I3P ϕ u4!>!39/6pD b) = ⋅q = +y 1/13 ⋅ 2 ⋅ 21 6 >4232/75!Qb 29 + 1/13 3: 4232/75 >4:13!Qb 1/9 )temperatura kqu~awa vode na!q>4:13!Qb* (qI3P )S = ϕS ⋅ (qqt )US =21 > 2⋅ 2338 >2338!Qb NI3P yS> NTW ⋅ q I3P q − q I3P = lhI3 P 29 2338 ⋅ >1/1188! 6 3: 2 ⋅ 21 − 2338 lhTW y!>!yS (qI3P )wu = ϕ wu ⋅ (qqt )Uwu =31 > 2⋅ 3448 >3448!Qb ywu> NI3P NTW ⋅ q I3P q − q I3P = lhI3 P 29 3448 ⋅ >1/1259! 6 3: 2 ⋅ 21 − 3448 lhTW iwu = dq ⋅ u + y wu ⋅ )2/97 ⋅ u wu + 3611* = 2 ⋅ 31 + 1/1259 ⋅ (2/97 ⋅ 31 + 3611) >56/48 lK lhTW i!>!iwu u!>! i − y ⋅ 3611 68/66 − 1/1188 ⋅ 3611 !> >48/87pD 2 + 1/1188 ⋅ 2/97 dq + y ⋅ 2/97 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 3 8/4/!Vla`nom vazduhu stawa!2)q2>2!cbs-!u2>31pD-!ϕ2>1/9-!nww>31!lh0i) dovodi se toplota u zagreja~u vazduha dok vazduh ne dostigne stawe!3)q3>2!cbs-!u3>91pD), a zatim se tako zagrejan vazduh u adijabatski izolovanoj komori vla`i pregrejanom vodenom parom stawa!Q)q>2!cbs-!u>231pD-!nqq>2!lh0i*!do stawa 4)q>2!cbs). Skicirati promene stawa vla`nog vazduha na Molijerovom i!−y!dijagramu i odrediti: a) toplotnu snagu zagreja~a vazduha!)lX* b) entalpiju!)i*-!apsolutnu vla`nost!)y*!i temperaturu!)u*!vla`nog vazduha stawa!4 i 4 3 3828 u3 ϕ>2 u2 2 ϕ2 y ta~ka 1: q qt >3448!Qb )napon pare ~iste vode na!u>31pD* q I3P = ϕ ⋅ q qt > 1/9 ⋅ 3448 >297:/7!Qb y2!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 297:/7 ⋅ >1/1229! 6 lhTW 3: 2 ⋅ 21 − 297:/7 i2> d qtw ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 31 + 1/1229 ⋅ )2/97 ⋅ 31 + 3611* >61/13! ntw!>! lK lhTW n ww 31 lhTW > >2:/88! 2 + y 2 2 + 1/1229 i ta~ka 2: y3!>!y2>1/1229! lhI3 P lhTW i3> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 91 + 1/1229 ⋅ )2/97 ⋅ 91 + 3611* >222/44! dipl.ing. @eqko Ciganovi} lK lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 4 ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u zagreja~u vazduha:!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ 2:/88 ⋅ (222/44 − 61/13) >1/45!lX 4711 R 23 = n tw ⋅ (i3 − i2 ) = ta~ka 3: ⋅ ⋅ ⋅ prvi zakon termodinamike za proces vla`ewa vazduha:!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ n tw ⋅ i3 + nqq ⋅ iqq = n tw ⋅ i 4 ⋅ ⇒! i4 = ⋅ ntw ⋅ i3 + nqq ⋅ iqq ⋅ ntw 2 2:/88 ⋅ 222/44 + ⋅ 3828 lK 4711 4711 i4 = >359/87! 2:/88 lhTW 4711 materijalni bilans vlage za proces vla`ewa vazduha: ⋅ ⋅ ⋅ n tw ⋅ y 3 + nqq = n tw ⋅ y 4 ⋅ ⇒! y4 = ⋅ n tw ⋅ y 3 + nqq ⋅ n tw y4 = lhI3 P 2:/88 ⋅ 1/1229 + 2 >1/1735! 2:/88 lhTW u4!>! i 4 − y 4 ⋅ 3611 359/87 − 1/1735 ⋅ 3611 >94/22pD !> d q + y 4 ⋅ 2/97 2 + 1/1735 ⋅ 2/97 napomena: iqq>!3828! lK -!entalpija pregrejane vodene pare stawa!Q!)q>2!cbs-!u>231pD* lh dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 5 8/5/!Za pripremu vla`nog vazduha stawa!5)q>2!cbs-!u>47pD-!ϕ>1/4) koristi se sve` vazduh stawa!2)q>2 cbs-!u>21pD-!ϕ>1/9). Sve` vazduh se najpre zagreva u zagreja~u do stawa!3)q>2!cbs*-!a onda adijabatski vla`i ubrizgavawem vode!X)q>2!cbs-!ux>61pD*!dok ne postane zasi}en!)q>2!cbs-!ϕ>2*/!Na kraju se vazduh dogreva u dogreja~u. Potro{wa vode u fazi vla`ewa vazduha iznosi!71!lh0i. Skicirati promene stawa vla`nog vazduha na Molijerovom!i!−y!dijagramu i odrediti: a) veli~ine stawe vla`nog vazduha na ulazu u dogreja~!!4)i-!y-!u* b) toplotne snage zagreja~a i dogreja~a!)lX* i 5 u5 ϕ5 3 ϕ>2 u2 4 2 ϕ2 y 31: ta~ka 1: q qt >2338!Qb )napon pare ~iste vode na!u>21pD* q I3P = ϕ ⋅ q qt > 1/9 ⋅ 2338 >:92/7!Qb y2!> NI3P NTW ⋅ q I3P q − q I3P lhI3 P 29 :92/7 ⋅ >1/1173! 6 3: 2 ⋅ 21 − :92/7 lhTW > i2> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 21 + 1/1173 ⋅ )2/97 ⋅ 21 + 3611* >36/73! lK lhTW ta~ka 4; q qt >6:51!Qb )napon pare ~iste vode na!u>47pD* q I3P = ϕ ⋅ q qt > 1/4 ⋅ 6:51 >2893!Qb y5!> NI3P NTW ⋅ q I3P q − q I3P lhI3 P 29 2893 ⋅ >1/1224! 6 3: 2 ⋅ 21 − 2893 lhTW > i5> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 47 + 1/1224 ⋅ )2/97 ⋅ 47 + 3611* >76/12! lK lhTW ta~ka 3: y4!>y5!>1/1224! q I3P = y NI3P NTW q qt = q I3P ϕ p u4!>!27 D = lhI3 P lhTW ⋅q = +y 1/1224 ⋅ 2 ⋅ 21 6 >2899!Qb 29 + 1/1224 3: 2899 >2899!Qb 2 )temperatura kqu~awa vode na!q>2899!Qb* i4> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 27 + 1/1224 ⋅ )2/97 ⋅ 27 + 3611* >55/6:! dipl.ing. @eqko Ciganovi} lK lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 6 ta~ka 2: y3!>y2!>1/1173! lhI3 P lhTW materijalni bilans vlage za proces vla`ewa vazduha!)3−4*; ⋅ ⋅ ⋅ ⋅ ntw ⋅ y3 + nX = ntw ⋅ y4 !!!!!!!!⇒!!!!!!!! n tw 71 ⋅ nX lh 4711 >4/38! = = t 1/1224 − 1/1173 y4 − y3 ⋅ ⋅ ⋅ prvi zakon termodinamike za proces vla`ewa vazduha:!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ n tw ⋅ i3 + nqq ⋅ iqq = n tw ⋅ i 4 ⋅ ⇒ i3 = ⋅ ntw ⋅ i4 − nX ⋅ iX ⋅ ntw i3 = 71 ⋅ 31: lK 4711 >54/63! 4/38 lhTW 4/38 ⋅ 55/6: − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u zagreja~u vazduha:!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ R 23 = n tw ⋅ (i3 − i2 ) > 4/38 ⋅ (54/63 − 36/73) >69/64!lX prvi zakon termodinamike za proces u zagreja~u vazduha:!!!!! R 45 = ∆ I45 + X u 45 ⋅ ⋅ R 45 = n tw ⋅ (i 5 − i 4 ) > 4/38 ⋅ (76/12 − 55/6:) >77/88!lX 8/6/!Vla`an vazduh, pri konstantnom pritisku!)q>2/37!cbs*-!struji kroz adijabatski izolovan kanal i pri tome se najpre zagreva a potom i vla`i suvozasi}enom vodenom parom!)q>2/4!cbs*!)slika*/!Jedan deo vodene parekoristi se za zagrevawe vazduha (ulazi u cevnu zmiju i iz we izlazi potpuno kondenzovan tj. kao kqu~ala te~nost), a drugi deo pare (istog po~etnog stawa) koristi se za vla`ewe vla`nog vazduha (isti~e kroz mlaznicu i me{a se sa vla`nim vazduhom stawa 2). Zapreminski protok vla`nog vazduha na ulazu u kanal iznosi!1/65!n40t-!a wegovo stawe je definisano temperaturom suvog termometra i temperaturom vla`nog termometra!2)utu>33pD-!uwu>23pD*/!Odrediti potrebne masene protoke vodene pare posebno kroz cevnu zmiju i posebno kroz mlaznicu, da bi se ostvarilo stawe!4)u>71pD-!ϕ>1/4*!vla`nog vazduha na izlazu iz kanala. Skicirati promene stawa vla`nog vazduha na!Molijerovom!i−y!dijagramu. nB nC vla`an vazduh 2 dipl.ing. @eqko Ciganovi} 3 4 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 7 ta~ka WU: (qI3P )wu = ϕ wu ⋅ (qqt )Uwu =23 > 2⋅ 2512 >2512!Qb ywu> NI3P ⋅ NTW q I3P lhI3 P 29 2512 ⋅ >1/1181! 6 3: 2/37 ⋅ 21 − 2512 lhTW = q − q I3P iwu = dq ⋅ u + y wu ⋅ )2/97 ⋅ u wu + 3611* = 2⋅ 23 + 1/1181 ⋅ (2/97 ⋅ 23 + 3611) >3:/77 lK lhTW ta~ka 1: i2>iwu!>3:/72! y2 = lK lhTW i2 − d q ⋅ u 2 = 2/97 ⋅ u 2 + 3611 (qI3P )2 = N y2 I3P lhI3 P 3:/77 − 2 ⋅ 33 >1/1141! lhTW 2/97 ⋅ 33 + 3611 ⋅q = + y2 NTW 1/114 ⋅ 2/37 ⋅ 21 6 >717!Qb 29 + 1/114 3: (q tw )2 = q − (q I3P )2 = 2/37 ⋅ 21 6 (ρ tw )2 = (q TW )2 S hTW ⋅ U2 ⋅ = − 717 > 2/36 ⋅ 21 6 !Qb 2/36 ⋅ 21 6 lhTW >2/59! 398 ⋅ 3:6 n4 ⋅ n tw = (ρ tw )2 ⋅ W 2 = 2/59 ⋅ 1/65 >1/9! lhTW t ta~ka 3: q qt >2::21!Qb )napon pare ~iste vode na!u>71pD* q I3P = ϕ ⋅ q qt > 1/4 ⋅ 2::21 >6:84!Qb y4!> NI3P ⋅ NTW q I3P q − q I3P > lhI3 P 29 6:84 ⋅ >1/141:! 6 lhTW 3: 2/37 ⋅ 21 − 6:84 i4> d qtw ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 71 + 1/141: ⋅ )2/97 ⋅ 71 + 3611* >251/8 lK lhTW ta~ka 2: y3>y2>1/1141! lhI3 P lhTW i3>@ materijalni bilans vlage za proces vla`ewa vazduha!)3−4*; ⋅ ⋅ ⋅ ntw ⋅ y3 + nB = ntw ⋅ y4 !!!!!!!!⇒ ⋅ n B = 1/9 ⋅ (1/141: − 1/1141) > 3/34 ⋅ 21 −3 dipl.ing. @eqko Ciganovi} ⋅ ⋅ n B = ntw ⋅ (y 4 − y 3 ) lh t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 8 prvi zakon termodinamike za proces u otvorenom sistemu ograni~enom isprekidanom konturom: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ ⋅ ⋅ n tw ⋅ i2 + n B ⋅ i B2 + nC ⋅ iC = n tw ⋅ i 4 + nC ⋅ i B3 ⋅ ⋅ n tw ⋅ (i 4 − i2 ) − nC ⋅ iC 1/9 ⋅ (251/8 − 3:/77 ) − 3/34 ⋅ 21 −3 ⋅ 3798 > nC = = i B2 − i B3 3798 − 55:/3 ⋅ ⋅ lh t lK iB2>iC2!>!3798! lh iB3>55:/3 nC > 2/3: ⋅ 21 −3 )suva para!q>2/4!cbs* )kqu~ala voda!q>2/4!cbs* i 4 3 ϕ>2 3798 2 WU y )8/7/* zadatak za ve`bawe: 8/7/!21!)2,y*!lh0t!vla`nog vazduha stawa!2)q>2!cbs-!u>71pD-!qI3P>1/12!cbs) vla`i se vodenom parom stawa!Q)q>2!cbs-!u>271!pD). Parcijalni pritisak vodene pare u vla`nom vazduhu nakon vla`ewa iznosi 3)qI3P>1/16!cbs*/!Dobijeni vla`an vazduh stawa 2 hladi se do zasi}ewa (stawe 3). Svi procesi sa vla`nim vazduhom su izobarski. Skicirati procese sa vla`nim vazduhom na Molijerovom iy!dijagramu i odrediti: a) temperaturu )u* i apsolutnu vla`nost!)y*!vla`nog vazduha stawa!3!i stawa!4 b) koliko se toplote odvede od vla`nog vazduha u procesu hla|ewa!)3−4*-!)lX* re{ewe: a) u3>75/79pD-!y3>1/1438! lhI3 P lhI3 P -!u4>43/:pD-!y4>1/1438! lhTW lhTW ⋅ b) R 34!>!−447!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 9 8/8/!U adijabatski izolovanom rashladnom torwu, za potrebe hla|ewa neke prostorije, hladi se voda X2)q>2!cbs-!ux2>68pD) isparavawem u struji vazduha, ~ije je stawe na ulazu u toraw 2)q>2!cbs-!u>33pDϕ>1/3) a na izlazu iz torwa 3)q>2!cbs-!u>38pD-!ϕ!>1/:*/!Protok suvog vazduha kroz toraw iznosi!9/6!lh0t. Ohla|ena voda iz torwa!X3)q>2!cbs-!ux3>33!D*-!se me{a sa sve`om vodom!Xp)q>2cbs-!uxp>27pD*!da bi se nadoknadila isparena koli~ina vode i ponovo odvodi u prostoriju koju treba ohladiti. Odrediti: a) potro{wu sve`e vode!)X1* b) razmewenu toplotu u torwu!)lX* c) protoke tople )X2* i ohla|ene vode!)X3* d) koli~inu toplote koju prostorija koja se hladi predaje vodi-!R′!!)lX* X2 2)u3-!ϕ3* Rups R′ X1 X3 2)u2-!ϕ2* Xp vla`an vazduh: ta~ka 1: q qt >3754!Qb )napon pare ~iste vode na!u>33pD* q I3P = ϕ ⋅ q qt > 1/3 ⋅ 3754 >639/7!Qb y2!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 639/7 ⋅ >1/1144! 6 lhTW 3: 2 ⋅ 21 − 639/7 i2> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 33 + 1/1144 ⋅ )2/97 ⋅ 33 + 3611* >41/48! dipl.ing. @eqko Ciganovi} lK lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 10 ub•lb!3; )napon pare ~iste vode na!u>38pD* q qt >4675!Qb q I3P = ϕ ⋅ q qt > 1/: ⋅ 4675 >4318/7!Qb y3!> NI3P NTW ⋅ q I3P > q − q I3P lhI3 P 29 4318/7 ⋅ >1/1317! 6 lhTW 3: 2 ⋅ 21 − 4318/7 i3> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 38 + 1/1317 ⋅ )2/97 ⋅ 38 + 3611* >8:/64 lK lhTW voda: lK lh lK ix3>:2/:7! lh lK ix1>77/99! lh entalpija vode!q>2!cbs-!u>68pD ix2>349/37! entalpija vode!q>2!cbs-!u>33pD entalpija vode!q>2!cbs-!u>27pD materijalni bilans vlage za proces vla`ewa vazduha u torwu: ⋅ ⋅ X2 + ntw ⋅ y2 = X3 + ntw ⋅ y3 ⇒ ⋅ X2 − X3 = ntw ⋅ (y 3 − y2 ) > Xp ⋅ Xp > n tw ⋅ (y 3 − y 2 ) > 9/6 ⋅ (1/1317 − 1/1144 ) >1/258! lh t ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u torwu:!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ X2 ⋅ i x2 + n tw ⋅ i2 = X3 ⋅ i x3 + n tw ⋅ i3 ⋅ R ups > X2 ⋅ i x2 − X3 ⋅ i x3 = n tw ⋅ (i 3 − i2 ) ⋅ R ups > n tw ⋅ (i 3 − i2 ) > 9/6 ⋅ (8:/64 − 41/68) >528/97!lX Xp > X2 − X3 R ups > X2 ⋅ i x2 − X3 ⋅ i x3 )2* )3* Kombinovawem jedna~ina!)2*!i!)3*!dobija se: X 2>3/869! lh lh -! X 3>3/722! t t prvi zakon termodinamike za proces u hladwaku prostorije koju treba hladiti: ⋅ ⋅ ⋅ R 23 = ∆ I23 + X u23 R ( = X2 ⋅ ix2 − X3 ⋅ ix3 − Xp ⋅ ixp R ( = 3/869 ⋅ 349/37 − 3/722 ⋅ :2/:7 − 1/258 ⋅ 77/99 >518/29!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 11 8/9/!U nekom procesu izobarski se hladi vla`an vazduh, po~etnog stawa!)q2>2!cbs-!u2>41pD-!ϕ2>1/9nww>211!)2,y*!lh0i*/!Odrediti: a) koli~inu toplote koja se odvodi od vla`nog vazduha kao i koli~inu izdvojenog kondenzata ako se hla|ewe vazduha vr{i do!u3>21pD b) koli~inu toplote koja se odvodi od vla`nog vazduha kao i koli~inu izdvojenog leda ako se hla|ewe vazduha vr{i do!u4>−21pD c) koli~inu toplote koja se odvodi od vla`nog vazduha kao i koli~inu izdvojenog leda i kondenzata ako se hla|ewe vazduha vr{i do!u4>1pD!i pri tome nastaje jednaka koli~ina leda i kondenzata Sve procese predstaviti na Molijerovom i−y dijagramu za vla`an vazduh ⋅ − R 23 2 3′ 3 izdvojeni kondenzat i/ili led ta~ka 1: q qt >5352!Qb )napon pare ~iste vode na!u>41pD* q I3P = ϕ ⋅ q qt > 1/9 ⋅ 5352>44:3/9!Qb y2!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 44:3/9 ⋅ >1/1329! 6 lhTW 3: 2 ⋅ 21 − 44:3/9 i2> d qtw ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 41 + 1/1329 ⋅ )2/97 ⋅ 41 + 3611* >96/83! dipl.ing. @eqko Ciganovi} lK lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 12 a) i 2 ϕ2 u2 ϕ>2 3 u3 3′ y ta~ka 2: q qt >2338!Qb )napon pare ~iste vode na!u>21pD* q I3P = ϕ ⋅ q qt > 2⋅ 2338 >2338!Qb y3!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 2338 >1/1188! ⋅ 6 3: 2 ⋅ 21 − 2338 lhTW i3> d qtw ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 21 + 1/1188 ⋅ )2/97 ⋅ 21 + 3611* >3:/4:! lK lhTW koli~ina izdvojenog kondenzata: ⋅ ⋅ nlpoe = n tw ⋅ (y2 − y 3 ) = 211 ⋅ (1/1329 − 1/1188) >2/52! lh i ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u hladwaku vazduha:!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ R23 = ntw ⋅ (i3 − i2) + nlpoe ⋅ ix > ix!>!53! lK lh dipl.ing. @eqko Ciganovi} 211 2/52 ⋅ (3:/4: − 96/83) + ⋅ 53 >−2/66!lX 4711 4711 entalpija kondenzata (vode)!q>2!cbs-!u>21pD {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 13 b) i 2 ϕ2 u2 ϕ>2 y 3 u3 3′ ta~ka 2: q qt >36:/5!Qb )napon pare ~iste vode na!u>−21pD* q I3P = ϕ ⋅ q qt > 2⋅ 36:/5 >36:/5!Qb y3!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 36:/5 ⋅ >1/1127! 6 lhTW 3: 2 ⋅ 21 − 36:/5 i3> dqtw ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ (−21) + 1/1127 ⋅ )2/97 ⋅ (−21) + 3611* > !!!>−7/14 lK lhTW koli~ina izdvojenog leda: ⋅ ⋅ nmfe = ntw ⋅ (y2 − y3 ) = 211 ⋅ (1/1329 − 1/1127) >3/13! lh i ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u hladwaku vazduha:!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ R23 = ntw ⋅ (i3 − i2) + nlpoe ⋅ im > 211 3/13 ⋅ (− 7/14 − 96/83) + ⋅ (− 463/5 ) >−3/86!lX 4711 4711 im!>! d m ⋅ (Um − 384) − sm = 3 ⋅ (−21) − 443/5 >−463/5! dipl.ing. @eqko Ciganovi} lK !!!!!!entalpija leda-!u>−21pD lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 14 c) i 2 ϕ2 u2 ϕ>2 3 u3 y 3′ ta~ka 2: q qt >721/9!Qb )napon pare ~iste vode na!u>1pD* q I3P = ϕ ⋅ q qt > 2⋅ 721/9 >721/9!Qb y3!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 721/9 ⋅ >1/1149! 6 3: 2 ⋅ 21 − 721/9 lhTW i3> d qtw ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 1 + 1/1149 ⋅ )2/97 ⋅ 1 + 3611* >:/6 lK lhTW koli~ina izdvojenog kondenzata i leda: ⋅ ⋅ ⋅ nlpoe + nmfe = n tw ⋅ (y2 − y 3 ) = 211 ⋅ (1/1329 − 1/1149) >2/9! ⋅ ⋅ nlpoe = nmfe >1/:! lh i lh i ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u hladwaku vazduha:!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ ⋅ R 23 = ntw ⋅ (i3 − i2 ) + nlpoe ⋅ i x + nm ⋅ im > ⋅ 211 1/: ⋅ (:/6 − 96/83) + ⋅ (− 443/5 ) >−3/3!lX 4711 4711 lK im!>! d m ⋅ (Um − 384) − sm = 3 ⋅ 1 − 443/5 >−443/5! !!!!!!entalpija leda-!u>1pD lh lK ix!>1! entalpija kondenzata (vode)!q>2!cbs-!u>1pD lh R 23 = dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 15 8/:/!Iz!21!)2,y*!lh0t!vla`nog vazduha stawa!2)q>2!cbs-!u>31pD-!y>1/13!lhI3P0!lhTW*!izdvaja se vlaga u te~nom stawu, a zatim se preostali vazduh zagreva izobarski dok se ne postigne relativna vla`nost od ϕ>1/4/!Odrediti maseni protok izdvojene vlage )lh0t* kao i temperaturu vla`nog vazduha nakon zagrevawa. Prikazati procese sa vla`nim vazduhom na Molijerovom!i−y!dijagramu. ta~ka 1: i2>g)u2-!y2*!>!69! ta~ka 2: lK !)pro~itano sa Molijerovog!i−y!dijagrama* lhTW (qI3P )3 = ϕ3 ⋅ (qqt )U3 =31 > 2⋅ 3448 >3448!Qb y3> NI3P q I3P lhI3 P 29 3448 >1/125:! ⋅ = ⋅ 6 lhTW NTW q − q I3P 3: 2 ⋅ 21 − 3448 ta~ka 3: lhI3 P lhTW y4 1/125: = ⋅q = ⋅ 2 ⋅ 21 6 >1/1345!cbs NTW 29 + 1/125: + y4 3: NI3P y4>y3>1/125:! (qI3P )4 (qqt )4 = (qI3P )4 ϕ4 = 1/1345 >1/189!cbs 1/4 ⇒ u4!>!)ul*Q>1/189!cbs>52/6pD koli~ina odstrawene vlage: ⋅ ⋅ n x = n tw ⋅ (y 2 − y 3 ) = 21 ⋅ (1/13 − 1/125:) >1/162! lh t i ϕ4 i2 ϕ>2 3 u2 2 y y2 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 16 8/21/!Vla`an vazduh stawa!2)q>286!lQb-!utu>39pD-!uwu>33pD*!i zapreminskog protoka!W>1/6!n40t izobarski se vla`i u adijabatski izolovanoj komori sa!1/13!lh0s pregrejane vodene pare stawa!)q>286 lQb-!u>511pD*!do stawa 2. Odrediti: a) temperaturu vla`nog vazduha stawa!3 b) koli~inu toplote koju bi trebalo odvesti od vla`nog vazduha stawa!2 da bi ga izobarski ohladili do temperature od −21pD!)stawe!4*-!kao i masu leda u jedinici vremena!)lh0i*!koja se tom prilikom izdvoji iz vla`nog vazduha c) skicirati sve procese sa vla`nim vazduhom na Molijerovom i−y dijagramu ta~ka WU: q qt >3784!Qb )napon pare ~iste vode na!u>33pD* q I3P = ϕ ⋅ q qt > 2⋅ 3784 >3784!Qb ywu!> NI3P NTW ⋅ q I3P > q − q I3P lhI3 P 29 3784 ⋅ >1/11:7! 6 3: 2/86 ⋅ 21 − 3784 lhTW iwu> d qtw ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 33 + 1/11:7 ⋅ )2/97 ⋅ 33 + 3611* >57/4: lK lhTW ta~ka 1: lK lhTW i2 − d q ⋅ u 2 i2>iwu!>57/25! y2 = 2/97 ⋅ u 2 + 3611 (qI3P )2 = N y2 I3P NTW = lhI3 P 57/25 − 2 ⋅ 39 >1/1182! lhTW 2/97 ⋅ 39 + 3611 ⋅q = + y2 1/1182 ⋅ 2/86 ⋅ 21 6 >2:8:!Qb 29 + 1/1182 3: (q tw )2 = q − (q I3P )2 = 2/86 ⋅ 21 6 − 2:8: > 2/84 ⋅ 21 6 !Qb (ρ tw )2 = ⋅ (q TW )2 S hTW ⋅ U2 = 2/84 ⋅ 21 6 lhTW >3! 398 ⋅ 412 n4 ⋅ n tw = ρ tw ⋅ W = 3 ⋅ 1/6 >2! dipl.ing. @eqko Ciganovi} lhTW t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 17 ta~ka 2: materijalni bilans vlage za proces vla`ewa vazduha: ⋅ ⋅ ⋅ ⋅ n tw ⋅ y2 + nqq = ntw ⋅ y 3 ⇒! y3 = ⋅ n tw ⋅ y2 + nqq ⋅ n tw y3 = lhI3 P 2 ⋅ 1/1182 + 1/13 >1/1382! 2 lhTW ⋅ ⋅ ⋅ prvi zakon termodinamike za proces vla`ewa vazduha:!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ ⋅ n tw ⋅ i2 + nqq ⋅ iqq = n tw ⋅ i 3 ⇒! i3 = ⋅ ntw ⋅ i2 + nqq ⋅ iqq ⋅ ntw lK 2 ⋅ 57/25 + 1/13 ⋅ 4387/6 >222/78! lhTW 2 i 3 − y 3 ⋅ 3611 222/78 − 1/1382 ⋅ 3611 u3!>! !> >52/9pD 2 + 1/1382 ⋅ 2/97 d q + y 3 ⋅ 2/97 i3 = iqq>!4387/6! lK -! lh entalpija pregrejane vodene pare, q>2/86!cbs-!u>511pD ta~ka 3: q qt >36:/5!Qb )napon pare ~iste vode na!u>−21pD* q I3P = ϕ ⋅ q qt > 2⋅ 36:/5 >36:/5!Qb y4!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 36:/5 ⋅ >1/111:! 6 lhTW 3: 2/86 ⋅ 21 − 36:/5 i3> dqtw ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ (−21) + 1/111: ⋅ )2/97 ⋅ (−21) + 3611* > !!!>−8/88 lK lhTW koli~ina izdvojenog leda: ⋅ ⋅ nmfe = n tw ⋅ (y 3 − y 4 ) = 2 ⋅ (1/1382 − 1/111:) >1/1373! lh lh >!:5/43! t i ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u hladwaku vazduha:!!!!! R 34 = ∆ I34 + X u34 ⋅ ⋅ ⋅ R 34 = n tw ⋅ (i 4 − i 3 ) + nm ⋅ im > 2 ⋅ (− 8/88 − 222/78) + im!>! d m ⋅ (Um − 384) − sm = 3 ⋅ (−21) − 443/5 >−463/5! dipl.ing. @eqko Ciganovi} :5/43 ⋅ (− 463/5 ) >−239/8!lX 4711 lK !!!!!!entalpija leda-!u>−21pD lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 18 i 4387/6 3 2 u2 ϕ>2 uwu WU y 4 u4 4′ zadatak za ve`bawe: )8/22/* ⋅ 8/22/!Pri izobarskom hla|ewu W >91!n40i vla`nog vazduha stawa!2)q>2!cbs-!u>31pD-!ϕ>1/7* do stawa 3)u>11D) od vla`nog vazduha odvede se 9:1!X toplote. Rashladna povr{ina sastoji se iz 23 plo~a dimenzija 31!Y!41!dn zanemarqive debqine. Odrediti vreme potrebno da se na rashladnim plo~ama stvori sloj leda debqine δ=5!dn. Pretpostaviti ravnomernost debqine leda. )ρM>:11!lh0n4* re{ewe: τ>351111!t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 19 ⋅ 8/23/!Struja vla`nog vazduha stawa 2)q>2!cbs-!u>41!pD-!ϕ>31&- W >26 n4 ) me{a se sa strujom vla`nog njo n4 */!Skicirati proces me{awa na Molijerovom i−y njo dijagramu i odrediti temperaturu!)u*!-!apsolutnu vla`nost!)y) i entalpiju!)i*!novonastale me{avine ako se me{awe vr{i: a) adijabatski b) neadijabatski, pri semu se okolini predaje!!4!lX!toplote ⋅ vazduha stawa!3)q>2!cbs-!u>51!pD-!ϕ>91&- W >31 ϕ3 i 3 N u3 O u2 ϕ>2 2 4 ϕ2 y ta~ka 1: q qt >5352!Qb )napon pare ~iste vode na!u>41pD* q I3P = ϕ ⋅ q qt > 1/3 ⋅ 5352>959/3!Qb y2!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 959/3 ⋅ >1/1164! 6 lhTW 3: 2 ⋅ 21 − 959/3 i2> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 41 + 1/1164 ⋅ )2/97 ⋅ 41 + 3611* >54/66! lK lhTW q tw = q − q I3P > 2 ⋅ 21 6 − 959/3 >::262/9!Qb ρtw> ⋅ ⋅ q TW ::262/9 26 lhTW lh = 2/25! - !!! n tw2> ρ tw ⋅ W 2 > 2/25 ⋅ > >1/396! 4 S hTW ⋅ U 398 ⋅ 414 71 t n dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 20 ta~ka 2: q qt >8486!Qb )napon pare ~iste vode na!u>51pD* q I3P = ϕ ⋅ q qt > 1/9 ⋅ 8486 >6:11!Qb y3!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 6:11 ⋅ >1/149:! 6 lhTW 3: 2 ⋅ 21 − 6:11 i3> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 51 + 1/149: ⋅ )2/97 ⋅ 51 + 3611* >251/25 lK lhTW q tw = q − q I3P > 2 ⋅ 21 6 − 6:11 >:5211!Qb ρtw> ⋅ ⋅ q TW :5211 31 lh lhTW n > W !!! = 2/16! ρ ⋅ >1/46! > 3 > 2/16 ⋅ tw3 tw 4 S hTW ⋅ U 398 ⋅ 424 71 t n ta~ka!N; materijalni bilans vlage za proces me{awa dva vla`na vazduha: ⋅ ⋅ n tw2 ⋅ y 2 + n tw3 ⋅ y 3 = ntw2 + n tw3 ⋅ y n ⇒! ⋅ ⋅ yn = ⋅ yn = ⋅ n tw2 ⋅ y 2 + ntw3 ⋅ y 3 ⋅ ⋅ n tw2 + n tw3 lhI3 P 1/396 ⋅ 1/1164 + 1/46 ⋅ 1/149: >1/1349! 1/396 + 1/46 lhTW ⋅ ⋅ ⋅ n tw2 ⋅ i2 + ntw3 ⋅ i 3 = n tw2 + n tw3 ⋅ in ⇒! ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X u23 prvi zakon termodinamike za proces me{awa: ⋅ in = ⋅ ntw2 ⋅ i2 + n tw3 ⋅ i 3 ⋅ ⋅ n tw2 + n tw3 1/396 ⋅ 54/66 + 1/46 ⋅ 251/25 lK >:7/8:! 1/396 + 1/46 lhTW in − y n ⋅ 3611 :7/8: − 1/1349 ⋅ 3611 un!>! >46/82pD !> d q + y n ⋅ 2/97 2 + 1/1349 ⋅ 2/97 in = ta~ka!O; ⋅ ⋅ R 23 ⋅ ⋅ R 23 = ∆ I23 + X u23 prvi zakon termodinamike za proces me{awa: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ n tw2 ⋅ i2 + n tw3 ⋅ i 3 − R 23 ⋅ = ntw2 + n tw3 ⋅ io − ntw2 ⋅ i2 − n tw3 ⋅ i3 -!! io = ⋅ ⋅ n tw2 + ntw3 1/396 ⋅ 54/66 + 1/46 ⋅ 251/25 − 4 lK >:3/18! 1/396 + 1/46 lhTW lhI3 P :3/18 − 1/1349 ⋅ 3611 ! uo!>! yo!>yn!>1/1349! >!42/26pD 2 + 1/1349 ⋅ 2/97 lhTW io = dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 21 ⋅ 8/24/!Za prostoriju u kojoj se gaje {ampiwoni (slika) priprema se! n 4>6111!lh0i!vla`nog vazduha na slede}i na~in: sve` vazduh stawa!2)q>2!cbs-!u>−21pD-!ϕ>1/9*!!adijabatski se me{a se sa delom iskori{}enog vazduha stawa!5)q>2cbs-!u>33!pD-!ϕ>1/:*!u odnosu!2;3/!Dobijeni vla`an vazduh stawa N)q>2!cbs) se zagreva u zagreja~u do stawa!3)q>2cbs-!u>36pD) a zatim adijabatski vla`i uvo|ewem suvozasi}ene vodene pare stawa!Q)u>211pD*!do stawa!4)q>2!cbs*!kada vazduh dosti`e apsolutnu vla`nost otpadnog vazduha. Tako dobijen vazduh se u komori sa {ampiwonima hladi. Skicirati promene stawa vla`nog vazduha na Molijerovom!i!−y!dijagramu i odrediti: a) temperaturu vla`nog vazduha stawa!N b) temperaturu vla`nog vazduha stawa!4 c) toplotnu snagu zagreja~a vazduha!)lX* d) potro{wu vodene pare u fazi vla`ewa!)lh0t* n′′ 4 komora za vla`ewe 3 5 prostorija sa {ampiwonima N 5 5 recirkulacioni vazduh 2 sve` vazduh otpadni vazduh i 4 3 3786 5 ϕ>2 N 2 y dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 22 ta~ka 1: q qt >36:/5!Qb )napon pare ~iste vode na!u>−21pD* q I3P = ϕ ⋅ q qt > 1/9 ⋅ 36:/5 >318/6!Qb y2!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 318/6 ⋅ >1/1124! 6 lhTW 3: 2 ⋅ 21 − 318/6 i2> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2⋅ (−21) + 1/1124 ⋅ )2/97 ⋅ (−21) + 3611* >−7/88! lK lhTW ta~ka 4: q qt >3754!Qb )napon pare ~iste vode na!u>33pD* q I3P = ϕ ⋅ q qt > 1/: ⋅ 3754 >3489/8!Qb y5!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 3489/8 >1/1262! ⋅ 3: 2⋅ 216 − 3489/8 lhTW i5> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 33 + 1/1262 ⋅ )2/97 ⋅ 33 + 3611* >71/48! lK lhTW ta~ka!N; materijalni bilans vlage za proces me{awa dva vla`na vazduha: ⋅ n tw2 ⋅ ⋅ n tw2 ⋅ y2 + n tw 5 ⋅ y 5 = n tw2 + n tw 5 ⋅ y n ⋅ ⋅ ⋅ ⇒! yn = ⋅ y2 + y 5 ntw 5 ⋅ n tw2 ⋅ +2 n tw 5 yn 2 ⋅ 1/1124 + 1/1262 lhI3 P >1/1216 = 3 2 lhTW +2 3 ⋅ ⋅ ⋅ R 23 = ∆ I23 + X u23 prvi zakon termodinamike za proces me{awa: ⋅ n tw2 ⋅ ⋅ n tw2 ⋅ i2 + n tw 5 ⋅ i 5 = n tw2 + n tw 5 ⋅ in ⋅ ⋅ ⋅ ⇒! in = ⋅ i2 + i 5 n tw 5 ⋅ ntw2 ⋅ +2 n tw 5 in 2 ⋅ (− 7/88) + 71/48 lK 3 = >48/::! 2 lhTW +2 3 un!>! in − y n ⋅ 3611 48/:: − 1/1216 ⋅ 3611 !> >22/63pD d q + y n ⋅ 2/97 2 + 1/1216 ⋅ 2/97 ⋅ napomena: n tw5!je oznaka za maseni protok samo recirkulacionog vazduha !! dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 23 ta~ka 2: y3!>!yn>1/1216! lhI3 P lhTW i3> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 36 + 1/1216 ⋅ )2/97 ⋅ 36 + 3611* >62/85 lK lhTW ta~ka 3: lhI3 P lhTW 6111 ⋅ H4 lhTW n tw4!>! > 4711 >2/49! 2 + y 4 2 + 1/1262 t y4!>!y5>1/1262! ⋅ ⋅ ⋅ ⋅ ⋅ n tw4!>! n tw3!>! n twn> n tw2!,! n tw5 ⋅ n tw2 = )2* ⋅ ntw 5 3 )3* ⋅ Kombinovawem jedna~ina!)2*!i!)3*!dobija se;! n tw2>1/57! lh ⋅ lh -! n tw5>1/:3! t t materijalni bilans vlage za proces vla`ewa vazduha; ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ n tw2 + ntw 5 ⋅ y 3 + n( ( = ntw2 + ntw 5 ⋅ y 4 !!!!⇒ n( ( = n tw2 + n tw 5 ⋅ (y 4 − y 3 ) ! n( ( = 2/49 ⋅ (1/1262 − 1/1216) >7/46!/21−4! dipl.ing. @eqko Ciganovi} lh t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 24 ⋅ ⋅ ⋅ prvi zakon termodinamike za proces vla`ewa vazduha:! R 23 = ∆ I23 + X u23 ⋅ ⋅ ntw2+ ntw 5 ⋅ i3 + n( (⋅i# ⋅ ⋅ ⋅ ⋅ ntw2+ ntw 5 ⋅ i3 + n#⋅i# = ntw2+ ntw 5 ⋅ i4 !!!!⇒!!! i4 = ⋅ ⋅ ntw2+ ntw 5 i4 = 2/49 ⋅ 62/85 + 7/46 ⋅ 21 −4 ⋅ 3786 lK >75/16! 2/49 lhTW u4!>! i 4 − y 4 ⋅ 3611 75/16 − 1/1262 ⋅ 3611 >36/69pD !> d q + y 4 ⋅ 2/97 2 + 1/1262 ⋅ 2/97 napomena: i′′>!3786! lK -!entalpija suvozasi}ene vodene pare stawa!Q)u>211pD* lh ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u zagreja~u vazduha:!!!!!!! R 23 = ∆ I23 + X u23 R {bh = (Htw2 + Htw 5 ) ⋅ (i3 − in ) > 2/49 ⋅ (62/85 − 48/:: ) >29/:9!lX zadatak za ve`bawe: )8/25/* 8/25/ n2>3!)2,y*!lh0t!vla`nog vazduha stawa!2)q>2!cbs-!y>1/116!lh0lhTW) adijabatski se me{a sa n3>4 )2,y*!lh0t!vla`nog vazduha stawa!3)q>2!cbs-!y>1/17!lh0lhTW-!u>61!pD*/!Ne koriste}i i−y dijagrama odrediti: a) temperaturu vla`nog vazduha 1 tako da vazduh dobijen me{awem vazduha 1 i 2 bude zasi}en b) temperaturu dobijenog zasi}enog vla`nog vazduha c) temperaturu vla`nog vazduha 1 tako da vazduh dobijen me{awem vazduha 1 i 2 bude zasi}en za slu~aj da je me{awe neadijabatsko uz toplotne gubitke u okolinu od Rp>5!lX d) skicirati sve procese na i−y dijagramu a) u2>23/6pD b) uN>46/5pD c) u2′>25/8pD dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 25 8/26/ Za klimatizaciju nekog objekta potrebno je obezbediti vla`an vazduh stawa ⋅ 4)q>1/23!NQb-!u>33pD-!ϕ>61&-! W >1/5!n40t*/!U tu svrhu koristi se ure|aj koji se sastoji iz filtera, hladwaka, zagreja~a vazduha i ventilatora-duvaqke, (slika). Snaga ventilatora koji adijabatski sabija vazduh sa pritiska!q3)>q2>qp*!na pritisak!q4!je 2/5!lX/!Stawe okolnog nezasi}enog vla`nog vazduha je P)qp>1/2!NQb-!up>41pD-!ϕ>61&-*/!Prikazati proces pripreme vla`nog vazduha na Molijerovom!i!−y dijagramu i odrediti: b* koli~inu izdvojenog kondenzata!)lh0i* c* toplotnu snagu hladwaka vazduha,!Rimb!)lX* d* toplotnu snagu zagreja~a vazduha,!R{bh!)lX* 4 W4 Rimb h l a d w a k f i l t e r 1 ,R{bh 2 z a g r e j a ~ v e n t i l a t o r 3 X kondenzat i ϕ>2-!q>2/3!cbs 4 i 1 y 3 ϕ>2-!q>2!cbs 2 y dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 26 ta~ka 3: )napon pare ~iste vode na!u>33pD* q qt >3754!Qb q I3P = ϕ ⋅ q qt > 1/6 ⋅ 3754 >2432/6!Qb y4!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 2432/6 ⋅ >1/117:! 6 lhTW 3: 2/3 ⋅ 21 − 2432/6 i4> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 33 + 1/117: ⋅ )2/97 ⋅ 33 + 3611* >4:/64! lK lhTW q tw = q − q I3P > 2/3 ⋅ 21 6 − 2432/6 >229789/6!Qb ρtw> ⋅ q TW 229789/6 lh lhTW > > 2/51 ⋅ 1/5 >1/67! !!!H = 2/51! ρ ⋅ W > tw tw 4 S hTW ⋅ U 398 ⋅ 3:6 t n ta~ka 2: y3>y4>1/117:! lhI3 P lhTW ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u ventilatoru:!!!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ X u23 = ntw ⋅ (i 3 − i 4 ) ⇒ i3 = i4 + X u23 ⋅ > 4:/64 − n tw 2/5 lK >48/14! 1/67 lhTW ta~ka 1: y2>y3>1/117:! q I3P = q qt = lhI3 P lhTW y NTW +y NI3P q I3P = ϕ p u2!>9/6 D ⋅ q2 > 1/117: ⋅ 2 ⋅ 21 6 = 21::/5!Qb 29 + 1/117: 3: 21::/5 = 21::/5!Qb 2 )temperatura kqu~awa vode na!q>21::/5!cbs* i2> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 9/6 + 1/117: ⋅ )2/97 ⋅ 9/6 + 3611* >36/97 lK lhTW ta~ka 0: q qt >5352!Qb )napon pare ~iste vode na!u>41pD* q I3P = ϕ ⋅ q qt > 1/6 ⋅ 5352>3231/6!Qb yp!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 3231/6 >1/1245! ⋅ 3: 2 ⋅ 21 6 − 3231/6 lhTW ip> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 41 + 1/1245 ⋅ )2/97 ⋅ 41 + 3611* >75/36! dipl.ing. @eqko Ciganovi} lK lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 27 ⋅ koli~ina izdvojenog kondenzata: ⋅ X l = n tw ⋅ (y 2 − y 3 ) ⋅ X l = 1/67 ⋅ (1/1245 − 1/117:) ⋅ 4711 >24/21! lh i ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u hladwaku vazduha:!!!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ R imb = n tw ⋅ (i2 − i 1 ) + X l ⋅ il > 1/67 ⋅ (36/97 − 75/36 ) + napomena: 24/21 ⋅ 46/64 >−32/48!lX 4711 il!−!entalpija kondenzata (voda!q>2!cbs-!u>9/6pD* ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u zagreja~u vazduha:!!!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ R {bh = n tw ⋅ (i 3 − i2 ) > 1/67 ⋅ (48/14 − 36/97 ) >7/37!lX 8/27/ Postrojewe za delimi~no su{ewe vazduha sastoji se od vodom hla|enog klipnog kompresora i ⋅ hladwaka za vla`an vazduh (slika). U klipnom kompresoru se sabija!! n ww>1/38!)2,y*!lh0t!vla`nog vazduha stawa!2)q2>1/2!NQb-!u2>31pD-!ϕ2>1/9*!do stawa!3)q3?q2-!u3>56pD-!ϕ3>2), a potom se uz izdvajawe te~ne faze vla`an vazduh stawa!3!izobarski hladi do stawa!4)u4>u2). Ukupan toplotni fluks sa vla`nog vazduha na rashladnu vodu u toku procesa sabijawa i izobarskog hla|ewa vla`nog vazduha iznosi!R>RI2,RI3>24!lX/!Odrediti pritisak vla`nog vazduha na kraju procesa sabijawa, koli~inu izdvojenog kondenzata kao i pogonsku snagu za pogon klipnog kompresora. RI3 4 3 X 2 vla`an vazduh vla`an vazduh kondenzat RI2 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 28 ta~ka 1: )napon pare ~iste vode na!u>31pD* q qt >3448!Qb q I3P = ϕ ⋅ q qt > 1/9 ⋅ 3448 >297:/7!Qb y2!> NI3P NTW ⋅ q I3P q2 − q I3P > lhI3 P 29 297:/7 ⋅ >1/1229! lhTW 3: 2 ⋅ 21 6 − 297:/7 i2> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 31 + 1/1229 ⋅ )2/97 ⋅ 31 + 3611* >61/13! lK lhTW ta~ka 2: lhI3 P lhTW q qt >:695!Qb )napon pare ~iste vode na!u>56pD* y3>y2>1/1229! q I3P = ϕ ⋅ q qt > 2⋅ :695 >:695!Qb NI3P N tw q3!>! y3 + y3 ⋅ q I3P 29 + 1/1229 = 3: ⋅ :695 >!624821!Qb!>!6/248!cbs 1/1229 i3> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 56 + 1/1229 ⋅ )2/97 ⋅ 56 + 3611* >86/5:! lK lhTW ta~ka 3: q qt >3448!Qb )napon pare ~iste vode na!u>31pD* q I3P = ϕ ⋅ q qt > 2⋅ 3448 >3448!Qb y4!> NI3P NTW ⋅ q I3P q 4 − q I3P > lhI3 P 29 3448 ⋅ >1/1139! lhTW 3: 6/248 ⋅ 21 6 − 3448 i4> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 31 + 1/1139 ⋅ )2/97 ⋅ 31 + 3611* >38/21! lK lhTW koli~ina izdvojenog kondenzata: ⋅ ⋅ X = ntw ⋅ (y 3 − y 4 ) = 1/38 ⋅ (1/1229 − 1/1139) > 3/54 ⋅ 21 −4 ! dipl.ing. @eqko Ciganovi} lh t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 29 prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ! R 23 = ∆ I23 + X u23 ograni~enom isprekidanom konturom: ⋅ ⋅ X !>! − ntw ⋅ i 4 − X x ⋅ i x + n tw ⋅ i2 − R I2 − R I3 ⋅ X >! − 1/38 ⋅ 38/21 − 3/54 ⋅ 21 −4 ⋅ 299/5 + 1/38 ⋅ 61/13 − 24 >−8/38!lX ix>299/5! napomena: lK lh entalpija vode!!q>2!cbs-!u>56pD )8/28/* zadatak za ve`bawe: 8/28/ 611!lh0i!vla`nog vazduha stawa!2)q>2!cbs-!u>3pD!ϕ>1/9*!me{a se izobarski sa!611!lh0i!vla`nog vazduha stawa!3)q>2!cbs-!u>57pD-!ϕ>1/8). Zatim se kondenzat koji je nastao me{awem izdvaja, a preostali vazduh zagreva do!81pD. Nakon zagrevawa vazduhu se dodaje vodena para ~ija entalpija iznosi 3111!lK0lh!i vla`ewe se obavqa do postizawa stawa zasi}ewa. Skicirati procese sa vla`nim vazduhom na Molijerovom i!−y! dijagramu i odrediti: a) apsolutnu vla`nost me{avine )y* kada kondenzat jo{ nije izdvojen (ra~unskim putem) b) maseni protok odvedenog kondenzata!)lh0i* c) toplotnu snagu greja~a!)lX* d) maseni protok vodene pare koja se dodaje u ciqu vla`ewa!)lh0i* za stavke b), c) i d)!mo`e se koristiti Molijerov dijagram za vla`an vazduh lhI3 P a) yn!>!1/1355! lhTW lh b) nlpoefo{bu!>!2/5! i c) R45!>!23/2!lX lh d) nwpefob!qbsb!>!54/8! i i 5 3 6 ϕ>2 4 N 2 y ix>3111!lK dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 30 DRUGI VLA@NI GASOVI 8/29/!Me{avina vodonika (idealan gas) i vodene pare (idealan gas) ima temperaturu!u>41pD-!relativnu vla`nost!ϕ>:1&!i pritisak!q>311!lQb/!Za navedenu gasnu me{avinu odrediti: a) apsolutnu vla`nost!)y*!i specifi~nu entalpiju!)i*!vla`nog vodonika b) masene udele vodonika i vodene pare u vla`nom vodoniku a) )napon pare ~iste vode na!u>41pD* q qt >5352!Qb q I3P = ϕ ⋅ q qt > 1/: ⋅ 5352>4927/:!Qb y2!> NI3P NI3 ⋅ q I3P q2 − q I3P > lhI3 P 29 4927/: ⋅ >1/2862! 6 lhTW 3 3 ⋅ 21 − 4927/: i2> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 25/66 ⋅ 41 + 1/2862 ⋅ )2/97 ⋅ 41 + 3611* >995/13 lK lhI3 b) nI3P hI3P = nI3P nI3P + nI3 = nI3 nI3P nI3 + nI3 = y 1/2862 = >1/26 y + 2 1/2862 + 2 nI3 nI3 hI3 = nI3 nI3P + nI3 = nI3 nI3P nI3 dipl.ing. @eqko Ciganovi} + nI3 = 2 2 = >1/96 y + 2 1/2862 + 2 nI3 {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 31 8/2:/!U vertikalnom cilindru sa klipom, po~etne zapremine!W>1/2!n4 nalazi se, pri stalnom pritisku q>3!cbs!sme{a ugqen−dioksida (idealan gas) i pregrejane vodene pare. Maseni udeo vodene pare u sme{i je! hI3P >1/2-!a po~etna temperatura!sme{e!:1pD/!Odrediti koli~inu toplote koju treba odvesti od vla`nog ugqen-dioksida da bi zapo~ela kondenzacija vodene pare. ta~ka 1: y2!>! hI3P 2 − hI3P = lhI3 P 1/2 >1/2222! 2 − 1/2 lhDP3 i2> dqDP3 u + y ⋅ )2/97 ⋅ u + 3611* > 1/96 ⋅ :1 + 1/2222 ⋅ )2/97 ⋅ :1 + 3611* >483/96 qI3P = y2 NI3P NDP3 ! ⋅q = + y2 lK lhI3 1/2222 ⋅ 3 ⋅ 216 > 1/4 ⋅ 216 Qb!>1/41!cbs 29 + 1/2222 55 qDP3 = q − qI3P >3!−!1/4!>2/8!cbs ρDP3 = qDP3 ShDP3 ⋅U = lhDP3 2/8 ⋅ 216 >3/59 29: ⋅ 474 n4 nDP3 = ρDP3 ⋅ W = 3/59 ⋅ 1/2 >1/359!lh ta~ka 2: y3!>!y2!>!1/2222! qqt3 = qI3P ϕ3 = lhI3 P !! lhDP3 qI3P = dpotu > 1/4 ⋅ 216 Qb!>1/41!cbs 1/4 >1/4!cbs 2 u3!>!)ulr*q>1/4!cbs!≈!7:pD i3> dqDP3 u + y ⋅ )2/97 ⋅ u + 3611* > 1/96 ⋅ 7: + 1/2222 ⋅ )2/97 ⋅ 7: + 3611* >461/77 lK lhI3 prvi zakon termodinamike za proces u cilindru: R23!>!∆V23!,!X23 ⇒ R23!>!V3!−!V2!,!q!/)W3!.−!W2*! R23!>!I3!−!I2! ⇒ R23!>! nDP3 ⋅ (i3 − i2) R23!>! 1/359 ⋅ (461/77 − 483/96 ) >−6/6!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 32 8/31/!U toplotno izolovanoj komori me{aju se dva toka razli~itih vla`nih gasova zadatih ⋅ termodinami~kih stawa : zasi}en vla`an kiseonik!)P3*!stawa!2)q>1/6!NQb-!U>464!L-! n2 >3!)2,y*!lh0t*!i ⋅ vla`an metan!)DI5) stawa!3)q>1/4!NQb-!U>3:4!L-!ϕ>1/5-! n3 >4!)2,y*!lh0t*/!Promene kineti~ke i potencijalne energije gasnih tokova su zanemarqive. Odrediti temperaturu vla`ne gasne sme{e koja izlazi iz komore. 1. vla`an kiseonik M. me{avina vla`nog kiseonika i vla`nog metana 2. vla`an metan ta~ka 1: q qt >58471!Qb )napon pare ~iste vode na!u>91pD* q I3P = ϕ ⋅ q qt > 2⋅ 58471 >58471!Qb y2!> NI3P NP3 ⋅ qI3P q2 − qI3P > lhI3P 29 58471 ⋅ >1/169:! 43 6 ⋅ 216 − 58471 lhP3 i2> dqP3 ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 1/:2 ⋅ 91 + 1/169: ⋅ )2/97 ⋅ 91 + 3611* >339/92! ⋅ nP3 >3 lK lhP3 lh t ta~ka 2: q qt >3448!Qb )napon pare ~iste vode na!u>31pD* q I3P = ϕ ⋅ q qt > 1/5 ⋅ 3448 >:45/9!Qb y3!> NI3P NDI5 ⋅ q I3P q 3 − q I3P > lhI3 P 29 :45/9 ⋅ >1/1146! lhDI5 27 4 ⋅ 21 6 − :45/9 i3> dqDI5 ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 3/45 ⋅ 31 + 1/1146 ⋅ )2/97 ⋅ 31 + 3611* >66/79! ⋅ nDI5 >4 lK lhDI5 lh t dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 33 ta~ka!N; materijalni bilans vlage za proces me{awa dva vla`na gasa: ⋅ ⋅ ⋅ ⋅ nP3 ⋅ y2 + nDI5 ⋅ y3 = nP3 + nDI5 ⋅ yn ⋅ ⇒! yn = ⋅ nP3 ⋅ y2 + nDI5 ⋅ y3 ⋅ ⋅ nP3 + nDI5 lhI3 P 3 ⋅ 1/169: + 4 ⋅ 1/1146 >1/1368! 3+4 lh(P 3 + DI 5 ) yn = ⋅ ⋅ ⋅ nP3 ⋅ i2 + nDI5 ⋅ i 3 = nP3 + nDI5 ⋅ in = ⋅ ⋅ ⋅ ⋅ nP3 ⋅ i2 + nDI5 ⋅ i 3 ⋅ in !!!!!!⇒!!!!! in = ⋅ ⋅ nP3 + nDI5 3 ⋅ 339/92 + 4 ⋅ 66/79 lK >235/:4! 3+4 lh(P 3 + DI 5 ) ⋅ hP3 = nP3 ⋅ ⋅ nP3 + nDI5 ⋅ 3 >1/5 = 3+4 hDI5 = nDI5 ⋅ ⋅ nP3 + nDI5 d qn = h P3 ⋅ d qP3 + h DI5 ⋅ d qDI5 = 1/5 ⋅ 1/:2 + 1/7 ⋅ 3/45 >2/88! un!>! ⋅ R 23 = ∆ I23 + X u23 prvi zakon termodinamike za proces me{awa: = 4 >1/7 3+4 lK lh(P 3 + DI 5 ) in − y n ⋅ 3611 235/:4 − 1/1368 ⋅ 3611 !> >44/5pD>417/5!L d qn + y n ⋅ 2/97 2/88 + 1/1368 ⋅ 2/97 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 34 8/32/!U toplotno izolovanom kanalu izobarski se me{aju tok kiseonika stawa!2)q>1/3!NQb-!U>391!L⋅ ⋅ W >1/657!n40t*!i tok pregrejane vodene pare stawa!Q)q>1/3!NQb-!U>664!L-! nq >1/17!lh0t*/!Nastali vla`an kiseonik stawa!3, biva potom u vodom hla|enom klipnom kompresoru, pogonske snage!Q>76!lXsabijan do stawa!4)q>1/4!NQb-!ϕ>1/83*/!Odrediti toplotni protok sa vla`nog kiseonika na vodu za hla|ewe kompresora i prikazati sve procese u!!i−y!koordinatnom sistemu. nqq 2 3 4 ta~ka!Q; iqq!>!4141!! lK lh )q>!3!cbs-!u>391pD* ta~ka 1: y2!>1! lhI3 P lhP3 i2!>! d qP3 ⋅ u 2 + y2 ⋅ )2/97 ⋅ u 2 + 3611* > 1/:2 ⋅ 8 + 1 ⋅ 2/97 ⋅ 8 + 3611* >!7/48! ρ P3 = lK lhP3 ⋅ ⋅ kg q P3 lhP3 3 ⋅ 21 6 = >3/86! !!!!! n P3 = ρ P3 ⋅ W = 3/86 ⋅ 1/657 >2/6 4 S hP3 U2 371 ⋅ 391 n s ta~ka 2: materijalni bilans vlage za proces vla`ewa kiseonika!)2−3*; ⋅ ⋅ ⋅ ⋅ nP3 ⋅ y2 + nqq = nP3 ⋅ y3 !!!!⇒ y3 = ⋅ nP3 ⋅ y2 + nqq ⋅ = nP3 lhI3 P 1/17 >1/15! lhP3 2/6 ⋅ ⋅ ⋅ prvi zakon termodinamike za proces vla`ewa kiseonika:!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ nP3 ⋅ i2 + nqq ⋅ iqq = nP3 ⋅ i3 ⋅ ⇒! i3 = ⋅ nP3 ⋅ i2 + nqq ⋅ iqq ⋅ nP3 i3 = 2/6 ⋅ 7/48 + 1/17 ⋅ 4141 lK >238/68! 2/6 lhP 3 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 35 ta~ka 3: y4!>!y3!>1/15! y4 1/15 ⋅ q4 = ⋅ 4 ⋅ 21 6 !>!2::28!Qb NI3P 29 + 1/15 + y4 43 NP3 q I3P = q qt = lhI3 P lhP3 q I3P ϕ = 2::28 >38774Qb!≈1/39!cbs 1/83 u4!>!)ulr*Q>1/39!cbs>78/6pD i4!>! d qP3 ⋅ u 4 + y 4 ⋅ )2/97 ⋅ u 4 + 3611* > 1/:2 ⋅ 78/6 + 1/15 ⋅ )2/97 ⋅ 78/6 + 3611* !> >277/56! ⋅ prvi zakon termodinamike za proces u kompresoru:! ⋅ ⋅ ⋅ lK lhP3 ⋅ R 34 = ∆ I34 + X u34 ⋅ R 34 = nP3 ⋅ (i 4 − i 3 ) + X u34 = 2/6 ⋅ (277/56 − 238/68) − 76 >−7/79!lX i i ϕ>2-!q>4!cbs 4 y 3 4141 ϕ>2-!q>3!cbs 2 y zadatak za ve`bawe: )8/33/* 8/33/!Vla`an azot, masenog protoka!1/5!lh0t-!stawa!2)q2>4!cbs-!u2>55pD-!ϕ2>1/:*!izobarski se ohladi do temperature od!1pD!)stawe 2*-!pri ~emu se od azota odvede!47!lX!toplote. Odrediti masuformiranog kondenzata i masu formiranog leda ako je proces trajao!2!sat. re{ewe:! nlpoefo{bu!>!23/:7!lh dipl.ing. @eqko Ciganovi} nmfe!>!21/9!lh {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 36 8/34/!^asovni kapacitet teorijske tunelske teorijske su{are iznosi!261!lh suvih banana. Vla`nost sirovih banana (maseni udeo vlage) je!z2>81!nbt&!a suvih!z3>23!nbt&/!Temperatura vazduha na izlazu iz su{are kf!51pD a maksimalna temperatura vazduha u su{ari!96pD/!Atmosferski vazduh ima temperaturu od!29pD!i ta~ku rose!23pD/!Skicirati promene stawa vla`nog vazduha na Molijerovom!i −y!dijagramu i odrediti potro{wu grejne pare u zagreja~u vazduha (suvozasi}ena vodena para) ako joj je temperatura za!31!L!vi{a od maksimalne temperature vazduha u su{ari (smatrati da je kondenzat grejne pare na izlazu iz zagreja~a vazduha neprehla|en). Sve promene stawa vla`nog vazduha su izobarske na q>2!cbs/ nwn 1 vazduh 2 zagreja~ vazduha npn komora za su{ewe materijala 3 grejna para i 2 u2 3 u3 ϕ>2 1 up us S y napomena: Teorijski uslovi su{ewa (adijabatska su{ara) podrazumevaju: 1−2; y>dpotu 2−3; i>dpotu dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 37 ub•lb!S; yS>!g)uS-!ϕS>2*!>!1/1199! lhI3 P lhTW ub•lb!1; yp!>yS!>!1/1199! lhI3 P lhTW ip!>!g)up-!yp*!>!51/4! lK lhTW ub•lb!2; y2!>!y1!>!yS!>!1/1199! lhI3 P lhTW i2!>!g)u2-!y2*!>!219/5! lK lhTW ub•lb!3; lhI3 P lhTW i3!>!i2>219/5! lK lhTW napomena: Sve vrednosti pro~itane sa Molijerovog!i!−!y!dijagrama y3!>!g)u3-!i3*!>!1/1376! materijalni bilans vlage za proces su{ewa banana: ⋅ n tw ⋅ (y 3 − y 2 ) > n pn ⋅ ⋅ n tw = z2 − z 3 2 − z2 ⇒ ⋅ n tw = npn ⋅ z2 − z 3 2 ⋅ 2 − z 2 y 3 − y2 261 1/8 − 1/23 2 lh ⋅ ⋅ >5/66 4711 2 − 1/8 1/1376 − 1/1199 t ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u zagreja~u vazduha:!! R 12 = ∆ I12 + X u12 ⋅ ⋅ ⋅ ⋅ n tw ⋅ i p + nq ⋅ i( ( = n tw ⋅ i2 + nq ⋅ i( ⋅ nq = ⇒ ⋅ n tw ⋅ (i2 − i p ) nq = i( (−i( ⋅ 5/66 ⋅ (219/5 − 51/4 ) lh >1/25 3354 t i′′!−!i′!>!s!>3354! lK lh dipl.ing. @eqko Ciganovi} toplota kondenzacije vodene pare na!u>216pD {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 38 8/35/!U teorijskoj su{ari su{i se, pri!q>2!cbs-!61!lh0i!kva{~eve biomase koja sadr`i!z2>81!nbt& vlage, pri ~emu se dobija suvi kvasac sa!z3>8!nbt&!vlage. Na ulazu u zagreja~ stawe vazduha odre|eno je temperaturom suvog termometra i temperaturom vla`nog termometra!1)utu>27pD-!uwu>21pD*/!Stawe otpadnog vazduha odre|eno je entalpijom i relativnom vla`nosti vazduha!3)i>:1!lK0lhTW-!ϕ>1/7). Skicirati promene stawa vla`nog vazduha na Molijerovom!i!−y!dijagramu i odrediti: b* potro{wu suvog vazduha u su{ari!) no4 0t* c* toplotnu snagu zagreja~a vazduha!)lX* d* koliko bi se toplote moglo u{tedeti hla|ewem otpadnog vazduha do stawa zasi}ewa i rekuperativnim kori{}ewem oslobo|ene toplote za zagrevawe sve`eg vazduha u predgreja~u!)lX* i i3 2 ϕ3 ϕ>2 3 up uwu 1 WU y ta~ka 0: ip>3:/6 lK lhTW yp>1/1168 lhI3 P lhTW y3>1/1326 lhI3 P lhTW ta~ka 2: i3>:1 lK lhTW ta~ka 1: i2>i3>:1 napomena: lK lhTW y2>yp>1/1168 lhI3 P lhTW Sve vrednosti pro~itane sa Molijerovog!i!−!y!dijagrama dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 39 b* materijalni bilans vlage za proces su{ewa kva{~eve biomase: ⋅ n tw ⋅ (y 3 − y 2 ) > n wn ⋅ ⋅ ntw = z2 − z 3 2− z3 z2 − z 3 2 ⋅ 2 − z 3 y 3 − y2 ⋅ ⇒ n tw = n wn ⋅ 61 1/8 − 1/18 2 lh >1/7 ⋅ ⋅ 4711 2 − 1/18 1/1326 − 1/1168 t ⋅ ⋅ W o tw = n tw ⋅ n4 33/5 33/5 >1/57! o > 1/7 ⋅ 3: t N tw c* ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u zagreja~u vazduha:!! R 12 = ∆ I12 + X u12 ⋅ ⋅ R {bh = n tw ⋅ (i2 − i p ) = 1/7 ⋅ (:1 − 3:/6 ) >47/3:!lX d* n wn n pn X Htw 1 C 2 3 Rsfl B prvi zakon termodinamike za proces u otvorenom sistemu ograni~enom ⋅ ⋅ ⋅ isprekidanom konturom:!! R 23 = ∆ I23 + X u23 ⋅ ⋅ R sfl > − ntw ⋅ (i3 − i B ) > −1/7 ⋅ (:1 − 92/3) >−6/39!lX napomena: iB>g)yB>y3-!ϕ>2*>92/3! dipl.ing. @eqko Ciganovi} lK )!Molijerov!i−y!dijagram) lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 40 8/36/!Jednostepena, teorijska su{ara, radi sa vazduhom kao agensom za su{ewe po zatvorenom ciklusu (slika) na pritisku!q>:1!lQb>jefn/!Nakon zagrevawa vazduha )2−3*- wegovog prolaska kroz komoru za su{ewe )3−4*-!te hla|ewa )4−5*- u predajniku toplote, u kome se kondenzuje vodena para, ulazi zasi}en vla`an vazduh stawa!5)U>424!L*-!a napu{ta ga ohla|eni zasi}en vla`an vazduh i izdvojeni kondenzat temperature!U2>3:4!L. Maseni protok odvedenog kondenzata je!X>1/14!lh0t. Toplotna snaga zagreja~a vazduha je!R{bh>:6!lX/!Skicirati promene stawa vla`nog vazduha na Molijerovom i!−!y!dijagramu i odrediti potreban maseni protok suvog vazduha i relativnu vla`nost!)ϕ4*!do koje se, su{ewem vla`nog materijala, ovla`i vazduh. vla`an materijal zagreja~ 2 3 komora za su{ewe 4 osu{en materijal 5 !!!L hladwak kondenzat i 3 4 5 ϕ>2 2 y dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 41 ta~ka 1: )napon pare ~iste vode na!u>31pD* q qt >3448!Qb q I3P = ϕ ⋅ q qt > 2⋅ 3448 >3448!Qb y2!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 3448 ⋅ >1/1276! 6 lhTW 3: 1/: ⋅ 21 − 3448 i2> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 31 + 1/1276 ⋅ )2/97 ⋅ 31 + 3611* >72/97! lK lhTW ta~ka 4: )napon pare ~iste vode na!u>51pD* q qt >8486!Qb q I3P = ϕ ⋅ q qt > 2⋅ 8486 >8486!Qb y5!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 8486 ⋅ >1/1665! lhTW 3: 1/: ⋅ 21 6 − 8486 i5> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 51 + 1/1665 ⋅ )2/97 ⋅ 51 + 3611* >293/73! ⋅ X ⋅ ⋅ !>! n tw/!)y4!−!y3*!>! n tw/!)y5!−!y2*! ⋅ ⇒! ⋅ lK lhTW ⋅ X n tw!> y 5 − y2 1/14 lh >!1/88! 1/1665 − 1/1276 t n tw!> ta~ka 2: y3!>!y2!>!1/1276! lhI3 P lhTW i3!>!@ ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u zagreja~u vazduha:!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ R {bh = n tw ⋅ (i 3 − i2 ) i 3 = i2 + R {bh ⋅ > 72/97 + n tw :6 lK >296/35! lhTW 1/88 ta~ka 3: lhI3 P lK i4>i3>296/35! lhTW lhTW i 4 − y 4 ⋅ 3611 296/35 − 1/1665 ⋅ 3611 >53/48pD u4!>! !> d q + y 4 ⋅ 2/97 2 + 1/1665 ⋅ 2/97 y4>y5>!1/1665! q I3P = y4 NI3P N tw ϕ4!>! q I3P (qqt )U4 ⋅q> + y4 !> 1/1665 ⋅ 1/: ⋅ 21 6 >8485/9!Qb 29 + 1/1665 3: 8485/9 >!1/99 9472 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 42 8/37/!U dvostepenu teorijsku su{nicu uvodi se vla`an vazduh zapreminskog protoka!Wp>1/94!n40t!i stawa ⋅ 1)q>1/2!NQb-!u>25pD-!ϕ>1/5). Nakon zagrevawa vazduha u zagreja~u toplotne snage! R J>62/:!lX!)do stawa 2) vazduh se uvodi u prvi stepen su{are odakle izlazi sa temperaturom!u>41pD!)stawe!3). Ovaj vazduh se ⋅ zatim zagreva u drugom zagreja~u toplotne snage! R JJ>35!lX!)do stawa!4), te uvodi u drugi stepen su{are koji napu{ta sa relativnom vla`no{}u!ϕ>1/9!)stawe!5*/!Ako se zanemare padovi pritiska odrediti masu vlage uklowenu iz vla`nog materijala u prvom i drugom stepenu su{ewa (posebno za svaki stepen) za vreme od τ=1 sat. Skicirati promene stawa vla`nog vazduha na!i!−y!dijagramu. 4 i 2 5 3 ϕ>2 1 y ta~ka 0: q qt >26:8!Qb )napon pare ~iste vode na!u>25pD* q I3P = ϕ ⋅ q qt > 1/5 ⋅ 26:8 >749/9!Qb yp!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 749/9 ⋅ >1/1151! 6 lhTW 3: 2 ⋅ 21 − 749/9 ip> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 25 + 1/1151 ⋅ )2/97 ⋅ 25 + 3611* >35/2! lK lhTW q tw = q − q I3P > 2 ⋅ 21 6 − 749/9 >::472/3!Qb ρtw> ⋅ ⋅ q TW ::472/3 lh lhTW = 2/32! !!! n > tw = ρ tw ⋅ W > 2/32 ⋅ 1/94 >2! 4 S hTW ⋅ U 398 ⋅ 398 t n dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 43 ta~ka 1: y2!>!yp>1/1151! lhI3 P lhTW i3!>!@ ⋅ ⋅ ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u 1. zagreja~u vazduha:! R 12 = ∆ I12 + X u12 R J = n tw ⋅ (i2 − i 1 ) ⋅ i2 = i p + RJ ⋅ > 35/2 + n tw 62/: lK >87! lhTW 2 ta~ka 2: lK lhTW i . dq ⋅ u i3!>!i2!>!87! y3!>! 2/97 ⋅ u + 3611 >! lhI3 P 87 . 2 ⋅ 41 >!1/129! 2/97 ⋅ 41 + 3611 lhTW ta~ka 3: y4!>!y3!>!1/129! lhI3 P lhTW i4!>!@ ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u 2. zagreja~u vazduha: R 34 = ∆ I34 + X u34 ⋅ ⋅ ⋅ R JJ = n tw ⋅ (i 4 − i 3 ) i 4 = i3 + R JJ ⋅ n tw > 87 + 35 lK >211! lhTW 2 ta~ka 4: i5!>!i4!>!211! lK lhTW y5!>!g)ϕ5-!i5*!>!1/1374! lhI3 P ! )i!−!y!dijagram* lhTW ⋅ X2!>! n tw!)y3!−!y2* ⋅ τ >! 2 ⋅ (1/129 − 1/115 ) ⋅ 4711 >61/5!lh ⋅ X3!>! n tw!)y5!−y4* ⋅ τ >! 2 ⋅ (1/1374 − 1/129 ) ⋅ 4711 >3:/:!lh dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 44 8/38/!U teorijskoj konvektivnoj su{ari su{i se neki materijal koji ne sme biti izlo`en temperaturi vi{oj od!91pD/!Maksimalna relativna vla`nost, koju dosti`e vazduh pri svakom prolasku preko vla`nog materijala, iznosi!ϕnby>:1%. Odrediti koli~inu vlage, koja se u toku jednog sata odstrani iz materijala, ⋅ ako je stawe vla`nog vazduha na ulazu u su{aru odre|eno sa!P)q>2cbs-!u>31pD-!ϕ>1/6-! n ww>1/6!lh0t*; a) u slu~aju dvostepene teorijske su{are b) u slu~aju teorijske su{are sa beskona~no mnogo stepeni su{ewa (naizmeni~no povezanih komora za su{ewe i zagreja~a vazduha) Smatrati da se tokom svih proces pritisak vazduha u su{ari ne mewa. a) i 4 2 u2>u4 ϕ3>ϕ5>ϕnby 5 3 ϕ>2 1 y ta~ka 0: q qt >3448!Qb )napon pare ~iste vode na u>31pD* q I3P = ϕ ⋅ q qt > 1/6 ⋅ 3448 >2279/6!Qb yp!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 2279/6 >!1/1184! ⋅ lhTW 3: 2 ⋅ 21 6 − 2279/6 ip> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 31 + 1/1184 ⋅ )2/97 ⋅ 31 + 3611* >49/63! ⋅ n tw = lK lhTW ⋅ 1/6 n ww lh > >1/5:7! t 2 + y 1 2 + 1/1184 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 45 ta~ka 1: y2>yp>!1/1184! lhI3 P lhTW i2> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 91 + 1/1184 ⋅ )2/97 ⋅ 91 + 3611* >::/45! lK lhTW ta~ka 2: i3>i2!>::/45 lK lhTW y3>!g)ϕ3-!i3*>1/1376! lhI3 P ! lhTW )i!−!y!dijagram* ta~ka 3: y4>y3>!1/1376! lhI3 P lhTW i4> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 91 + 1/1376 ⋅ )2/97 ⋅ 91 + 3611* >261/2:! lK lhTW ta~ka 4: lK lhTW lhI3 P y5>!g)ϕ5-!i5*>1/154! ! lhTW i5>i4!>261/2: )i!−!y!dijagram* ⋅ X!>! n tw!)y5!−!yp* ⋅ τ >! 1/5:7 ⋅ (1/154 − 1/1184) ⋅ 4711 >74/86!lh b) ta~ka!3o; q qt >58471!Qb )napon pare ~iste vode na!u>91pD* q I3P = ϕ nby ⋅ q qt > 1/: ⋅ 58471 >53735!Qb y3o!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 53735 ⋅ >!1/5722! 6 3: 2 ⋅ 21 − 53735 lhTW ⋅ X′!>! n tw!)y3o!−!yp* ⋅ τ >! 1/5:7 ⋅ (1/5722 − 1/1184) ⋅ 4711 >921/4!lh dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 46 8/39/!U teorijskoj su{ari sa recirkulacijom, jednog dela iskori{}enog vazduha, protok atmosferskog ⋅ vla`nog vazduha, stawa!1)i>61!lK0lhTW-!y>1/12!lhI3P0lhTW*-!iznosi! n p>7!u0i. Stawe me{avine sve`eg i opticajnog vazduha na ulazu zagreja~ vazduha je N)u>51pD-!y>1/145!lhI3P0lhTW*/!Me{avina se u kaloriferu zagreva do stawa!2)u>99pD*/!Po~etna vla`nost materijala je! Z2 >81&!ra~unato na suvu materiju, a krajwa! Z3 >9&!tako|e ra~unato na suvu materiju. Skicirati promene stawa vla`nog vazduha na!i!−!y!dijagramu i odrediti: a) masene protoke: odstrawene vlage i osu{enog materijala!)lh0i* b) maseni udeo sve`eg i opticajnog vazduha u me{avini c) potrebnu koli~inu toplote za zagrevawe vla`nog vazduha!)lK0t* d) kolika bi bila potro{wa toplote da se su{ewe izvodi samo sve`im vazduhom tj. da nema recirkulacije i kolika bi bila temperaturu vla`nog vazduha na ulazu u komoru za su{ewe u tom slu~aju i 2 u2 3 ϕ>2 un ip N 1 y y2 yN ta~ka 0: y1>1/12! ⋅ n twp!>! lhI3 P lhTW ⋅ n1 2+ y1 ip!>!!61! lK lhTW 21 4 4711 = 2/76! lh = 2 + 1/12 t 7⋅ ta~ka M: yn>1/145! lhI3 P lhTW in!> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 51 + 1/145 ⋅ )2/97 ⋅ 51 + 3611* >238/64 dipl.ing. @eqko Ciganovi} lK lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 47 ta~ka 1: y2>yn>1/145! lhI3 P lhTW i2!> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 99 + 1/145 ⋅ )2/97 ⋅ 99 + 3611* >289/67 lK lhTW ta~ka 2: i3>i2>289/67! lK lhTW y3!>!@ prvi zakon termodinamike za proces me{awa dva vla`na vazduha: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X u23 n twp ⋅ i p + n tw3 ⋅ i 3 = ntwp + n tw3 ⋅ in ⋅ n twp ⋅ (in − i p ) 2/76 ⋅ (238/64 − 61) lh > = >3/62 i 3 − in 289/67 − 238/64 t ⋅ n tw3 materijalni bilans vlage za proces me{awa dva vla`na vazduha: ⋅ ⋅ ⋅ n twp + n tw3 ⋅ y n − n twp ⋅ y p ⋅ ⋅ ⋅ ⋅ n twp ⋅ y p + n tw3 ⋅ y 3 = n twp + n tw3 ⋅ y n !!! y 3 = ⋅ n tw3 (2/76 + 3/62) ⋅ 1/145 − 2/76 ⋅ 1/12 >1/15:9! lhI3 P y3 = 3/62 lhTW a) ⋅ ⋅ ⋅ lh X = ntwp + n tw3 ⋅ (y 3 − y 2 ) > (2/76 + 3/62) ⋅ 4711 ⋅ (1/15:9 − 1/145 ) >347/73! i Z2 Z 1/8 1/19 3 z2 = > z3 = > >1/52>1/18 2 + Z2 2 + 1/8 2 + Z3 2 + 1/19 ⋅ X = npn ⋅ z2 − z 3 2 − z2 ⋅ n pn = X⋅ 2 − z2 2 − 1/52 lh >521/72! > 347/73 ⋅ z2 − z 3 1/52 − 1/18 i b) ⋅ hp> n TWp ⋅ ⋅ nTWp + nTW3 2/76 > >1/52/76 + 3/62 ⋅ h3> nTW3 ⋅ ⋅ nTWp + nTW3 > 3/62 >1/7 2/76 + 3/62 c) ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u zagreja~u vazduha:!!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ R {bh = !n twp + n tw3 ⋅ (i2 − in ) (2/76 + 3/62) ⋅ (289/67 − 238/64 ) >323/39!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 48 d) i 2′ 2 u2 3 ϕ>2 un ip N 1 y y1 yN lhI3 P lK i2′>!i2>!i3!>289/67! lhTW lhTW 289/67 − 1/12 ⋅ 3611 i − y ⋅ 3611 u2′!>! !> >261/87pD 2 + 1/12 ⋅ 2/97 d q + y ⋅ 2/97 y2′!>!yp>1/12! 8/3:/!U teorijskoj su{ari se obavqa proces izdvajawa vlage iz koncentrata paradajza. Maseni protok koncentrata paradajza na ulazu u su{aru je!1/237!lh0t. Na ulazu u su{aru koncentrat paradajza sadr`i z 2 =31!nbt&!vode, a prah na izlazu! z 3 =6!nbt%. Parcijalni pritisak vodene pare u okolnom (sve`em) vazduhu je! q I3P 1 >2/44!lQb, dok na izlazu iz su{are ne sme biti vi{i od! q I3P 3 >37/8!lQb/!Da bi se taj ( ) ( ) uslov ispunio potrebno je me{awe dela iskori{}enog i okolnog sve`eg vazduha tako da parcijalni pritisak vodene pare u vla`nom vazduh na ulazu u zagreja~ iznosi! q I3P >7/8!lQb. Pritisak vazduha za ( )n vreme su{ewa je konstantan i iznosi!q>212/4!lQb/!Odrediti: a) maseni protok sve`eg i recirkulacionog vazduha (ra~unato na suv vazduh) c* specifi~nu potro{wu toplote u su{ari!)lK0lh!odstrawene vlage) ako se u fazi zagrevawa vazduh zagreje za u 2 − u n >41pD dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 49 ta~ka 0: y1!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 2/44 ⋅ >1/1194! 3: 212/4 − 2/44 lhTW > lhI3 P 29 37/8 ⋅ >1/3333! 3: 212/4 − 37/8 lhTW ta~ka 2: y3!> NI3P NTW ⋅ q I3P q − q I3P ta~ka M: yn!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 7/8 ⋅ >1/155! 3: 212/4 − 7/8 lhTW ta~ka 1: y2>yn!>1/155! lhI3 P lhTW a) materijalni bilans vlage za proces su{ewa: ⋅ z − z3 ⋅ n tw p + n tw3 ⋅ (y 3 − y 2 ) > n wn ⋅ 2 2− z3 ⋅ ⋅ n tw p + ntw3 = 1/237 ⋅ ⇒ ⋅ z2 − z 3 2 ⋅ 2 − z 3 y 3 − y2 ⋅ n tw p + ntw3 = n wn ⋅ 1/3 − 1/16 2 lh ⋅ >1/22 2 − 1/16 1/3333 − 1/155 t materijalni bilans vlage za proces me{awa dva vla`na vazduha: ⋅ ⋅ ⋅ ⋅ n twp ⋅ y p + n tw3 ⋅ y 3 = n twp + n tw3 ⋅ y n ⋅ )2* ⋅ n tw p + n tw3 >1/22 )3* ⋅ Kombinovawem jedna~ina!)2*!i!)3*!dobija se;! n tw p >1/1:3 lh ⋅ lh -! ntw 3 >1/129 t t c* i2!> d q ⋅ u 2 + y2 ⋅ )2/97 ⋅ u 2 + 3611* )2* in!> d q ⋅ u n + y n ⋅ )2/97 ⋅ u n + 3611* )3* ( Oduzimawem jedna~ina!)2*!i!)3*!dobija se;!!!!!!i2!−in!> (u 2 − u n ) ⋅ d q + 2/97 ⋅ y2 ⋅ ⋅ n twp + n tw3 ⋅ (i2 − in ) (u 2 − u n ) ⋅ d q + 2/97 ⋅ y2 R n2 lK >293/2! = ⋅ = = ⋅ ⋅ lhX y 3 − y2 X n twp + n tw3 ⋅ (y 3 − y2 ) ⋅ rx ) dipl.ing. @eqko Ciganovi} ( ) {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 50 8/41/!Jabuke koje ne podnose temperaturu vi{u od!81pD su{e se u teorijskoj su{ari sa recirkulacijom dela iskori{}enog vazduha. Stawe sve`eg vazduha odre|eno je sa!1)u>7pD-!y>6/42!hI3P0lhTW*/ Apsolutna vla`nost iskori{}enog vazduha je y3>45!hI3P0lhTW-a specifi~na potro{wa toplote u su{ari iznosi!rx>4761!lK0lh!odstrawene vlage. Skicirati promene stawa vla`nog vazduha na!i!−!y!dijagramu i odrediti: b* masene udele sve`eg i recirkulacionog vazduha u me{avini b) minimalnu temperaturu do koje se mora zagrejati sve` vazduh pre me{awa da bi se izbeglo stvarawe magle za vreme procesa me{awa a) ta~ka 0: yp>1/11642! lhI3 P lhTW ip> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 7 + 1/11642 ⋅ )2/97 ⋅ 7 + 3611* >2:/44! lK lhTW ta~ka 2: y3>1/145! lhI3 P lhTW ⋅ rx = R n2 ⋅ = i − h p ⋅ i p − h3 ⋅ i3 i2 − in i − in = 3 = 3 y 3 − y2 y 3 − y n y 3 − h p ⋅ y p − h3 ⋅ y 3 X i3 ⋅ (2 − h3 ) − h p ⋅ i p i − ip rx> > 3 y 3 ⋅ (2 − h3 ) − y p ⋅ i p y3 − yp ⇒ i3>2:/44!, 4761 ⋅ (1/145 − 1/11642) >235/16 ⇒ i3>ip!, r x ⋅ (y 3 − y p ) ⇒ lK lhTW ta~ka 1: lK lhTW i2 − d q ⋅ u 2 lhI3 P 235/16 − 2 ⋅ 81 y2 = > >1/1316! 2/97 ⋅ u 2 + 3611 2/97 ⋅ 81 + 3611 lhTW ta~ka M: lhI3 P yn>y2>1/1316! lhTW y − yn 1/145 − 1/1316 > hp> 3 >1/58 1/145 − 1/11642 y3 − yp i2>i3!>235/16! h3> yn − yp 1/1316 − 1/11642 > >1/64 1/145 − 1/11642 y3 − yp in = h p ⋅ i p + h3 ⋅ i3 > 1/58 ⋅ 2:/44 + 1/64 ⋅ 235/16 >85/94 dipl.ing. @eqko Ciganovi} lK lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 51 b) i 2 u2 4761 3 N′ N 1′ up ϕ>2 1 y y3 y2 P−N−3; P−N′−3; pravac me{awa pre zagrevawa okolnog vazduha pravac me{awa nakon zagrevawa okolnog vazduha ta~ka 0′: grafi~ki postupak: Konstrui{e se prava kroz ta~ke!3!i!N′)!yN′>yN). Presek ove prave sa linijom!yp>dpotu!!defini{e polo`aj ta~ke O′. Iz dijagrama se o~itava!uP′! / ra~unski postupak: lhI3 P y p( >yp>1/11642! lhTW lK in′!>88/68 lhTW in = h p ⋅ i p( + h 3 ⋅ i 3 i p( >@ ⇒ i p( = in − h3 ⋅ i 3 hp 88/68 − 1/58 ⋅ 235/16 lK >44/46 lhTW 1/64 47/46 − 1/11642 ⋅ 3611 i − y ⋅ 3611 up′!>! >33/96pD !> d q + y ⋅ 2/97 2 + 1/11642 ⋅ 2/97 i p( > dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 52 8/42/!U teorijskoj su{ari sa recirkulacijom jednog dela iskori{}enog vazduha su{i se vla`an lhX materijal po~etne vla`nosti!!411&!ra~unato na suvu materiju!)Z2>4! */!U su{ari se odstrani lhTN 91% od vlage koju sa sobom u su{aru unosi vla`an materijal i pri tom dobijamo!43!lh0i!osu{enog materijala. Stawe sve`eg vazduha odre|eno je sa!)u>31pD-!ϕ>1/7*!a stawe otpadnog vazduha odre|eno je sa!)u>51pD-!ϕ>1/9*/!Temperatura vazduha nakon faze zagrevawa iznosi!u>87pD/!Odrediti: b* toplotnu snagu zagreja~a vazduha!R{bh!)lX* b) koliko bi se toplote moglo u{tedeti (u zagreja~u) hla|ewem otpadnog vazduha do stawa zasi}ewa i rekuperativnim kori{}ewem tako oslobo|ene toplote za zagrevawe vazduha nastalog me{awem sve`eg i recirkulacionog vazduha (slika) ta~ka 0: )napon pare ~iste vode na!u>31pD* q qt >3448!Qb q I3P = ϕ ⋅ q qt > 1/7 ⋅ 3448 >2513/3!Qb yp!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 2513/3 ⋅ >!1/1199! 6 lhTW 3: 2 ⋅ 21 − 2513/3 ip> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 31 + 1/1199 ⋅ )2/97 ⋅ 31 + 3611* >53/44! lK lhTW ta~ka 2: )napon pare ~iste vode na!u>51pD* q qt >8486!Qb q I3P = ϕ ⋅ q qt > 1/9 ⋅ 8486 >6:11!Qb y3!> NI3P NTW ⋅ q I3P q − q I3P > lhI3 P 29 6:11 ⋅ >!1/149:! 3: 2 ⋅ 21 6 − 6:11 lhTW i3> d q ⋅ u + y ⋅ )2/97 ⋅ u + 3611* > 2 ⋅ 51 + 1/149: ⋅ )2/97 ⋅ 51 + 3611* >251/25! lK lhTW ta~ka 1: i2>!i3>!251/25! y2>! lK lhTW i . dq ⋅ u 2/97 ⋅ u + 3611 >! lhI3 P 251/25 . 2 ⋅ 87 >1/1354! 2/97 ⋅ 87 + 3611 lhTW ta~ka M: lhI3 P lhTW 1/149: − 1/1354 > >1/596 1/149: − 1/1199 yn>y2>1/1354! hp> y3 − yn y3 − yp h3>2−h2>1/626 in = h p ⋅ i p + h3 ⋅ i3 > 1/596 ⋅ 53/44 + 1/626 ⋅ 251/25 >:3/81 dipl.ing. @eqko Ciganovi} lK lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 53 a) z2 = Z2 4 lhX > >1/86! lh)X + TN* 2 + Z2 4 + 2 materijalni bilans komore za su{ewe materijla: nwn>npn,!X !!!!)2* ⋅ bilans vlage komore za su{ewe materijala: n wn ⋅ z 2 = n pn ⋅ z 3 + X !!)3* uslov zadatka: 1/9 ⋅ n wn ⋅ z 2 = X !! ⋅ !!!!)4* ⋅ kada se odstrawena vlaga!) X *!iz jedna~ine )4*!uvrsti u jedna~ine!)2*!i!)3*!⇒ n wn ⋅ z 2 = n pn ⋅ z 3 + 1/9 ⋅ n wn ⋅ z 2 tj. n wn = n pn + 1/9 ⋅ n wn ⋅ z 2 tj. 1/3 ⋅ n wn ⋅ z 2 = npn ⋅ z 3 !!!)5* npn n wn = !!!!)6* 2 − 1/9 ⋅ z 2 kada se jedna~ina!)6) uvrsti u jedna~inu!)5*!dobija se: z3 > 1/3 ⋅ z 2 1/3 ⋅ 1/86 lhX >1/486 > lh)X + TN* 2 − 1/9 ⋅ z 2 2 − 1/9 ⋅ 1/86 n pn ⋅ z 3 43 ⋅ 1/486 lh > >91 1/3 ⋅ 1/86 1/3 ⋅ z 2 i )5* ⇒ n wn = )2* ⇒ X = n wn − n pn !>91!−!43!>59 ⋅ ⋅ ⋅ lh i ⋅ 59 2 lh X ⋅ n tw1!,! n tw3!> > >1/:2 t y 3 − y2 1/149: − 1/1354 4711 ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u zagreja~u vazduha:!!!!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ R {bh = !n twp + n tw3 ⋅ (i2 − in ) > 1/:2 ⋅ (251/25 − :3/8) >54/28!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 54 b) nwn zagreja~ vazduha C predgreja~ vazduha B komora za su{ewe materijala 2 npn 3 otpadni vazduh 3 recirkulacioni vazduh N 3 1 sve` vazduh i 2 u2 3 C u3 ϕ>2 N up ϕ3 B 1 ϕp ⋅ ⋅ ⋅ lh n tw1!>! h p ⋅ n tw1 !+!n tw3 > 1/596 ⋅ 1/:2 >1/55 t ⋅ ⋅ ⋅ ⋅ lh n tw3!>! h3 ⋅ n tw1 !+!n n tw3 > 1/626 ⋅ 1/:2 >1/58 t ta~ka A: lK y B = y3 iB>g (y B - ϕ = 2) >247/28 lhTW ⋅ ⋅ R qsfe!>! n twp ⋅ (i3 − i B ) >!1/55 ⋅(251/25 − 247/28) >2/86!lX dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 55 8/43/!U dvostepenoj teorijskoj su{ari za!7!sati osu{i se!2111!lh!vla`nog materijala.!Maseni odnos vlage lhX prema suvoj materiji u materijalu koji ulazi u prvi stepen su{ewa je 1/54! !a maseni odnos vlage lhTN lhX prema suvoj materiji u materijalu koji napu{ta drugi!stepen su{ewa je!1/25! . Sve` ulazni vazduh lhTN stawa!1)q>2!cbs-!u>27pD-!ϕ>1/6*!me{a se sa recirkulacionim vazduhom stawa!6)q>2!cbs-!u>57pD-!ϕ>1/7*!u odnosu!3;2, a zatim se predgreja~u vazduha (razmewiva~ toplote) pomo}u dela vla`nog vazduha oduzetog iz prvog stepena su{are. U greja~ima vazduha!H2!i!H3 vla`an vazduh se zagreva do temperature od!91pD/ Temperatura vla`nog vazduha na izlazu iz postrojewa je!41pD/!Skicirati promene stawa vla`nog vazduha na Molijerovom!i!−!y!dijagramu i odrediti: a) veli~ine stawa vla`nog vazduha!)i-!y-!u*!u karakteristi~nim ta~kama b) toplotne snage greja~a vazduha-!H2!i!H3 c) vla`nost materijala (maseni udeo vlage) na kraju prvog stepena su{ewa sve` vazduh 1 nwn N p r e d g r e j a ~ 6 7 2 npn prvi stepen su{ewa 3 drugi stepen su{ewa 4 H2 H3 6 5 otpadni vazduh recirkulacioni vazduh i 5 3 6 4 2 7 ϕ>2 N 1 y dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 56 b* ta~ka 0: lhI3 P lhTW yp!>!g)up-!ϕp*>1/1168! ip>!g)up-!yp*>41/53! lK lhTW ta~ka 5: y6!>!g)u6-!ϕ6*!>1/14::7! lhI3 P lhTW i6!>!g)u6-!y6*!>25:/43! lK lhTW ta~ka M: prvi zakon termodinamike za proces me{awa dva vla`na vazduha: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ R 23 = ∆ I23 + X u23 n twp ⋅ i p + n tw 6 ⋅ i 6 = n twp + n tw 6 ⋅ in ⋅ n twp ⋅ in = ⋅ ip + i6 n tw 6 ⋅ n twp ⋅ +2 3 ⋅ (41/53) + 25:/43 lK >81/16! >2 3 lhTW +2 2 n tw6 materijalni bilans vlage za proces me{awa dva vla`na vazduha: ⋅ ntwp ⋅ ⋅ n tw 1 ⋅ y p + n tw 6 ⋅ y 6 = n twp + n tw 6 ⋅ y n ⋅ ⋅ ⋅ yn = ⇒! ⋅ yp + y6 ntw 6 ⋅ ntwp ⋅ +2 ntw 6 3 ⋅ 1/1168 + 1/15 lhI3 P yn = 2 >1/1282 3 lhTW +2 2 i − y n ⋅ 3611 81/13 − 1/1282 ⋅ 3611 !> un!>! n >37/54pD d q + y n ⋅ 2/97 2 + 1/1282 ⋅ 2/97 ta~ka 2: y3>yn!>1/1282! lhI3 P lhTW i5!>i6!>25:/43! lK lhTW y5>!g)u5-!i5*>1/1373! lK lhTW y4>!y5>1/1373! i3!>!g)u3-!y3*>236/46! lK lhTW ta~ka 4: lhI3 P lhTW ta~ka 3: i4!>i3>236/46! dipl.ing. @eqko Ciganovi} lhI3 P lhTW {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 57 ta~ka 6: y7!>!y4!>!y5>1/1373! lhI3 P lhTW i7!>!g)u7-!y7*!>!:7/9:! lK lhTW ta~ka 1: y2!>!yn!>!1/1282! lhI3 P lhTW i2!>!@ ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u predgreja~u vazduha:!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ n twp ⋅ (i 4 − i 7 ) = ntwp + ntw 7 ⋅ (i2 − iN ) ⇒ ⋅ n twp ⋅ i2 = in − ⋅ (i 7 − i 4 ) n tw 7 ⋅ n twp 3 ⋅ (:7/9: − 236/46 ) lK >9:/13 > 81/16 − 2 3 lhTW +2 2 +2 ⋅ n tw 7 i − y2 ⋅ 3611 9:/13 − 1/1282 ⋅ 3611 !> u2!>! 2 >88/95pD d q + y2 ⋅ 2/97 2 + 1/1282 ⋅ 2/97 c* z2 = Z2 1/54 lhX > >1/41! 2 + Z2 1/54 + 2 lh)X + TN* z3 = Z3 1/25 lhX > >1/23! 1/25 + 2 2 + Z3 lh)X + TN* materijalni bilans vlage za oba stepena su{ewa zajedno: z 2 − z 3 2111 1/41 − 1/23 lh > ⋅ >45/1: 7 2 − 1/23 2− z3 i ⋅ X = n wn ⋅ ⋅ ⋅ ⋅ ⋅ X = ntwp + n tw 6 ⋅ (y 4 − y 3 ) + n tw 7 ⋅ (y 6 − y 5 ) ⋅ n tw 6 ⋅ ⇒ 45/1: ⋅ lh X 4711 = > >1/34 t 4 ⋅ (y 4 − y 3 ) + (y 6 − y 5 ) 4 ⋅ (1/1373 − 1/1282) + 1/15 − 1/1373 ⋅ n twp = 3 ⋅ n tw 6 > 3 ⋅ 1/34 >1/57 dipl.ing. @eqko Ciganovi} lh t {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 58 ⋅ ⋅ ⋅ ⋅ ⋅ prvi zakon termodinamike za proces u greja~u vazduha H2 :!!! R 23 = ∆ I23 + X u23 ⋅ ⋅ ⋅ R 23 = ntwp + ntw3 ⋅ (i3 − i2 ) > 1/7: ⋅ (236/46 − 9:/13) >36/18!lX ⋅ prvi zakon termodinamike za proces u greja~u vazduha H3 :!!! R 45 = ∆ I45 + X u 45 ⋅ ⋅ R 45 = n tw6 ⋅ (i 5 − i 4 ) > 1/34 ⋅ (25:/43 − 236/46 ) >6/62!lX d* ⋅ X 2!>! n wn ⋅ z 2 − z( 2 − z( ⋅ ⋅ ⋅ X 2 = n twp + n tw 6 ⋅ (y 4 − y 3 ) )2* )3* ⋅ Kombinovawem jedna~ina!)2*!i!)3*!dobija se! X 2>!33/7! zadatak za ve`bawe:! lh !!j!z′>1/3 i )8/44/* 8/44/!U dvostepenoj teorijskoj su{ari su{i se!2911!lh0i nekog proizvoda koji sadr`i!4:!nbt&!vlage. Nakon su{ewa proizvod sadr`i!:3!nbt% suve materije. Vazduh izlazi iz su{are na temperaturi od 56pD/!Temperatura okoline je!31pD/!Vazduh se pred svakim stepenom zagreva do!91pD!a na izlazu iz svakog stepena ima relativnu vla`nost!81&/!Sve promene stawa vla`nog vazduah u su{ari se doga|aju pri!q>2!cbs>dpotu/!Skicirati promene stawa vla`nog vazduha na!i!−y!!dijagramu i odrediti: a) ukupnu potro{wu toplote u su{ari!)lX* b) izra~unati vla`nost materijala (maseni udeo vlage) na izlazu iz prvog stepena su{ewa re{ewe: a) R>684!lX b) z′>1/36 dipl.ing. @eqko Ciganovi} {fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 1 KRETAWE TOPLOTE 9/2/!Sa jedne strane ravnog zida povr{ine B>4!n3 nalazi se suva vodena para U2>247pD, a sa druge ravnog zida nalazi se vazduh U6>36pD. Zid je sastavqen od dva sloja: ~eli~nog lima (1) )λ2>61-!X0nLδ2>21!nn* i izolacionog materijala (2) )λ3>1/17!X0nL-!δ3>31!nn*/ Koeficijent prelaza toplote sa pare na zid iznosi α2>6111!X0n3L, a sa zida na okolni vazduh α3>2111!X0n3L. Odrediti: b* toplotni protok sa pare na vazduh, kroz zid )X* b) temperaturu izolacije (do vazduha) i temperaturu lima (do pare) δ3 δ2 α2 para λ2 λ3 vazduh α3 U6 U2 U4 U3 U5 a) ⋅ R= U2 . U6 δ δ 2 2 + 2 + 3 + α2 λ2 λ 3 α 3 B= 247 . 36 ⋅ 4 >2111!X 2 1/12 1/13 2 + + + 6111 61 1/17 2111 b) U − U3 R= 2 ⋅B ⇒ 2 α2 ⋅ ⋅ U .U R= 5 6 2 α3 ⋅ 2111 R >246/:4pD U3!>!U2!−! >247!−! 6111 4 α2 ⋅ B ⋅ B ⇒ 2111 R >36/69pD U5!>!U6!, >36,! 2111 4 α3 ⋅ B dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 2 9/3/!Za izgradwu privremenog skloni{ta u polarnim oblastima istra`iva~i mogu upotrebiti ponetu {per plo~u, debqine!δ2>6!nn!)λ2>1/218!X0)nL**-!vla`nu zemqu!)λ3>1/767!X0)nL**-!i nabijen sneg )λ4>1/218!X0)nL**/!Na unutra{woj povr{i zida skloni{ta ustali se temperatura U2>3:4!L-!a koeficijent prelaza toplote, sa spoqa{we povr{i zida na okolni vazduh temperature!U6>341!L, iznosi!α>:/7!X0)n3L*/!′′Povr{inski toplotni protok′′ (toplotni fluks) pri tome treba da iznosi r>69!X0n3. Odrediti: a) najmawu debqinu sloja vla`ne zemqe u konstrukciji zida, tako da ne do|e do topqewa snega b) potrebnu debqinu sloja nabijenog snega u konstrukciji zida δ2 {per plo~a U2 δ3 δ4 vla`na zemqa U3 U4 nabijen sneg U5 U6 a) napomena: !r!>! Uo~iti da je U4!>384!L (uslov ne topqewa snega na grani~noj povr{ini vla`na zemqa sneg). U2 − U4 δ2 δ3 + λ2 λ3 ⇒ U −U δ δ3!>!λ3! 2 4 − 2 λ2 r 3:4 − 384 6 ⋅ 21 −4 − δ3!>! 1/767 ⋅ 69 1/218 b) r!>! U2 − U6 δ2 δ3 δ4 2 + + + λ2 λ3 λ 4 α ⇒ ⇒ >2:7!nn U −U δ δ 2 δ4!>!λ4! 2 6 − 2 − 3 − λ2 λ3 α r 3:4 − 341 6 ⋅ 21 −4 79 ⋅ 21 −4 2 >!79!nn δ4!>!λ4! ⋅ − − − 69 1/218 1/767 :/7 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 3 9/4/![upqi cilindar od stiropora!)λ>1/138!X0nL) unutra{weg pre~nika!ev>1/3!n, spoqa{weg pre~nika!et>1/4!n!i visine!I>2/6!n!napuwen je ledom sredwe!temperature!u2>1pD/!Temperatura okolnog vazduha je!u4>41pD, a koeficijent prelaza toplote na stiropor sa okolnog vazduha iznosi!α>9 X0n3L/!Temperatura unutra{we povr{ine cilindra je!1pD/!Zanemaruju}i razmenu toplote kroz baze cilindra, odrediti: a) toplotne dobitke cilindra )lX* b) temperaturu spoqa{we povr{ine zida cilindra d* vreme za koje }e se sav led otopiti ako toplota topqewa leda iznosi sm>443/5!lK0lh-!a gustina leda ρm>:11!lh0n4 α led vazduh u2 u3 u4 a) ⋅ !R = u2 − u 4 36 − 1 ⋅I = ⋅ 2/6 = 28/95!X et 2 2 1/4 2 2 mo + mo + 1/4π ⋅ 9 3π ⋅ 1/138 1/3 e t π ⋅ α 3π ⋅ λ e v b) u − u3 R= 2 ⋅I ⇒! 2 et π ⋅ α ⋅ ⋅ 28/95 R u3!>!u2!−! >!36!− >39/5pD 1/4π ⋅ 9 ⋅ 2/6 ev π ⋅ α ⋅ I c) τ!>! Rm ⋅ R = ///!> 251:4/87 28/95 ⋅ 21 −4 = 8:1119!t! (9 dana 3 sata 27 min) Rm!>!nm!/!sm!>!///!>53/5/!443/5!>251:4/87!lK nm!>!ρm!/!Wm!>!ρm!/ 1/3 3 π ev3 π ⋅ M >!:11 ⋅ ⋅ 2/6 >!53/5!lh 5 5 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 4 9/5/!Odrediti kolika se maksimalna debqina leda!)λmfe!>3/67!X0)nL**!mo`e obrazovati na spoqnoj povr{ini aluminijumske cevi!)λBm>33:/2!X0)nL**-!pre~nika!∅>:6094!nn-!du`ine!M>2!n-!koju obliva voda, ako je temperatura na wenoj unutra{woj povr{ini U4>374!L-!pri ~emu je toplotni protok sa vode na cev!2661!X/ e4 e3 e2 U4 napomena: !U2!>!384!L U3 U2 (uslov stvarawa leda) e4 − e3 1/216 − 1/1:6 >1/116!n>!6!nn >!///>! 3 3 ⋅ U2 − U4 R= ⋅M ⇒ e 2 e4 2 mo mo 3 + 3π ⋅ λmfe e3 3π ⋅ λ Bm e2 δ mfe !>! 3π ⋅ λ ⋅ M λ mfe e 3 mfe ( ) e4!> e 3 ⋅ fyq U U mo ⋅ − − 2 4 ⋅ λ Bm e2 R 3/67 :6 3π ⋅ 3/67 ⋅ 2 ⋅ (384 − 374 ) − mo >1/216!n e4!> 1/1:6 ⋅ fyq 33:/2 94 2661 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike zadaci za ve`bawe: strana 5 )9/6/!−!9/7/* 9/6/!Sa jedne strane staklene!)λ>1/9!X0nL*!plo~e, ukupne povr{ine!B>21!n3-!nalazi se vla`an vazduh temperature!71pD!dok je sa druge strane voda temperature!31pD/!Pad temperature kroz staklenu plo~u iznosi!6pD. Koeficijent prelaza toplote sa vla`nog vaduha na plo~u iznosi!α2>31!X0n3L-!a sa plo~e na vodu α3>211!X0n3L/!Odrediti: a) temperature staklene povr{ine u dodiru sa vla`nim vazduhom i vodom b) debqinu staklene plo~e c) toplotni protok sa vla`nog vazduha na vodu d) toplotni protok sa vla`nog vazduha na vodu ako bi se sa strane vode formirao sloj kamenca toplotnog otpora S>1/2!n3L0X re{ewe: b* u3!>!41/94pD-!u4>36/94pD b) δ>7/97!nn ⋅ c) R >6945!X ⋅ d) R( >3484!X 9/7/!U ~eli~noj cevi!)λ>57/6!X0)n3L**-!pre~nika!26:y5/6!nn, po celoj du`ini deonice ime|u dva ventila, usled du`eg prekida rada u ma{inskoj hali, u zimskom periodu, obrzaovao se ledeni ~ep sredwe temperature!1pD/!^eli~na cev je toplotno izolovana slojem stiropora debqine!δ>61!!nn/ Naglim zagrevawem, temperatura vazduha u ma{inskoj hali povisi se do!41pD i potom ostaje nepromewena. Koeficijent prelaza toplote sa okolnog vazduha na spoqa{wu povr{ stiropora tako|e je stalan i iznosi!α>26!X0)n3L*/!Uz predpostavku da je temperatura na unutra{woj povr{i cevi stalna i da iznosi!1pD-!odrediti vreme (u danima) za koje }e se ledeni ~ep potpuno otopiti. re{ewe: τ!≈!7 dana dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 6 9/8/!U zidanom kanalu od hrapave crvene opeke!)ε3>1/:4*-!du`ine!M>2!n, kvadratnog popre~nog preseka stranice!b>511!nn!postavqena je ~eli~na cev!)ε2>1/9*!spoqa{weg pre~nika!e>211!nn/ Temperatura spoqa{we povr{i cevi je!U2>684!L-!a unutra{wih povr{i zidova kanala!U3>434!L/ Prostor izme|u cevi i kanala je vakumiran. Odrediti: a) toplotni protok koji zra~ewem razmene cev i zidani kanal b) toplotni protok koji zra~ewem razmene cev i zidani kanal (pri istim temperaturama U2 i U3 ) ako se izme|u cevi i zidova kanala postavi cilindri~ni toplotni ekran koeficijenta emisije εF>1/96 i pre~nika eF>311!nn c) temperaturu tako postavqenog ekrana (zanemariti debqinu ekrana ) ε3 ε2 U2 U3 a) 5 ⋅ R { 23 5 5 5 U2 U 684 434 − 3 − 211 211 211 211 = ⋅ M >///> ⋅ 2 >2496!X 2 2 1/2 ⋅ π ⋅ 5/56 eπ ⋅ D23 D23!>!Dd/!ε23!>//!!/!>!6/78/!1/8:!>!5/56! X n3L 5 2 2 ε23!>! >///>! >!1/8: 2 1/425 2 2 B2 2 − 2 + − 2 + 1/9 2/7 1/:4 ε2 B3 ε3 B2!>!e π /!M!> 1/2 ⋅ π ⋅ 2 >1/425!n3 B3!>! 5 ⋅ b ⋅ M > 5 ⋅ 1/5 ⋅ 2 >2/7!n3 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 7 b) ε3 ε2 U εF U2 5 ⋅ R { 2F3 U3 5 5 5 U U2 684 434 − 3 − 211 211 211 211 ⋅ M >///> ⋅ 2>!99:/77!X = 2 2 2 2 + + eπ ⋅ D2F eF π ⋅ D F3 1/2 ⋅ π ⋅ 5/35 1/3 ⋅ π ⋅ 5/8 D2F!>!Dd!ε2F!>5/35! X 3 5 nL BF!>!eF π /!M!> 1/3 ⋅ π ⋅ 2 >!1/739!n3 X DF3!>!Dd/!εF3!>5/8! n3L 5 ε2F!>! 2 >!1/86 2 B2 2 + − 2 ε2 BF εF εF3!>! 2 >!1/94 2 BF 2 − 2 + εF B3 ε3 c) U trenutku uspostavqawa stacionarnog re`ima kretawa toplote ⋅ ⋅ postavqamo toplotni bilans za toplotni ekran: R [ = R [ odakle 2F F3 sledi da je: UF!>! 5 D2F ⋅ e ⋅ U25 + D F3 ⋅ eF ⋅ U35 D2F ⋅ e + D F3⋅ eF > 5 5/35 ⋅ 1/2 ⋅ 684 5 + 5/8 ⋅ 1/3 ⋅ 434 5 5/35 ⋅ 1/2 + 5/8 ⋅ 1/3 = >561!L dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 8 9/9/!U industrijskoj hali nalazi se pe} od vaqanog ~eli~nog lima!)ε2>1/68*!ukupne povr{ine!B>3/6 n3/!Temperatura spoqa{we povr{i pe}i je!u2>271pD, a okolnog vazduha i unutra{wih povr{i zidova hale!u3>u4>26pD. Koeficijent prelaza toplote sa spoqa{we povr{i pe}i na vazduh u hali je!α>24/24 X0)n3L*/!Odrediti: a) ukupan toplotni protok (zra~ewe + prelaz) koji odaje spoqa{wa povr{ina pe}i b) temperaturu unutra{we povr{i pe}i ako je debqina zida pe}i!δ>31!nn-!a koeficijent toplotne provodqivost zida pe}i!λ>61!X0)n3L* α ε2 U1 ε3 U2 U3 U4 a) ⋅ ⋅ ⋅ R >! R QSFMB[ ,! R [SB•FOKF >!///>!5871!,!3351!>!8111!X ∑ 23 23 ⋅ U −U 271 − 26 R QSFMB[ >! 2 3 ⋅ B2 >! ⋅ 3/6 >5871!X 2 2 23 α 24/24 5 5 5 5 544 399 U2 U − − 4 ⋅ 211 211 211 211 ⋅ B >! R [SB•FOKF > ⋅ 3/6 >3351!X 2 2 2 23 D24 4/34 ε24!>!ε2!>!1/68!)B2!==!B4* D24!>!Dd/!ε24!>! 6/78 ⋅ 1/68 >!4/34! X n3L 5 b) ⋅ ⋅ U − U2 R >! R QSPWPEKFOKF >! 1 ⋅ B !!! ⇒ δ ∑ 12 λ −4 8111 31 ⋅ 21 ⋅ !>!271/4pD U1!>!271!, 3/6 61 ⋅ R Σ δ ⋅ !>!271/4pD U1!>!U2!, B λ dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 9 9/:/!Temperatura vrelih gasova, koji se kre}u kroz kanal, meri se temperaturskom sondom!)ε2>1/9*/ Pri stacionarnim uslovima sonda pokazuje temperaturu!u2>411pD/!Temperatura povr{i zidova kanala je!u4>311pD/!Koeficijent prelaza toplote sa vrelih gasova na povr{ sonde iznosi!α>69!X0)n3L). Odrediti stvarnu temperaturu vrelih gasova u kanalu!)!u3>@*/ u4 u3 u2 ε α (r{sb•fokf )24 = (rqsfmb{ )32 toplotni bilans temperaturske sonde: 5 5 5 U2 U − 4 211 211 = U3 − U2 2 2 D24 α 5 684 584 − 211 211 U3!>!684!,! 2 5/65 ε24!>!ε2!>!1/9!)B2!==!B4* ⇒ 5 U2 U − 4 211 211 !!⇒ U3!>!U2!,! 2 D24 5 >729!L!)!456pD!* D24!>!Dd/!ε24!> 6/78 ⋅ 1/9 >!5/65! X n3L 5 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 10 9/21/!U prostoru izme|u dve, koncentri~no postavqene posrebrene cevi ostvaren je potpuni vakum. Temperatura na spoqa{woj povr{i unutra{we cevi, spoqa{weg pre~nika!e2>261!nn-!iznosi u2>711pD-!a temperatura na unutra{woj povr{i spoqa{we cevi, unutra{weg pre~nika!e3>311!nniznosi u3>311pD/!Emisivnost svake posrebrene cevi je!ε>1/16/!Odrediti “ekvivalentnu” toplotnu provodqivost materijala!)λ*-!~ijim bi se postavqewem u prostor izme|u cevi, pri nepromewenim temperaturama i pre~nicima cevi ostvarila ista linijska gustina toplotnog protoka!)!toplotni fluks-!X0n* e2 e3 e3 e2 (r{sb•fokf )23 = (rqspwp} fokb )23 5 5 U2 U − 3 211 211 = U2 − U3 2 e 2 mo 3 3π ⋅ λ e2 e2π ⋅ D23 5 ⇒ 5 e U2 U mo 3 − 3 e2 211 211 ⋅ !>/// λ!>! 2 3π ⋅ (U2 − U3 ) e2π ⋅ D23 D23!>!Dd!ε23!>///!>! 6/78 ⋅ 1/14 >1/276! ε23!>! X n3L 5 2 2 2 >!1/14 > >! 2 1/26 2 2 e2 2 2 B2 2 + − 2 − 2 + ε + e ε − 2 1/16 1/3 1/16 ε2 B3 ε3 2 3 3 5 5 984 584 1/3 − mo 211 211 X 1/26 λ!> ⋅ >!1/158! 2 3π ⋅ (984 − 584 ) nL 1/26 ⋅ π ⋅ 1/276 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 11 9/22/!Cilindri~ni kolektor za vodenu paru, spoqa{weg pre~nika!e2>386!nn-!nalazi se u velikoj prostoriji. Koeficijent emisije kolektora iznosi!ε2>1/:2/!Radi smawewa toplotnih gubitaka zra~ewem postavqa se osno postavqen toplotni {tit (ekran), zanemarqive debqine, koeficijenta emisije!εF>1/66/!Predpostavqaju}i da se postavqawem toplotnog {tita ne mewa temperatura na spoqa{woj povr{i kolektora i unutra{woj povr{i zidova prostorije odrediti pre~nik toplotnog {tita!)eF*-!tako da je u odnosu na neza{ti}eni kolektor smawewe toplotnih gubitaka zra~ewem 61&!/ (r{sb•fokf )23 = (r{sb•fokf )2F3 5 5 U2 U − 3 211 211 = 3 ⋅ 2 e2π ⋅ D23 2 3 = 2 2 2 + e2ε23 e2ε2F eFεF3 5 5 U2 U − 3 211 211 2 2 + e2π ⋅ D2F eFπ ⋅ DF3 ⇒ 2 3 = 2 2 e2 2 − 2 + e2ε23 ε2 eF εF e2 3 2 2 2 2 = + − 2 + ⇒ e2ε2 e2ε2 eF εF eFεF ⇒ + 2 eFεF3 3 eF!>! e2 ⋅ ε2 ⋅ − 2 εF 3 − 2 !>!1/76:!n!>!76:!nn eF!>! 1/386 ⋅ 1/:2 ⋅ 1/66 napomena: ε23!>!ε2 )!B2!==!B3!* ε2F!>! εF3!>!εF)!BF!==!B3!* 2 2 > 2 e2 2 2 B2 2 − 2 − 2 + + ε2 BF εF ε2 eF εF dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 12 9/23/!Oko duga~kog cilindra, pre~nika!e2>361!nn-!koncentri~no je postavqen ekran pre~nika eF>461!nn-!zanemarqive debqine. Ukupan koeficijent emisije povr{i cilindra i povr{i ekrana su jednaki i iznose!!ε!>1/9/!U stacionarnim uslovima, temperatura ekrana je!2:1pD-!temperatura okolnog vazduha i okolnih povr{i iznosi!61pD-!a sredwi koeficijent prelaza toplote sa spoqa{we povr{i ekrana na okolni vazduh!α>46!X0)n3L). Zanemaruju}i konvektivnu predaju toplote izme|u cilindra i ekrana odrediti temperaturu povr{i cilindra. α ε ε U2 5 5 Uw U3 (r{sb•fokf )23 = (r{sb•fokf )F3 + (rqsfmb{ )FW toplotni bilans ekrana: U2 U − F 211 211 = 2 e2π ⋅ D2F UF 5 5 UF U − 3 211 211 + UF − UW 2 2 eFπ ⋅ α eFπ ⋅ DF3 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 13 D2F!>!Dd!ε2F!>///> 6/78 1/8 >4/:8! X n3L 5 2 2 > >!>!1/8 2 B2 2 2 e2 2 + + − 2 − 2 ε BF ε ε eF ε X DF3!>!Dd!εF3!>//!!/!>!5/65! n3L 5 εF3!>!εF!>!1/8 ε2F!>! 5 2 U U2 = 211 ⋅ 5 3 + e2 ⋅ D2F 211 5 U 5 3 − U2 211 U − U 211 + 3 4 >!835!L 2 2 eF ⋅ α eF ⋅ DF3 9/24/!U kanalu kvadratnog popre~nog preseka!)b>711!nn*!nalazi se ~eli~na cev!∅>3310311!nnλ>57!X0nL/!Kroz kanal proti~e suv vazduh. Temperatura spoqa{we povr{i cevi je!U2>711!L-!a unutra{we povr{i zida je!U4>411!L/!Koeficijenti emisije zra~ewa su!ε2>1/92!(za cev) i!ε4>1/97!(za zidove kanala). Koeficijent prelaza toplote sa cevi na vazduh je!α2>41!X0n3L/!Odrediti: a) temperaturu vazduha u kanalu )U3>@* ako su toplotni gubici spoqa{we povr{i cevi, radijacijom i konvekcijom jednaki c* temperaturu unutra{we povr{i cevi )Up>@* c) koeficijent prelaza toplote )α3*!sa vazduha na zidove kanala α3 U4 α2 U3 U2 Up ε2 ε4 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike a) strana 14 (rqsfmb{b )23 = (r{sb•fokf )24 uslov zadatka: 5 U U2 − 4 U2 − U3 211 211 = 2 2 et π ⋅ α et π ⋅ D24 5 5 ⇒ D24!>!Dd/!ε24!>///> 6/78 ⋅ 1/9 >!5/53! 5 U U2 − 4 211 211 >!/// U3!>!U2! − α D24 X n3L 5 2 2 2 >1/89 > >!! 2 1/33 ⋅ π 2 2 et π 2 2 B2 2 + 2 − + − 2 + − 2 1/92 5 ⋅ 1/7 1/97 ε2 B 4 ε4 ε2 5 ⋅ b ε3 B2!>! et π ⋅ M B4!>!5b!/!M ε24!>! 5 5 711 411 − 211 211 U3!>!711! − >!532!L 41 5/53 b) toplotni bilans spoqa{we povr{ine cevi: (rqspwp} fokf )12 = (rqsfmb{b )23 + (r{sb•fokf )24 !!⇒ (rqspwp} fokf )12 = 3 ⋅ (rqsfmb{b )23 U − U3 3⋅ 2 = 2 et π ⋅ α ⇒ e mo t ev U2 − U3 ⋅ U1!>!U2!.! 3 ⋅ 2 3π ⋅ λ et π ⋅ α U1 − U2 !> e 2 mo t 3π ⋅ λ ev ⇒ 1/33 mo 711 − 532 1/3 !>!713/5!L Up!>!711!−! 3 ⋅ ⋅ 2 3π ⋅ 57 1/33 ⋅ π ⋅ 41 c) toplotni bilans vazduha u kanalu: U − U4 U2 − U3 ⋅M = 3 ⋅b⋅M ⋅ 5 2 2 et π ⋅ α2 α3 α3!>! ⇒ • • Rqsfmb{ = Rqsfmb{ 23 34 U − U3 2 ⋅ α3!>! 2 2 5b ⋅ (U3 − U4 ) et π ⋅ α2 ⇒ X 711 − 532 2 >23/9! ⋅ 2 5 ⋅ 1/7 ⋅ (532 − 411) n3L 1/33π ⋅ 41 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 15 9/25/!!Unutar metalnog!cilindri~nog rezervoara, unutra{weg pre~nika!e>1/6!n! i visine i>2!n, ostvaren je potpuni vakum. Temperatura na unutra{woj povr{i doweg dna je stalna i iznosi U2>511!L, dok su temperature na preostalim unutra{wim povr{ima tako|e stalne i iznose U3>411!L/ Koeficijent emisije svih unutra{wih povr{i je jednak i iznosi ε>1/9/ Odrediti debwinu izolacionog materijala )δj{* toplotne provodnosti λj>1/4!X0)nL* koeficijenta emisije εj{>1/:6, kojim treba izolovati dowe dno, da bi pri stacionarnim uslovima i pri nepromewenim temperaturama (na dodirnoj povr{i doweg dna i izolacionog sloja U2 i na ostalim unutra{wim povr{inama U3) toplotni protok sa doweg dna bio smawen za 31&/ e U3 vakum i δj{ Uj{ U2 5 ⋅ R { 23 5 5 5 U2 U 511 411 − 3 − 211 211 211 211 = ⋅ B 2 >///> ⋅ 1/2:7 >262/72!X 2 2 D23 5/53 D23!>!Dd/!ε23!>//!!/!>!6/78/!1/89!>!5/53! X n3L 5 2 2 >!1/89 ε23!>! >///>! 2 1/2:7 2 2 B2 2 + − 2 − 2 + 1/9 2/878 1/9 ε2 B3 ε3 e 3 π 1/6 3 π !>1/2:7!n3 = 5 5 e3 π 1/6 3 π > 1/6 ⋅ π ⋅ 2 + >2/878!n3 B3!>! e ⋅ π ⋅ i + 5 5 B2!> dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 16 ⋅ ⋅ R( = 1/9 ⋅ R { >232/3:!X 23 5 5 Uj{ U − 3 ⋅ 211 211 ⋅ B2 R( = 2 ⋅ ⇒ R( U Uj{ = 211 ⋅ 5 + 3 D J{3 ⋅ B 2 211 5 D J{3 DJ{3>!Dd/!εJ{3′!>//!!/!>!6/78/!1/:4!>!6/38! X n3L 5 2 2 >!1/:4 εJ{3!>! >///>! 2 1/2:7 2 B2 2 2 + − 2 + − 2 1/:6 2/878 1/9 ε j{ B 3 ε 3 5 Uj{ = 211 ⋅ 5 232/3: 411 + >486/43!L 6/38 ⋅ 1/2:7 211 toplotni bilans gorwe povr{i izolacije: U − Uj{ ⋅ R qspwp} fokf = 2 ⋅ B2 δ {j 2J{ λ j{ δ j{ = ⇒ δ j{ = (511 − 486/43) ⋅ 1/4 ⋅ 1/2:7 >22/:7!nn napomena: ⋅ ⋅ R qspwp} fokf = R( 2J{ (U2 − Uj{ ) ⋅ λ j{ ⋅ B 2 ⋅ R qspwp} fokf 2J{ > 232/3: Pri izra~unavawu A2 za slu~aju sa izolaciju zanemaruje se smawewe povr{ine A2 zbog male debqine izolacije dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 17 9/26/!Ravan zid debqine!6!dn!sa jedne svoje strane izlo`en je dejstvu toplotnog zra~ewa, ~iji intenzitet u pravcu normale na zid iznosi!r{>2111!X0)n3L*/!Usled na ovaj na~in prenete koli~ine toplote ozra~ena povr{ zida odr`ava se na temperaturi od!u2>62/2pD/!Ukupan koeficijent emisije povr{i zida je!ε>1/8-!a toplotna provodqivost materijala od kojeg je zid na~iwen je!λ>1/86!X0)nL*/ Temperatura okolnog vazduha (sa obe strane zida) je 31pD/!Zanemaruju}i sopstveno zra~ewe zida i smatraju}i da je koeficijent prelaza toplote sa obe strane zida na okolni vazduh (α) isti odrediti temperaturu neozra~ene povr{i zida!)u3* r{ rsfg rqsfmb{2 rqspw rqsfmb{3 Uw U2 U3 Uw toplotni bilans ozra~ene povr{i zida (povr{ 1) r{!>!rsfg!,!rqsfmb{2!,!rqspw r{!>!)2.!ε!*!r{!,! U2 − Uw U −U !,! 2 3 !!!)2* 2 δ α λ toplotni bilans ne ozra~ene povr{i zida (povr{ 2) U2 − U3 U − Uw > 3 δ 2 λ α rqspw!>!rqsfmb{3 !!! !!!!!!!!)3* re{avawem sistema dve jedna~ine )2*!i )3* sa dve nepoznate )U3!i!α* dobija se: U3!>419/7!L-!!α!>26! X n3L dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 18 9/27/!Ravan zid od mermera!)λ>3/9!X0)nL*-!ε>1/66*-!debqine!1/167!n!izlo`en je sa obe strane dejstvu toplotnog zra~ewa ~iji intenziteti u pravcu normala na povr{i iznose!r{2>253:!X0n3!i!r{3>2:4 X0n3/!Hla|ewe mermera sa obe strane zida obavqa se iskqu~ivo konvektivnim putem (zanemaruje se sopstveno zra~ewe mermera). Temperatura vazduha sa jedne strane zida je!UW2>61pD-!a sa druge UW3>51pD-!a odgovaraju}i koeficijenti prelaza toplote!α2>9!X0)n3L*!i!α3>31!X0)n3L*/!Odrediti temperature obe povr{i mermera!)U2!j!U3*/ r{2 r{3 rsfg3 rsfg rqsfmb{2 rqspw rqsfmb{3 Uw2 U2 U3 Uw3 toplotni bilans ozra~ene povr{i zida (povr{ 1) r{2>!rsfg!,!rqsfmb{2!,!rqspw r{2>)2−ε!*!r{2, U2 − Uw2 U −U !,! 2 3 !!)2* δ 2 λ α toplotni bilans ozra~ene povr{i zida 2 (povr{ 2) r{3!,!rqspw!>!rsfg3!,!rqsfmb{ r{3, U − Uw3 U2 − U3 !)3* >!)2−ε!*!r{3!,! 3 δ 2 λ α3 re{avawem sistema dve jedna~ine )2* i )3* sa dve nepoznate )U3!i U2*!dobija se: U2>91pD-!U3>81pD dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 19 9/28/!Toplotna provodnost materijala od kojeg je na~iwen ravan zid, mo`e da se izrazi u funkciji temperature zida u obliku:! λ = 1/5 + 7 ⋅ 21 −4 u -!!pri ~emu je toplotna provodnost, λ, izra`ena!v!X0)nL*a temperatura, u, u!pD/!Debqina zida je!δ>41!cm a temperature sa jedne i druge strane zida su!u2>231pD i!u3>41pD/!Pdrediti toplotni fluks (povr{insku gustinu toplotnog protoka) kroz zid i predstaviti grafi~ki raspored temperatura u zidu. 1. na~in: diferencijalna jedna~ina provo|ewa toplote kroz ravan zid pri λ>g)u*: r = −λ(u ) ⋅ δ eu ey u3 ∫( ∫ ( ) r ⋅ δ = −1/5 ⋅ (u 3 − u 2 ) − 7 ⋅ 21 −4 r ⋅ ey = − 1/5 + 7 ⋅ 21 −4 u ⋅ eu ⇒ 1 u2 ( ) − 1/5 ⋅ (41 − 231) − 4 ⋅ 21 − 1/5 ⋅ (u 3 − u 2 ) − 4 ⋅ 21 −4 u 33 − u 23 > δ 41 ⋅ 21 −3 X r>366! 3 n r= ) r ⋅ ey = − 1/5 + 7 ⋅ 21 −4 u ⋅ eu ⇒ −4 (41 3 u 33 − u 23 3 − 231 3 ) 2. na~in: Jedna~ina za toplotni fluks kroz ravan zid pri λ>g)u*; 2 r!>! − δ r!>! − U3 ∫ U2 2 λ)u* ⋅ eu = − δ U3 ∫ (1/5 + 1/117 ⋅ u ) ⋅ eu ⇒ U2 2 u3 − u3 1/5 ⋅ (u3 − u2 ) + 1/117 ⋅ 3 2 δ 3 231 3 − 41 3 2 >!366! X r=− 1/5 ⋅ (231 − 41) + 1/117 ⋅ 1/14 3 n3 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike e3 y 1. na~in: eu 3 eu r =− ey 1/5 + 7 ⋅ 21 −4 u e3 y =− eu 3 strana 20 >@ ⇒ ey 1/5 + 7 ⋅ 21 −4 u =− eu r 7 ⋅ 21 −4 =1 r Kako je drugi izvod funkcije y>g)u* negativan to zna~i da je y>g)u*!konkavna (ispup~ena na gore). δ>g)!u!*>@ 2. na~in: Do istog zakqu~ka se mo`e do}i posmatrawem funkcije δ>g)u*, kada koristimo 2. na~in za izra~unavawe toplotnog fluksa. δ!> − 2 u3 − u23 1/5 ⋅ (u − u2 ) + 1/117 ⋅ r 3 ∂δ 2 = − ⋅ [1/5 + 1/117 ⋅ u ] ∂u r 3 ∂ δ ∂u3 !=!1 ⇒ ⇒ ∂ 3δ ∂u 3 =− 2 ⋅ 1/117 r funkcija!δ!>!g)!u!*!je konkavna (ispup~ena na gore) u u2 isprekidana linija predstavqa temperaturni profil pri λ>dpotu puna linija predstavqa temperaturni profil pri λ≠dpotu, tj. pri! λ = 1/5 + 7 ⋅ 21 −4 u u3 δ y dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 21 9/29/!Cev od {amotne opeke!∅>4310391!nn!)λ>1/5,1/113/!u) oblo`ena je sa spoqa{we strane slojem izolacije!)δj>6!nn-!λj>1/16,1/1112/!u*-!gde je!u!temperatura zida u!pD-!b!λ!v!X0)n/L). Temperatura unutra{we povr{i cevi od {amotne opeke je!241pD-!a spoqa{we povr{i izolacionog materijala 41pD/!Odrediti topotni fluks (gustinu toplotnog protoka) po du`nom metru cevi. u4 u3 u2 3π r23!!>− e mo 3 e2 U3 ∫ (1/5 + 1/113 ⋅ u ) ⋅eu !>! mo e3 [1/5(u3 − u2) + 1/112⋅ (u3 − u2 )] 3π U2 3 3 e2 U4 ∫( ) [ ( )] [ ( )] 3π 3π 1/15 + 21 ⋅ 21−6 u ⋅eu !> 1/15 ⋅ (u 4 − u3 ) + 6 ⋅ 21−6 u34 − u33 e4 e4 mo mo U e3 3 e3 toplotni bilans spoqa{we povr{i {amotne opeke (unutra{we povr{i izolacije): r23!>!r34 r34!>− [ ( )] 3π 3π 1/5 ⋅ (u3 − u2) + 1/112⋅ u33 − u23 !>! 1/15 ⋅ (u 4 − u3 ) + 6 ⋅ 21−6 u34 − u33 e3 e4 mo mo e2 e3 4/856 ⋅ 21 −6 ⋅ u 33 + 2/876 ⋅ 21 −3 ⋅ u 3 − 3/397 >1 u3 = − 2/876 ⋅ 21 −3 ± (2/876 ⋅ 21 ) −3 3 − 5 ⋅ 4/856 ⋅ 21 −6 ⋅ (− 3/397) 3 ⋅ 4/856 ⋅ 21 −6 >216/9pD u3!>!216/9pD-!(pozitivno re{ewe) r24!>!r23!>!r34!>!− r24!>− [ [ ( 3π 1/5 ⋅ (u3 − u2) + 1/112⋅ u33 − u23 e3 mo e2 ( )] )] 3π X 1/5 ⋅ (216/9 − 241) + 1/112 ⋅ 216/9 3 − 241 3 !>!835! 1/43 n mo 1/39 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 22 9/2:/!Preko gorwe povr{i horizontalne ravne plo~e postavqena je toplotna izolacija!debqine!δ>39 nn-!toplotne provodqivosti!λ>1/4!,21−5!/!u!,!3/21−8/!u3!-!gde je!λ!)X0nL*!b!u!)pD*-!i emisivnosti hrapave povr{ine u pravcu normale!εo>1/:/!Na dodirnoj povr{i plo~e i izolacije je stalna temperatura!u2>511pD. Temperatura gorwe povr{i izolacije je tako|e stalna i iznosi!u3>211pD. Temperatura zidova velike prostorije u kojoj se nalazi izolovana plo~a iznosi!u5>31pD/!Koeficijent prelaza toplote sa gorwe povr{i izolacije na vazduh iznosi α>48/:!X0)n3L*/!Odrediti temperaturu vazduha u prostoriji )u4*/ u5 u4 ε3 α u3 u2 izolacija plo~a toplotni bilans gorwe povr{i izolacije: (rqspwp} fokf )23 = (rqsfmb{ )34 + (r{sb•fokf )35 5 − 2 δ u3 U U3 − 5 u − u 211 211 1/4 + 2⋅ 21− 5 ⋅ u + 3 ⋅ 21−8 ⋅ u3 ⋅ eu !>! 3 4 , 2 2 D35 α ∫( u2 5 ) ⇒ 5 5 U3 U u3 − 5 2 2 211 211 u4!>!u3! − − 1/4 + 2⋅ 21− 5 ⋅ u + 3 ⋅ 21−8 ⋅ u3 ⋅ eu − 2 α δ u2 D35 ∫( u4>u3!− [( ) ) ( 2 ⋅ rqspwp } fokb 23 − r{sb•fokb α )35 ] >///>211!− 482/: ⋅ [4743 − 711] >31pD dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 23 napomena: u3 (rqspwp} fokf )23 !>! − 2δ ∫ (1/4 + 2⋅ 21−5 ⋅ u + 3 ⋅ 21−8 ⋅ u3 )⋅ eu ! u2 3 3 4 4 X n3 (rqspwp} fokf )23 !>! − 2δ 1/4 ⋅ (u3 −u2) + 2⋅ 21−5 u3 3− u2 + 3 ⋅ 21−8 u3 4− u2 !>!4743! 5 5 5 5 U3 U 484 3:4 − 5 − (r{sb•fokf )35 > 211 2 211 > 211 2 211 >711! X3 n 6 D35 D35!>!Dd/!ε35!>!///>6/78!/1/993>6 X n3L 5 ε35!>!ε3!)!kfs!kf!B3!==!B5!* ε3!>!L/εo!>!///>!1/:91/:>!1/993 L!>!1/:9-!(hrapava povr{ izolacije) )9/31/* zadatak za ve`bawe: 9/31/!Izme|u homogenog i izotropnog izolacionog materijala debqine δj>51!nn!i cevi, spoqa{weg pre~nika e>91!nn, ostvaren je idealan dodir. Zavisnost toplotne provodqivosti materijala od temperature data je izrazom: 2 U λ = 1/59 + 1/27 ⋅ mo − 384 . Termoelementima, pri ustaqenim uslovima, izmerene su [X 0 (nL )] 31 [L ] slede}e temperature: − na spoqa{woj povr{i cevi U2!>!534!L U3!>!429!L − na spoqa{woj povr{i izolacionog materijala U4!>!384!L − za okolni fluid. Odrediti koeficijent prelaza toplote sa spoqa{we povr{i izolacionog materijala na okolni fluid. re{ewe: α!>!41/6! X n3L dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 24 9/32.!Tanka plo~a visine!i>1/3!n-!{irine b>1/6!n-!potopqena je, vertikalno, u veliki rezervoar sa vodom temperature ug!>!31pD. Odrediti snagu greja~a, ugra|enog u plo~u, potrebnu za odr`avawe temperature povr{i na!u{>!71pD/ ⋅ u − ug R= { ⋅ b ⋅ i ⋅ 3 !>!/// 2 α 1. korak: fizi~ki parametri za vodu na temperaturi!ug!>!31pD X n3 2 λg!>!6:/:!/21.3! -!βg!>!2/93!/21.5! -!νg!>!2/117!/21.7! t L nL 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>!i!>!1/3!n 3. korak: potrebni kriterijumi sli~nosti Hsg!>! β g ⋅ h ⋅ mL4 ⋅ )U{ − Ug * υ 3g Qsg!>!8/13 !>! 2/93 ⋅ 21 −5 ⋅ :/92 ⋅ 1/3 4 ⋅ )71 − 31* (2/117 ⋅ 21 ) −7 3 >6/76!/219 Qs{!>!3/:9 1/36 Qsg 4. korak: konstante u kriterijalnoj jedna~ini Qs{ Hsg!/Qsg!>!4/:8!/21: turbulentno strujawe fluida u grani~nom sloju Ovg!>!D!)!Hsg!/Qsg!*o! D>!1/26 5. korak: o>1/44 izra~unavawe Nuseltovog broja 8/13 Ovg!>!1/26!)!4/:8!/21:!*1/44! 3/:9 1/36 >384/46 6. korak: izra~unavawe koeficijenta prelaza toplote!)α* λ 6:/: ⋅ 21 −3 X α!>!Ovg! ⋅ g >!384/46 ⋅ >929/8! 1/3 mL n3L ⋅ R= 71 − 31 ⋅ 1/6 ⋅ 1/3 ⋅ 3 >765:/7!X 2 929/8 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 25 9/33/!Odrediti povr{insku gustinu toplotnog protoka (toplotni fluks) konvekcijom, sa spoqa{we povr{i vertikalnog zida neke pe}i na okolni prividno miran vazduh stalne temperature!ug>31pD/ Temperatura spoqa{we povr{ine pe}i je!u{>!91pD/!Smatrati!da je strujawe vazduha u grani~nom sloju turbulentno po celoj visini zida. U − Ug r!>! { >/// 2 α α!>!Ovg! Qs λg >!D!/!)!Hsg!/!Qsg!*o!/ G mL Qs{ 1/36 λg >/// mL / fizi~ki parametri za vazduh na temperaturi tf = 20oC λg!>!3/6:!/21.3! n3 X !!!!! νg!>!26/17!/21.7! nL t βg!>! 2 2 2 > >!4/52!/21.4! UG 3:4 L potrebni kritrijumi sli~nosti: Qsg!>!1/814 Qs{!>!1/7:3 konstante u kriterijalnoj jedna~ina za prirodnu konvekciju D>1/26 o>!1/44!! (turbulentno strujawe u grani~nom sloju) β g ⋅ h ⋅ ml4 ⋅ (u { − u g ) ⋅ Qsg 3 υg 1/44 α!>!1/26/ β g ⋅ h ⋅ (u { − u g ) ⋅ Qsg 3 υg 1/44 α!>!1/26/ 4/52⋅ 21 α!>!1/26/ r!>! −4 ⋅ :/92⋅ (91 − 31) (26/17 ⋅21 ) −7 3 Qsg Qs { /! Qsg Qs { /! ⋅ 1/814 1/36 / λg mL ⇒ 1/36 1/44 /λ g> / 1/814 1/7:3 1/36 ⋅ 3/6: ⋅ 21−3 !>7/74! X n3 L X 91 − 31 >4:8/9! 2 n3 7/74 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 26 9/34/!Ukupan toplotni protok koji odaje horizontalna ~eli~na cev!)ε>1/86) spoqa{weg pre~nika!et>91 nn!iznosi 611!X. Ako sredwa temperatura spoqa{we povr{i cevi iznosi!U2>91pD-!temperatura mirnog okolnog vazduha!U3>31pD!i temperatura unutra{we povr{i zidova velike prostorije u kojoj se cev nalazi U4>26pD!-!odrediti: a) du`inu cevi b) ukupan toplotni protok koji odaje ista ova cev kada bi je postavili vertikalno (pretpostaviti da je strujawe u grani~nom sloju turbulentno po celoj visini cevi) a) 5 5 U U2 − 4 ⋅ ⋅ ⋅ 211 U − U3 211 R >! R qsfmb{ ,! R {sb•fokf > 2 ⋅ M !,!! ⋅M 2 2 23 23 ∑ e t πα e t π ⋅ D24 M!>! ⋅ R Σ e t πα ⋅ (U2 − U3 ) + D24 U 5 U 5 ⋅ 2 − 4 211 211 ε24!>!ε2!>!1/86!)B2!==!B4* = /// D24!>!Dd!ε24!>!6/78!/1/86>!5/37! X n3 L 5 fizi~ki parametri za vazduh na temperaturi!ug!>!31pD 2 n3 2 2 X > λg!>!3/6:!/21.3! !!!!!!βg!>! >!4/52!/21.4! νg!>!26/17!/21.7! nL t UG 3:4 L 1. korak: 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>!et!>!91!nn 3. korak: Hsg!>! potrebni kriterijumi sli~nosti β g ⋅ h ⋅ mL4 ⋅ )U{ − Ug * υ 3g Qsg!>1/814 4. korak: 4/52 ⋅ 21 −4 ⋅ :/92 ⋅ 1/19 4 ⋅ )91 − 31* (26/17 ⋅ 21 ) −7 3 >!5/65!/217 Qs{!>!1/7:3 Qs Ovg!>!D!)!Hsg!/Qsg!*o! g Qs{ laminarno strujawe fluida u grani~nom sloju konstante u kriterijalnoj jedna~ini Hsg!/Qsg!>!4/2:!/217 D>!1/6 !> 1/36 o>1/36 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike 5. korak: strana 27 izra~unavawe Nuseltovog broja 1/814 Ovg!>!1/6!)!4/2:!/217!*1/36! 1/7:3 1/36 >32/32 6. korak: izra~unavawe koeficijenta prelaza toplote!)α* λ X 3/6: ⋅ 21 −3 α!>!Ovg! g >32/32! >!7/98! . 4 mL 91 ⋅ 21 n3L M!>! 611 464 5 399 5 1/19π7/98 ⋅ (91 − 31) + 5/37 ⋅ − 211 211 >!3/66!n b) 5 5 U U2 − 4 ⋅ 211 ⋅ M >///>591!X R ( > U2 − U3 ⋅ M !,!! 211 2 2 ∑ eT π ⋅ α ( eT π ⋅ D24 α′>@ 2. korak: ml( >M!>!3/66!n 3. korak: Hsg′!>! 4.korak: Hsg′!/!Qsg!>!2/14!/2122 4/52 ⋅ 21 −4 ⋅ :/92 ⋅ 3/66 4 ⋅ )91 − 31* (3/6: ⋅ 21 ) −3 3 ⇒ >!2/58!/2122 D>!1/26 o>1/44 )turbulentno strujawe fluida u grani~nom sloju du` cele visine cevi) 5. korak: 1/814 Ovg′!>!1/26!)!2/14!/2122!*1/44! 1/7:3 6. korak: α′!>!75:/32! 1/36 >75:/32 3/6: ⋅ 21 −3 X >!7/6:! 3/66 n3L 5 5 464 399 − 211 R ( > 91 − 31 ⋅ 3/66 !,!! 211 ⋅ 3/66 >59:!X 2 2 ∑ 1/19π ⋅ 7/6: 1/19π ⋅ 5/37 ⋅ dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 28 9/35/!Vertikalna cev, visine!M>1/9!n, nalazi se u prividno mirnom vazduhu stalne temperature Ug>31pD!j!pritiska!q>2!cbs/!Temperatura na grani~noj povr{i cevi je stalna i iznosi U{>91pD/ Odrediti toplotni protok sa cevi na okolni vazduh u laminarnom delu strujawa, turbulentnom delu strujawa i du` cele cevi. fizi~ki parametri za vazduh na temperaturi!ug!>!31pD 2 X n3 2 2 >!4/52!/21−4! !!!!!!βg!>! νg!>!26/17!/21−7! > λg!>!3/6:!/21−3! nL t UG 3:4 L 1. korak: 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>!M!>!1/9!n 3. korak: potrebni kriterijumi sli~nosti β ⋅ h ⋅ ml4 ⋅ )U{ − Ug * 4/52 ⋅ 21 −4 ⋅ :/92 ⋅ 1/9 4 ⋅ )91 − 31* >!5/64!/21: !> Hsg!>! g −7 3 υ 3g 26/17 ⋅ 21 Qsg!>1/814 Qs{!>!1/7:3 ( 4. korak: ) Qs Ovg!>!D!)!Hsg!/Qsg!*o! g Qs{ )kriti~na vrednost proizvoda!Hsg!/Qsg!* konstante u kriterijalnoj jedna~ini (Hsg ⋅ Qsg )ls >2/21: Hsg!/Qsg!>!4/2:!/21:!?! (Hsg ⋅ Qsg )ls 1/36 prirodno strujawe fluida u grani~nom sloju do visine M>mls je laminarno a nakon toga turbulentno D>1/87-! o>1/36 mls 5. korak: 2 4 ⋅ υ 3g ) izra~unavawe Nuseltovog broja za laminarnu oblast strujawa (Ov g )mbn >!1/87!)!2!/21:!*1/36! 1/814 1/7:3 6. korak: ( 2 3 4 2 ⋅ 21 2 ⋅ 21 : ⋅ 26/17 ⋅ 21 −7 >1/65!n > = 4/52 ⋅ 21 −4 ⋅ :/92 ⋅ )91 − 31* ⋅ 1/814 β g ⋅ h ⋅ )U{ − Ug * ⋅ Qsg : 1/36 >246/26 izra~unavawe koeficijenta prelaza toplote!)αmbn) u laminarnom delu strujawa. αmbn!>! (Ov g )mbn ⋅ λg 3/6: ⋅ 21 −3 X >!135.15 ⋅ >7/59! 1/65 mls n3L dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike ⋅ R mbn = strana 29 91 − 31 ⋅ 1/65 >76/5!X 2 1/2 ⋅ π ⋅ 7/5 oblast turbulentnog strujawa u grani~nom sloju: 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>!M!−!mls!>!1/:!−!1/65!>1/47!n 3. korak: potrebni kriterijumi sli~nosti (Hsg ⋅ Qsg )M >4/2:!/21:- (Hsg ⋅ Qsg )ls >2!/21: 4. korak: konstante u kriterijalnoj jedna~ini Hsg!/Qsg!>!4/2:!/21:!?! (Hsg ⋅ Qsg )ls 5. korak: ⇒ Qsg Qs{ 1/36 Ovg!>!D!)!Hsg!/Qsg!*o! D>1/26-! o>1/44 izra~unavawe Nuseltovog broja za turbulentnu oblast strujawa (Ov g )uvs >! D ⋅ [(Hsg ⋅ Qsg )oM − (Hsg ⋅ Qsg )omls ]⋅ Qsg Qs{ (Ov g )uvs > 1/26 ⋅ (4/2: ⋅ 21 : ) 1/44 6. korak: ( − 2 ⋅ 21 : ) 1/36 1/814 ⋅ 1/7:3 1/44 1/36 >76/3: izra~unavawe koeficijenta prelaza toplote!)αmbn) u turbulentnom delu strujawa. αuvs!>! (Ov g )uvs ⋅ ⋅ R uvs = λg 3/6: ⋅ 21 −3 X >!76/3: ⋅ >5/81! ml 1/47 n3L 91 − 31 ⋅ 1/47 >42/:!X 2 1/2 ⋅ π ⋅ 5/8 ⋅ ⋅ ⋅ R = R mbn !,! R uvs >76/5!,!42/:!>:8/4!X Σ dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike zadaci za ve`bawe: strana 30 )9/36/!−!9/37/* 9/36/!Toplotni gubici prostorije, u kojoj je potrebno odr`avati temperaturu od!29pD-!iznose!2!lX/ Grejawe vazduha u prostoriji se ostvaruje grejnim telima (konvektorima). Ova tela imaju oblik kvadra!)2111!y!291!y!711!nn*-!i toplotno su izolovana na gorwoj i dowoj osnovi ({rafirani deo na slici). Temperatura na spoqa{wim povr{ima konvektora je!55pD/!Odrediti potreban broj konvektora za nadokna|ivawe toplotnih gubitaka prostorije. Zanemariti razmenu toplote zra~ewem. re{ewe: o>7 291!nn !711!nn 2111!nn ⋅ 9/37/!U horizontalnoj cevi spoqa{weg pre~nika e>231!nn!vr{i se potpuna kondenzacija n >36!lh0i suvozasi}ene vodene pare pritiska q>211!lQb. Cev se nalazi u velikoj prostoriji i okru`ena je mirnim okolnim vazduhom stalne temperature 31pD. Sredwa temperatura na povr{i zidova prostorije iznosi 28pD, a sredwa temperatura na spoqa{woj povr{i cevi :8pD. Koeficijent emisije zra~ewa sa cevi iznosi ε>1/:. Odrediti du`inu cevi. re{ewe: M>47/23!n dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 31 9/38/!Kroz cev unutra{weg pre~nika!e>91!nn!struji transformatorsko uqe sredwe temperature ug>61pD-!sredwom brzinom!x>1/3!n0t. Temperatura unutra{we povr{i zidova cevi je!u{>36pD/!Ukupno ⋅ razmewen toplotni protok izme|u uqa i unutra{we povr{i cevi iznosi! R >896!X/!Odrediti du`inu cevi. M ug ug u{ ⋅ ⋅ u − u{ R= g ⋅M 2 eπ ⋅ α R M!>! = /// eπ ⋅ α ⋅ (u g − u { ) ⇒ fizi~ki parametri za transformatorsko uqe temperaturi ug!>!61pD 2 lh X -! βg>7:/6/21−6! λg>1/233! -! ρg>956! 4 nL L n lK µg>!:/:!/21.4! Qb ⋅ t -! dqg>3/154! lhL 1. korak: 2. korak: karakteristi~na du`ina ~vrste povr{i e3 π B ml!>! 5 ⋅ = 5 ⋅ 5 >e>!91!nn P eπ 3. korak: potrebni kriterijumi sli~nosti Sfg!>! Hsg> dqg ⋅ µ g λg ρ g ⋅ x ⋅ mL 956 ⋅ 1/3 ⋅ 1/19 > >2476/7 µg :/: ⋅ 21 −4 β g ⋅ h ⋅ mL4 ⋅ )Ug − U{ * ⋅ ρ 3g µ 3g 4 > 3/154 ⋅ 21 ⋅ :/: ⋅ 21 1/233 d q{ ⋅ µ { > )Sf=3411-!laminarno strujawe* 7:/6 ⋅ 21 −6 ⋅ :/92 ⋅ 1/19 4 ⋅ )61 − 36* ⋅ 956 3 (:/: ⋅ 21 ) −4 3 >7/47!/216 Qsg!> −4 >276/9 2/:29 ⋅ 21 4 ⋅ 35 ⋅ 21 −4 >!485/3 1/234 λ{ fizi~ki parametri za transformatorsko uqe temperaturi u{!>!36pD lK X λ{>1/234! dq{>2/:29! -! µ{>!35!/21.4! Qb ⋅ t -! lhL nL Qs{!>! >///> dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike 4. korak: o q konstante u kriterijalnoj jedna~ini:!!!!!!Ovg> D ⋅ Sfn g ⋅ Qsg ⋅ Hsg ⋅ ε U Qs n>1/44-!!!o>1/54-!!!q>1/2-!!!εU> g Qs{ M pretpostavimo: > 61 ml 5. korak: strana 32 1/2: 276/9 > 485/3 ⇒ εM>2 >1/97-!!!D> 1/26 ⋅ ε M ⇒! D>1/26 izra~unavawe Nuseltovog broja ( Ov g = 1/26 ⋅ (2476/7 )1/44 ⋅ (276/9 )1/54 ⋅ 7/47 ⋅ 21 6 6. korak: 1/2: ) 1/2 ⋅ 1/97 1/36 >56/5 izra~unavawe koeficijenta prelaza toplote!)α* α!>!Ovg! ⋅ λg X 1/233 >56/5! >!7:/3! . 4 mL 91 ⋅ 21 n3L ⋅ R 896 M!>! > >2/9!n eπ ⋅ α ⋅ (u g − u { ) 1/19π ⋅ 7:/3 ⋅ (61 − 36 ) provera pretpostavke: 2/9 M > >33/6!=!61! mL 1/19 pretpostavimo: M( >33/6 ml M( = M ⋅ εM ε M( > 2/9 ⋅ ⇒ pretpostavka nije ta~na ε M( >2/22 2 >2/73!n 2/22 provera pretpostavke: M( 2/73 > >31/36!≠!33/6! 1/19 ml pretpostavimo: M( ( >31/36 ml M(( = M ⋅ εM ε M(( > 2/9 ⋅ ⇒ pretpostavka nije ta~na ε M(( >2/24 2 >2/6:!n 2/24 provera pretpostavke: M( ( 2/6: > >2:/99!≈!31/36! ml 1/19 pretpostavka ta~na !! stvarna du`ina cevi iznosi M>2/6:!n/ dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 33 9/39/ Kroz prav kanal, prstenastog popre~nog preseka dimenzija ∅2>910:1!nn, ∅3>3110321!nn, proti~e voda sredwom brzinom od x>2/3!n0t. Ulazna temperatura vode je Ux2>91pD, a sredwa temperatura zidova kanala iznosi U{>31pD. Odrediti du`inu cevi na kojoj }e temperatura vode pasti na Ux3>71pD. Zanemariti prelaz toplote sa vode na spoqa{wu cev. Ux2 Ux3 U{ M prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu: ⋅ ⋅ ⋅ ⇒ R 23!>!∆ I 23!,! X U23 lK lh lK ix3!>!362/2! lh ⋅ ⋅ R 23!>! n x /!)!ix3!−!ix2!*!>!/// )q>2!cbs-!u>91pD* !ix2!>!445/:! )q>2!cbs-!u>71pD* ⋅ ⋅ 1/3 3 ⋅ π 1/1: 3 ⋅ π e3 ⋅ π e33 ⋅ π >!3:/5!lh0t !> :88/9 ⋅ 2/3 ⋅ nx = ρ x ⋅ x ⋅ 4 − − 5 5 5 5 lh napomena:! ρx>:88/9! 4 -!je gustina vode odre|ena za sredwu n U + Ux 3 91 + 71 temperaturu vode u cevi;! Uxts = x2 >81pD = 3 3 ⋅ R 23 = 3:/5 ⋅ (362/2 − 445/: ) >−3574/8!lX ∆Uts R= ⋅M 2 e3 π ⋅ α ⋅ ⇒ ⋅ ⋅ R !>! R23 >3574/8!lX ⋅ ⇒ R M!>! = /// e3 π ⋅ α ⋅ ∆Uts dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 34 U ∆Unby!>!91!−!31!>71pD ∆Unjo!>!71!−!31!>51pD 91pD wpeb 71pD ∆Uts!>! 71 − 51 = 5:/4pD 71 mo 51 dfw 31pD 31pD M 1. korak: fizi~ki parametri za vodu odre|eni za sredwu temperaturu vode u U + Ux 3 91 + 71 = >81pD cevi: Uxts = x2 3 3 n3 X λg>77/9!/21−3!! ! ! υg>1/526/21−7! t nL 2. korak: karakteristi~na du`ina ~vrste povr{i e34 ⋅ π e33 ⋅ π − B 5 = e − e = 311 − :1 >221!nn ml!>! 5 ⋅ = 5 ⋅ 5 4 3 P e 4 ⋅ π − e3 ⋅ π 3. korak: potrebni kriterijumi sli~nosti Qsg!> (Qs )Ug =81p D >3/66Sfg!>! 4. korak: Qs{!> (Qs )U{ =31p D >8/13 x ⋅ mL 2/3 ⋅ 1/22 !>!4/29!/216! (turbulentno strujawe) = νg 1/526 ⋅ 21 −7 konstante u kriterijalnoj jedna~ini 1/36 1/36 Qs 3/66 > >1/89-!!!!D>1/132!/!εM n>1/9-!!!o>1/54-!!!q>1-!!!εU!>! g Qs 8/13 { M D>1/132 > 61 ⇒ εM>2 ⇒! pretpostavimo: ml 5. korak: izra~unavawe Nuseltovog broja Ovg!>!1/132!/!)!4/29!/216!*1/9!/!)!3/66!*1/54!/!1/89!>!726/5 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike 6. korak: strana 35 izra~unavawe koeficijenta prelaza toplote!)α* λg X 77/9 ⋅ 21 .3 >!4848! 3 > 726/5 ⋅ .4 mL 221 ⋅ 21 nL 3574/8 M!>! >!58/4!n :1 ⋅ 21 −4 π ⋅ 4/848 ⋅ 5:/4 α!> Ov g ⋅ provera pretpostavke: 58/4 M >541!?!61! > mL 1/22 pretpostavka ta~na stvarna du`ina cevi iznosi M>58/4!n/ 9/3:/!Predajnik toplote se sastoji od cilindri~nog, toplotno izolovanog omota~a, unutra{weg pre~nika!E>1/5!n!i snopa od!o>66!pravih cevi, spoqa{weg pre~nika!e>41!nn/!Podu`no, kroz prostor izme|u omota~a i cevi, struji suv vazduh i pritom se izobarno, pri!q>6!NQb!-!hladi od temperature!Ug2>447!L!ep!Ug3>424!L/ Maseni protok vazduha iznosi n>1/5!lh0t/!Uemperatura na spoqa{woj povr{i cevi pre~nika e je stalna i iznosi!U{>3:4!L. Odrediti du`inu predajnika toplote. E e M ⋅ ∆Uts R= ⋅o⋅M 2 e⋅ π⋅α ⋅ R M= >!/// e ⋅ π ⋅ α ⋅ ∆Uts ⋅ o ⇒ prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu: ⋅ ⋅ ⋅ R 23!>!∆ I 23!,! X U23 ! ⇒ ⋅ ⋅ R 23!>! n w ⋅ d qg ⋅ (Ug 3 − Ug2 ) ⋅ R 23!>! 1/5 ⋅ 2/196 ⋅ (424 − 447) >−:/:9!lX ⇒ ⋅ ⋅ R !>! R23 >:/:9!lX U ∆Unby!>!447!−!3:4!>!54!L 447!L ∆Unjo!>!424!−!3:4!>!31!L ∆Uts = 54 − 31 !>!41!L 54 mo 31 wb{evi 424!L 3:4!L dfw 3:4!L M dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 36 fizi~ki parametri za vazduh (q>61!cbs- Ugts = 1. korak λg>4/14/21−3! X nL ρg>64/84! lh 4 n Ug2 + Ug 3 >435/6!L* 3 µg!>31/74/21−7!Qb/t - 2. korak karakteristi~na du`ina ~vrste povr{i E3 π e3 π −o⋅ 3 3 3 3 B 5 > E − o ⋅ e = 1/5 − 66 ⋅ 1/14 >1/165!n ml = 5 ⋅ = 5 ⋅ 5 E +o⋅e 1/5 + 66 ⋅ 1/14 P Eπ + o ⋅ e π 3. korak potrebni kriterijumi sli~nosti Qsg!> (Qs )Ug =435/6L -q=61 cbs >1/849Sfg!>! ρ g ⋅ x ⋅ ml 64/84 ⋅ 1/197 ⋅ 1/165 >!///>! >2/32/215!!!!(turbulentno strujawe) µg 31/74 ⋅ 21 −7 ⋅ E3 π e 3 π ng = ρ g ⋅ x ⋅ o⋅ − 5 5 ⋅ x= Qs{!> (Qs )U{ =3:4L -q=61 cbs >1/887 ⇒ 1/5 1/5 π 1/14 π 64/84 ⋅ − 66 ⋅ 5 5 3 3 x= >1/197! ng E3 π e 3 π ρg ⋅ −o⋅ 5 5 n t dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike 4. korak: strana 37 konstante u kriterijalnoj jedna~ini Qs n>1/9-!!!o>1/54-!!!q>1-!!!εU!>! G Qs{ M pretpostavimo: > 61 ml 5. korak: 1/36 1/849 > 1/887 ⇒ 1/36 εM>2 ≈2-!!!!D>1/132!/!εM ⇒! D>1/132 izra~unavawe Nuseltovog broja ( Ov g = 1/132 ⋅ 2/32 ⋅ 21 5 ) 1/9 ⋅ (1/849)1/54 >45 6. korak: izra~unavawe koeficijenta prelaza toplote!)α* λ X 4/14 ⋅ 21 −3 >2:/2!! 3 α = Ov g ⋅ g !>! 45 ⋅ 1/165 ml nL M= R :/:9 >4/47!n >! M = e ⋅ π ⋅ α ⋅ ∆Uts ⋅ o 1/14 ⋅ π ⋅ 2:/2 ⋅ 21 −4 ⋅ 41 ⋅ 66 provera pretpostavke: 4/47 M >73!?!61! > mL 1/165 pretpostavka ta~na !! stvarna du`ina cevi iznosi M>4/47!n/ 9/41/ Kroz prav kanal pravougaonog popre~nog preseka proti~e voda brzinom x>2n0t/!Dimenzije unutra{wih stranica!pravougaonika iznose b>21!nn!i!c>31!nn/!Temperatura vode na ulazu u kanal je ux2>21pD-!a na izlazu!ux3>81pD/!Temperatura zidova kanala je!u{>211pD>dpotu/!Odrediti: a) toplotni protok sa zidova kanala na vodu )lX* b) du`inu kanala c M α U{ voda b Ux>g)!M!* voda dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 38 b* prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu: ⋅ ⋅ ⋅ ⇒ R 23!>!∆ I 23!,! X U23 lK lh lK ix3!>3:4! lh ⋅ ⋅ R 23!>! n x /!)!ix3!−!ix2!*!>!/// )q>2!cbs-!u>21pD* !ix2!>53! )q>2!cbs-!u>81pD* ⋅ ⋅ n x = ρ x ⋅ x ⋅ b ⋅ c !> ::3/3 ⋅ 2 ⋅ 21 ⋅ 21 −4 ⋅ 31 ⋅ 21 −4 >1/3! napomena:! ρx>::3/3! lh n4 lh t -!je gustina vode odre|ena za sredwu temperaturu vode u cevi;! Uxts = ⋅ Ux2 + Ux3 21 + 81 = >51pD 3 3 ⋅ ⋅ R 23 = 1/3 ⋅ (3:4 − 53) >61/3!lX ⇒ ∆U R >! ts ⋅ (3b + 3c) ⋅ M 2 α R M!>! >!/// α ⋅ ∆Uts ⋅ 3 ⋅ (b + c) R !>! R23 >61/3!lX b) ⋅ ⋅ ⇒ U ∆Unby!>!:1pD ∆Unjo!>!41pD ∆Uts!>! :1 − 41 = 65/7pD :1 mo 41 211pD {je 211pD 81pD wpeb 21pD M 1. korak: fizi~ki parametri za vodu odre|eni za sredwu temperaturu vode u U + Ux3 21 + 81 = >51pD cevi: Uxts = x2 3 3 n3 X lh υg>1/76:/21−7! λg>74/6!/21−3! !-! ρg!>::3/3! t nL n4 2. korak: ml!>! 5 ⋅ 3. korak: karakteristi~na du`ina ~vrste povr{i 1/12 ⋅ 1/13 B b ⋅c = 5⋅ !> 5 ⋅ >24/44!nn P 3 ⋅ (b + c) 3 ⋅ (1/12 + 1/13) potrebni kriterijumi sli~nosti x ⋅ mL 2 ⋅ 24/24 ⋅ 21 −4 > >3!/215 (turbulentno strujawe) νg 1/76: ⋅ 21 −7 Qs{!> (Qs )U{ =211p D >2/86 Qsg!> (Qs )Ug =51p D >5/42Sfg!>! 4. korak: konstante u kriterijalnoj jedna~ini: dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike Qs n>1/9-!!!o>1/54-!!!q>1-!!!εU!> G Qs{ M > 61 pretpostavimo: ml 5. korak: ( 1/36 5/42 > 2/86 ⇒ 1/36 >2/36-!!!!D>1/132!/!εM εM>2 ⇒! D>1/132 ) 1/9 ⋅ (5/42)1/54 ⋅ 2/36 >246/9 izra~unavawe koeficijenta prelaza toplote!)α* α!>!Ovg! ⋅ M!>! izra~unavawe Nuseltovog broja Ov g = 1/132 ⋅ 3 ⋅ 21 5 6. korak: strana 39 λg 74/6 ⋅ 21 .3 X >246/9! ⋅ >!757:/2! . 4 mL 24/44 ⋅ 21 n3L 61/3 757:/2 ⋅ 21 −4 ⋅ 65/7 ⋅ 3 ⋅ (1/12 + 1/13) provera pretpostavke: >!3/48!n 3/48 M >288/9?!61! pretpostavka ta~na !! > mL 24/44 ⋅ 21 −4 stvarna du`ina kanala iznosi M>3/48!n/ dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 40 9/42/ Dve cevi spoqa{wih pre~nika!e>1/229!n-!od kojih je jedna od wih toplotno izolovana nalaze se u toplotno izolovanom kanalu kvadratnog popre~nog preseka, unutra{we stranice!b>1/4!m (slika). Kroz slobodan prostor, pri stalnom pritisku!q>212/436!lQb-!proti~e voda, sredwom brzinom!x>1/3 n0t/!Temperatura vode na ulazu u kanal je!Ug2>3::!L, a iz kanala izlazi voda sredwne temperature Ug3>418!L/ Temperatura povr{i neizolovane cevi je stalna i iznosi U{>474!L/!Odrediti toplotni protok koji razmeni voda ca neizolovanom cevi kao i du`inu kanala, α e b e voda prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu: ⋅ ⋅ ⋅ R 23!>!∆ I 23!,! X U23 lK lh lK !ix3!>!253/5! lh !ix2!>!21:/1 ⇒ ⋅ ⋅ R 23!>! n x /!)!ix3!−!ix2!*!>!/// )q>2!cbs-!u>37pD* )q>2!cbs-!u>45pD* ⋅ ⋅ lh e 3 π 1/229 3 π n x = ρ x ⋅ x ⋅ b3 − 3 ⋅ !> ::6/8 ⋅ 1/3 ⋅ 1/4 3 − 3 ⋅ >24/68 5 5 t lh napomena:! ρx>::6/8! 4 -!je gustina vode odre|ena za sredwu n U + Ux3 37 + 45 temperaturu vode u cevi;! Uxts = x2 = >41pD 3 3 ⋅ R 23 = 24/68 ⋅ (253/5 − 21:/1) >564/3!lX ⇒ ⋅ ⋅ R !>! R23 >564/3!lX dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike ∆Uts R= ⋅M 2 eπ ⋅ α ⋅ strana 41 ⋅ ⇒ R !>!/// M!>! eπ ⋅ α ⋅ ∆Uts U ∆Unby!>474!−!3::!>75pD ∆Unjo!>474!−!418!>!67pD cev 474!L 75 − 67 = 6:/:pD ∆Uts!> 75 mo 67 474!L 418!L voda 3::!L M 1. korak: fizi~ki parametri za vodu odre|eni za sredwu temperaturu vode u U + Ux3 37 + 45 = >41pD cevi: Uxts = x2 3 3 n3 X lh υg>1/916/21−7! λg>72/9!/21−3! !-! ρg!>::6/8! t nL n4 2. korak: karakteristi~na du`ina ~vrste povr{i B 1/179 >1/25!n ml!>! 5 ⋅ >///> 5 ⋅ P 2/:52 e3π 1/229 3 π >1/179!n3 !> 1/4 3 − 3 ⋅ 5 5 P!>! 5 ⋅ b + 3 ⋅ eπ !>! 5 ⋅ 1/4 + 3 ⋅ 1/229 ⋅ π >2/:52!n B = b3 − 3 ⋅ 3. korak: potrebni kriterijumi sli~nosti x ⋅ mL 1/3 ⋅ 1/25 > >4/59/215 (turbulentno strujawe) νg 1/916 ⋅ 21 −7 Qs{!> (Qs )U{ =:1p D >2/:6 Qsg!> (Qs )Ug =41p D >6/53Sfg!>! 4. korak: konstante u kriterijalnoj jedna~ini: Qs n>1/9-!!!o>1/54-!!!q>1-!!!εU!> G Qs{ M > 61 pretpostavimo: ml 1/36 6/53 > 2/:6 ⇒ 1/36 >2/3:-!!!!D>1/132!/!εM εM>2 ⇒! D>1/132 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike 5. korak: izra~unavawe Nuseltovog broja ( Ov g = 1/132 ⋅ 4/59 ⋅ 21 5 6. korak: strana 42 ) 1/9 ⋅ (6/53)1/54 ⋅ 2/3: >351/9 izra~unavawe koeficijenta prelaza toplote!)α* α!>!Ovg! ⋅ λg 72/9 ⋅ 21 .3 X >351/9! ⋅ >!2174! mL 1/25 n3L ⋅ R 564/3 M!> > >!2:/3!n eπ ⋅ α ⋅ ∆Uts 1/229 ⋅ π ⋅ 2174 ⋅ 21 −4 ⋅ 6:/: provera pretpostavke: M 2:/3 >248/2?!61! > mL 1/25 pretpostavka ta~na !! stvarna du`ina cevi iznosi M>2:/3!n/ 9/43/!U tolplotno izolovanom kanalu kvadratnog popre~og preseka stranice!b>1/6!n!postavqena je cev spoqa{weg pre~nika!e>1/3!n/!Kroz kanal struji suv vazduh temperature!ug>41pD-!brzinom!x>9 n0t/!Temperatura zidova kanala iznosi U3>321pD-!a temperatura spoqa{we povr{i cev!U2?U3>@/ Koeficijent emisije zra~ewa cevi iznosi!ε2>1/:6-!a zidova kanala!ε3>1/9/!Smatraju}i da koeficijenti prelaza toplote )α*!sa obe povr{i (sa cevi na vazduh i sa kanala na vazduh) imaju istu vrednost, odrediti: b* temperaturu spoqa{we povr{i cevi b) ukupan toplotni fluks koji odaje spoqa{wa povr{ cevi Pri odre|ivawu Nuseltovog broja smatrati da εU!i!εM!iznose!εU>εM>2 α ε2 ε3 α U3 Ug U2 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 43 a) ⋅ ⋅ toplotni bilans unutra{wih povr{i zidova kanala: R {sb•okf = R qsfmb{ 23 3g 5 5 U2 U − 3 U − Ug 211 211 ⋅M = 3 ⋅b⋅M ⋅ 5 2 2 α eπ ⋅ D23 ⇒ 5 5b ⋅ α U U2 = 211 ⋅ 5 3 + (U3 − Ug ) ⋅ >!/// eπ ⋅ D23 211 D23!>!Dd!ε23!>//!!/!>!6/78/!1/995!>!6! ε23!>! X n3L 5 2 2 2 >!1/995 > >! 2 1/3π 2 2 B2 2 2 eπ ⋅ M 2 + 2 − + − 2 + − 2 1/:6 5 ⋅ 1/6 1/9 ε2 B3 ε3 ε 2 5b ⋅ M ε 3 fizi~ki parametri za vazduh na temperaturi!ug!>41pD lh X νg!>!27!/21−7! Qb ⋅ t λg!>!3/78!/21−3!! -! !ρg!>!::3/3! 4 nL n 1. korak: 2. korak: karakteristi~na du`ina ~vrste povr{i 1/3 3 π e3π 1/6 3 − b3 − B 5 >1/444!n 5 !> 5 ⋅ ml!>! 5 ⋅ = 5 ⋅ 5 ⋅ 1/6 + 1/3π P 5 ⋅ b + eπ 3. korak: potrebni kriterijumi sli~nosti x ⋅ mL 9 ⋅ 1/444 >2/77!/216 > νg 27 ⋅ 21 −7 Qsg!> (Qs )Ug =41p D >1/812 Sfg!>! 4. korak: (turbulentno strujawe) konstante u kriterijalnoj jedna~ini: n>1/9-!!!o>1/54-!!!q>1-!!!εU!>2-!!!!D>1/132!/!εM>1/132 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike 5. korak: strana 44 izra~unavawe Nuseltovog broja ( Ov g = 1/132 ⋅ 2/77 ⋅ 21 6 6. korak: ) 1/9 ⋅ (1/812)1/54 >381/5 izra~unavawe koeficijenta prelaza toplote!)α* α!>Ovg! ⋅ λg 3/78 ⋅ 21 .3 X >32/8! >381/5! ⋅ 1/444 mL n3L 5 5 ⋅ 1/6 ⋅ 32/8 594 U2 = 211 ⋅ 5 >853!L + (321 − 41) ⋅ 211 1/3 ⋅ π ⋅ 6 b) 5 ( r Σ = r {sb•okf 5 U2 U − 3 U − Ug 211 211 + 2 > 2g 2 2 eπ ⋅ α eπ ⋅ D23 )23 + (rqsfmb{ ) 5 5 853 594 − 211 X 853 − 414 211 + >8924/15!,!6:96/66!>!248:9/7! rΣ = 2 2 n 1/3π ⋅ 32/8 1/3π ⋅ 6 9/44/!Horizontalna cev, spoqa{weg pre~nika!e>41!nn!i du`ine!M>6!n, se hladi popre~nom strujom vode sredwe temperature!ug>21pD/!Voda struji brzinom!x>3!n0t-!pod napadnim uglom od!β>71p/ Temperatura spoqa{we povr{i cevi iznosi!u{>91pD/!Odrediti toplotni protok konvekcijom sa cevi na vodu. u{ voda ug α β dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike ⋅ R= strana 45 u{ − ug ⋅ M >!/// 2 e⋅π⋅α fizi~ki parametri za vodu na temperaturi!ug>21pD X n3 λg!>!68/5!/21.3!! ! !υg!>!2/417!/21−7! t nL 1. korak: 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>!et!>!41!nn 3. korak: potrebni kriterijumi sli~nosti x ⋅ mL 3 ⋅ 1/14 > >5/6:!/215 (prelazni re`im strujawa) νg 2/417 ⋅ 21 −7 Qs{!> (Qs )U{ =91p D >3/32 Qsg!> (Qs )Ug =21p D >:/63- Sfg!>! 4. korak: konstante u kriterijalnoj jedna~ini: Qs n>1/7-!!!o>1/48-!!!q>1-!!!εU!> G Qs{ /! /! D>1/37! εβ>1/37! 1/:4>1/35 5. korak: 1/36 1/36 :/63 > >2/55 3/32 )β>71pD! ⇒ εβ>!1/:4* izra~unavawe Nuseltovog broja Ovg!>!1/35/!)!5/6:!/215!*1/7!/!)!:/63!*1/48!/!2/55!>!5:9/7 6. korak: izra~unavawe koeficijenta prelaza toplote!)α* α!>!Ovg! ⋅ ⋅ R= λg 68/5 ⋅ 21 .3 X >5:9/7! ⋅ >!:46:/:! mL 1/14 n3L 91 − 21 2 ⋅ 6 >419/86!lX 1/14 ⋅ π ⋅ :46:/: ⋅ 21 −4 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 46 9/45/!Suvozasi}ena vodena para!)u>291pD*!transportuje se kroz parovod na rastojawe od!M>5!ln/!Parovod je napravqen od ~eli~nih cevi!)λ2>61!X0nL*-!pre~nika!)∅>211091!nn*!i izolovan je slojem staklene vune!)λ3>1/15!X0nL*!debqine!δ>:1!nn/!Pra}ewe atmosferskih uslova pokazalo je da: - maksimalna brzina vetra koji duva normalno na parovod je x>21!n0t - minimalna temperatura okolnog vazduha je!−21pD U parovod treba ugraditi kondenzacione lonce na drugom!)3/*!i ~etvrtom!)5/*!kilometru. Ukoliko gubici zra~ewem iznose!71&!od gubitaka konvekcijom, a koeficijent prelaza toplote sa strane pare koja se kondenzuje du` celog cevovoda iznosi α2>:111!X0n3L!-!odrediti potreban kapacitet kondenzacionih lonaca!)lh0t*/!Pri izra~unavawu koeficijenta prelaza toplote sa strane vazduha zanemariti popravku!εUtj. smatrati da je!εU>2 razmewen toplotni protok na prva dva kilometra!)M2>3111!n*; ⋅ ⋅ ⋅ ⋅ R 2 = R + R > 2/7 ⋅ R qsfmb{ {sb•fokf qsfmb{ Uqbsb − Uwb{evi ⋅ R 2 = 2/7 ⋅ e e 2 2 2 2 + mo 3 + mo 4 + e2π ⋅ α 2 3π ⋅ λ 2 e2 3π ⋅ λ 3 e 3 e 4 π ⋅ α 3 ⋅ M2 >!/// fizi~ki parametri za vazduh!ob!ufnqfsbuvsj!ug>−21pD n3 X λg!>!3/47!/21−3! νg!>!23/54/21−7! nL t 1. korak: 2. korak: karakteristi~na du`ina ~vrste povr{i mfl>e4>!1/39!n 3. korak: izra~unavawe potrebnih kriterijuma sli~nosti x ⋅ mL 21 ⋅ 1/39 >3/36!/216 !> υg 23/54 ⋅ 21 −7 Qsg!> (Qs )Ug = −21p D >1/823 Sfg!>! 4. korak: (turbulentno strujawe) konstante u kriterijalnoj jedna~ini D>1/134- n>1/9- o>1/5- q>1 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike 5. korak: strana 47 izra~unavawe Nuseltovog broja ( Ov g = 1/132 ⋅ 3/36 ⋅ 21 6 6. korak ) 1/9 ⋅ (1/823)1/5 ⋅ (Hsg )1 ⋅ 2 >495/2 izra~unavawe koeficijenta prelaza toplote!)α* α = Ov g ⋅ λg 3/47 ⋅ 21 −3 X >43/5!! !>! 495/2 ⋅ mfl 1/39 n3L ⋅ R 2 = 2/7 ⋅ ⋅ ⋅ R 2 = n2 ⋅ s napomena: 291 + 21 ⋅ 3111 >! 2 2 211 2 391 2 mo mo + + + 1/19π ⋅ :111 3π ⋅ 61 91 3π ⋅ 1/15 211 1/39π ⋅ 58/6 ⇒ ⋅ ⋅ R 2 >!258!lX ⋅ 258 lh R2 >1/184! > n2 = 3126 t s Razmewena toplota na drugom delu cevovoda!)du`ine!M3>3!ln) je identi~na kao na prvom delu cevovoda!)du`ine!M2>3!ln*-!pa je i kapacitet drugog kondenzazcionog lonca jednak kapacitetu prvog ⋅ lh kondenzacionog lonca-! n3 >1/184! t 9/46/!Upravno na cev, spoqa{weg pre~nika!e>311!nn!i du`ine!M>9!n-!struji suv vazduh temperature ug>−31pD-!pri!q>212/4!lQb/!Temperatura na spoqa{woj povr{i cevi je konstantna i iznosi u{>291pD/ Odrediti brzinu strujawa vazduha pri kojoj toplotni protok sa cevi na vazduh iznosi 31!lX/ ⋅ u − ug X R R= { !>!31! 3 ⋅M ⇒ α!>! 2 e ⋅ π ⋅ M ⋅ (u { − u g ) nL e⋅π⋅α X 31 α!>! !>!31! 3 1/3 ⋅ π ⋅ 9 ⋅ (291 + 31) nL ⋅ dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 48 fizi~ki parametri za vazduh na!ug>−31pD λg!>!3/39/21−3!! X ! nL ml>1/3!n-! !Qsg!>!1/827-! α!>! Ovg ⋅ νg!>!23/8:/21−7! ! Qs{!>!1/792- λ λ = D ⋅ Sfn ⋅ Qso ⋅ Hsq ⋅ ε U ⋅ ml ml m 2 Sf!>! α ⋅ l ⋅ o λ D ⋅ Qsg ⋅ Hsgq ⋅ ε U lh n4 Qs εU> G QsB 1/36 >2 ⇒ 2 n >!/// predpostavimo da je strujawe vazduha oko cevi turbulentno tj. da va`i: 3/216!=!Sfg!=!2/218 ⇒ D!>1/134/!εβ!>1/134- n!>1/9-!!!o!>1/5-!!!q>1 2 1/9 1/3 2 >9/53/215 ⋅ Sf> 31 ⋅ −3 1/5 3 / 39 ⋅ 21 1 / 134 ⋅ 1 / 827 ⋅ 2 pretpostavka neta~na!" predpostavimo da je strujawe vazduha oko cevi preobra`ajno tj. da va`i: 2/214!=!Sfg!=!3/216 ⇒ D!>1/37/!εβ!>1/37-!!!n!>1/7-!!!o!>1/48-!!!q>1 2 1/7 1/3 2 >7/49/215 ⋅ Sf> 31 ⋅ −3 1/48 3 / 39 ⋅ 21 1 / 37 ⋅ 1 / 827 ⋅ 2 x!>! pretpostavka ta~na!" Sf g ⋅ υ g n 7/49 ⋅ 21 5 ⋅ 23/8: ⋅ 21 −7 >5/19! >! 1/3 ml t dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike zadatak za ve`bawe: strana 49 )9/47/* 9/47/!Kroz cev od ner|aju}eg ~elika!)!λ>28!X0nL!*-!pre~nika!∅>62y3/:!nn!i du`ine!M>3/6!n-!struji voda!ux!>91pD>dpotu-!!sredwom brzinom!xx>2!n0t. Upravno na cev struji vazduh sredwe temperature ug>31pD>dpotu-!sredwom brzinom!xg>3!n0t/!Odrediti toplotni protok sa vode na vazduh kao i temperaturu spoqa{we povr{i cevi ( smatrati da je!εUv!>!εUt!>!2*/ ⋅ re{ewe: u!>!8:/6pD R >655/3!X- 9/48/!Dve kvadratne plo~e stranica du`ine!b>2!n obrzauju ravnu povr{ (zanemarqive debqine) du` koje brzinom!x>2!n0t!struji suv vazduh!)u>21pD-!q>2!cbs*/!Odrediti koliko se toplote preda vazduhu za slede}a tri slu~aja: a) obe plo~e su stalne temperature u{>231pD b) prva plo~a je stalne temperature u{>231pD, a druga je adijabatski izolovana d* prva plo~a je adijabatski izolovana, a druga plo~a je stalne temperature u{>231pD b b b b* ml!>! Sfls ⋅ ν g 6 ⋅ 21 6 ⋅ 25/27 ⋅ 21 −7 > >7/:!n x 2 kako je M>b,b>!3!n! ≤ !mls strujawe vazduha du` cele plo~e je laminarno napomena: υg!>25/27!/21−7 n3 t (vazduh na temperaturi!ug!>21pD) dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 50 b* ⋅ R 1−3b >! u{ − ug ⋅ b ⋅ b ⋅ 3 >/// 2 α 1−3b fizi~ki parametri za vazduh na temperaturi!ug!>21pD n3 X λg!>!3/62!/21−3! υg!>25/27!/21−7 t nL 1. korak: 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>3b!>3!n 3. korak: potrebni kriterijumi sli~nosti x ⋅ ml 2⋅ 3 >2/52!/216 = υg 25/27 ⋅ 21 −7 Qsg!> (Qs )Ug =21p D >1/816Qs{!> (Qs )U{ =231p D >1/797 Sfg!> 4. korak: konstante u kriterijalnoj jedna~ini Qs n>1/6-!!!o>1/44-!!!q>1 -!!!εU!>! G Qs{ 5. korak: 1/36 1/816 = 1/797 1/36 >2-!!!D>1/775 izra~unavawe Nuseltovog broja Ovg!>!1/775/!)!2/52!/216!*1/6!/!)!1/816!*1/44!/!2!>333/28 6. korak: izra~unavawe koeficijenta prelaza toplote!)α* α1−3b!>Ovg!/ ⋅ R 1−3b >! λg X 3/62 ⋅ 21 .3 >3/8:! 3 >333/28/! 3 mL nL 231 − 21 ⋅ 2 ⋅ 2 ⋅ 3 >!724/9!X 2 3/8: dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 51 b) ! ⋅ R 1−b >! u{ − ug ⋅ b ⋅ b >/// 2 α 1 −b 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>b!>2!n 3. korak: potrebni kriterijumi sli~nosti x ⋅ ml 2⋅ 2 >1/8!/216 = Sfg!> −7 υg 25/27 ⋅ 21 5. korak: izra~unavawe Nuseltovog broja Ovg!>!1/775/!)!1/8!/216!*1/6!/!)!1/816!*1/44!/!2!>!267/65 6. korak: izra~unavawe koeficijenta prelaza toplote!)α* λg 3/62⋅ 21.3 X >!4/:4! 3 >267/65/! mL 2 nL ⋅ 231 − 21 ⋅ 2 ⋅ 2>!543/4!X R 1−b >! 2 4/:4 α1−b!>!Ovg!/ napomena: prikazani su samo oni koraci koji nisu isti kao pod a) c) ⋅ ⋅ ⋅ R b−3b !>! R 1−3b !−! R 1−b !>!724/9!−!534/4!>292/6!X napomena: ⋅ R b−3b >! zadatak pod c) se mo`e re{iti i na slede}i na~in: u{ − ug 231 − 21 ⋅ 2 ⋅ 2>292/6!X ⋅ b ⋅ (M − b) >///> 2 2 α b−M 2/76 (Ov g )b−M > D ⋅ [(Sf g )n1−M − (Sf g )n1−b ]⋅ Qsgo ⋅ ε u (Ov g )b−M >!1/775/! (2/52 ⋅ 21 6 ) 1/6 αb−M!>! (Ov g )b−M / ( − 1/8 ⋅ 21 6 ) 1/6 /!)!1/816!*1/44!/!2>76/74 λg X 3/62⋅ 21.3 >!2/76! 3 >76/74/! 2 mL nL dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 52 9/49/ Vazduh temperature!ug>31pD-!struji sredwom brzinom!3/6!n0t preko ravne plo~e du`ine!b>6!n!i {irine!c>2/6!n. Povr{i plo~e se odr`avaju na stalnoj temperaturi od u{>:1pD/!Odrediti toplotni protok sa plo~e na vazduh u laminarnom delu strujawa, turbulentnom delu strujawa kao i ukupni du` cele plo~e. mls vazduh c b Sfls ⋅ ν g 6 ⋅ 21 6 ⋅ 26/17 ⋅ 21 −7 >4!n > 3/6 x kako je M>b>!6!n!?!mls strujawe vazduha na du`ini mls je laminarno a na du`ini M−mls turbulentno n3 napomena: υg!>26/17!/21−7 (vazduh na temperaturi!ug!>31pD) t mls!>! u{ − ug ⋅ mls ⋅ c >/// 2 α mbn 1. korak: fizi~ki parametri zavazduh na temperaturi!ug!>!31pD n3 X λg!>!3/6:!/21−3! -!!υg!>26/17!/21−7! t nL ⋅ R mbn!>! 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>!mls!>4!n 3. korak: potrebni kriterijumi sli~nosti Sfg!>Sfls>6!/216 Qsg!> (Qs )Ug =31p D >1/814- Qs{!> (Qs )U{ =:1p D >1/7: dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike 4. korak: strana 53 konstante u kriterijalnoj jedna~ini Qs n>1/6-!!!o>1/44-!!!q>1 -!!!εU!>! G Qs{ 5. korak: 1/36 1/814 = 1/7: 1/36 >2-!!!D>1/775 izra~unavawe Nuseltovog broja Ovg!>!1/775/!)!6!/216!*1/6!/!)!1/814!*1/44!/!2!>!528/:4 izra~unavawe koeficijenta prelaza toplote!)αmbn* 6. korak: 3/6: ⋅ 21.3 λg X >!4/72! 3 >528/:4! 4 mL nL ⋅ :1 − 31 R mbn!>! ⋅ 4 ⋅ 2/6 >2248/3!X 2 4/72 αmbn!>!Ovg!/ ⋅ R uvs!>! u{ − ug ⋅ (b − mls ) ⋅ c >/// 2 α uvs 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>!b!−!mls!>3!n 3. korak: potrebni kriterijumi sli~nosti (Sf g )mls >Sfls>6!/216-! (Sf g ) M > x ⋅ M = υg 4. korak: 26/17 ⋅ 21 −7 >9/4!/216 konstante u kriterijalnoj jedna~ini Qs n>1/9-!!!o>1/54-!!!q>1 -!!!εU!>! G Qs{ 5. korak: 3/6 ⋅ 6 1/36 1/814 = 1/7: 1/36 >2-!!!D>1/148 izra~unavawe Nuseltovog broja (Ov g )mls −M > D ⋅ [(Sf g )nM − (Sf g )nls ]⋅ Qsgo ⋅ ε u (Ov g )mls −M >!1/148/! (9/4 ⋅ 21 6 ) 1/9 ( − 6 ⋅ 21 6 ) 1/9 /!)!1/814!*1/54!/!2>687/24 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 54 izra~unavawe koeficijenta prelaza toplote!)αuvs* 6. korak: αuvs> (Ov g )m ls −M ⋅ R uvs!>! / λg X 3/6: ⋅ 21 .3 >!8/57! 3 >687/24/! 3 mL nL :1 − 31 ⋅ (6 − 4 ) ⋅ 2/6 >2677/9!X 2 8/57 ⋅ ⋅ ⋅ + R uvs >2248/3!,!2677/9!>3815!X R 1−m = R mbn 1−mls mls −M 9/4:/!Vertikalnu plo~u (zanemarqive debqine), visine!i>3/5!n!i {irine!b>1/9!n!sa obe strane (u pravcu kra}e strane) opstrujava vazduh temperature!ug>31pD. Toplotni protok konvekcijom sa plo~e na vazduh iznosi!6!lX/!Odrediti sredwu brzinu strujawa vazduha, tako da se temperatura na povr{ima plo~e odr`ava konstantnom i iznosi u{>81pD, smatraju}i da je strujawe vazduha turbulentno po celoj plo~i. b i ⋅ u − ug R >! { ⋅b⋅i⋅3 ⇒ 2 α X 6111 α!>! !>37! 3 (81 − 31) ⋅ 1/9 ⋅ 3/5 ⋅ 3 nL vazduh ⋅ R α!>! !> (u { − u g ) ⋅ b ⋅ i ⋅ 3 fizi~ki parametri zavazduh na temperaturi!ug!>!31pD n3 X λg!>!3/6:!/21−3! -!!υg!>26/17!/21−7! t nL 1. korak: dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 55 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>!b!>1/9!n 3. korak: potrebni kriterijumi sli~nosti Qsg!> (Qs )Ug =31p D >1/8144. korak: Qs{!> (Qs )U{ =81p D >1/7:5 konstante u kriterijalnoj jedna~ini Qs n>1/9-!!!o>1/54-!!!q>1 -!!!εU!>! G Qs{ 6. korak: 1/36 1/814 = 1/7:5 1/36 >2-!!!D>1/148 izra~unavawe Nuseltovog broja Ov g = α ⋅ 5. korak: ml 1/9 = 37 ⋅ >914/1: λg 3/6: ⋅ 21 −3 izra~unavawe Rejnoldsovog broja o q Ovg> D ⋅ Sfn g ⋅ Qsg ⋅ Hsg ⋅ ε U ⇒ Ov g Sfg!>! D ⋅ Qs o ⋅ Hs q ⋅ ε U g g 2 n 2 1/9 914/1: > 4/295 ⋅ 21 6 Sfg!>! 1/148 ⋅ 1/814 1/54 ⋅ 2 ⋅ 2 x!>! Sf g ⋅ υ g n 4/295 ⋅ 21 6 ⋅ 26/17 ⋅ 21 −7 !>!7! = ml 1/9 t zadatak za ve`bawe: )9/51/* 9/51/!Vaqanu, vertikalnu bakarnu plo~u, visine!3/3!n!i {irine!1/:!m sa obe strane opstrujava vazduh sredwe temperature!31pD-!sredwom brzinom!7!n0t. Sredwe temperature obe povr{i plo~e iznose 81pD-!a zidova velike prostorije u kojoj se plo~a nalazi!31pD/!Odrediti toplotni protok koji se odvodi sa plo~e (debqinu plo~e zanemariti) ako se strujawe vr{i u pravcu kra}e strane. ⋅ ⋅ ⋅ re{ewe:!!!!!!! R > R qsfmb{ , R {sb•fokf >!3126/7!,!:23/4!>!3:83/:!X ∑ 23 24 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 56 9/52/!Iznad horizontalne ravne betonske plo~e, du`ine M>3!n, toplotno izolovane sa dowe strane, suv vazduh stawa (q>2!cbs-!Ug>394!L) proti~e brzinom x>4!n0t. Ako se pod dejstvom toplotnog zra~ewa, na gorwoj povr{i plo~e ustali temperatura U{>434!L, odrediti povr{inski toplotni protok (toplotni fluks) tog zra~ewa i grafi~ki predstaviti raspored temperatura u betonskoj plo~i i okolnom vazduhu. rep{sb•fop Ug U{ vazduh, x>4!n0t rtpqtuw/{sb•fokf α rsfgmflupwbop U{>dpotu M toplotni bilans ozra~ene povr{i: r ep{sb•fop = rsfgmflupwbop + r bqtpscpwbop r ep{sb•fop = r ep{sb•fop ⋅ (2 − ε ) + 5 U{ 2 U − Ug 211 r ep{sb•fop > ⋅ { + 2 ε 2 α ε ⋅ Dd U{ U{ − U3 U2 − Ug 211 + + 2 2 δ ε ⋅ Dd λ α 5 >/// ε!>!L!/!εo!>!1/:9!/!1/:5!>!1/:3 α!>!@ dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 57 fizi~ki parametri za vazduh na temperaturi!ug!>21pD n3 X λg!>!3/62!/21−3! υg!>25/27!/21−7 t nL 1. korak: 2. korak: karakteristi~na du`ina ~vrste povr{i ml!>M!>3!n 3. korak: Sfg!> potrebni kriterijumi sli~nosti x ⋅ ml 4⋅3 >5/35!/216 = υg 25/27 ⋅ 21 −7 Qsg!> (Qs )Ug =21p D >1/8164. korak: Qs{!> (Qs )U{ =231p D >1/7:9 konstante u kriterijalnoj jedna~ini Qs n>1/6-!!!o>1/44-!!!q>1 -!!!εU!>! G Qs{ 5. korak: 1/36 1/816 = 1/7:9 1/36 >2-!!!D>1/775 izra~unavawe Nuseltovog broja Ovg!>!1/775/!)!5/35!/216!*1/6!/!)!1/816!*1/44!/!2!>496/37 6. korak: izra~unavawe koeficijenta prelaza toplote!)α* α!>Ovg!/ λg X 3/62 ⋅ 21 .3 >5/95! 3 >496/37/! 3 mL nL 5 U{ 2 U − Ug 211 r ep{sb•fop > ⋅ { + 2 ε 2 α ε ⋅ Dd 5 434 2 434 − 394 X 211 ⋅ + > >938/7! 3 2 2 n 1/:3 5/95 1/:3 ⋅ 6/78 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 58 ⋅ 9/53/!U istosmernom razmewiva~u toplote tipa cev u cevi!zagreva se! n f>2611!lh0i!etanola!od U2>21pD!to!U3>41pD/!Grejni fluid je suvozasi}ena vodena para!q>1/23!cbs!koja se u procesu razmene toplte sa etanolom potpuno kondenzuje. Etanol proti~e kroz cev a para se kondenzuje u anularnom prostoru. Unutra{wi pre~nik unutra{we cevi iznosi!e>211!nn/!Zanemaruju}i toplotni otpor prelaza sa pare na cev, toplotni otpor provo|ewa kroz cev kao i toplotne gubitke u okolinu odrediti: a) maseni protok grejne pare b) du`inu cevi b* prvi zakon termodinamike za proces u razmewiva~u toplote: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⇒ R 23!>!∆ I 23!,! X U23 ⋅ ⋅ I 2!>! I 3 ⋅ nq ⋅ i2 + nf ⋅ d qf ⋅ U2 = nq ⋅ i3 + nf ⋅ d qf ⋅ U3 ⋅ ⋅ nq = nf ⋅ d qf ⋅ (U3 − U2 ) i2 − i3 lK lh lK !i3>318! lh !i2>36:2 dqf>3/56! lK lhL 2611 ⋅ 3/56 ⋅ (41 − 21) lh >9/67!/21−3! > 4711 3495 t )i′′-!!q>1/23!cbs* )i′-!!!q>1/23!cbs* specifi~ni toplotni kapacitet etanola odre|en za sredwu temperaturu etanola: Uf!>! 21 + 41 = 31pD 3 b) ⋅ R sb{ ∆UTS = ⋅M 2 l ⋅ ⇒ R sb{ M!>! !>/// l ⋅ ∆Uts ⋅ R sb{!−!interno razmewena toplota u razmewiva~u izme|u pare i etanola l!−!koeficijent prolaza toplote sa pare na etanol ∆Uts!−!sredwa logaritamska razlika temperatura izme|u pare i etanola dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 59 L para-!i2 para-!i3 ⋅ R sb{ etanom-!U2 etanol-!U3 prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ograni~enom ⋅ konturom K: ⋅ ⋅ ⋅ R sb{!>!∆ I 23!,! X U23 ⋅ R sb{!> nq ⋅ (i2 − i3 ) = 9/67 ⋅ 21 −3 ⋅ (36:2 − 318) >315/18!lX U ∆Unby!>5:/26!−!21>!4:/26pD ∆Unjo!>5:/26!−!41!>!2:/26pD 4:/26 − 2:/26 = 39/4pD ∆Uts!> 4:/26 mo 2:/26 para 5:/26 5:/26 41 etanom 21 M e 2 2 2 2 mo 3 + = + l e3 π ⋅ α Q 3π ⋅ λ e3 e2π ⋅ α f ⇒ l> e2 ⋅ π ⋅ α >/// 2 !!!!−!!toplotni otpor prelaza sa strane pare, zanemaren uzadatku e3 π ⋅ α Q e 2 ⋅ mo 3 !−!toplptni otpor provo|ewa kroz cev, zanemaren u zadatku 3π ⋅ λ e3 2 !!!!−!!toplotni otpor prelaza sa strane etanola e2π ⋅ α f αf!>!@ dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 60 1. korak: fizi~ki parametri za etanol odre|eni za sredwu temperaturu U + Uf3 21 + 41 = >31pD etanola u cevi: Ufts = f2 3 3 lh X λg!>!1/294!! ! ! ρg!>!89:! 4 nL n lK dqg!>!3/56! µg!>!2/2:!/21−4! Qb ⋅ t lhL 2. korak: karakteristi~na du`ina ~vrste povr{i e23 ⋅ π B ml!>! 5 ⋅ = 5 ⋅ 5 >e2>211!nn P e2 ⋅ π 3. korak: Qsg!> Qs{!> potrebni kriterijumi sli~nosti dqg ⋅ µ g λg d q{ ⋅ µ { λ{ > 3/56 ⋅ 21 4 ⋅ 2/2: ⋅ 21 −4 >26/:4 1/294 >///> 3/92 ⋅ 21 4 ⋅ 1/7:6 ⋅ 21 −4 >21/:8 1/289 µ{-!λ{-!dq{ fizi~ki parametri etanola na temperaturi!U{>5:/26pD lK X µ{!>!1/7:6!/21−4! Qb ⋅ t ! λ{!>!1/289! ! dq{!>!3/92! lhL nL Sfg!> ρ g ⋅ x ⋅ mL 89: ⋅ 7/8 ⋅ 21 −3 ⋅ 1/2 >!5553/4!!!!!prelazni re`im strujawa >!///> µg 2/2: ⋅ 21 −4 2611 4711 >7/8!/21−3! n x!>! > 3 t ρ g ⋅ e2 ⋅ π 89: ⋅ 1/23 ⋅ π ⋅ 5 ⋅ nF 4. korak: 5⋅ konstante u kriterijalnoj jedna~ini Qs n>1-!!!o>1/54-!!!q>1-!!!εU!>! g Qs{ L1!>g!)!Sf!*>!24/9 5. korak: 1/36 26/:4 > 21/:8 1/36 >2/2-!!!!D>L1>//!/>24/9 izra~unavawe Nuseltovog broja Ovg!>24/9!/)!26/:4!*1/54!/!2/2!>!61 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike 6. korak: strana 61 izra~unavawe koeficijenta prelaza toplote!)α* αf!>!Ovg! ⋅ λg X 1/294 >61! ⋅ >!:2/6 3 . 4 mL 211 ⋅ 21 nL l> e2 ⋅ π ⋅ α f> 1/2 ⋅ π ⋅ :2/4 >39/86! X nL ⋅ R sb{ 315/18 >!362!n M!>! !> l ⋅ ∆Uts 39/86 ⋅ 21 .4 ⋅ 39/4 9/54/!U kqu~alu vodu pritiska!q>21!cbs-!koja pri konstantnom pritisku isparava u proto~nom kotlu, potopqeno je 31 pravih cevi, unutra{weg pre~nika!e>:6!nn/!Kroz cev !)pri konstantnom pritisku, q>2!cbs*-!brzinom!xg>7!n0t-!struji dimni gas!)sDP3>1/24-!sI3P>1/22-!sO3>1/87*/!Temperatura gasa na ulazu u cevi je!571pD-!a na izlazu iz wih!371pD/!Ako se zanemari toplotni otpor provo|ewa kroz zidove cevi kao i toplotni otpor prelaza sa cevi na kqu~alu vodu odrediti: a) koli~inu vode koja ispari u kotlu )lh0t* b) !potrebnu du`inu cevi b* prvi zakon termodinamike za proces u razmewiva~u toplote: ⋅ ⋅ ⋅ ⇒ R 23!>!∆ I 23!,! X U23 ⋅ ⋅ ⋅ ⋅ ⋅ I 2!>! I 3 ⋅ n x ⋅ i2 + neh ⋅ d qeh ⋅ U2 = n x ⋅ i3 + neh ⋅ d qeh ⋅ U3 ⋅ nx = ⋅ neh ⋅ d qeh ⋅ (U2 − U3 ) ⋅ i3 − i2 n eh = ρ eh ⋅ x ⋅ >///> lh 1/59 ⋅ 2/25 ⋅ (571 − 371) >6/54!/21−3! 3126/4 t lh e3 π 1/1:6 3 ⋅ π ⋅ o = 1/673 ⋅ 7 ⋅ ⋅ 31 >1/59! 5 5 t lh lK ! specifi~ni toplotni kapacitet i gustina dimnnog ρeh>1/673! 4 lhL n gasa odre|eni za sredwu temperaturu dimnog gasa: Uf!> 571 + 371 = 471pD 3 lK !i2>!873/8 )i′-!!q>21!cbs* lh lK !i3>3889! )i′′-!!!q>21!cbs* lh dqeh>2/25! dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 62 b) ⋅ R sb{ = ∆UTS ⋅M 2 l ⋅ ⇒ M!>! R sb{ !>/// l ⋅ ∆Uts ⋅ R sb{!−!interno razmewena toplota u razmewiva~u izme|u dimnog gasa i vode l!−!koeficijent prolaza toplote sa dimnog gasa na vodu ∆Uts!−!sredwa logaritamska razlika temperatura izme|u dimnog gasa i vode L dimni gas gas-!U2 dimni gas-!U3 ⋅ R sb{ voda-!i2 para-!i3 prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ⋅ ograni~enom konturom K: ⋅ ⋅ ⋅ R sb{!>!∆ I 23!,! X U23 ⋅ R sb{!> n eh ⋅ d qeh (U2 − U3 ) = 1/59 ⋅ 2/25 ⋅ (571 − 371) >21:/55!lX ∆Unby!>571!−291>!391pD ∆Unjo!>371!−!291!>!91pD U 571 dimni gas 391 − 91 = 26:/76pD ∆Uts!> 391 mo 91 291 voda 371 291 M dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 63 e 2 2 2 2 = + mo 3 + l e3 π ⋅ α x 3π ⋅ λ e3 e2π ⋅ α eh ⇒ l> e2 ⋅ π ⋅ α eh>/// 2 !!!!−!!toplotni otpor prelaza sa strane vode, zanemaren uzadatku e3 π ⋅ α x e 2 ⋅ mo 3 !−!toplptni otpor provo|ewa kroz cev, zanemaren u zadatku 3π ⋅ λ e3 2 !!!!−!!toplotni otpor prelaza sa strane dimnog gasa e2π ⋅ α eh αeh!>!@ 1. korak: fizi~ki parametri za dimni gas odre|eni za sredwu temperaturu Ueh2 + Ueh3 571 + 371 = >471pD dimnog gasa: Uehts = 3 3 lh X λg!>!6/47!/21−3!! ! ! ρg!>!1/673! 4 nL n lK dqg!>!2/24:! µg!>!41/4!/21−7! Qb ⋅ t lhL 2. korak: karakteristi~na du`ina ~vrste povr{i e23 ⋅ π B ml!>! 5 ⋅ = 5 ⋅ 5 >e2>:6!nn P e2 ⋅ π 3. korak: potrebni kriterijumi sli~nosti Qsg!> (Qs )Ug =471p D >1/75Sfg!> Qs{!> (Qs )U{ =291p D >1/78 ρ g ⋅ x ⋅ mL 1/673 ⋅ 7 ⋅ 1/1:6 >21683 !> µg 41/4 ⋅ 21 −7 4. korak: konstante u kriterijalnoj jedna~ini U 564 n>1-!!!o>1/54-!!!q>1-!εU!>2/38!−!1/38 ⋅ { >2/38!−!1/38 ⋅ >2/188Ug 744 predpostavimo ! M ?61! mL ⇒ εM>!2 ⇒ D>1/132 D>1/132!/!εM!>1/132 dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike 5. korak: strana 64 izra~unavawe Nuseltovog broja Ovg!>1/132/!)21683!*1/9!/)!1/75!*1/54!/2/188>41/:4 6. korak: izra~unavawe koeficijenta prelaza toplote!)α* αeh!>!Ovg! ⋅ λg X 6/47 ⋅ 21 .3 >41/:4 ⋅ >28/56! 3 .4 mL :6 ⋅ 21 nL l> e2 ⋅ π ⋅ α eh> 1/1:6 ⋅ π ⋅ 28/56 >!6/32! X nL ⋅ R 21:/55 = M!>! >!7/7!n l ⋅ ∆Uts ⋅ o 6/32 ⋅ 21 −4 ⋅ 26:/76 ⋅ 31 provera pretpostavke iz 4. koraka:! M ?61 mL M 7/7 >7:/6!?61!! > 1/1:6 mL pretpostavka je ta~na ⇒ ⋅ 9/55/!U razmewiva~u toplote sa suprotnosmerim tokom fluida zagreva W >7111!n40i!se )!pri!q>212/4 lQb-!u>1pD*!vazduha (ideala gas) od po~ete temperature!U2>!51pD!do krajwe temperature!U3>91pDpomo}u vode temperature!Ux2>:1pD. Procewena vrednost koeficijenta prolaza toplote iznosi!l>611 X0)n3L). Ukupna povr{ina za razmenu toplote iznosi!B>29!n3/!Odrediti maseni protok vode!)lh0t*/ voda-!Ux2 voda-!Ux3 ⋅ R sb{ vazduh-!U2 vazduh-!U3 L ⋅ n wb{evi ⋅ q⋅W = > Sh ⋅ U 7111 4711 >3/27! lh 398 ⋅ 384 t 212/4 ⋅ 214 ⋅ dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv zbirka zadataka iz termodinamike strana 65 prvi zakon termodinamike za proces u otvorenom termodinami~kom sistemu ⋅ ⋅ ⋅ ⋅ R sb{!>!∆ I 23!,! X U23 ograni~enom konturom K: ⋅ R sb{!> n w ⋅ d qw (U3 − U2 ) = 3/27 ⋅ 2 ⋅ (91 − 51) >97/5!lX ⋅ R sb{ ⋅ ∆UTS = ⋅B 2 l ∆Uts = 97/5 R sb{ ∆Uts !>! > !>!:/7pD l ⋅ B 1/6 ⋅ 29 ⇒ (:1 − 91) − (Ux3 − 51) :1 − 91 mo Ux3 − 51 :1pD voda 91pD Ux3!>!@ @ vazduh 51pD pretpostavimo!ux3>71pD ⇒ ∆Uts >25/5pD (nije ta~no!) pretpostavimo!ux3>59pD ⇒ ∆Uts >9/:pD (nije ta~no!) pretpostavimo!ux3>5:pD ⇒ ∆Uts >:/6pD (ta~no!) prvi zakon termodinamike za proces u razmewiva~u toplote: ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⇒ R 23!>!∆ I 23!,! X U23 ⋅ ⋅ I 2!>! I 3 ⋅ n x ⋅ i x2 + n w ⋅ d qw ⋅ U2 = n x ⋅ i x3 + n w ⋅ d qw ⋅ U3 ⋅ nx = ⋅ n w ⋅ d qw ⋅ (U3 − U2 ) i x2 − i x3 lK lh lK ix3>31:/4! lh ix2>488/1! > lh 3/27 ⋅ 2 ⋅ (91 − 51) >1/6! 488 − 31:/4 t )q>2!cbs-!Ux2>:1pD* )q>2!cbs-!Ux3>5:pD* dipl.ing. @eqko Ciganovi}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{fmlp@fvofu/zv
© Copyright 2025 Paperzz