... ʶ˨ˠˢ˟ˮ˞%RROH µµ (George Boole, 1815-1864) 1847 µ µ µ µ ( " µ"). µ µµ !# # # . #µ # µ , # , # ! $µ# ! µ % %µ% % , # # !µ #% &% µ. x To 1854 o Boole & Boole x To 1938 o Shannon # x ' Boole µ # µ# µ % !% * µ & + < % &µ Huntington1: 1. +# % + +# % < 2. 0& % +: (x+0 = 0+x = x) 0& % < µ µ 1: (x < 1 = 1 < x = x) 3. µ# % + : x + y = y + x µ# % <: x < y=y < x < µ# % & +. <#: x < (y+z) = (x < y) + (x < z) ' & + µ# % < . <#: 4. ' & 1 > µµ (1874-1952) &µ 1933 5 ... x + y < z = (x + y) < (x + z) 5. ! x µ#%µ : B ! xc B µ x x c 1, x < x c 0 6. * ! ! µ !. <# ! ! x, y B x ? y µ 1 µ 2 ˂˲˞ˡ˦˧˛ʶ˨ˠˢ˟ˮ˞%RROH µ @% * = {0, 1} % & “+” “ < ” % &#: x y x+y x <y 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 µ# (B, ,<) &µ Huntington. µ * & µ#%µ % &#: ' # µ# (B, ,<) ! µ# & µ#%µ # Boole. µ 5 6 PÐnakac idiot twn thc duadik c lgebrac Boole Gia thn duadik lgebra Boole, isqÔoun ta paraktw: ¾ x+y =y+x (antimetajetikìthta) x·y =y·x ¾ x + (y + z) = (x + y) + z (prosetairistikìthta) x · (y · z) = ¾ (x · y) · z x+x=x (adunamÐa) x·x=x ¾ x + (x · y) = x (aporrofhtikìthta) x · (x ∨ y) = x kai epiplèon ¾ x · (y + z) = x · y + x · z (epimeristikìthta) x + y · z = (x + y) · (x + z) IsqÔoun epÐshc oi paraktw idiìthtec: i. (x0 )0 = x ii. x + 0 = x kai x + 1 = 1. iii. x · 0 = 0 kai x · 1 = x. iv. x + x0 = 1 kai x · x0 = 0. v. x + x = x kai x · x = x. vi. x + x0 · y = x + y . ¾ (x + y)0 = x0 · y 0 vii. (tÔpoi De Morgan). (x · y)0 = x0 + y 0 Oi apodeÐxeic twn idiot twn gÐnontai me pÐnakec me qr sh twn axiwmtwn tou Huntington. ParadeÐgmata 1. Apìdeixh thc prosetairistik c idiìthtac x + (y + z) = (x + y) + z x 1 1 1 1 0 0 0 0 y 1 1 0 0 1 1 0 0 z 1 0 1 0 1 0 1 0 y+z 1 1 1 0 1 1 1 0 x + (y + z) 1 1 1 1 1 1 1 0 x+y 1 1 1 1 1 1 0 0 2. Apìdeixh twn epimeristik¸n idiot twn x · (y + z) = x · y + x · z 7 (x + y) + z 1 1 1 1 1 1 1 0 x 1 1 1 1 0 0 0 0 y 1 1 0 0 1 1 0 0 z 1 0 1 0 1 0 1 0 y+z 1 1 1 0 1 1 1 0 x(y + z) xy 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 xz 1 0 1 0 0 0 0 0 xy + xz 1 1 1 0 0 0 0 0 x+y · z = (x+y) · (x+z) x 1 1 1 1 0 0 0 0 y 1 1 0 0 1 1 0 0 z 1 0 1 0 1 0 1 0 yz 1 0 0 0 1 0 0 0 x + yz 1 1 1 1 1 0 0 0 x+y 1 1 1 1 1 1 0 0 x+z 1 1 1 1 1 0 1 0 3. Apìdeixh twn idiot twn iv x + x0 = 1 kai x · x0 = 0 x 0 1 x0 1 0 x + x0 1 1 xx0 0 0 4. Apìdeixh thc aporrofhtik c idiìthtac x+x·y =x: x + xy = x1 + xy = x(1 + y) = x1 = x. 5. Apìdeixh thc idiìthtac vi. x0 + x · y = x0 + y : x0 + xy = (x0 + x)(x0 + y) = 1(x0 + y) = x0 + y Pardeigma 1 Na lujeÐ h exÐswsh Boole x0 y + xy 0 = 0. 8 (x + y)(y + z) 1 1 1 1 1 0 0 0 x 1 1 0 0 y 1 0 1 0 x0 0 0 1 1 x0 y 0 0 1 0 y0 0 1 0 1 xy 0 0 1 0 0 x0 y + xy 0 0 1 1 0 x = y = 1 'Ara x = y = 0. Pardeigma 2 Na lujeÐ h exÐswsh Boole xz 0 + x0 yz + y 0 z 0 = 1. 'Estw F = xz 0 + x0 yz + y 0 z 0 . x 1 1 1 1 0 0 0 0 y 1 1 0 0 1 1 0 0 z 1 0 1 0 1 0 1 0 z0 0 1 0 1 0 1 0 1 xz 0 0 1 0 1 0 0 0 0 x0 0 0 0 0 1 1 1 1 yz 1 0 0 0 1 0 0 0 x0 yz 0 0 0 0 1 0 0 0 y0 0 0 1 1 0 0 1 1 y0z0 0 0 0 1 0 0 0 1 xz 0 + x0 yz 0 1 0 1 1 0 0 0 x = y = 1, z = 0 x = 1, y = z = 0 'Ara, x = 0, y = z = 1 x = y = z = 0. Pardeigma 3 Na lujeÐ (kai diereunhjeÐ) h exÐswsh Boole ax + bx0 = 0, ìpou a, b ∈ B. a 1 1 0 0 b 1 0 1 0 ax + bx0 x + x0 (=1) x x0 0 → 'Ara adÔnath. → 'Ara x = 0. → 'Ara x0 = 0, (dhlad x = 1). → 'Ara tautìthta, dhlad isqÔei gia kje x, (dhlad isqÔei gia x = 0 kai gia x = 1). 9 F 0 1 0 1 1 0 0 1 Sust mata ½ Na lujeÐ to sÔsthma Boole x 1 1 0 0 y 1 0 1 0 x0 0 0 1 1 x0 + xy 0 x + xy y0 0 1 0 1 xy 0 0 1 0 0 ¾ =1 =0 xy 1 0 0 0 . x0 + xy 0 0 1 1 1 x + xy 1 1 0 0 'Ara (x, y) = (0, 1) (x, y) = (0, 0). Sunart seic Boole Kje sunrthsh f : B n → B lègetai Pardeigma 1 sunrthsh Boole. f : B 2 → B me f (x, y) = xy 0 + x0 y. H f paÐrnei tic timèc: f (1, 1) = 1 · 0 + 0 · 1 = 0 + 0 = 0, f (1, 0) = 1 · 1 + 0 · 0 = 1 + 0 = 1, f (0, 1) = 0 · 0 + 1 · 1 = 0 + 1 = 1, f (0, 0) = 0 · 1 + 1 · 0 = 0 + 0 = 0, (me pÐnaka) x 1 1 0 0 y 1 0 1 0 y0 0 1 0 1 xy 0 0 1 0 0 x0 0 0 1 1 Pardeigma 2 x0 y 0 0 1 0 f 0 1 1 0 f : B 3 → B me f (x, y, z) = xy + z 0 . H f paÐrnei tic timèc: f (1, 1, 1) = 1 · 1 + 0 = 1 + 0 = 1. f (1, 1, 0) = 1 · 1 + 1 = 1 + 1 = 1. f (1, 0, 1) = 1 · 0 + 0 = 0 + 0 = 0. k.lp. Efarmogèc 1. Diakìptec Diakìptec parllhloi −→ + 1+1=1 1+0=1 (0 + 1 = 1) 10 0+0=0 Diakìptec se seir−→ · 1·1=1 2. DÐpola 1·0=0 (0 · 1 = 0) 0·0=0 Se kje sunrthsh Boole antistoiqeÐ èna dÐpolo kai antÐstrofa: Sto dÐpolo x’ y’ x z y antistoiqeÐ h sunrthsh f (x, y, z) = x0 y 0 + z(x + y). Sto dÐpolo antistoiqeÐ h sunrthsh f (x, y, z, w) = xy + xwz + y 0 wy + y 0 z = xy + xwz + y 0 yw + y 0 z = xy + xwz + 0w + y 0 z = xy + xwz + y 0 z. AntÐstrofa: Sth sunrthsh f (x, y, z) = xy 0 z 0 + x0 yz + xyz antistoiqeÐ to dÐpolo All f (x, y, z) = xy 0 z 0 + (x0 + x)yz = xy 0 z 0 + 1 · yz = xy 0 z 0 + yz, opìte paÐrnoume to antÐstoiqo (aploÔstero) dÐpolo 11 x y w y’ z x y’ z’ x’ y z x y z Ask seic 1) Me qr sh twn idiot twn, na aplopoihjoÔn oi parastseic: i) xy 0 + yz + z 0 w + x0 y 0 z . ii) x(x0 + y)(z 0 + w)z . 2) Na lujoÔn oi exis¸seic thc 'Algebrac Boole: i) x0 + xy 0 = 1. ii) xy 0 + x0 y + yz 0 = 0. iii) xyz 0 + x0 yz + xyz = 1. 3) Na lujoÔn ta sust mata thc 'Algebrac Boole: ½ 0 x + xy 0 = 1 i) x + xy = 0. ½ y + x0 y + z = 1 ii) y 0 + xz + y 0 z = 0. ½ 0 x + xy 0 + y 0 = 0 iii) y + x 0 y + x = 1. 4) Na brejoÔn ta dÐpola pou antistoiqoÔn stic sunart seic: i) f (x, y, z) = (x + y)z + x0 y 0 z 0 . ii) f (x, y, z) = xyz + x0 yz + xy 0 z 0 . 12 x y 5) z’ y’ z i) Na brejeÐ h sunrthsh pou antistoiqeÐ sto dÐpolo x’ z’ z x w y ii) Na aplopoihjeÐ to parapnw dÐpolo. 6) Na aplopoihjei to paraktw dÐpolo. x x’ y x y 13
© Copyright 2025 Paperzz