196 ◇ ヘック反応 98 ヘック反応 (Heck Reaction) 196 196 HECK REACTION HECK REACTION (References are on page 596) 1 4 5 39 40 47 (References page 596) (重要論文 ,総説 ,改良と展開 ,反応機 are on Importance: 体的にすいているアルケン炭素上で置換反応が起こる.6) ア 【発見の経緯と特徴】 Importance: 48 54 構研究 リールおよびビニル部の脱離基 (X) の性質が反応速度に大きな ) 5-39 40-47 48-54 [Seminal Publications1-4 1-4; Reviews5-39; Modifications & Improvements40-47; Theoretical Studies48-54] [Seminal Publications ; Reviews ; Modifications & Improvements ; Theoretical Studies ] 1970 年代の初め,それぞれ別々に溝呂木および R. F. Heck 影響を与え,反応速度は I>Br~OTf≫Cl の順になる.7) ほと In the early T. Mizoroki and R.F. Heck independently んどの反応例では,下図の discovered that aryl, benzylR1and styryl halides react with により,0 価の 1970s, Pd 触媒および嵩高いアミンの存在下に,ア はアリール,芳香族ヘテロ環, (0) In the early 1970s, T. R.F. Heck in independently thatamine aryl, benzyl andcatalytic styryl halides react with olefinic compounds at Mizoroki elevatedand temperatures the presencediscovered of a hindered base and amount of Pd to form aryl-, benzyl-, and styryl-substituted olefins.1-3 Today, the palladium-catalyzed arylation or alkenylation of 1 3 Today, theHeck palladium-catalyzed arylation or the alkenylation of to formisaryl-, benzyl-, styryl-substituted olefins. 反応してカップリング体を与えることが見いだされた .今日 いアルキル基の場合も反応が進行する.またこれらの基は電子 olefins referred to as and the Heck reaction. Since its discovery, the reaction has become one of most widely olefins is referred to as the Heck reaction. Since itsorganic discovery, the Heck reaction has become onereaction of the most widely used catalytic carbon-carbon bond forming tools in synthesis. The general features of the are: 1) it is では,この Pd 触媒によるオレフィンのアリール化またはアル 供与性でも求引性でもかまわない.8)触媒活性種は適当な前 used applied catalyticfor carbon-carbon bond tools inolefins organic synthesis. The general features the reaction are: 1) is best the preparation offorming disubstituted from monosubstituted ones; 2) theofelectronic nature of itthe ケニル化反応を 反応 と呼ぶ.発見以来,この 反応 駆体 〔たとえば Pd (OAc) ( PPh から反応系内で調 Heck best applied Heck forthe the preparation disubstituted olefins from monosubstituted ones; 2)Pdthe electronic nature of the 3) 4 など〕 substituents on olefin only hasoflimited influence on the outcome of the reaction; it2 や can be either electron-donating substituents on the olefinbut only has limited influence onolefins the outcome of theyields; reaction; it can be either electron-donating は有機合成において触媒的に炭素⊖炭素結合を形成させる手段 製され,反応は単座または二座のホスフィン配位子と塩基の存 or electron-withdrawing usually the electron poor give higher 3) the reaction conditions tolerate a or electron-withdrawing but usually the electron poor olefins give higher yields; 3) the reaction conditions tolerate a wide range of functional groups on the olefin component: esters, ethers, carboxylic acids, nitriles, phenols, dienes, として広く用いられている.この反応の一般的な特徴は以下の 在下で行われる.9) 水や酸素が存在しても反応はそれほど影 wide range functional for groups the olefin esters, ethers, carboxylic4)acids, nitriles, phenols, dienes, etc., are allofwell-suited the on coupling, butcomponent: allylic alcohols tend to rearrange; the reaction rate is strongly etc., are all well-suited the coupling, butolefin allylic alcohols tend to rearrange; the undergoes reaction rate is strongly 通りである.1) 一置換オレフィンから二置換オレフィンを合 響を受けないので,溶媒などを厳密に無水・無酸素状態にする influenced by the degree for of substitution of the and usually the more substituted4)olefin a slower Heck influenced5)by the degree ofolefins substitution the olefin and usually the moreundergo substituted olefin undergoes a slower Heck reaction; unsymmetrical (e.g., of terminal alkenes) predominantly substitution at the least substituted b ⊖水素脱離の 成するのに最も利用される.2) オレフィン上の置換基の電子 必要はない.10) オレフィン挿入反応,および reaction; 5) unsymmetrical olefins (e.g., terminal alkenes) predominantly undergo substitution at the least substituted olefinic carbon; 6) the nature of the X group on the aryl or vinyl component is very important and the reaction rates 的性質は反応にあまり影響を与えない.すなわち,電子供与基 1 過程はシン選択的に進行するため立体選択性が高い.一方, olefinic carbon; 6) the nature the7)aryl component is veryis important and thealkenyl, reaction rates group in most cases aryl, heteroaryl, benzyl, change in the following order:ofI >the Br X~ group OTf >>onCl; theorR1vinyl group in には以下に示すいくつかの欠点もある.1) most cases aryl, heteroaryl, alkenyl, benzyl, change in the following order: I > Br ~ OTf >> Cl; 7) the R b ⊖水素を および求引基を置換基としてもつオレフィンのいずれも反応に 反応 Heck and rarely alkyl (provided that the alkyl group possesses no hydrogen atoms in theisβ-position), and these groups can and rarelyelectron-donating alkyl (provided that alkyl group possesses hydrogen atomscatalyst in the β-position), and groups can be either or the electron-withdrawing; 8) thenoactive palladium is generated in these situ from suitable b ⊖水素脱離を 適用できるが,一般に電子求引基をもつもののほうがよい結果 もつ基質は Pd 触媒への酸化的付加後速やかに be either electron-donating electron-withdrawing; 8) the active palladium catalyst is generated in situ from suitable , Pd(PPh ) ) and the reaction is usually conducted in the presence of monodentate or precatalysts (e.g., Pd(OAc)2or 3 4 を与える.3) 基質のオレフィン部にさまざまな官能基が存在 起こす傾向があるため,カップリング基質として適していない. Pd(PPh the reaction conducted in theand presence of monodentate or precatalysts (e.g., Pd(OAc) 2, and 3)4) and bidentate phosphine ligands a base; 9) the reaction is is usually not sensitive to water, the solvents need not be bidentate ligands and base; 9) the reaction is2) not sensitive and insertion the solvents need not be しても反応は進行する.エステル,エーテル,カルボン酸,ニ 塩化アリール化合物は反応性が低く,一般に基質としては thoroughlyphosphine deoxygenated; and 10)a the Heck reaction is stereospecific as to thewater, migratory of the palladium thoroughly deoxygenated; the Heck reactionboth is stereospecific migratory insertion thea palladium complex into the olefin andand the 10) β-hydride elimination proceed with as synthe stereochemistry. Thereofare couple トリル,フェノール,ジエンなどはカップリング反応により適 適していない.また最近では,1) 触媒的不斉 反応ofの開 Heck complex into the olefin and the β-hydride elimination both proceed with syn stereochemistry. There are a couple of drawbacks of the Heck reaction: 1) the substrates cannot have 23,26hydrogen atoms on their β-carbons, because their 17, 55,34 した官能基であるが,アリルアルコールは転位反応を起こす傾 発 hydrogen ,2)分子内 Heck 反応 による四級炭素中心の構築 , drawbacks of the Heck reaction:derivatives 1) the substrates on their because their corresponding organopalladium tend to cannot undergohave rapid β-hydrideatoms elimination toβ-carbons, give olefins; and 2) aryl 56,57,47 corresponding organopalladium derivatives tend to undergo rapid β-hydride elimination to give olefins; and 2) aryl 向にある.4) 3)親水性触媒を用いた水中での反応の開発 ,および 4) chlorides オレフィン上の置換形式は反応速度に大きく影 are not always good substrates because they react very slowly. Several modifications were introduced 23,36 they react very slowly. Several modifications were introduced chlorides always1)good substrates because 2) generation of quaternary stereocenters in the intramolecular during theare pastnot decade: asymmetric versions; 響し,一般的には多置換オレフィンほど反応速度は遅い.5) Pd⊘C などの不均一系 Pd 触媒を用いた反応の開発などの改良 23,36 56,57,47 2) generation of quaternary stereocenters in the intramolecular duringreaction; the past17,55,34 decade: 1) asymmetric versions; Heck 17,55,34 3) using water as the solvent with water-soluble catalysts;40 56,57,47 and 4) heterogeneous palladium 末端アルケンのような非対称オレフィンとの反応では,より立 が加えられている . 403) using water as the solvent with water-soluble Heck reaction; catalysts; and 4) heterogeneous palladium on carbon catalysis.40 on carbon catalysis. リール,ベンジル,およびハロゲン化スチリルとオレフィンが アルケニル,ベンジル基であり,まれに 位に水素をもたな 1-3 olefinic compounds at elevated temperatures in the presence of a hindered amine base and catalyticbamount of Pd(0) R11 X R X + + H H R44 R22 R R33 R R11 R Pd(0) (catalytic) Pd(0) (catalytic) ligand, base, solvent ligand, base, heat solvent heat R R44 R R22 R33 R R Arylated or alkenylated Arylated olefin or alkenylated olefin R11 = aryl, benzyl, vinyl (alkenyl), alkyl (no β hydrogen); R22, R33, R44 = alkyl, aryl, alkenyl; X = Cl, Br, I, OTf, OTs, N2++; R = aryl, benzyl, vinyl (alkenyl), alkyl (no β hydrogen); R , R , R = alkyl, aryl, alkenyl; X = Cl, Br, I, OTf, OTs, N2 ; ligand = trialkylphosphines, triarylphosphines, chiral phosphines; base = 2° or 3° amine, KOAc, NaOAc, NaHCO3 ligand = trialkylphosphines, triarylphosphines, chiral phosphines; base = 2° or 3° amine, KOAc, NaOAc, NaHCO3 Mechanism: 58,59,21,22,51,53 58,59,21,22,51,53 Mechanism: 58,59,21, 23,51,53 Heck 反応 の機構は完全には解明され 媒に対する酸化付加 の段階である.このほかにも,アニオン性 【反応機構】 The mechanism of the Heck reaction is not fully understood and the exact mechanistic pathway appears to vary The mechanism of the Heck reaction is not understood and the exactsequence mechanistic pathway appearswith to vary ておらず,また反応条件によっても反応経路が若干異なる.下 またはカチオン性反応中間体を経由する機構がさまざまな実験 subtly with changing reaction conditions. Thefully scheme shows a simplified of events beginning the (0)21, subtly with of changing reaction conditions. The scheme shows a issimplified sequence of of events beginning with the 36 the active Pd(0) catalyst. The rate-determining step the oxidative addition Pd into the C-X bond. 図はgeneration 0 価の Pd 触媒によって進行する反応の一般的な機構を示 結果を説明するために提唱されている . (0) (0) generation of the active Pd catalyst. The rate-determining step is the oxidative addition of Pd into the C-X bond. To account for various experimental observations, refined and more detailed catalytic cycles passing through anionic, している.この反応の律速段階は,基質の C ⊖ X 結合の refined Pd 触 To account for various experimental observations, cationic or neutral active species have been proposed.21,36and more detailed catalytic cycles passing through anionic, cationic or neutral active species have been proposed.21,36 Pd(0) or Pd(II) complexes (precatalysts) Pd(0) or Pd(II) complexes (precatalysts) - HX - HX R11 X R X LnPd(0) base oxidative reductive base LnPd(0) oxidative addition addition reductive eliminaton eliminaton X R11 R R44 R R22 R R33 R X LnPd(II) LnPd(II) H H X X LnPd(II) LnPd(II) R11 R syn β -hydride syn β -hydride elimination H elimination H Pd(II) L nX Pd(II)LnX R22 1 3 R44 R R1 R3 R R R C-C bond rotation C-C bond rotation H H R44 R R22 R33 R R migratory migratory insertion (syn) insertion (syn) R11 Pd(II) L nX R Pd(II)LnX 4 H 2 3 R4 H R2 R3 R R R 197 197 197 HECK REACTION HECK REACTION HECK REACTION Heck Reaction ◇ 197 Synthetic Applications: Synthetic Applications: Synthetic Applications: Ecteinascidin エクティナサイジン 743 is a potent antitumor agent that was isolated from a marine T. Fukuyama et al. applied the 743(ecteinascidin 743) つ基質を 5 mol% tunicate. Pd 触媒および 20 mol%のホスフィン配位子 【合成への展開】 Ecteinascidin 743 is areaction potent antitumor was isolated from marine tunicate. T. Fukuyama et 60 al.Toward applied this the intramolecular Heck as the keyagent step that in the assembly of thea central bicyclo[3.3.1] ring system. Ecteinascidin 743 is a potent antitumor agent that was isolated from a marine tunicate. T. Fukuyama et 60 al.Toward applied this the は海洋産の被嚢類から単離された抗腫瘍活性化合物である.福 とアセトニトリル中,還流条件下で反応させると,望みの三環 intramolecular Heck reaction as the key step in the assembly of the central bicyclo[3.3.1] ring system. 60 end, the cyclic Heck enamide precursor was exposed to 5assembly mol% of palladium catalyst and 20 mol% of a phosphine ligand intramolecular reaction as the key step in the of the central bicyclo[3.3.1] ring system. Toward this end, the cyclic enamidetoprecursor was exposed to 5分子 mol% of性構造をもつ化合物が palladium catalyst yield. and 20 mol% of a phosphine ligand 山らはこの化合物がもつビシクロ [3. 3. 1] 環を構築する際に 83%の収率で得られた. in refluxing acetonitrile afford the desired tricyclic in 83% isolated end, the cyclic enamidetoprecursor exposed to 5intermediate mol% of palladium catalyst yield. and 20 mol% of a phosphine ligand in refluxing acetonitrile afford thewas desired tricyclic intermediate in 83% isolated 60 in refluxing acetonitrile to afford the desired tricyclic intermediate in 83% isolated yield. 内 Heck 反応 を利用した .すなわち,環状エナミド構造をも BnO BnO BnO RO RO RO Me Me Me I I I Boc Boc Boc N N N N N Me N Me Me Me Me Me Boc Pd2(dba)3 Boc Pd (dba)3 RO Boc 2mol%) (5 Pd2(dba)3 RO N (5 mol%) RO o -tol) P( O 3 N (5 mol%) BnO O -tol)3 P(omol%) N O P(o-tol)3 BnO O O OAc (20 (20 mol%) N BnO O OAc OAc (20 mol%) N CN TEA, CH OAc 3 OAc H 2C N CN TEA, CH OAc H reflux3 H 2C H TEA, CH3CN H reflux H C 83% 2 H HO MsO reflux 83% HO MsO MsO O 83% MsO MsO O O MsO O O Me O Me O Me O Me R = Me O Me O Me R = Me R = Me RO RO RO steps steps steps Me Me Me Me Me Me N N N OH O OH O O HN OH O HN O HN HO H H AcO O AcO O AcO O O MeO Me O MeO Me O MeO Me Ecteinascidin 743 Ecteinascidin 743 Ecteinascidin 743 HO HO HO H H H N N SN S S OH OH OH The introduction of the C3 quaternary center was the major challenge during the total synthesis of asperazine by L.E. The introduction of the C361quaternary center was the major challenge during the total synthesis of asperazine by L.E. address this synthetic problem, a diastereoselective intramolecular Heckmoiety reaction Overman co-workers. 61 To used. Theand α,β-unsaturated amide precursor was efficiently coupled with the tethered aryl iodide in was the おいては,C3 位の第四級炭素の導入が大きな課題であったが, ド部と側鎖のヨウ化アリール部との反応がジアステレオ選択的 address this synthetic problem, a diastereoselective intramolecular Heck reaction was Overman and co-workers. To used. The α,β-unsaturated amide precursor was efficiently coupled with the tethered aryl iodide moiety in was the (dba) ⋅CHCl and one equivalent of (2-furyl) P ligand. The desired hexacyclic product presence of 20 mol% Pd 2 3 3 3 used. The α,β-unsaturated 分子内 amide Heck precursor was efficientlyに進行し,目的とする中間体が単一ジアステレオマーとして coupled with the tethered aryl iodide moiety in the この問題はジアステレオ選択的な 反応one によって解 (dba) ⋅CHCl and equivalent of (2-furyl) P ligand. The desired hexacyclic product was presence of 20 mol% Pd 2 3 3 3 obtained as single in 66% yield. presence of a mol%diastereomer Pd2(dba)3⋅CHCl 3 and one equivalent of (2-furyl)3P ligand. The desired hexacyclic product was 61 obtained as a20single diastereomer in366% yield. 決された .すなわち,20 mol% Pd(dba) ・CHCl 66%の収率で得られた. 2 3 と 20 mol% obtained as a single diastereomer in 66% yield. The introduction of the C361quaternary center was the major challenge during the total synthesis of asperazine by L.E. a,b ⊖不飽和アミ L.Overman E. Overman らによるアスペラジン (asperazine) の全合成に (2 a ⊖ フリル) 3P 存在下に反応を行うと,基質の To address this synthetic problem, diastereoselective intramolecular Heck reaction was and co-workers. H H H NR RN NR RN NR RN H H H O O O NBoc NBoc NBoc O O O N Boc N N Boc Boc O O OI I I Pd2(dba)3·CHCl3 Pd2(20 (dba) 3·CHCl3 mol%) Pd2(dba) 3·CHCl3 (20 mol%) P(2-furyl) (20 mol%)3 P(2-furyl) (20 mol%)3 P(2-furyl) (20 mol%)3 (20 mol%) PMP, DMA PMP, DMA 90 °C PMP, DMA 90 °C 66% 90 °C 66% 66% R = SEM R = SEM R = SEM BocN BocN BocN NR NR NR H H H O O O 3 3 3 O O HO H H O O O O O O NR NR NR steps steps steps NH NH NH 3 3 3 NH NH NH N H N H O H N H H O NH H O NH NH Ph Ph Ph NH H NH H OH NH O O O HO O HN HN H HN H Ph Ph Asperazine Ph Asperazine Asperazine NBoc NBoc NBoc The total synthesis of the potent anticancer macrocyclic natural product Heck lasiodiplodin was achieved in the laboratory また,A. Fürstner らにより抗腫瘍活性をもつラシオジプロ 体の合成に 反応 が用いられている.アリールトリフラー 62 TheA.total synthesis of key the potent anticancer step macrocyclic natural was achieved in the derivative, laboratory of Fürstner. The macrocyclization was carried outproduct by thelasiodiplodin alkene metathesis of a styrene which was prepared in excellent yield via an intermolecular Heck reaction between an aryl triflate and high-pressure of A. Fürstner. Theinkey macrocyclization was carried out reaction by the alkene metathesis of a styrene derivative, which was prepared excellent yield via anstep intermolecular Heck between an aryl triflate and high-pressure 鍵段階である大員環構築の段階では アルケンメタセシス が用い 率でスチレン誘導体が合成された. ethylene gas. which was prepared in excellent yield via an intermolecular Heck reaction between an aryl triflate and high-pressure ethylene gas. ethylene gas. られているが,そのメタセシス反応の基質であるスチレン誘導 62 62 TheA.total synthesis of the potent anticancer macrocyclic natural was achieved in the laboratory ジン(lasiodiplodin) の合成が達成されている .この合成では, トと高圧下のエチレンガスとの 分子間 反応derivative, により,高収 of Fürstner. step was carried outproduct by thelasiodiplodin alkene metathesis of a Heck styrene 62 The key macrocyclization OMe O OMe O OMe O MeO MeO MeO O O O OTf OTf OTf H2C CH2 H(40 2C CH2 H2C bar) CH (40 bar) 2 (40 bar) 3)2 PdCl 2(PPh PdCl 2(PPh3)2 (5 mol%) PdCl 2(PPh3)2 (5 mol%) LiCl, Et3N (5 mol%) LiCl, Et DMF, 903N °C LiCl, Et DMF, 903N °C 20h; 92% DMF, 90 °C 20h; 92% 20h; 92% OMe O OMe O OMe O MeO MeO MeO O O O styrene derivative styrene derivative styrene derivative OMe O OMe O OMe O steps steps steps MeO MeO MeO O O O Lasiodiplodin Lasiodiplodin Lasiodiplodin 310 ◇ ①根岸クロスカップリング 155 根岸クロスカップリング (Negishi Cross−Coupling) 【発見の経緯と特徴】(重要論文1 6,総説7 24,改良と展開25 32) 310 1972 年のニッケル触媒を用いるハロゲン化アルケニルおよ は活性化された亜鉛との直接反応,あるいは有機リチウムまた はマグネシウム反応剤と亜鉛ハロゲン化物(ZnX2) とのトラン NEGISHI CROSS-COUPLING 33,34 びアリールと Grignard 反応剤のカップリング反応 ( 熊田クロス are on スメタル化によって調製できる .6)有機亜鉛反応剤を用い (References page 637) 310 Importance: カップリング )の発見以来,リチウムやマグネシウムよりも陽 るこの反応は,有機リチウム化合物あるいは Grignard 反応剤 NEGISHI CROSS-COUPLING 性度が低い金属からなる有機金属化合物を用いて,カップリン を用いる 熊田クロスカップリング に比べて,求核剤と求電子剤 1-6 are; Modifications on page 637) [Seminal Publications(References ; Reviews7-24 & Improvements25-32] Importance: グ反応の官能基選択性を向上させるという努力が見られた. のいずれに関してもはるかに優れた官能基選択性を示す.7) In 1972, after the discovery of Ni-catalyzed1-6coupling of alkenyl and aryl halides with Grignard reagents (Kumada 7-24 25-32 1976 年に根岸らは,ニッケル触媒を用いるアルケニルアラン 有機亜鉛化合物を用いる他の利点として,高い反応性・高い位 [Seminal Publications Reviews ; Modifications & Improvements ] of the process, the cross-coupling), it became apparent that in ;order to improve the functional group tolerance (有機アルミニウム反応剤) のクロスカップリング反応として, 置選択性・高い立体選択性・幅広い適用範囲・幅広い応用性・ organometallic coupling partners should contain less electropositive metals than lithium and magnesium. In 1976, E. In 1972,and afterco-workers the discovery of Ni-catalyzed coupling ofNi-catalyzed alkenyl and alkenyl-alkenyl aryl halides with reagents (Kumada Negishi reported the first stereospecific andGrignard alkenyl-aryl cross-coupling ハロゲン化アルケニルおよびアリールとの立体特異的なアルケ 副反応の少なさ・毒性がほとんどないことがあげられる.8) 1,2 functional group tolerance of the process, the cross-coupling), it became apparent that in order to improve the of alkenylalanes (organoaluminums) with alkenyl- or aryl halides. 2 Extensive research by Negishi showed that2 the ニル⊖アルケニルおよびアルケニル⊖アリールカップリングを報 C (sp ) 同士の反応が最もよく用いられるが,C C (sp) カ organometallic coupling partners should contain less electropositive metals than lithiumare and magnesium. In (sp 1976,)⊖E. best results (reaction rate, yield, and stereoselectivity) are obtained when organozincs coupled in the presence of 3,4,7 Negishi and co-workers reported the first stereospecific Ni-catalyzed alkenyl-alkenyl and 1,2 (0) 2 3 alkenyl-aryl cross-coupling -catalysts. The Pd- or Ni-catalyzed(stereoselective cross-coupling of organozincs and aryl-, alkenyl-, or 告したPd.根岸らによるより詳細な検討の結果,Pd 0) 触媒を ップリングや C (sp ) ⊖C (sp )カップリングも知られている.9) 1,2 by Negishi showed that Pdthe of alkenylalanes with alkenyl- or aryl halides. alkynyl halides is (organoaluminums) known as the Negishi cross-coupling. The general Extensive features ofresearch the reaction are: 1) both Ni- and 用いる有機亜鉛化合物のカップリング反応が,反応速度・収 有機亜鉛化合物のほかに,有機アルミニウムおよび有機ジルコ best results (reaction rate, yield, and stereoselectivity) are obtained when organozincs are coupled in the presence of phosphine complexes work well as catalysts. However, the Pd-catalysts tend to give somewhat higher yields and (0) 3,4,7 -catalysts. The and Pd- their or Ni-catalyzed stereoselective organozincs aryl-,有機アルミニウムあ alkenyl-, or Pd better stereoselectivity, functional group tolerance ニウム化合物も用いることができる.10) iscross-coupling better; 2) the of active catalysts and are relatively unstable 率・立体選択性の観点から最も良好な結果を与えることがわか (0) (II) alkynyl halides is known as but the these Negishi cross-coupling. general of theNi reaction both Ni- and Pd- and Pd(0)-complexes can be generatedThe in situ fromfeatures more stable - and are: Pd(II)1) -complexes with a Ni 7 った3,4,phosphine .パラジウムあるいはニッケル触媒による有機亜鉛化 るいは有機ジルコニウム化合物の反応性が十分でない場合には, complexes work well as catalysts. However, the Pd-catalysts tend to give somewhat highercatalyst, yields and reducing agent (e.g., 2 equivalents of DIBAL-H or n-BuLi); 3) in the absence of the transition metal the better stereoselectivity, their with functional grouphalides tolerance is better; 2) theextent; active 4) catalysts relatively 合物とハロゲン化アリール,アルケニル,アルキニルの立体選 亜鉛の塩を加えてトランスメタル化すればよい.この方法を 複 organozinc reagents do and not react the alkenyl to any appreciable the mostare widely used unstable ligand is (0) (0) Pd -complexes butchiral thesephosphine can be generated in situbeen fromsuccessfully more stable Ni(II)- and Pd(II)various -complexes with a Ni -3,and 35 used; but other achiral and ligands have 5) the organozinc PPh 択的なクロスカップリング反応は 根岸クロスカップリング と呼 合金属触媒 と呼ぶ .11) を含む有機 reducing agent 2 equivalents of DIBAL-H 3) inhalide the absence the Al,Zr,B,Sn,Cu,Zn transition metal reagents can be(e.g., prepared by either direct reactionorofn-BuLi); the organic with zincofmetal or activated zinccatalyst, metal orthe by 33,34 used ligand is organozinc reagents do not react with the alkenyl halides to any appreciable extent; 4) the most widely ばれている.この反応の一般的な特徴は以下の通りである.1) 金属化合物のうち,通常有機亜鉛化合物がパラジウム触媒クロ 6) the use of transmetallation of the corresponding organolithium or Grignard reagent with a zinc halide (ZnX2); achiral and for chiral phosphine havegroup been tolerance successfully used;coupling 5) thepartners various than organozinc PPh 3, but other organozinc reagents allows a much greaterligands functional in both in the (たと ニッケルおよびパラジウムのホスフィン錯体が触媒として働く スカップリング反応において最も反応性が高く,添加物 reagents can be prepared by either direct reaction of the organic halide with zinc metal or activated zinc metal by Kumada cross-coupling where organolithiums and Grignard reagents are utilized as coupling partners; 7) or other 33,34 が,パラジウム触媒を用いたほうが収率および立体選択性が若 えば, 鈴木クロスカップリング における塩基) 6) scope theを必要としな useand of transmetallation of the Grignard reagent with and a zinc halide (ZnX 2); wide advantages of the usecorresponding of organozincsorganolithium include: highorreactivity, high regio-, stereoselectivity, 2 20 organozinc reagents allows for a much greater functional group tolerance in both coupling partners than in the applicability, few side reactions and almost no toxicity; 8) theいreaction is mostly used for the coupling of two C(sp ) 干高く,官能基選択性でも優れている.2) 触媒活性種は比較 .根岸クロスカップリング の制約は以下の通りである.1) 3 Kumada cross-coupling Grignardare reagents are utilized as coupling partners; 7) other carbons but C(sp2)-C(sp)where as wellorganolithiums as C(sp2)-C(spand ) couplings well-known; 9) besides organozincs, compounds of 的不安定な Ni (0) および Pd (0) 錯体であるが,これらはより安 ホモプロパルギル亜鉛は反応するがプロパルギル亜鉛はカップ advantages of the organozincs high reactivity, high regio-, and stereoselectivity, and Al and Zr can alsouse be ofutilized; 10) if include: the organoaluminum and organozirconium derivatives arewide not scope sufficiently 2 ) applicability, few side reactions and almost no toxicity; 8) the reaction is mostly used for the coupling of two C(sp 定 な Ni (II)お よthey び Pd (II) 錯 体 に 還 元 剤 (た と え ば,2 当 量 の リングしない.2) 第二級および第三級のアルキル亜鉛は異性 reactive, can be transmetallated by the addition of zinc salts, and this protocol is referred to as the double metal 2 2 3 35 carbons butand C(sp )-C(sp) as well as C(sp )-C(sp ) couplings are well-known; 9) besidesare organozincs, compounds of 11) of all the various organometals (Al, Zr, B, Sn, Cu, Zn), organozincs usually the most reactive catalysis; DIBALAl ⊖ Hand や nZr ⊖ BuLi) 化を起こしてしまうが,第一級アルキル亜鉛およびベンジル亜 can を作用させることで系中で容易に発生さ also be utilized;reactions 10) if the anduse organozirconium derivatives areinnot sufficiently in Pd-catalyzed cross-coupling andorganoaluminum do not require the of additives (e.g., bases as Suzuki cross20 reactive, can遷移金属触媒非存在下では,有機亜鉛 be transmetallated by the addition of zincofsalts, and thiscross-coupling protocol is referred topropargylzincs as有機亜鉛化合物の高い反 the doubledo metal せることができる.3) 鉛は問題なくカップリングする.3) Some of the limitations the Negishi are: 1) not couplings)they to boost the reactivity; 35 and 11) of all the various do; organometals (Al,and Zr, B, Sn, Cu, Zn), organozincs are usually the most reactive catalysis; couple well but homopropargylzincs 2) secondary tertiary alkylzincs may undergo isomerization, but cross反応剤はハロゲン化アルケニルとまったく反応しない.4) 応性のために,より反応性が低い有機スズ化合物の反応 in Pd-catalyzed cross-coupling reactions and not 最 requireresults; the use of 3) additives (e.g., as inorSuzuki cross- (カル couplings of primary alkyl- and benzylzincs givedosatisfactory and due to the highbases reactivity organozincs, 20 couplings) to boost the reactivity; Some of the limitations of the Negishi cross-coupling are: 1) propargylzincs do not もよく用いられる配位子は PPh であるが,他のアキラルある ボニル化を伴う カップリング の項,p. 436 参照) とは異な Stille 3 CO insertion usually does not happen unlike in the case of less reactive organotins (see carbonylative Stille crosscouple well but homopropargylzincs do; 2) secondary and tertiary alkylzincs may undergo isomerization, but crosscoupling). いはキラルなホスフィン配位子も問題なく利用できる.5)さ り,通常,一酸化炭素の挿入を伴うカップリングは困難である. couplings of primary alkyl- and benzylzincs give satisfactory results; and 3) due to the high reactivity or organozincs, NiLn or PdLn まざまな有機亜鉛反応剤が,有機ハロゲン化物と金属亜鉛また CO insertion usually does not happen unlike in the case of less reactive organotins (see carbonylative Stille R1 crossR2 R2 Zn X (catalytic) R1 X + coupling). R1 = aryl, alkenyl, R1 Xacyl alkynyl, X = 1Cl, Br, I, OTf, OAc R = aryl, alkenyl, alkynyl, acyl X = Cl, Br, I, OTf, OAc Mechanism: + Coupled product R1 R 2 solvent (ligand) NiLn /orL PdL n L = PPh (catalytic) 3, P(o-tolyl)3, dppe, dppp, dppb, dppf, solvent / L (ligand) BINAP, diop, chiraphos L = PPh3, P(o-tolyl)3, dppe, dppp, dppb, dppf, BINAP, diop, chiraphos R2 = aryl, alkenyl, allyl, benzyl R2 homopropargyl Zn X homoallyl, X = Cl, Br, I R2 = aryl, alkenyl, allyl, benzyl homoallyl, homopropargyl X = Cl, Br, I Coupled product 10 【反応機構】 10 10 Mechanism: Ni-catalyzed process: Pd-catalyzed process: L2Ni(II)X2 Pd(0) or Pd(II) complexes (precatalysts) Pd-catalyzed process: RZnX Ni-catalyzed2process: transmetallation L2Ni(II)X2 2 RZnX L2Ni(II)R2 transmetallation R' X R' R' R R L2Ni(II) oxidative addition oxidative addition reductive elimination R' oxidative L2Ni(II)R2 addition ' X R' reductive elimination L X 2Ni (II) L2Ni(II) oxidative R'addition X R R' L2Ni(II) R R X R' 2 XZnX 2 XZnX R R reductive elimination RZnX reductive transmetallation R R elimination RZnX X R' coordination R'coordination X Pd(0) or Pd(II) complexes (precatalysts) LnPd(0) L2Ni(II) L2Ni(II) XZnX R' R R' R LnPd(0) R R' X X oxidative addition R' LnPd(II) X R' LnPd(II) X reductive elimination transmetallation R' XZnX R R' R' oxidative addition reductive elimination RZnX R' LnPd(II) R R' LnPd(II) R XZnX RZnX transmetallation XZnX transmetallation 311 NEGISHI CROSS-COUPLING NEGISHI CROSS-COUPLING NEGISHI CROSS-COUPLING Synthetic Applications: 311◇ 311 ① Negishi Cross − Coupling 311 根岸クロスカップリング は,T. Sammakia 【合成への展開】 ジンと ZnCl2 のトランスメタル化によって調製した有機亜鉛反 Synthetic Applications: The Negishi cross-coupling was utilized during the final stages of the total synthesis of caerulomycin C⊖トリブチルス for the 応剤とカップリングする.興味深いことに,2 らによってカエルロマイシン C (caerulomycin C)の全合成の最 Synthetic Applications: preparation the bipyridyl system by T. 36Sammakia et al.36stages The highly substituted 6-bromopyridine was coupled, in The Negishiofcross-coupling was utilized during the final of the total synthesis of caerulomycin C forでは,目的 the タニルピリジンを用いる クロスカップリング 終段階で,ビピリジル構造の構築に用いられた .Pd(dba) ⊘ Stille 2 3 36 system, with 2-lithiopyridine, which was transmetallated by ZnCl in situ to the presence of Pd The Negishi cross-coupling was utilized during the final stages of the total synthesis of caerulomycin for the 2(dba)3/PPh 3 catalyst 2C preparation of the bipyridyl system by T. Sammakia et al.36 The highly substituted 6-bromopyridine was coupled, in PPh3 触媒存在下,多置換 6organozinc ⊖ブロモピリジンを,2 ⊖リチオピリ 物は低収率でしか得られない. the presence corresponding reagent. Interestingly, the analogous Stille cross-coupling using was 2-tributylstannyl preparation ofofthe system by T. Sammakia et al. The highly substituted 6-bromopyridine coupled, in the Pdbipyridyl 2(dba)3/PPh3 catalyst system, with 2-lithiopyridine, which was transmetallated by ZnCl2 in situ to pyridine was far less efficient and gave a low yield of the desired product. (dba) /PPh catalyst system, with 2-lithiopyridine, which was transmetallated by ZnCl the presence of Pd 2 3 3 2 in situ to the corresponding organozinc reagent. Interestingly, the analogous Stille cross-coupling using 2-tributylstannyl the corresponding Interestingly, analogous pyridine was far lessorganozinc efficient andreagent. gave a low yield of the the desired product.Stille cross-coupling using 2-tributylstannyl OMe pyridine was product. OMe OMefar less efficient and gave a low yield of the desired MeO MeO MeO Br Br Br OMe OMe N N N N O MeO Li MeO MeO ZnCl2, N Pd2(dba) Li 3 Li PPh3,NTHF, r.t. ZnCl2,80% Pd2(dba)3 ZnCl 2(dba) PPh23,,Pd THF, r.t. 3 PPh380% , THF, r.t. 80% O N(i-Pr) O 2 N(i-Pr)2 N(i-Pr)2 N N N MeO OMe OMe N N N O O N(i-Pr) O 2 OMe OMe MeO MeO steps steps steps H N H N H N OH N N N Caerulomycin C OH N N OH Caerulomycin C Caerulomycin C N N(i-Pr)2 N(i-Pr)2 有機亜鉛化合物である左側のサブユニットと (E) キンを (E)⊖体の三置換ジルコニウムに変換したのち,無水 The modified Negishi protocol was used in ⊖体のヨウ J.S. Panek’s total synthesis of (–)-motuporin to couple the left-hand 37 left-hand subunit was the prepared by subunit organozinc compound with the right-hand subunit (E)-vinyl 化ビニルである右側のサブユニットをカップリングさせる 根岸 ZnCl とトランスメタル化して調製した.得られたビニル亜鉛 2 iodide. ofThe The modified Negishi protocol was used in J.S. Panek’s total synthesis (–)-motuporin to couple left-hand 37 the Schwartz hydrozirconation of a disubstituted alkyne to give an (E)-trisubstituted zirconate, which was The modified Negishi protocol was used in J.S. Panek’s total synthesis of (–)-motuporin to couple the left-hand The left-hand subunit5 mol%の was prepared by3)4 存在 subunit organozinc compound the (-) right-hand subunit (E)-vinyl iodide. カップリングの改良法 が,J. S. Panek with らによる ⊖ モツポリ に 1 当量の (E) Pd (PPh 37⊖体のヨウ化ビニルを subsequently transmetalated anhydrous ZnCl2.subunit The resulting vinylzinc was immediately treated with one The left-hand subunit was prepared by subunit organozinc compoundwith with the right-hand (E)-vinyl iodide. species the Schwartz hydrozirconation of 37a disubstituted alkyne to give an (E)-trisubstituted zirconate, which was ン〔(-) ⊖ motuporin〕 の全合成に用いられた .有機亜鉛化合物 下で直ちに作用させると, (E, ⊖ジエンのカップリング生成 E) equivalent of the (E)-vinyl iodide in the presence of 5 mol% Pd(PPh afford the (E,E)-diene coupled product with the Schwartz hydrozirconation of a disubstituted alkyne to give an (E)-trisubstituted zirconate, which was 3)4 to subsequently transmetalated with anhydrous ZnCl2. The resulting vinylzinc species was immediately treated with one complete stereoselectivity. subsequently transmetalated withinanhydrous ZnClof The resulting vinylzinc species was immediately treated with one 2. 5 は,まず によって内部アル 物が完全な立体選択性で得られた. Schwartz equivalent ofのヒドロジルコニウム化 the (E)-vinyl iodide the presence mol% Pd(PPh 3)4 to afford the (E,E)-diene coupled product with equivalent of the (E)-vinyl iodide in the presence of 5 mol% Pd(PPh ) to afford the (E,E)-diene coupled product with 3 4 complete stereoselectivity. OTBDPS complete stereoselectivity. I (E) OTBDPS OTBDPS CH3 (E) I (E) HN I O CH3 CH3 HN O HN O i-Pr NHBoc Right-Hand Subunit i-Pr NHBoc i-Pr NHBoc Right-Hand Subunit Right-Hand Subunit Me Me Me Me (E)Me ZnCl OMe (E) ZnCl (E) ZnCl OMe Left-Hand Subunit OMe + + + Me 1. Cp2Zr(H)Cl, THF 50 °C, 1h 1. Cp2Zr(H)Cl, THF ) (hydrozirconation 1. Cp50 2Zr(H)Cl, °C, 1h THF 50 2°C, (3 1h equiv)) ZnCl hydrozirconation (2. ) (hydrozirconation 2 min, r.t 2. ZnCl2 (3 equiv)) (transmetallation (3 equiv) 2. ZnCl 2 2 min, r.t 2 min, r.t ) (transmetallation (transmetallation) Me Left-Hand Subunit Left-Hand Subunit Me Me Me OMe Me OMe OMe Me Me Me(E) Me Me(E) Me (E) Me(E) HN OMe Pd(PPh3)4 (5 mol%) THF, r.t., 20 min Pd(PPh3)4 (5 mol%) Pd(PPh 3)4 (5 THF, 81% r.t., 20mol%) min THF, r.t., 20 min 81% 81% (E) (E) OMe OMe HN Me HN OTBDPS OTBDPS OTBDPS CH3 O CH3 CH3 O O NHBoc Me Me Me NHBoc NHBoc Fragment in the total synthesis of (−)-motuporin Me Me Fragment in the total synthesis of (−)-motuporin Fragment in the total synthesis of (−)-motuporin The convergent and stereocontrolled synthesis of (+)-amphidinolide J was achieved in the laboratory of D.R. 38 To installJ〔(+) the (E)C7-C8 doubleJ〕 bond stereoselectively, a homoallylic alkylzinc was coupled with Williams. (+) ⊖アンフィジノリド ⊖ amphidinolide の収束的か ウ化ホモアリルに 当量の BuLi ZnCl2 と t ⊖inreagent The convergent and stereocontrolled synthesis of (+)-amphidinolide J was 2achieved theを作用させたのち laboratory of D.R. 38 iodideand an (E)-vinyl using the Negishi reaction. The very stable homoallylic alkylzinc species was prepared in of oneD.R. pot The convergent stereocontrolled synthesis of (+)-amphidinolide J was achieved in the laboratory (E)C7-C8 double bond stereoselectively, a homoallylic alkylzinc reagent was coupled with Williams.38 To installD.the つ高立体選択的な合成が R. Williams らによって達成され トランスメタル化させることで調製している.これに,触媒量 from the corresponding by treatment with two equivalents of t-BuLi followed bywas transmetallation To install the homoallylic (E)-Negishi C7-C8 iodide double bond stereoselectively, a homoallylic alkylzinc reagent coupled Williams. an (E)-vinyl iodide using the reaction. The very stable homoallylic alkylzinc species was prepared in onewith pot with ZnCl addition of the (E)-vinyl iodide in the presence of catalytic amounts Pd(PPh ) the coupled た38.(E) ⊖ C7 ⊖ C8 二重結合を立体選択的に導入するために, の Pd ( PPh ) 存在下, (E) ⊖体のヨウ化ビニルを加えると,1, 5⊖ an (E)-vinyl iodide using the Negishi reaction. The very stable homoallylic alkylzinc species prepared in one1,5pot 2. The 3was 4 gave 3 4 from the corresponding homoallylic iodide by treatment with two equivalents of t-BuLi followed by transmetallation diene product in high yield. from ZnCl the corresponding homoallylic iodide by treatment with two equivalents of t-BuLi followed by transmetallation with of the (E)-vinyl iodide in the presence of catalytic amounts Pd(PPh ホモアリル亜鉛反応剤と (E) ⊖体のヨウ化ビニル間に 根岸反応 ジエン構造をもつ生成物が高収率で得られる. 2. The addition 3)4 gave the coupled 1,5with ZnCl of the (E)-vinyl iodide in the presence of catalytic amounts Pd(PPh3)4 gave the coupled 1,52. The diene product in addition high yield. を適応している.この安定なホモアリル亜鉛種は,対応するヨ diene product in high yield. I Me H I I OTHP Me H OTHP -BuLiOTHP (2 equiv) Me1. tH THF, -78 °C 1. t-BuLi (2 equiv) 1. -BuLi2 -78 (2 (1 equiv) 2. tZnCl THF, °C THF, THF, -78-78 °C °C to r.t. 2. ZnCl2 (1 equiv) 2. ZnCl 2 (1 THF, -78 °Cequiv) to r.t. THF, ZnCl -78 °C to r.t. ZnCl ZnCl Me H OTHP Me H Me H OTHP OTHP SEMO CH3 SEMO SEMO CH3 CH3OR I OR OR Pd(PPh I 3)4 (5 mol%) I THF, 22 °C Pd(PPh mol%) 3)4 3(5steps 84% for Pd(PPh (5 °C mol%) 3)422 THF, R = TBDPS THF, °C 84% for22 3 steps 84% for 3 steps R = TBDPS R = TBDPS CH3 CH3 SEMO SEMO SEMO 7 7 7 Me H 8 CH3 OR CH3 OR OR 8 8 HO steps steps steps OTHP Me coupled H OTHP 1,5-diene product Me H OTHP 1,5-diene coupled product 1,5-diene coupled product HO HO CH3 CH3 CH3 CH3 CH3 CH3 CH H 3 8 CH3 7 8 O H 7 H H CH3 O OO H H CH3 Me H CH3 O J Me (+)-Amphidinolide H O Me H (+)-Amphidinolide J (+)-Amphidinolide J 7 8 448 SUZUKI CROSS-COUPLING 448 ◇ ②鈴木クロスカップリング / 鈴木−宮浦クロスカップリング (SUZUKI-MIYAURA CROSS-COUPLING) 448 (References are on page 691) SUZUKI CROSS-COUPLING 鈴木クロスカップリング/鈴木−宮浦クロスカップリング (SUZUKI-MIYAURA CROSS-COUPLING) Importance: 224 ; Reviews are; on Modifications ] [Seminal Publications(References page 691) & Improvements Cross−Coupling/Suzuki−Miyaura Cross−Coupling (Suzuki ) 1-3 4-38 39-49 Importance: In 1979, A. Suzuki and N. Miyaura reported the stereoselective synthesis of arylated (E)-alkenes by the reaction of 11 1-3 39 49 4-38 39-49 1 3 4 38 The palladium-catalyzed cross-coupling alkenylboranes with aryl halides in,改良と展開 the presence catalyst.& (重要論文 ,総説 ) of a palladium ; Reviews ; Modifications Improvements ] [Seminal Publications び位置選択的 である.7) 宮浦カップリング B アルキル鈴木 【発見の経緯と特徴】 reaction between organoboron compounds and organic halides or triflates provides a powerful and general method 3 1979 年に,パラジウム触媒存在下における 1 アルケニルボ 法 を用いると sp 混成アルキル型ボランをカップリングできる. for1979, the formation carbon-carbon bonds known as the Suzuki synthesis cross-coupling. There(E)-alkenes are severalbyadvantages In A. Suzukiofand N. Miyaura reported the stereoselective of arylated the reactiontoofthis 11 ランとハロゲン化アリールの反応を用いたアリール化 (E) アpalladium また反応の欠点は, 1) 一般にハロゲン化アリールの反応が遅い. method: 1) mild with reaction availability of many boronic acids; 3) the inorganic by-products are The palladium-catalyzed cross-coupling alkenylboranes arylconditions; halides in 2) thecommercial presence of a catalyst. 1 easily removed from the reaction mixture, making the reaction for industrial 4) boronic are reaction between organoboron compounds and炭素結合 organic halides or triflates provides processes; a powerful and generalacids method ルケンの合成が鈴木と宮浦により報告された .炭素 2)suitable 溶媒に溶解している酸素により自己カップリングした副生 environmentally and much less toxic known than organostannanes (see Stille coupling); 5) starting tolerate a for the formationsafer of carbon-carbon bonds as the Suzuki cross-coupling. There are severalmaterials advantages to this 形成に強力かつ一般的方法である有機ホウ素化合物と有機ハロ 成物が形成する.3)ホスフィンに結合したアリール基のカッ wide variety of reaction functional groups, 2) and they are availability unaffectedofby water; 6) the coupling is generally stereo- and method: 1) mild conditions; commercial many boronic acids; 3) the inorganic by-products are ゲン化物のパラジウム触媒クロスカップリング反応を 鈴木 プリング生成物が得られることがある.4) 反応は塩基が存在 regioselective; 7)the sp3reaction -hybridized alkyl boranes can宮 also be coupled B-alkylprocesses; Suzuki-Miyaura cross-coupling. easily removedand from mixture, making the reaction suitable by forthe industrial 4) boronic acids are Some disadvantages are: 1) generally aryl halides react sluggishly; 2) by-products such as self-coupling products are environmentally safer and much less toxic than organostannanes (see Stille coupling); 5) starting materials tolerate a 浦クロスカップリング と呼ぶ.この方法には多くの利点がある. しないと進行しないため,光学活性化合物のラセミ化やアル formedvariety because solvent-dissolved oxygen; coupling products phosphine-bound arylsisare often formed; andand 4) wide of of functional groups, and they3)are unaffected by of water; 6) the coupling generally stereo3 多くのボロン酸が市販品として 1)反応条件が温和である.2) ドール縮合などの副反応が併発することがある. 鈴木 宮浦カ since the reaction proceed in theboranes absencecan of aalso base, side reactions as Suzuki-Miyaura racemization of cross-coupling. optically active regioselective; anddoes 7) spnot -hybridized alkyl be coupled by thesuch B-alkyl compounds or aldol condensations occur. Improvements ofップリング the Suzuki cross-coupling include the development of 入手できる.3) 副生成物である無機物は反応混合物から容易 の改良法には,反応性の乏しいハロゲン化アリール Some disadvantages are: 1) generally aryl halides react sluggishly; 2) by-products such as self-coupling products are 39,40 42,44,50 39, 40 3 the ability to react sp3-hybridized alkyl halides, catalysts facilitating coupling of unreactive aryl3)halides, formed because of solvent-dissolved oxygen; coupling products of phosphine-bound aryls are often formed; andand 4) に除去でき,工業的プロセスに適している.4) ボロン酸は環 のカップリングを促進する触媒の開発 ,sp 混成ハロゲン化 45-47 the use alkyl, alkenyl, aryl,proceed and alkynyl in place of boronic acids. since theofreaction does not in thetrifluoroborates absence of a base, side reactions such as racemization of optically active 42, 44,50 境に安全で有機スズ化合物より毒性が少ない (Stille クロスカッ アルキルとの反応 ,またボロン酸の代わりにアルキル, compounds or aldol condensations occur. Improvements of the Suzuki cross-coupling include the development of 39,40 the ability to react sp3-hybridized alkyl halides,42,44,50 and catalysts facilitating coupling of unreactive aryl halides, プリング ,p. 438 を参照) .5)出発原料は多くの官能基を許容 アルケニル,アリール型トリフルオロボラートの使用があ the use of alkyl, alkenyl, aryl, and alkynyl trifluoroborates in (catalytic) place of boronic acids.45-47 Pd(0) し,水にも影響されない.6)カップリングは一般に 立体およ る45 47. R1 R2 2 1 + X B(R)2 R X + R B(R)2 base, ligand Coupled product (0) Pd (catalytic) R1 R2 2 + phosphate); X B(R)2 + R11 = B(R) X OH, O-alkyl; R2 = alkenyl, aryl, alkyl; X = Cl, Br,I, R alkyl,2 allyl, alkenyl, alkynyl, aryl; R =Ralkyl, OTf, OPO(OR)2 (enol base, ligand + Coupled product base = Na2CO3, Ba(OH)2, K3PO4, Cs2CO3, K2CO3, TlOH, KF, CsF, Bu4F, NaOH, M ( O-alkyl) R1 = alkyl, allyl, alkenyl, alkynyl, aryl; R = alkyl, OH, O-alkyl; R2 = alkenyl, aryl, alkyl; X = Cl, Br,I, OTf, OPO(OR)2 (enol phosphate); base = Na2CO3, Ba(OH)2, K3PO4, Cs2CO3, K2CO3, TlOH, KF, CsF, Bu4F, NaOH, M+(-O-alkyl) Mechanism: 51-55,24,56,57,50,58-60 51 55,24,56,57,50,58 60 The mechanism of the 鈴木 Suzuki 宮浦カップリングの反応機 cross-coupling is analogous to 錯体にトランスメタル化しないが,相当するアート錯体は容易 the catalytic cycle for the other cross-coupling reactions 【反応機構】 51-55,24,56,57,50,58-60 and has four distinct steps: 1) oxidative addition of an organic halide to the Pd(0)-species to form Pd(II); 2) exchange Mechanism: 構は他のクロスカップリング反応の触媒サイクルと同様であり にトランスメタル化する.ホウ素化合物をアニオンで四級化す (II) of the anion attached to the palladium for the anion of the base (metathesis); 3) transmetallation between Pd and (0) 四段階から構成される.1) Pd ( 0) に対する有機ハロゲン化物 ると,アルキル基の求核性が増加してトランスメタル化段階に the alkylborate and 4)cross-coupling reductive elimination to form sigma bond of Pd . reactions Although The mechanismcomplex; of the Suzuki is analogous to the the C-C catalytic cycle forand the regeneration other cross-coupling (II) (0) thetocorresponding ate-complexes undergo organoboronic acids do not 1) transmetallate to the of Pdan -complexes, to form Pd(II)readily ; 2) exchange and has four distinct steps: oxidative addition organic halide the Pd -species の酸化付加による Pd (II)の形成.2) 塩基によるパラジウムに おけるパラジウムへの移動を促進するからである.非常に嵩高 (II) transmetallation. The quaternization of for thethe boron atom withbase an anion increases3)the nucleophilicitybetween of the alkyl and of the anion attached to the palladium anion of the (metathesis); transmetallation Pd group 結合したアニオン配位子の交換.3)Pd (II)中間体とアルキル く電子豊富な配位子 P (t Bu)3 は,酸化付加段階を促進するた (0) and it accelerates its transfer to reductive the palladium in the transmetallation and electron-rich (e.g., the alkylborate complex; and 4) elimination to form the C-C step. sigmaVery bondbulky and regeneration of Pdligands . Although (II) ボラート錯体とのトランスメタル化.4) め,他の方法では使えない塩化アリールの反応を触媒する. of 還元脱離による otherwise aryl chlorides by accelerating the rate of the oxidative P(t-Bu)3) increase the corresponding ate-complexes readily undergo organoboronic acidsthe do reactivity not transmetallate to theunreactive Pd C-complexes, addition step. transmetallation. The quaternization of the boron atom with an anion increases the nucleophilicity of the alkyl group C s 結合の形成と Pd (0)の再生である.有機ボロン酸は Pd (II) and it accelerates its transfer to the palladium in the transmetallation step. Very bulky and electron-rich ligands (e.g., P(t-Bu)3) increase the reactivity of otherwise unreactive aryl chlorides by accelerating the rate of the oxidative addition step. L Pd(0) n R1 R 2 reductive elimination R1 R 2 L reductive elimination L(n-1)Pd (II) L(n-1)Pd(II) transmetallation R1 R 2 L R1 B(R)2 R1 B(R)2 transmetallation OR L + RO B(R)2 + organoborane R1 R2 + organoborane OR 1 R M+(-OR) base M+(-OR) base oxidative addition2 R B(R)2 X oxidative addition LnPd(II) LnPd(II) borate OR 1 R L + RO B(R)2 R2 X LnPd(0) X R2 X R2 M+(-OR) metathesis B(R)2 M+(-OR) borate LnPd (II) OR LnPd(II) OR R2 OR R2 + metathesis M ( X) M+(-X) 449 SUZUKI CROSS-COUPLING (SUZUKI-MIYAURA CROSS-COUPLING) ② Suzuki Cross − Coupling/Suzuki − Miyaura Cross − Coupling ◇ 449 449 Synthetic Applications: 酸エステルの鈴木 宮浦カップリング が用いられ,化合物のビ S. J. Danishefsky らによるプロテオソーム 【合成への展開】 SUZUKI CROSS-COUPLING During the total synthesis of the proteosome inhibitor TMC-95A by S.J. Danishefsky et al., the biaryl moiety of the 61 (SUZUKI-MIYAURA CROSS-COUPLING) 阻害剤 TMC compound 95A の全合成にヨウ化アリールとアリールホウ was assembled in good yield by the Suzuki アリール骨格が収率よく構築された cross-coupling of an aryl iodide and . an arylboron intermediate.61 Synthetic Applications: 449 O During the total synthesis of the proteosome inhibitor TMC-95A byOS.J. Danishefsky et al., theOH biaryl moiety of the SUZUKI CROSS-COUPLING 449 N R O was assembled in good yield by the Suzuki compound cross-coupling of an arylHOiodide and an arylboron Boc O (SUZUKI-MIYAURA CROSS-COUPLING) 61 N intermediate. B H SUZUKI CROSS-COUPLING O Boc N O HN O O OH O Cbz steps HO O biaryl N moiety of NHthe N O S.J. Danishefsky et HO During the total synthesis of (E) the proteosome inhibitor TMC-95A al., the R Synthetic O Applications: 2 K2CO3, DME, BocN by O NH HO Narylboron Hcross-coupling of an aryl iodide and compound assembled in good yield Suzuki an 80 °C by the B was H R 61 N O O N O HN Boc of the proteosome 2h;2(dppf) 75% inhibitor intermediate. During the total synthesis TMC-95ANHCbz by S.J. Danishefsky et al., the biaryl of the O PdCl N moiety 2 H O N H an arylboron O OMewas assembled compound in good CH yield of an aryl iodide and I 2Cl2by the Suzuki cross-coupling OMe O + H 61 Cbz intermediate. OOH N O R=OBn O steps HO TMC-95A (E) NH2 K2CO3, DME, N O NH HO O HO H N R O 80 ° C Boc R O O N O O N 62OH N NHCbz 2h; 75% B H the BThey utilized The antitumor product H N epothilone A was synthesized in the laboratory of J.S. Panek. HO O O natural H HN N Boc O OMe 3 R O O I PdCl (dppf) OMea (Z)-iodoalkene for the construction 2 2 Boc -hybridized alkylborane and alkyl Suzuki between an sp O A(epothilone O N O of the N 抗 腫 瘍 活 性 天然 物 でcross-coupling あるエポチロ ン A) が いる末端アルキンのヒドロホウ素化反応により合成され,これ CH Cl 2 2 R=OBn B + The alkylborane HTMC-95A main fragment. was prepared by hydroborating the terminal alkene with 9-BBN andH the (Z)Cbz N O O 62 3 steps HO O PdCl O ヨードアルケンとともにパラジウム触媒と塩基を添加 O HN 2(dppf)sp 2catalyst J. S. Panek らによって合成された .主骨格の構築は 混成 and the に (Z) (E) theK iodoalkene was addedBoc along with palladium base. N O NH2 CO , DME, N O 2 3 N O CH2Cl2 NH H H + H 62 80 ° C Cbz R 宮 OAc product epothilone steps アルキルボランと (Z) ヨードアルケンの アルキル鈴木 して行われた. B They utilized the BThe antitumor natural A was synthesized in the laboratory of J.S. Panek. O HO N O (E) NH2 2h;375% 3 NN O N NHCbz O and a (Z)-iodoalkene for the construction 2CO H betweenKan -hybridized alkylborane of the alkyl Suzuki sp, DME, NH cross-coupling H HH Oで達成された.アルキルボランは OMe I 浦カップリング 9 BBN を用 80 ° C OMeterminal alkene with 9-BBN and (S) Rby hydroborating the O mainS fragment. The alkylborane was prepared the (Z)OAc N O NHCbz 2 2h;Pd(dppf)Cl 75% N R=OBn TMC-95A iodoalkene H I with the palladium catalyst and the base. N was added along H O OMe I (Z) O OMe Cs2CO3, DMF, O BnO OTBS (S) S OAc H2O, r.t.; 60% + R=OBn TMC-95A N laboratory of J.S. Panek.62 They utilized the BThe antitumor natural product epothilone A was synthesized in the O OTBS 3 BnO cross-coupling OTBS BR (Z) 2 S Suzuki (S) for the construction of the alkyl between an sp -hybridized alkylborane and a (Z)-iodoalkene OAc Pd(dppf)Cl2 62 main fragment. The alkylborane was prepared by hydroborating the terminal alkene with 9-BBN and the B synthesized in the laboratory of J.S. Panek. They utilized the(Z)BThe antitumor natural product epothilone N I BR2 =A was OTBS 3 DMF, (Z)alongbetween 2CO 3, catalyst iodoalkene added with the palladium and the -hybridized alkylborane and a (Z)-iodoalkene for BnO the construction of the alkyl Suzukiwas cross-coupling anCssp OTBS (S) S base. Key fragment of Epothilone A H2O, r.t.; 60% + main fragment. The alkylborane was prepared by hydroboratingN the terminal alkene with 9-BBN and the (Z)OAc OTBS iodoalkene was added BnO OTBS along with the palladium catalyst and the base. BR (Z) 2 Synthetic Applications: + PdCl2(dppf)2 (SUZUKI-MIYAURA CROSS-COUPLING) CH Cl 2 O 2 N H The last and key(S) step in the total synthesis of myxalamide A by C.H. Heathcock et al. was a Suzuki cross-coupling OAc S B 63 BR2 Pd(dppf)Cl = The (E)-vinylborane was OAc prepared prior to the coupling by reacting between an (E)-vinylborane and a (Z)-iodotriene. OTBS 2 N I the precursor enyne with 2 equivalents of cathecholborane. Upon completion the hydroboration, Keyoffragment of Epothilone it A was combined Cs CO , DMF, (S) (Z) 2 3 S BnO OTBS (S) OAc S with the (Z)-iodotriene and catalytic amounts acetate. r.t.;palladium 60% HPd(dppf)Cl 2 + 2O, of N I N Cs2CO DMF, OTBS The2 last BnO and keyOTBS step(Z)in the total synthesis of3,myxalamide A by SuzukiOTBS cross-coupling (S) (Z) et al. was aBnO BR S C.H. Heathcock H2O, r.t.; 60% 63 + (E) was prepared prior to the coupling by reacting between an (E)-vinylborane and a (Z)-iodotriene. The (E)-vinylborane N B 2, TPPTS C. H. Heathcock らによるミキサルアミド A(myxalamide A) を反応させ(E) ビニルボランが合成された.ヒドロホウ素化 = 2 Pd(OAc) OH OTBS BR2 BRof the2 precursor withOTBS 2 equivalents cathecholborane. Upon completion of BnO enyne OTBS BR (Z) the hydroboration, it was combined i-PrNEt 2 Key fragment of Epothilone AO with the (Z)-iodotriene and(E) catalytic amounts of palladium acetate. の全合成における最終かつ鍵段階は ビニルボランと (Z) が完結したのち, (Z) ヨードトリエンと触媒量の酢酸パラジ BR2 = CHB 3CN/H2O NH OTBS + 63 ヨードトリエンの である6h, .カッ ウムが混合された. I 鈴木 宮浦クロスカップリング O r.t., Key fragment of Epothilone A (E) (E) The last and key step in the total synthesis of for myxalamide A by C.H. Heathcock et al. was a Suzuki cross-coupling 44% 2 steps OH Pd(OAc)63 2, TPPTS OH プリングの前に,エンイン前駆体と 当量のカテコールボラン The (E)-vinylborane was prepared prior to the coupling by reacting between an (E)-vinylborane a (Z)-iodotriene. BR N 2 and 2 (Z) H 2 the precursor enyne 2 equivalents of cathecholborane. completion of the hydroboration, itOwas combined The last and key stepwith in the total synthesis ofi-PrNEt myxalamide AUpon by C.H. Heathcock et al. was cross-coupling (Z) a Suzuki 63 CN/H O CH 2 (E)-vinylborane with the (Z)-iodotriene and catalytic amounts of3palladium acetate. NHreacting The was prepared prior to the between an and a (Z)-iodotriene. + Myxalamide A coupling by BR(E)-vinylborane 2 = BO2C6H4 6h, r.t., the Iprecursor enyneOwith 2 equivalents of cathecholborane. Upon completion of the (E) hydroboration, it was combined 44% 2 steps acetate. with the (Z)-iodotriene and catalytic of for palladium OH amounts N (E) (Z) Pd(OAc) , H of oximidine 2 TPPTS OH BR2 II was achieved A formal total synthesis by G.A. Molander et al., using an (Z) intramolecular Suzuki-type 2 (E)alkenyl potassiumi-PrNEt cross-coupling between an trifluoroborate and an alkenyl bromide to construct highly strained, Myxalamide A the O BR2 = BO2C6H4 64 CHcore Pd(OAc) 3CN/H 2, TPPTS OH NH polyunsaturated 12-membered macrolactone of2O the natural product. The stability of potassium trifluoroborates BR2 + i-PrNEt O to establish the best conditions O 6h, r.t.,2 for the macrocyclization. wasI exploited in order (E) CN/H CH3for 44% 2 steps 2O NH OH + A formal total synthesis Molander et al., using an intramolecular Suzuki-type BnO I(Z) O N of oximidine II was achieved 6h, r.t., by G.A. OBn (E) cross-coupling betweenH an alkenyl potassium trifluoroborate and an alkenyl bromide to construct the highly strained, H (Z) )4 for 2 steps OH Pd(PPh344% 64 N trifluoroborates The stability of potassium polyunsaturated 12-membered macrolactone core of the natural product. Myxalamide A N OMOM (Z) O BR2 = BO C H (10 mol%) OH OH O 2 6 4 H was exploited in conditions for the macrocyclization. (Z) (S)order to establish Cs2the CObest 3 (5 equiv) O OMOM THF:H O (10:1) OH N stepsMyxalamide O 2 (S) 2 OH AO BR = BO2C6H4 O (S) (S) BnO (Z) OBn (E) (Z) reflux, II20h; 42% OMe A formal total synthesis of oximidine was achieved by G.A. Molander et al., using an intramolecular Suzuki-type H 非常に歪んだ多不飽和 12 (Z) 員環マクロラクトン骨格の構築に II (oximidine II)の形式全合成が G. Molander らにより達成 ON A. 3)4 trifluoroborate and an alkenyl bromide to construct the cross-coupling between an alkenyl Pd(PPh potassium highly strained, OMOM (10 mol%) OH O (E) 64 (Z) OH O 64 Br カリウムアルケニルトリフルオロボラート塩と臭化アルケニル された .カリウムトリフルオロボラート塩が安定であること potassium trifluoroborates polyunsaturated 12-membered macrolactone core of the product. A formal total synthesis of oximidine was achieved bynatural G.A. Molander etThe al., stability using anofintramolecular Suzuki-type Cs2COII 3 (5 equiv) BF3K(S) OMOM O was exploited inbetween order to an establish the best conditions for the macrocyclization. cross-coupling alkenyl potassium trifluoroborate and an(S)alkenyl bromide THF:H OHstrained, N steps to construct O (S) 2O (10:1) OH O the highly O (S) の分子内鈴木polyunsaturated 宮浦クロスカップリング を行い,オキシミジン が,環化反応の効率的達成に大きく寄与している. 64 Oximidine II trifluoroborates 12-membered macrolactone core of the natural product.(Z) The stability of potassium (E) (Z) reflux, 20h; 42% OMe BnO was exploited to establish the best conditions for the macrocyclization. OBnin order OH (Z) (E) (Z) Pd(PPh3)4 N Br BnO OMOM (10 mol%) OH O OBn OH O BF3K H (S) Cs2Pd(PPh CO3 (5 equiv) OMOM N O II 3)4 Oximidine (S) (S) THF:H O (10:1) OH N OH O OMOM steps (10 2mol%) OH O O (S) OH O O (Z) (E) (S) Cs CO320h; (5 equiv) (Z) reflux, 42% OMe 2 O OMOM THF:H2O (10:1) OH N steps O (S) (Z) OH O O O (S) (S) (E) BF3K (Z) (E) BF3K (Z) Br Br reflux, 20h; 42% (E) (Z) (Z) (Z) O Oximidine II Oximidine II OMe
© Copyright 2025 Paperzz