医療用加速器におけるコミッショニングの機器と手順

Jpn. J. Med. Phys. Vol. 33 No. 1: 16–57 (2013)
解説
་⒪⏝ຍ㏿ჾ࡟࠾ࡅࡿࢥ࣑ࢵࢩࣙࢽࣥࢢࡢᶵჾ࡜ᡭ㡰
⡿ᅜ་Ꮫ≀⌮Ꮫ఍࣭἞⒪≀⌮ጤဨ఍ࢱࢫࢡࢢ࣮ࣝࣉ 106 ࣏࣮ࣞࢺ
᪥ᮏㄒヂ
⩻ヂ⪅
⬥⏣ ᫂ᑦ㸦ᅜ❧ࡀࢇ◊✲ࢭࣥࢱ࣮୰ኸ⑓㝔 ᨺᑕ⥺἞⒪⛉㸧
ᶫᮏ ៅᖹ㸦ࡀࢇ࣭ឤᰁ⑕ࢭࣥࢱ࣮㒔❧㥖㎸⑓㝔 ᨺᑕ⥺≀⌮ᐊ㸧
Ἑෆ ᚭ 㸦༓ⴥ┴ࡀࢇࢭࣥࢱ࣮ ᨺᑕ⥺἞⒪㒊≀⌮ᐊ㸧
ᑠᓥ ᚭ 㸦༓ⴥ┴ࡀࢇࢭࣥࢱ࣮ ᨺᑕ⥺἞⒪㒊≀⌮ᐊ
⌧ ᇸ⋢┴❧ࡀࢇࢭࣥࢱ࣮ ᨺᑕ⥺἞⒪⛉㸧
ᢞ✏࡟㝿ࡋ࡚
㏆ᖺࡢᨺᑕ⥺἞⒪ࡣࢥࣥࣆ࣮ࣗࢱࡢ㐍໬࡜࡜ࡶ࡟ࡵࡊࡲࡋ࠸ᢏ⾡㠉᪂ࢆ㐙ࡆ࡚࠾ࡾࠊᮏ㑥࡛ࡶࠊᙉᗘኚㄪᨺ
ᑕ⥺἞⒪ࠊᐃ఩ᨺᑕ⥺἞⒪ࢆࡣࡌࡵ࡜ࡍࡿ㧗⢭ᗘᨺᑕ⥺἞⒪ࡀከࡃࡢ᪋タ࡛ᐇ᪋ࡉࢀࡿࡼ࠺࡟࡞ࡗ࡚ࡁ࡚࠸ࡿࠋ
⌧ᅾ࡛ࡣࠊࡇࢀࡽࡢ㧗⢭ᗘᨺᑕ⥺἞⒪ࢆྵࡴ࡯࡜ࢇ࡝ࡢ἞⒪ィ⏬ࡣ 3 ḟඖ἞⒪ィ⏬⿦⨨ࢆ⏝࠸࡚❧᱌ࡉࢀ࡚࠾
ࡾࠊ἞⒪ィ⏬⿦⨨࡟࠾ࡅࡿ⥺㔞ィ⟬ࡢ࣮࣋ࢫ࡜࡞ࡿ἞⒪⿦⨨ࡢࣅ࣮࣒ࢹ࣮ࢱࡢṇ☜ࡉࡣࠊᝈ⪅ࡉࢇ࡬ᢞ୚ࡍࡿ
⥺㔞ࡢṇ☜ࡉ࡬┤⤖ࡋ࡚࠸ࡿࠋ
ࡑࡢࡼ࠺࡞୰ࠊ2008 ᖺ࡟⡿ᅜ་Ꮫ≀⌮Ꮫ఍ࡼࡾࠊࣅ࣮࣒ࢹ࣮ࢱ ᐃ࡟㛵ࡍࡿࢱࢫࢡࢢ࣮ࣝࣉ࣏࣮ࣞࢺ 106
㸦TG-106㸧ࡀⓎหࡉࢀࡓࠋTG-106 ࡣࠊࣜࢽ࢔ࢵࢡᑟධ᫬࡟࠾ࡅࡿࣅ࣮࣒ࢹ࣮ࢱ ᐃࡢᢏ⾡ⓗഃ㠃ࠊ ᐃᶵჾࠊ
࠾ࡼࡧయไ࡟㛵ࡋ࡚グ㏙ࡉࢀࡓ࣏࣮ࣞࢺ࡛࠶ࡾࠊ᪂ࡓ࡟⿦⨨ᑟධࡍࡿ㝿ࡸࠊ⥅⥆ⓗ࡞ရ㉁⟶⌮ࢆ⾜࠺㝿࡟᭷⏝
࡞࣏࣮ࣞࢺ࡜࡞ࡗ࡚࠸ࡿࠋࡲࡓࠊཧ⪃ᩥ⊩ࡀ㇏ᐩ࡛࠶ࡾࠊࡼࡾヲ⣽࡞᝟ሗࢆồࡵࡿㄞ⪅ࡀ▱㆑ࢆᗈࡆࡿࡓࡵࡢ
ཧ⪃᭩࡜ࡋ࡚౑⏝ࡍࡿࡇ࡜ࡶྍ⬟࡛࠶ࡿࠋ
ᡃࠎࡣࠊࡇࡢ TG-106 ࡀᮏ㑥࡛ࡶ᭷ຠ࡟ά⏝ࡉࢀࡿࡼ࠺ࠊ⮫ᗋ་Ꮫ≀⌮◊✲఍࠾ࡼࡧ᪥ᮏ་Ꮫ≀⌮Ꮫ఍ㄢ㢟
ู◊✲⌜ࠕ㧗⢭ᗘእ㒊ᨺᑕ⥺἞⒪ࡢရ㉁ಖド࣭ရ㉁⟶⌮ࢩࢫࢸ࣒ࡢᵓ⠏ࠖ㸦◊✲௦⾲⪅ ᒸᮏ⿱அඛ⏕㸸ᅜ❧
ࡀࢇ◊✲ࢭࣥࢱ࣮୰ኸ⑓㝔 ᨺᑕ⥺἞⒪⛉㸧ࡢ࣓ࣥࣂ࣮ࡢ༠ຊࡢࡶ࡜ࠊ⩻ヂసᴗࢆ㐍ࡵࠊࡇࡢᗘࠕ་Ꮫ≀⌮ࠖ
ㄅ࡬ゎㄝ࡜࠸࠺ᙧ࡛ฟ∧ࡢᶵ఍ࢆᚓࡓࠋ࡛ࡁࡿࡔࡅ㏲ㄒヂࢆᚰ᥃ࡅࡘࡘࡶࠊព࿡ࡢ㏻ࡾࡸࡍ࠸᪥ᮏㄒ࡟࡞ࡿࡼ
࠺⪃៖ࡋࡓࡘࡶࡾ࡛࠶ࡿࡀࠊㄞࡳ࡙ࡽ࠸⟠ᡤࡀぢཷࡅࡽࢀࡓሙྜࡣࡈ஢ᢎ࠸ࡓࡔࡅࢀࡤᖾ࠸࡛࠶ࡿࠋཎᩥ࡟㛵
ࡋ࡚ࡣࠊhttp://www.aapm.org/pubs/reports/ ࠿ࡽࣇ࣮࡛ࣜࢲ࣮࢘ࣥࣟࢻྍ⬟࡞ࡢ࡛ࠊㄞ⪅ࡢᚲせ࡟ᛂࡌ࡚ཎᩥࡶ
ཧ↷࠸ࡓࡔࡅࢀࡤ࡜ᛮ࠺ࠋ
ࡇࡢ TG-106 ࣏࣮ࣞࢺ᪥ᮏㄒヂࡀࠊከࡃࡢᨺᑕ⥺἞⒪᪋タ࡛᭷ຠ࡟ά⏝ࡉࢀࠊᏳ඲࡛㧗⢭ᗘ࡞἞⒪ࢆ⾜࠺ࡓ
ࡵࡢ୍ຓ࡜࡞ࢀࡤᖾ࠸࡛࠶ࡿࠋ
⩻ヂ⪅௦⾲ ⬥⏣᫂ᑦ
16
16
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
Accelerator beam data commissioning equipment and procedures:
Report of the TG-106 of the Therapy Physics Committee of the AAPM
Indra J. Das
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Chee-Wai Cheng
Department of Radiation Oncology, Morristown Memorial Hospital, Morristown, New Jersey 07962
Ronald J. Watts
International Medical Physics Services, San Antonio, Texas 78232
Anders Ahnesjö
Uppsala University and Nucletron Scandinavia AB, 751 47 Uppsala, Sweden
John Gibbons
Department of Radiation Oncology, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana 70809
X. Allen Li
Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
Jessica Lowenstein
Radiological Physics Center, MD Anderson Cancer Center, Houston, Texas 77030
Raj K. Mitra
Department of Radiation Oncology, Ochsner Clinic, New Orleans, Louisiana 70121
William E. Simon
Sun Nuclear Corporation, Melbourne, Florida 32940
Timothy C. Zhu
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 4 February 2008; revised 18 July 2008; accepted for publication 18 July 2008;
published 22 August 2008)
ᗎᩥ
་⒪⏝ຍ㏿ჾࡢࢥ࣑ࢵࢩࣙࣥࢢ࡟࠶ࡓࡾࠊ་Ꮫ≀⌮ኈࡣ༑ศ࡞⢭ᗘࡢᢸಖࠊᵝࠎ࡞ ᐃἲࠊࢹ࣮ࢱࡢ᳨ドࠊᶆ
‽ⓗ᪉ἲࡢ୙㊊ࠊ࠾ࡼࡧ᫬㛫ⓗไ⣙࡞࡝ከࡃࡢᅔ㞴࡟ᑐฎࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋࢥ࣑ࢵࢩࣙࢽࣥࢢࡋࡓࣅ࣮࣒
ࢹ࣮ࢱࡣ㸦௒ᚋࡢ QA/QC ࡟࠾ࡅࡿ㸧ᇶ‽࡜࡞ࡿ࡜࡜ࡶ࡟ࠊ᭱⤊ⓗ࡟ࡣ἞⒪ィ⏬⿦⨨㸦TPS㸧࡛⏝࠸ࡽࢀࡿࡓ
ࡵࠊࢹ࣮ࢱࡢ཰㞟ࡣ㧗࠸⢭ᗘ࡛⾜ࢃࢀࡿᚲせࡀ࠶ࡿࠋࡑ࠺ࡍࡿࡇ࡜࡛ᝈ⪅἞⒪࡟࠾ࡅࡿ⥺㔞ㄗᕪࢆపῶࡋࠊࡦ
࠸࡚ࡣᨺᑕ⥺἞⒪ࡢຠᯝࡢపୗࢆ㜵ࡄࡇ࡜ࡀ࡛ࡁࡿࠋࣅ࣮࣒ࢹ࣮ࢱࡢࢥ࣑ࢵࢩࣙࢽࣥࢢࡣ㐺ษ࡞▱㆑࡜ᶵჾࢆ
⏝࠸࡚⾜ࢃࢀࡿ࡭ࡁ࡛࠶ࡾࠊ ᐃ⪅࡟ࡼࡗ࡚␗࡞ࡿ⤖ᯝࢆ⏕ࡴࡇ࡜ࡀ࠶ࡗ࡚ࡣ࡞ࡽ࡞࠸ࠋࡇࢀࡽࢆ㐩ᡂࡍࡿࡓ
ࡵ࡟ American Association of Physicists in Medicine㸦AAPM㸧ࡢ἞⒪≀⌮ጤဨ఍㸦Therapy Physics Committee㸧࡟
࠾࠸࡚ࠊࣜࢽ࢔ࢵࢡࡢ≀⌮ⓗࢥ࣑ࢵࢩࣙࢽࣥࢢ࡜ྠᵝ࡟ࠊᐇ㊶ⓗ࡞ࣅ࣮࣒ࢹ࣮ࢱ ᐃࢆ᳨ウࡍࡿࡇ࡜ࢆ┠ⓗ࡜
ࡋ࡚ࢱࢫࢡࢢ࣮ࣝࣉ㸦TG㸧106 ࡀ⤌⧊ࡉࢀࡓࠋࡇࡢ࣏࣮ࣞࢺ࡛ࡣࠊ㐺ษ࡞ࣇ࢓ࣥࢺ࣒࡜᳨ฟჾࡢ㑅ᢥࠊࢹ࣮ࢱ
ᐃࡢࡓࡵࡢࣇ࢓ࣥࢺ࣒ࡢࢭࢵࢺ࢔ࢵࣉἲ㸦ࢫ࢟ࣕࢽࣥࢢ࡜ࣀࣥࢫ࢟ࣕࢽࣥࢢ୧᪉㸧
ࠊගᏊ⥺࣭㟁Ꮚ⥺ࡢලయ
ⓗ࡞ࣅ࣮࣒ࣃ࣓࣮ࣛࢱྲྀᚓἲ࡜ ᐃㄗᕪࡢῶᑡ᪉ἲ㸦<1%㸧ࠊࣅ࣮࣒ࢹ࣮ࢱࡢຍᕤἲ࠾ࡼࡧṇ☜࡞ࣉࣟࣇ࢓࢖
ࣝࢆᚓࡿࡓࡵࡢ᳨ฟჾࢧ࢖ࢬࢥ࣮ࣥ࣎ࣜࣗࢩࣙࣥ࡞࡝࡟㛵ࡍࡿ࢞࢖ࢻࣛ࢖ࣥ࡜່࿌ࢆᥦ౪ࡍࡿࠋࡲࡓࠊࡇࡢ
TG-106 ࡛ࡣගᏊ⥺࣭㟁Ꮚ⥺ࡢࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟࠾ࡅࡿࣔࣥࢸ࢝ࣝࣟࢩ࣑࣮ࣗࣞࢩࣙࣥἲࡢ㏆ᖺࡢࢺࣞࣥࢻ
࡟㛵ࡋ࡚ࡶ⡆₩࡟ㄽࡎࡿࠋࡇࡢ࣏࣮ࣞࢺ࡟グ㍕ࡉࢀࡓᡭἲࡣ་Ꮫ≀⌮ኈ࡟࡜ࡗ୍࡚㐃ࡢࣅ࣮࣒ࢹ࣮ࢱࡢ ᐃࡸࠊ
⮫ᗋ౑⏝๓࠾ࡼࡧᐃᮇⓗ࡞ QA ࡟࠾ࡅࡿࢹ࣮ࢱࡢ᳨ドࢆ⾜࠺࡟࠶ࡓࡗ࡚ᡭຓࡅ࡜࡞ࡿࡣࡎ࡛࠶ࡿࠋᐇ㊶࡜⌮ㄽ
ࢆ⤌ࡳྜࢃࡏࡿࡇ࡜࡛ࠊࡇࡢ࣏࣮ࣞࢺࡣࣅ࣮࣒ࢹ࣮ࢱࢥ࣑ࢵࢩࣙࢽࣥࢢࡢ᪂ࡋ࠸ᶆ‽ࢆ୚࠼ࡿࡶࡢ࡛࠶ࡿࠋ
17
医学物理 第 33 巻 第 1 号
TABLE OF CONTENTS
III.E.3. 㐜ᘏ᫬㛫
I. ࡣࡌࡵ࡟
III.E.4. ࢧࣥࣉࣜࣥࢢ᫬㛫࡜ಙྕ
I.A. ┠ⓗ
III.E.5. 㧗࿘Ἴࣀ࢖ࢬࡢᖸ΅
I.B. ⫼ᬒ
III.F. ࢹ࣮ࢱࣇ࢓࢖ࣝ
I.B.1. ࢹ࣮ࢱࢥ࣑ࢵࢩࣙࢽࣥࢢࡢᚲせᛶ
III.F.1. ࢹ࣮ࢱࣇ࢓࢖ࣝࡢᵓᡂ
I.B.2. ࣅ࣮࣒ࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟㛵ࡍࡿၥ㢟
III.F.2. ࣇ࢓࢖ࣝࡢྡ๓
I.B.3. ࡇࡢࢱࢫࢡࢢ࣮ࣝࣉ࡟ࡘ࠸࡚
I.B.4. ࢥ࣑ࢵࢩࣙࢽࣥࢢࡢసᴗ㔞
II. ࣇ࢓ࣥࢺ࣒ࡢᮦ㉁࡜౑⏝ἲࠊ᳨ฟჾ
II.A. ࣇ࢓ࣥࢺ࣒ᮦ㉁
IV. ගᏊ⥺ࡢࣅ࣮࣒ࢹ࣮ࢱ
IV.A. ගᏊ⥺ࢫ࢟ࣕࣥࢹ࣮ࢱ ᐃ
IV.A.1. ῝㒊⥺㔞
IV.A.2. ⤌⧊᭱኱⥺㔞ẚ࣭⤌⧊ࣇ࢓ࣥࢺ࣒⥺㔞
II.B. ࣇ࢓ࣥࢺ࣒ࡢᑍἲ
II.C. ᅛయࣇ࢓ࣥࢺ࣒
IV.A.3. ⾲㠃⥺㔞࡜ࣅࣝࢻ࢔ࢵࣉ㡿ᇦ
II.D. ࣅࣝࢻ࢔ࢵࣉ࢟ࣕࢵࣉ
IV.A.4. ࣅ࣮࣒ࣉࣟࣇ࢓࢖ࣝ
II.E. ᳨ฟჾ
II.E.1. ྛ᳨ฟჾࡢ᭷⏝ᛶ
IV.B. MLC ࢹ࣮ࢱ
IV.C. ගᏊ⥺࣏࢖ࣥࢺ⥺㔞ࢹ࣮ࢱ
II.E.2. ᳨ฟჾࡢ✀㢮
IV.C.1. ඲ᩓ஘ಀᩘ 㸦Scp㸧
II.E.3. ᳨ฟჾࡢ㑅ᢥ
IV.C.2. ✵୰ฟຊಀᩘ 㸦Sc㸧
II.E.4. ᳨ฟჾࡢᛂ⟅࡜⿵ṇ
IV.C.3. ࣇ࢓ࣥࢺ࣒ᩓ஘ಀᩘ 㸦Sp㸧
III. ࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡢࢭࢵࢺ࢔ࢵࣉ
III.A. ࢫ࢟ࣕࢼࡢ᳨ド࡜☜ㄆ
III.A.1. ࢫ࢟ࣕࢽࣥࢢ㸦ࣇ࢕࣮ࣝࢻ㸧⥺㔞ィ࡜
ࣜࣇ࢓ࣞࣥࢫ⥺㔞ィ
III.A.2. ࢣ࣮ࣈࣝࠊࢥࢿࢡࢱࠊ࢔ࢲࣉࢱ
III.A.3. 㟁఩ィ
III.B. ࢫ࢟ࣕࢽࣥࢢ⏝Ỉࢱࣥࢡ
III.B.1. ࣏ࢪࢩࣙࢽࣥࢢ࡜ࣛ࣋ࣜࣥࢢ
IV.C.4. ࢙࢘ࢵࢪಀᩘ
IV.C.5. ࢺࣞ࢖ಀᩘ
IV.C.6. ᑠ↷ᑕ㔝࡛ࡢ⪃៖
V. 㟁Ꮚ⥺
V.A. 㟁Ꮚ⥺ࢫ࢟ࣕࣥࢹ࣮ࢱ ᐃ
V.A.1. ῝㒊⥺㔞
V.A.2. ࣉࣟࣇ࢓࢖ࣝ
V.B. 㟁Ꮚ⥺࣏࢖ࣥࢺ⥺㔞ࢹ࣮ࢱ
III.B.2. ࢫ࢟ࣕࢼࡢ㥑ື
V.B.1. ࢥ࣮ࣥಀᩘ
III.B.3. ࢫ࢟ࣕࢽࣥࢢࡢ᪉ྥ
V.B.2. ࢝ࢵࢺ࢔࢘ࢺಀᩘ
III.C. ࢫ࢟ࣕࣥࡢ㥑ືᶵᵓ࡜ືࡁ
V.B.3. ௬᝿/ᐇຠ⥺※఩⨨
III.C.1. 㓄ิᆺ᳨ฟჾࡢ㔜㔞
III.C.2. ㏿ᗘ࡜఩⨨ࡢ⢭ᗘ
III.C.3. ࣄࢫࢸࣜࢩࢫ
III.C.4. ⭉㣗㸦ࡉࡧ㸧
III.D. ᐃ๓ࡢヨ㦂
III.D.1. ࢻࣛ࢖ࣛࣥ
V.B.4. ࣔࣥࢸ࣮࢝ࣝࣟ࣋ࢫࡢ⥺㔞ィ⟬ࡢࡓࡵ
ࡢࢹ࣮ࢱ
VI. ࣅ࣮࣒ࢹ࣮ࢱࡢຍᕤ
VI.A. ࢹ࣮ࢱࡢຍᕤ࡜᧯స
VI.B. ࢫ࣒࣮ࢪࣥࢢ࣭࣑࣮ࣛࣜࣥࢢ࠾ࡼࡧࢧ࣐ࣛ
࢖ࢪࣥࢢ
III.D.2. ࢛࣮࢘ࢱࣛࣥ
VI.B.1. ᩘᏛ㛵ᩘ࡜ࣇ࢕ࣝࢱ
III.D.3. 㣬࿴ヨ㦂
VI.B.2. ࢫ࣒࣮ࢪࣥࢢ࡟࠾ࡅࡿࡺࡀࡳ
III.D.4. 㟁㞳య✚እຠᯝ
III.D.5. ࢚ࢿࣝࢠ࣮ᛂ⟅ᛶࡢヨ㦂
III.E. ࢹ࣮ࢱྲྀᚓ
18
ẚ 㸦TMR/TPR㸧
VI.C. ࣀࣥࢫ࢟ࣕࣥࢹ࣮ࢱࡢຍᕤ
VII. ࡲ࡜ࡵ࡜່࿌
VII.A. ່࿌
III.E.1. ࢫ࢟ࣕࣥࣃ࣓࣮ࣛࢱࡢࣉࣟࢺࢥࣝ
VII.B. ὀព
III.E.2. ࢫ࢟ࣕࣥ㏿ᗘ
VII.C. ࢥ࣑ࢵࢩࣙࢽࣥࢢ࣏࣮ࣞࢺ
I. はじめに
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
I. ࡣࡌࡵ࡟
⏝࡟⪏࠼࠺ࡿ෌⌧ᛶࢆಖࡗ࡚࠸ࡿ࡜࠸࠺᰿ᣐࡣ࡞
I.A. ┠ⓗ
࠸࡜࠸࠺ࡇ࡜࡛࠶ࡿࠋ౛࠼ࡤࠊྠࡌබ⛠࢚ࢿࣝࢠ࣮
ࣅ࣮࣒ࢹ࣮ࢱࡢࢥ࣑ࢵࢩࣙࢽࣥࢢࡣࠊ㐺ษ࡞▱㆑
ࢆࡶࡘ⿦⨨㛫࡛ࡶࠊࣅ࣮࣒ࣃ࣓࣮ࣛࢱ࡟ᕪࡀ⏕ࡌࡿ
3-5
ࠋ➨஧࡟ࠊࣜࢽ࢔ࢵࢡࡢᑟ
࡜ᶵჾ࡟ᇶ࡙࠸࡚⾜࠸ࠊ ᐃ⪅ࡸࢫ࢟ࣕࢽࣥࢢࢩࢫ
ࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ
ࢸ࣒࡟౫Ꮡࡋ࡚ࡣ࡞ࡽ࡞࠸ࠋ ᐃ⪅࡟ࡼࡿࢹ࣮ࢱࡢ
ධ࠾ࡼࡧཷࡅධࢀࡢ㝿ࡢྛ᪋タ࡟࠾ࡅࡿኚ᭦㸦ࣅ࣮
┦㐪ࡣྍ⬟࡞㝈ࡾᑠࡉࡃࡍࡿᚲせࡀ࠶ࡿ㸦<1%㸧
ࠋ
࣒࢚ࢿࣝࢠ࣮ࡢኚ᭦ࡸࠊࢫࢸ࢔ࣜࣥࢢࡢኚ᭦࡟ࡼࡿ
ࡇࢀࢆ㐩ᡂࡍࡿࡓࡵࠊࡇࡢ࣏࣮ࣞࢺ࡛ࡣࠊࣇ࢓ࣥࢺ
ࣉࣟࣇ࢓࢖ࣝࡢኚ໬࡞࡝㸧ࡣ͆golden͇ࣅ࣮࣒ࢹ࣮
࣒ࡢࢭࢵࢺ࢔ࢵࣉࠊ ᐃᢏ⾡ࠊࣇ࢓ࣥࢺ࣒࡜᳨ฟჾ
ࢱ࡟ࡣ཯ᫎࡉࢀ࡞࠸ࠋ➨୕࡟ࠊࢯࣇࢺ࢙࢘ࢵࢪࡢࣅ
ࡢ㑅ᢥࠊㄗᕪࡢせᅉ࠾ࡼࡧලయⓗ࡞ගᏊ⥺࣭㟁Ꮚ⥺
࣮࣒≉ᛶࡣ jaw ࡢ㏿ᗘࣃ࣓࣮ࣛࢱ࡟ࡼࡾኚ໬ࡋࠊྛ
ࣅ࣮࣒ࢹ࣮ࢱ ᐃࡢࡓࡵࡢ່࿌ࢆ⾜࠸ࠊࣅ࣮࣒ࢹ࣮
᪋タ࡛ࡢ㏿ᗘࡢ┦㐪ࡀࢯࣇࢺ࢙࢘ࢵࢪࡢࣅ࣮࣒ࣉ
ࢱࡢࢥ࣑ࢵࢩࣙࢽࣥࢢࢆᐜ᫆࡟ࡍࡿࡇ࡜ࢆ┠ⓗ࡜
ࣟࣇ࢓࢖ࣝ࡟ᙳ㡪ࢆ୚࠼࠺ࡿࠋ➨ᅄ࡟ࠊ
͆golden͇ࢹ
ࡋ࡚࠸ࡿࠋ
࣮ࢱࡀಶࠎࡢࢳ࢙ࢵࢡ࡟࠾࠸࡚チᐜ࡛ࡁࡿ⤖ᯝࡔ
ࡗࡓ࡜ࡋ࡚ࡶࠊ⮫ᗋࢭࢵࢺ࢔ࢵࣉ࡟࠾࠸࡚」ྜⓗ࡞
I.B. ⫼ᬒ
࢚࣮ࣛࡀ⏕ࡲࢀࠊ⤖ᯝ࡜ࡋ࡚チᐜ࡛ࡁ࡞࠸ྍ⬟ᛶࡀ
I.B.1. ࢹ࣮ࢱࢥ࣑ࢵࢩࣙࢽࣥࢢࡢᚲせᛶ
࠶ࡿࠋ᭱ᚋ࡟ࠊࣅ࣮࣒ࢹ࣮ࢱࢥ࣑ࢵࢩࣙࢽࣥࢢࢆ⾜
ᨺᑕ⥺἞⒪ࡢຠᯝࡣࠊᝈ⪅࡬ᢞ୚ࡉࢀࡿ⥺㔞ࡢ⢭
࠺ࡇ࡜ࡀࣜࢽ࢔ࢵࢡࡢᚭᗏⓗ࡞ࢳ࢙ࢵࢡ࡟ࡘ࡞ࡀ
ᗘ࡜┤᥋㛵㐃ࡋࠊࡑࢀࡽࡣ἞⒪ィ⏬ࡢࣉࣟࢭࢫ࡟౑
ࡾࠊၥ㢟ࢆⓎぢ࡛ࡁࡿྍ⬟ᛶࡀ࠶ࡿࡢ࡟ᑐࡋࠊ
⏝ࡍࡿࣅ࣮࣒ࢹ࣮ࢱࡢ⢭ᗘ࡟౫Ꮡࡍࡿࠋࡇࢀࡽࡢࢹ
㸦͆golden͇ࢹ࣮ࢱ࡟ᑐࡍࡿ㸧ᒁᡤⓗ࡞ࢳ࢙ࢵࢡ࡛ࡣ
࣮ࢱࡣࣜࢽ࢔ࢵࢡࡢᑟධ᫬࡟ྲྀᚓࡉࢀࡿࠋࡲࡓࠊࡑ
Ⓨぢ࡛ࡁ࡞࠸ࡇ࡜ࡶ⪃࠼ࡽࢀࡿ࡜࠸࠺ࡇ࡜࡛࠶ࡿࠋ
ࡢࢹ࣮ࢱࡣᇶ‽್࡜ࡋ࡚ᢅࢃࢀࠊ་Ꮫ≀⌮ኈࡣ
1
ࡋ࠿ࡋ࡞ࡀࡽࠊᑡ࡞ࡃ࡜ࡶ͆golden͇ࢹ࣮ࢱࡣࣘ
TG-40 ࡟グ㍕ࡉࢀ࡚࠸ࡿࡼ࠺࡟ࠊᐃᮇⓗ࡟࣐ࢩࣥ
࣮ࢨ࣮ࡀྲྀᚓࡋࡓࣅ࣮࣒ࢹ࣮ࢱࡢ᳨ド࡟ᑐࡍࡿ㠀
ࣃ࣓࣮ࣛࢱࡀኚ໬ࡋ࡚࠸࡞࠸ࡇ࡜ࢆ☜ㄆࡍ࡭ࡁ࡛
ᖖ࡟ඃࢀࡓ QA ࡢཧ⪃ࢹ࣮ࢱ࡜࡞ࡿࠋࡇࢀࡽࡢࢹ࣮
࠶ࡿࠋࡲࡓࠊ἞⒪ィ⏬⿦⨨㸦TPS㸧ࡢィ⟬࢔ࣝࢦࣜ
ࢱࡣ MD Anderson Cancer Center ࡟࠾ࡅࡿᨺᑕ⥺≀
ࢬ࣒ࢆኚ᭦ࡍࡿሙྜ࡞࡝ࠊTPS ࡟ఱࡽ࠿ࡢኚ໬ࡀ࠶
⌮ࢭࣥࢱ࣮㸦Radiological Physics Center㸧࠿ࡽྲྀᚓྍ
2
ࡗࡓሙྜ࡛ࡣࠊࢹ࣮ࢱࡢ㏣ຍࡀᚲせ࡛࠶ࡿ ࠋ
ࣜࢽ࢔ࢵࢡࡢ〇㐀ᕤ⛬ࡀᏳᐃࡍࡿ࡟ࡘࢀ࡚ࠊ〇㐀
⬟࡛࠶ࡾ 6-8ࠊ࣮ࣘࢨ࣮ࡣ⮬᪋タࡢࢹ࣮ࢱ࡜௚᪋タࡢ
ࢹ࣮ࢱࢆẚ㍑ࡋࠊྜ⌮ⓗ࡞⠊ᅖ୍࡛⮴ࡍࡿ࠿☜ㄆࡍ
ᴗ⪅ࡣྠ୍ࡢࣅ࣮࣒≉ᛶࢆ♧ࡍࡼ࠺἞⒪⿦⨨ࢆᶆ
ࡿࡇ࡜ࡀ࡛ࡁࡿࠋࣔࣥࢸ࢝ࣝࣟࢩ࣑࣮ࣗࣞࢩࣙࣥࡶ
‽໬ࡋࡼ࠺࡜ࡍࡿࠋTPS ࡟ᚲせ࡞࡯࡜ࢇ࡝ࠊ࠶ࡿ࠸
ࡲࡓࡼ࠸ᶆ‽ࢹ࣮ࢱࢆ୚࠼ࡿࠋࡋ࠿ࡋ࡞ࡀࡽࣔࣥࢸ
ࡣࡍ࡭࡚ࡢࢥ࣑ࢵࢩࣙࢽࣥࢢࡉࢀࡓࣅ࣮࣒ࢹ࣮ࢱ
࢝ࣝࣟࢩ࣑࣮ࣗࣞࢩࣙࣥ࡟ࡼࡿࢹ࣮ࢱࡢ᳨ド࡟ࡣࠊ
ࡀ͆golden͇ࣅ࣮࣒ࢹ࣮ࢱ࡜ࡋ࡚୚࠼ࡽࢀࡿሙྜࡶ
ᇶ‽࡜࡞ࡿ ᐃࡀᚲせ࡜࡞ࡿ 9-13ࠋ
࠶ࡿࠋࣜࢽ࢔ࢵࢡ࡜ྠࡌ࣋ࣥࢲ࣮ࡀ TPS ࢆᥦ౪ࡋ࡚
ࡇࡢ࣏࣮ࣞࢺ࡛ࡣࣜࢽ࢔ࢵࢡࡢࢥ࣑ࢵࢩࣙࢽࣥ
࠸ࡿሙྜࠊ
͆golden͇ࣅ࣮࣒ࢹ࣮ࢱࡣࡍ࡛࡟ TPS ࡟
ࢢ᫬࡟᥎ዡࡍࡿ ᐃ㡯┠࡟ࡘ࠸࡚ࡣグ㍕ࡋ࡚࠸࡞
Ⓩ㘓ࡉࢀ࡚࠸ࡿྍ⬟ᛶࡀ࠶ࡿࠋࡇࡢࡼ࠺࡞ሙྜࠊࣅ
࠸ࡀࠊᑡ࡞ࡃ࡜ࡶ௨ୗࡢ㡯┠ࡢࢹ࣮ࢱࡣྲྀᚓࡍࡿᚲ
࣮࣒ࢥ࣑ࢵࢩࣙࢽࣥࢢࡢ㝿࡟ࠊ࣮ࣘࢨ࣮ࡣᚲせ࡞ࡍ
せࡀ࠶ࡿࠋ
࡭࡚ࡢࢹ࣮ࢱࢆ ᐃࡍࡿ࠿ࠊ࠶ࡿ࠸ࡣⓏ㘓ࡉࢀ࡚࠸
ࡿࢹ࣮ࢱࢆὀព῝ࡃ᳨ドࡍࡿ࠿ࢆ㑅ᢥࡍࡿࡇ࡜ࡀ
x
ගᏊ⥺͐῝㒊㔞ⓒศ⋡㸦PDD㸧ࠊ࣮࢜ࣉࣥ࠾ࡼ
࡛ࡁࡿࠋ࡝ࡕࡽࢆ㑅ᢥࡍࡿࡇ࡜ࡀ㐺ᙜ࠿ࡣࠊࣜࢽ࢔
ࡧ࢙࢘ࢵࢪ↷ᑕ㔝ࡢ」ᩘࡢ῝ࡉ࡟࠾ࡅࡿࣉࣟ
ࢵࢡࡸ TPS ࡢࣔࢹࣝࠊ⮫ᗋ౑⏝࡟⪏࠼࠺ࡿ⢭ᗘࢆᣢ
ࣇ࢓࢖ࣝ㸦in-plane ࠾ࡼࡧ cross-plane㸧ࠊMLC
ࡗ࡚࠸ࡿ࠿࡞࡝ࠊ࠸ࡃࡘ࠿ࡢせᅉ࡟౫Ꮡࡍࡿࡔࢁ࠺ࠋ
㛵㐃ࡢࢹ࣮ࢱ㸦intra/inter leaf leakage, MLC ༙ᙳ
ࡶࡋ͆golden͇ࣅ࣮࣒ࢹ࣮ࢱࢆ⮫ᗋ౑⏝ࡍࡿ࡞ࡽ
㒊ࠊtongue & groove ຠᯝ࡞࡝㸧
ࠊࢥ࣓࣮ࣜࢱᩓ
ࡤࠊ௨ୗࡢⅬࢆὀព῝ࡃホ౯ࡍࡿᚲせࡀ࠶ࡿࠋ➨୍
஘ಀᩘࠊ඲ᩓ஘ಀᩘࠊࢺࣞ࢖ಀᩘࠊ࢙࢘ࢵࢪಀ
࡟ࠊ〇㐀ᕤ⛬࡟࠾࠸࡚ࡍ࡭࡚ࡢࣜࢽ࢔ࢵࢡࡀ⮫ᗋ౑
ᩘࠋ
19
医学物理 第 33 巻 第 1 号
x
I. はじめに
㟁Ꮚ⥺͐PDD, ࣉࣟࣇ࢓࢖ࣝ, ࢥ࣮ࣥಀᩘࠊ࢝
ࢵࢺ࢔࢘ࢺಀᩘࠊ௬᝿⥺※఩⨨ࠋ
ࢥ࣑ࢵࢩࣙࢽࣥࢢࡣㄆᐃࡉࢀࡓ་Ꮫ≀⌮ኈ࡟ࡼ
ࡗ࡚⾜ࢃࢀࡿᚲせࡀ࠶ࡿࠋࡇࡢ࣏࣮ࣞࢺ࡟グ㍕ࡉࢀ
ࡓᡭἲࡣࣅ࣮࣒ࢹ࣮ࢱࡢ ᐃ࠾ࡼࡧ⮫ᗋ౑⏝๓ࡢ
ࢹ࣮ࢱ☜ㄆࡸᐃᮇⓗQAࡢᇶ‽ࢹ࣮ࢱࢆ ᐃࡍࡿ࠺
࠼࡛ᡭຓࡅ࡜࡞ࡿࡔࢁ࠺ࠋTG-53 2 ࡛グ㍕ࡉࢀ࡚࠸
ࡿTPS㛵㐃ࡢࢥ࣑ࢵࢩࣙࢽࣥࢢヂ⪅ὀ 1࡟㛵ࡋ࡚ࡶ⪃
៖ࡍ࡭ࡁ࡛࠶ࡿࠋ
I.B.2. ࣅ࣮࣒ࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟㛵ࡍࡿၥ㢟
ከࡃࡢࣅ࣮࣒ࢹ࣮ࢱ ᐃࡣẚ㍑ⓗ༢⣧࡛࠶ࡿࡀࠊ
౑⏝ࡍࡿ᳨ฟჾࢩࢫࢸ࣒࡜ࣇ࢓ࣥࢺ࣒࡟ࡼࡗ࡚⤖
ᯝࡀ኱ࡁࡃኚ໬ࡍࡿࡇ࡜ࡀ࠶ࡿࠋ᳨ฟჾࡣࢧ࢖ࢬ
㸦ᶆ‽ᆺࠊ࣑ࢽᆺࠊ࣐࢖ࢡࣟᆺ㸧ࠊࢱ࢖ࣉ㸦㟁㞳⟽࣭
༙ᑟయ࡞࡝㸧ࠊᙧ≧㸦ᣦ㢌ᙧࠊ⌫ᙧࠊᖹ⾜ᖹᯈᙧ㸧
࡞࡝ከࡃࡢ㑅ᢥ⫥ࡀ࠶ࡾࠊ㐺ษ࡞᳨ฟჾࡢ㑅ᢥ࡟ࡣ
ᅔᝨࡉࡏࡽࢀࡿࠋࡶࡋ୙㐺ษ࡞᳨ฟჾࢆ㑅ᢥࡋࡓሙ
ྜࠊ ᐃࡋࡓࣅ࣮࣒ࢹ࣮ࢱࡢ㉁ࡀపୗࡍࡿሙྜࡶ࠶
ࡿࠋ౛࠼ࡤ Fig.1 ࡣ 6 MV ࣅ࣮࣒ࡢᑠ↷ᑕ㔝ࠊᇶ‽
↷ᑕ㔝㸦10™10 cm2㸧ࠊ኱↷ᑕ㔝ࡢ PDD ࢆᵝࠎ࡞᳨
ฟჾ࡛ྲྀᚓࡋࡓ⤖ᯝ࡛࠶ࡿࠋ᳨ฟჾ࡟ࡼࡗ࡚ᑠ↷ᑕ
㔝࠾ࡼࡧ኱↷ᑕ㔝࡛チᐜ࡛ࡁ࡞࠸┦㐪ࡀ⏕ࡌ࡚࠸
ࡿࠋ
〇㐀ᴗ⪅ࡣཷࡅධࢀヨ㦂ࡢ㝿࡟࢞࢖ࢻࣛ࢖ࣥ࡜
チᐜ⠊ᅖࢆᥦ♧ࡍࡿࠋࡋ࠿ࡋࠊ἞⒪⿦⨨ࡢࢥ࣑ࢵࢩ
ࣙࢽࣥࢢࡣྛ᪋タࡢ་Ꮫ≀⌮ኈࡀ㈐௵ࢆࡶࡘᚲせ
ࡀ࠶ࡿࠋ㐣ཤࡢࢱࢫࢡࢢ࣮ࣝࣉ
14, 15
ࡣཷࡅධࢀヨ㦂
࡟ᑐࡍࡿ࢞࢖ࢻࣛ࢖ࣥࢆ♧ࡋ࡚࠸ࡿࡀࠊࣅ࣮࣒ࢹ࣮
ࢱࡢࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟ᑐࡋ࡚ࡣゝཬࡋ࡚࠸࡞࠸ࠋ
ཷࡅධࢀヨ㦂࡜ࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟㛵ࡍࡿ᭱㏆ࡢ
ᩥ⊩
16
࡛ࡣཷࡅධࢀヨ㦂࡟㛵ࡍࡿᵝࠎ࡞ഃ㠃࡟ࡘ
FIG. 1. Depth dose data for a 6 MV beam for (a) 1×1 cm2, (b) 10×10
cm2, and (c) 40×40 cm2 fields using different detectors.
࠸࡚ヲ⣽ࡀ㏙࡭ࡽࢀ࡚࠸ࡿࡀࠊࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟
ࡘ࠸࡚ࡣゐࢀࡽࢀ࡚࠸࡞࠸ࠋཷࡅධࢀヨ㦂࡜ࢥ࣑ࢵ
ࢩࣙࢽࣥࢢ࡟ࡘ࠸࡚ࠊㄗࡗࡓㄆ㆑ࡀ࠶ࡿࠋཷࡅධࢀ
ヨ㦂ࡣࠊ〇㐀ᴗ⪅ࡀᐃࡵࡿ࢞࢖ࢻࣛ࢖ࣥ࡟ᚑࡗ࡚⾜
ࢃࢀࠊࣅ࣮࣒ࢹ࣮ࢱࡢ☜ㄆࡣࡈࡃࢃࡎ࠿࡛࠶ࡿࠋࡑ
ࢀ࡟ᑐࡋ࡚ࠊࢥ࣑ࢵࢩࣙࢽࣥࢢࡣࠊࡍ࡭࡚ࡢࣅ࣮࣒
ࢹ࣮ࢱࢆྲྀᚓࡋࠊࡑࡢࢹ࣮ࢱࡀᝈ⪅἞⒪࡟⏝࠸ࡽࢀ
ࡿࠋ⮫ᗋ౑⏝ࡉࢀࡿ⥺㔞ࢹ࣮ࢱࡢࢥ࣑ࢵࢩࣙࢽࣥࢢ
࡟㛵ࡋ࡚ࡣ࡯࡜ࢇ࡝ᩥ᭩໬ࡉࢀࡓ᝟ሗࡀ࡞࠸ࡢࡀ
⌧≧࡛࠶ࡿࠋ
I.B.3. ࡇࡢࢱࢫࢡࢢ࣮ࣝࣉ࡟ࡘ࠸࡚
ヂ⪅ὀ1
ụ⏣⌜࡟ࡼࡿ࿴ヂࡀ JSMP ࣮࣒࣮࣍࣌ࢪୖ࡟
බ㛤ࡉࢀ࡚࠸ࡿࠋ
20
ࡇࡢࢱࢫࢡࢢ࣮ࣝࣉࡣࠊࣜࢽ࢔ࢵࢡࡢࢥ࣑ࢵࢩࣙ
I. はじめに
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
Table I. (a) Typical commissioning measurements for photon beam data for each energy and wedge. (b) Typical commissioning measurements for
electron beam data for each energy.
(a)
Square field size (cm)
Description
1
Application
PDD/TMR
Profiles @
Scan
2
3
4
5
6
IMRT data
8
10
12
14
16
20
25
30
Traditional radiation oncology fields
40
>40
Magna Field
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
5-7 depths
data
Diagonal or
star profiles
Sc
Sp
Nonscan
WF/TF
data
Surface dose
(b)
Cone size (cm×cm)
Description
PDD
Profiles @
Scan data
5×5
10×10
15×15
20×20
25×25
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
5-7 depths
Cone factor
Nonscan
Cutout factor
data
Virtual source
Surface dose
ࢽࣥࢢ࡟㛵ࡍࡿ≀⌮ⓗ࡞஦㡯࡟ࡘ࠸࡚෌᳨ウࡋࠊ㐺
࣮ࣝࣉ࠿ࡽࡑࢀࡽࡢࢱࢫࢡࢢ࣮ࣝࣉࡢ࣏࣮ࣞࢺ࡬
ษ࡞᳨ฟჾࠊࣇ࢓ࣥࢺ࣒ࠊ࠾ࡼࡧ ᐃ᪉ἲࡢ࢞࢖ࢻ
┤᥋ཧ↷ࢆ⾜ࡗ࡚࠸ࡿࠋTG-106 ࡣ᳨ฟჾࠊࣇ࢓ࣥ
ࣛ࢖ࣥ࡜່࿌ࢆ♧ࡍࡇ࡜࡟ࡼࡾࠊ ᐃㄗᕪࢆs1%
ࢺ࣒ࠊ ᐃᶵჾ㸦㟁఩ィ㸧
ࠊၟ⏝ࢩࢫࢸ࣒ࡢ㝈⏺࡜
௨ୗ࡜ࡍࡿࡇ࡜ࢆ┠ⓗ࡜ࡋ࡚࠸ࡿࠋࡇࡢࢱࢫࢡࢢࣝ
⿵ṇ࡞࡝἞⒪⿦⨨ࡢࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟ᑐࡍࡿ࢞
࣮ࣉࡣ gold standard ࢹ࣮ࢱࢆ୚࠼ࡿࡶࡢ࡛ࡣ࡞࠸ࡋࠊ
࢖ࢻࣛ࢖ࣥ࡜່࿌ࢆᥦ౪ࡍࡿࠋࡓࡔࡋࠊSRS 17ࠊ
≉ᐃࡢ TPS ࡟ᑐࡍࡿࢹ࣮ࢱ ᐃࢆྲྀࡾᢅ࠺ࡶࡢ࡛
Gamma KnifeࠊCyberKnifeࠊTotal Skin Electron Therapy
ࡶ࡞࠸ࡀࠊ࡛ࡁࡿ㝈ࡾ࠶ࡽࡺࡿ ᐃࢆ࢝ࣂ࣮࡛ࡁࡿ
㸦TSET㸧23ࠊTotal Body Irradiation㸦TBI㸧24 ࡞࡝ࡢ
ࡼ࠺࡟ࡋ࡚࠸ࡿࠋࡇࡢࢱࢫࢡࢢ࣮ࣝࣉࡢㄢ㢟ࡣࠊࣅ
≉Ṧ἞⒪ࡣ⠊ᅖእ࡜ࡋ࡚࠸ࡿࠋࡇࡢࢱࢫࢡࢢ࣮ࣝࣉ
࣮࣒≉᭷ࡢᛶ㉁ࢆ≉ᚩ࡙ࡅグ㘓ࡍࡿࠊ
͆ࣅ࣮࣒ࢹ࣮
ࡣ㏻ᖖࡢࣜࢽ࢔ࢵࢡ࡟࠾ࡅࡿගᏊ⥺࡜㟁Ꮚ⥺ࡢࡳ
ࢱࢥ࣑ࢵࢩࣙࢽࣥࢢ͇࡟ᑐࡍࡿᢏ⾡ࡸ᳨ฟჾࡢ㑅ᢥ
ࢆᑐ㇟࡜ࡋ࡚࠸ࡿࠋ
࡟ᑐࡋ࡚ᐃࡵࡽࢀ࡚࠸ࡿࠋ୍⯡࡟ࠊࡑࢀࡣࡇࡢᚋࡢ
సᴗ࡛࠶ࡿィ⟬࢔ࣝࢦࣜࢬ࣒ࡢࢥ࣑ࢵࢩࣙࢽࣥࢢ
I.B.4. ࢥ࣑ࢵࢩࣙࢽࣥࢢࡢసᴗ㔞
࡛౑⏝ࡉࢀࡿࠋ୙ᆒ㉁⿵ṇ࡟㛵ࡋ࡚ࡶࠊ⌧௦ࡢ࢔ࣝ
ᚲせ࡜ࡉࢀࡿࢥ࣑ࢵࢩࣙࢽࣥࢢࢹ࣮ࢱࡢ㔞ࡣࣘ
ࢦࣜࢬ࣒㸦ࣔࣥࢸ࢝ࣝࣟࠊconvolution/superposition㸧
࣮ࢨ࣮ࡢ⮫ᗋⓗᚲせᛶࠊTPSࠊMU ィ⟬ࣉࣟࢢ࣒ࣛࠊ
࡟࠾ࡅࡿ㔜せ࡞ഃ㠃࡛࠶ࡿࡀࠊࡇࡢ✀ࡢࢥ࣑ࢵࢩࣙ
᪋タෆ࡛ᚲせ࡞ࢹ࣮ࢱࢸ࣮ࣈࣝ࡞࡝࡟ࡼࡗ࡚ኚ໬
ࢽࣥࢢࡣᐇ᪋ࡍࡿࡢࡀࡼࡾᅔ㞴࡛࠶ࡾࠊTPS ࡟౫Ꮡ
ࡍࡿࠋTable I㸦a㸧࠾ࡼࡧ㸦b㸧ࡣගᏊ⥺࡜㟁Ꮚ⥺࡟
ࡍࡿࠋࡑࢀࡺ࠼ࡇࡢࢱࢫࢡࢢ࣮ࣝࣉ࡛ࡣ୙ᆒ㉁⿵ṇ
ᑐࡍࡿ ᐃ㡯┠ࡢ୍౛࡛࠶ࡿࠋ↷ᑕ㔝 1 × 1 cm2 ࠿ࡽ
࡟㛵ࡋ࡚ࡣ⠊ᅖእ࡜ࡋࠊ௒ᚋࡢࢱࢫࢡࢢ࣮ࣝࣉ᳨࡛
40 × 40 cm2ࠊ῝ࡉ 0 ࠿ࡽ 40 cm ࡞࡝ᖜᗈ࠸ࢹ࣮ࢱࢆࠊ
ウࡍࡿࡇ࡜࡜ࡍࡿࠋࡲࡓࠊูࡢࢱࢫࢡࢢ࣮ࣝࣉ㸦SRS
1-3 ✀㢮ࡢගᏊ⥺࢚ࢿࣝࢠ࣮࠾ࡼࡧ 0-8 ✀㢮ࡢ㟁Ꮚ
17
⥺࢚ࢿࣝࢠ࣮࡟ᑐࡋ࡚⾜࠺ᚲせࡀ࠶ࡾࠊࣜࢽ࢔ࢵࢡ
ࠊIMRT
18,19
20
ࠊ࣊ࢵࢻᩓ஘㸦TG-74 㸧ࠊࣇ࢕࣒ࣝࢻ
21
22
ࠊ㟁Ꮚ⥺㸦TG-70 㸧࡞࡝㸧࡜
ࢩ࣓ࢺࣜ㸦TG-69 㸧
ࡢࢥ࣑ࢵࢩࣙࢽࣥࢢ㔞ࡣⳘ኱࡛࠶ࡿࠋྲྀᚓࡍ࡭ࡁࢹ
㔜」ࡍࡿෆᐜࡶ࠶ࡿࠋᚲせ࡟ᛂࡌ࡚ࠊࡇࡢࢱࢫࢡࢢ
࣮ࢱ㔞࡜ࠊ≀⌮ࢫࢱࢵࣇࡢປാ㔞ࢆ⪃៖ࡋ࡚ࣅ࣮࣒
21
医学物理 第 33 巻 第 1 号
II. ファントムの材質と使用法、検出器
ࢹ࣮ࢱ ᐃࡢ᫬㛫ࢆỴᐃࡍࡿࡇ࡜ࡣ㔜せ࡛࠶ࡾࠊࢹ
࣑ࢵࢩࣙࢽࣥࢢࡢ୍㒊ࢆ࢝ࢵࢺࡋ࡚᫬㛫ࢆ๐ῶࡍ
࣮ࢱࡢྲྀᚓ᫬㛫ࡢぢ✚ࡶࡾࡣ἞⒪⿦⨨ࡢཷࡅධࢀ
ࡿࡇ࡜ࡣྍ⬟࡛࠶ࡿࠋ
㸦ࢫ࢟ࣕࢽࣥࢢ࡟࠾ࡅࡿ㸧࣏
ࡼࡾࡶ๓࡟⾜࠺ᚲせࡀ࠶ࡿࠋ୍౛࡜ࡋ࡚ࠊ2 ࡘࡢග
࢖ࣥࢺ ᐃࡢ཰㞟᫬㛫ࡢ▷⦰ࠊࢫ࢟ࣕࢽࣥࢢ㏿ᗘࡢ
Ꮚ⥺࢚ࢿࣝࢠ࣮࡟ᑐࡋ࡚ࠊ6 ࡘࡢࢫ࢟ࣕࢽࣥࢢࢹ࣮
ቑຍࠊ ᐃ㛫ࡢ㐜ᘏ᫬㛫ࡢ๐ῶ࡞࡝࡟ࡼࡗ࡚ࡶ඲య
ࢱࢭࢵࢺ㸦1 ࡘࡢ PDDࠊ5 ࡘࡢ῝ࡉ࡛ࡢࣉࣟࣇ࢓࢖
ࡢ᫬㛫ࢆῶࡽࡍࡇ࡜ࡀ࡛ࡁࡿࠋࡋ࠿ࡋ࡞ࡀࡽࠊ᫬㛫
ࣝ㸧ࢆ 15 ࡢ↷ᑕ㔝ࢧ࢖ࢬ࡛ࠊ5 ࡘࡢ᮲௳㸦࣮࢜ࣉࣥࠊ
๐ῶࡢࡓࡵࡢࢫ࢟ࣕࢽࣥࢢࣃ࣓࣮ࣛࢱࡢኚ᭦ࡣࣅ
4 ࡘࡢ≀⌮࢙࢘ࢵࢪ㸧࡟ᑐࡋ࡚ྲྀᚓࡍࡿሙྜࠊᘧ(1)
࣮࣒ࢹ࣮ࢱࡢ㉁࡟ᙳ㡪ࢆ୚࠼ࡿࠋᐇ㝿࡟ࡇࢀࡽࢆ⾜
ࡢࡼ࠺࡟᫬㛫ࡀぢ✚ࡶࡽࢀࡿࠋ
࠺๓࡟ࠊ኱↷ᑕ㔝ࡢࣉࣟࣇ࢓࢖ࣝ ᐃ࡞࡝ࡢࢸࢫࢺ
ࢫ࢟ࣕࣥࢆ⾜࠸ࠊࣅ࣮࣒ࢹ࣮ࢱ࡟ㄗᕪࢆ⏕ࡌ࡞࠸ࡇ
Time 㹼 [ (PDD + 5 Profiles) / beam energy]
×
࡜ࢆ☜ㄆࡍࡿᚲせࡀ࠶ࡿࠋ
(open + 4 wedges) × (60 points/scan)
II. ࣇ࢓ࣥࢺ࣒ࡢᮦ㉁࡜౑⏝ἲࠊ᳨ฟჾ
× [1 s/pts + 1 s (movement and delay) ]
5
II.A. ࣇ࢓ࣥࢺ࣒ᮦ㉁
× 15 fields × 2 energies㹼9 × 10 s㹼30 h.
(1)
ࢥ࣑ࢵࢩࣙࢽࣥࢢࡢ㝿࡟ ᐃࡍࡿࣅ࣮࣒ࢹ࣮ࢱ
ࡣ Table I ࡟♧ࡍࡼ࠺࡟㸦i㸧ࢫ࢟ࣕࣥࢹ࣮ࢱࠊ㸦ii㸧
ᶵჾࡢࢭࢵࢺ࢔ࢵࣉࠊ⿦⨨ࣃ࣓࣮ࣛࢱࡢኚ᭦ࠊ⿦
ࣀࣥࢫ࢟ࣕࣥࢹ࣮ࢱ㸦࣏࢖ࣥࢺࢹ࣮ࢱ㸧ࡢ 2 ㏻ࡾࡀ
⨨ࡢࢺࣛࣈࣝ࡞࡝ࢆ⪃៖ࡍࡿ࡜ࠊගᏊ⥺ࢫ࢟ࣕࢽࣥ
Ꮡᅾࡍࡿࠋ࣏࢖ࣥࢺࢹ࣮ࢱࡣᅛయࣇ࢓ࣥࢺ࣒㸦ᚋ㏙㸧
ࢢࢹ࣮ࢱࡢྲྀᚓ࡟ᚲせ࡞᫬㛫ࡣ୍⯡ⓗ࡟ 1.5 㐌㛫࡛
ࡶࡋࡃࡣỈࣇ࢓ࣥࢺ࣒ࢆ⏝࠸࡚ ᐃࡍࡿࡇ࡜ࡀ࡛
࠶ࡿࠋࡶ࠺ 1 㐌㛫ࡣ࣏࢖ࣥࢺࢹ࣮ࢱࡢྲྀᚓ࡟㈝ࡸࡋࠊ
ࡁࡿࠋࢫ࢟ࣕࣥࢹ࣮ࢱࡢྲྀᚓࡣࢫ࢟ࣕࢽࣥࢢỈࣇ࢓
1-2 㐌㛫ࢆ㟁Ꮚ⥺ࠊ
ṧࡾ 1 㐌㛫ࡣ᳨ド࡟ᚲせ࡜࡞ࡿࠋ
ࣥࢺ࣒ࢆ⏝࠸࡚⾜ࢃࢀࠊ୍⯡࡟ 40 cm ῝ࡲ࡛ࡢ୰ᚰ
ࡲࡓࠊ୍⯡ⓗ࡟ゎᯒ࠾ࡼࡧ࣏࣮ࣞࢺࡢసᡂ࡟ࡣ 1-2
㍈ PDD ࡜ࣉࣟࣇ࢓࢖ࣝࢆ ᐃࡍࡿࡇ࡜ࡀྍ⬟࡛࠶
㐌㛫ࢆせࡍࡿࠋࡇࢀࡽࢆྜィࡍࡿ࡜ࢥ࣑ࢵࢩࣙࢽࣥ
ࡿࠋࡇࢀࡽ࡟ࡣ 2 ḟඖ࠶ࡿ࠸ࡣ 3 ḟඖỈࣇ࢓ࣥࢺ࣒
ࢢ࡟๭ࡾᙜ࡚ࡽࢀࡿ᫬㛫ࡣ 4-6 㐌㛫࡜࡞ࡿࠋࡋ࠿ࡋ
࡞࡝࠸ࡃࡘ࠿ࡢࣂ࢚࣮ࣜࢩࣙࣥࡀ࠶ࡿࠋỈ㸦ࢫ࢟ࣕ
࡞ࡀࡽࠊࣀࣥࢫ࢟ࣕࣥࢹ࣮ࢱࡢྲྀᚓࠊQA ࡢࡓࡵࡢ
ࢽࣥࢢ㸧ࢱࣥࢡࡣᑡ࡞ࡃ࡜ࡶ 40 × 40 cm2 ࡢ↷ᑕ㔝ࢆ
ᇶ‽ࢹ࣮ࢱࡢྲྀᚓࠊ࣋ࣥࢳ࣐࣮ࢡヨ㦂ࠊTPS ࢹ࣮ࢱ
40 cm ῝࡛ ᐃ࡛ࡁࡿࡶࡢ࡛࡞ࡅࢀࡤࠊᩓ஘᮲௳ࡀ
ࡢ᳨ド࡞࡝࡟㏣ຍࡢ᫬㛫ࢆぢ✚ࡶࡿᚲせࡀ࠶ࡿࠋࢥ
୙༑ศ࡛࠶ࡾ౑⏝ࡍ࡭ࡁ࡛࡞࠸ࠋࡲࡓࠊගᏊ⥺࡟ᑐ
࣑ࢵࢩࣙࢽࣥࢢ࡟チࡉࢀࡓ᫬㛫ෆ࡛ࡍ࡭࡚ࡢࢹ࣮
ࡍࡿࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡣ cross-plane ࡜ in-plane
ࢱࢆྲྀᚓࡍࡿᚲせࡀ࠶ࡿࡓࡵࠊ࡜ࡾࢃࡅ᭱ప㝈ࡢ≀
㸦x ᪉ྥ࡜ y ᪉ྥ㸧ࡢ୧᪉ࡢࢫ࢟ࣕࣥࡀ࡛ࡁࡿᚲせ
⌮ࢧ࣏࣮ࢺࡋ࠿ᚓࡽࢀ࡞࠸᪋タ࡛ࡣࠊ≀⌮ࢫࢱࢵࣇ
ࡀ࠶ࡿࠋ୧᪉ྥ࡟ࢫ࢟ࣕࣥࡀྍ⬟࡛࠶ࡿࡇ࡜࡛ࠊ⡆
ࡣᅔ㞴ࢆᙉ࠸ࡽࢀࡿࡔࢁ࠺ࠋᑡᩘࡢ≀⌮ኈࡀ㎿㏿࡟
౽࡟ࢹ࣮ࢱྲྀᚓ࡛ࡁࠊࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢᅇ㌿࡟
ࢹ࣮ࢱࢆྲྀᚓࡋࡼ࠺࡜ࡍࢀࡤࠊࢹ࣮ࢱࡢ㉁࡟ᙳ㡪ࡍ
ࡼࡿ࢔ࣛ࢖࣓ࣥࢺ࢚࣮ࣛࢆ㑊ࡅࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
ࡿྍ⬟ᛶࡀ࠶ࡿࠋ
TPS ࡟ࡼࡗ࡚ࡣ jaw ࡟ࡼࡿ↷ᑕ㔝ࡢࢹ࣮ࢱࡔࡅࡀᚲ
ࡶࡋྠࢱ࢖ࣉ࡛ࣅ࣮࣒≉ᛶࢆྜࢃࡏ㎸ࢇࡔ」ᩘ
ࡢ⿦⨨ࡀ࠶ࢀࡤࠊ Marshall ࡽ
25
ࡀሗ࿌ࡋ࡚࠸ࡿࡼ
࠺࡟ప࢚ࢿࣝࢠ࣮ࣅ࣮࣒࡟㛵ࡋ࡚ࡣࠊࣅ࣮࣒ࢹ࣮ࢱ
ࡣࡼࡃ୍⮴ࡍࡿࡣࡎ࡛࠶ࡿࠋࡋ࠿ࡋ࡞ࡀࡽࠊ⌧௦ࡢ
せ࡛ࠊMLC ࡣ TPS ࡢෆ㒊࡛ࣔࢹࣜࣥࢢࡉࢀ࡚࠸ࡿ
ࡇ࡜ࡀ࠶ࡿࠋࡋ࠿ࡋ࡞ࡀࡽ MLC ↷ᑕ㔝ࡢࢹ࣮ࢱࡣ
ࣔࢹࣝࡢ᳨ドࡢࡓࡵ࡟ࡸࡣࡾᚲせ࡛࠶ࡿࠋ
㈓Ỉࢱࣥࢡ࡟Ỉࡀ㈓ࡵ࡚࠶ࡾࠊࢫ࢟ࣕࢽࣥࢢࢱࣥ
⿦⨨࡟࠾ࡅࡿᐃ㔞ⓗ࡞ホ౯࡛ࡣ 1 ḟඖࡢ࣐࢞ࣥゎᯒ
ࢡ࡟Ỉࢆ࣏ࣥࣉ࡛ࡃࡳୖࡆࡿࡼ࠺࡞ࢩࢫࢸ࣒ࡢሙ
࡛ࠊ2 ྎࡢྠ✀ࡢ⿦⨨࡟࠾࠸࡚ࠊྠ᮲௳࡛ྲྀᚓࡋࡓ
ྜࠊ㥑ື⣔࡟⸴㢮ࡀⓎ⏕ࡋ࡞࠸ࡼ࠺ẅ⳦๣ࢆᢞ୚ࡋ
」ᩘࡢࣉࣟࣇ࢓࢖ࣝࡢ࠺ࡕࠊ30%ࡀṇ☜࡟ࡣ୍⮴ࡋ
ࡓ⵨␃Ỉࢆ౑࠺ᚲせࡀ࠶ࡿࠋࡶࡋ㈓Ỉࢱࣥࢡࡀ౑࠼
26
࡞࠸ࡇ࡜ࡀ♧ࡉࢀ࡚࠸ࡿ ࠋ㐺ษ࡞ゎᯒ࡟ࡼࡿࢧࣥ
࡞࠸ሙྜࠊỈ ࢆࣔࢽࢱࣜࣥࢢࡋ࡚ࠊࢹ࣮ࢱ ᐃ๓
ࣉࣝࢹ࣮ࢱࡢẚ㍑⤖ᯝࡀ᪋タෆ࡛ࡢチᐜ್㸦ᇶᮏⓗ
࡟ࡣᐊ ࡜ྠ➼࡟ࡍࡿᚲせࡀ࠶ࡿࠋ࠸ࡃࡘ࠿ࡢ᳨ฟ
࡟ࡣӌs1%㸧ࢆ‶ࡓࡏࡤࠊྠ୍⿦⨨࡟ᑐࡋ࡚ࡢࡳࢥ
ჾ࡛ࡣ ᗘ࡟ᑐࡍࡿ⿵ṇࡀ༑ศ⪃៖ࡉࢀ࡚࠸࡞࠸
22
II. ファントムの材質と使用法、検出器
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
ࡓࡵࠊ࡛ࡁࡿ㝈ࡾᐊ ࡟㏆௜ࡅࡿࡇ࡜ࢆ᥎ዡࡍࡿ
27
ࠋ
㌿ࡉࡏ࡚ࢹ࣮ࢱࢆྲྀᚓࡍࡿᚲせࡀ࠶ࡿࠋ୍⯡ⓗ࡟ࢥ
ࡑࡢࡓࡵࠊᐊ ࡜ᖹ⾮≧ែ࡟࡞ࡿࡼ࠺Ỉࢆࡋࡤࡽࡃ
࣓࣮ࣜࢱࢆᅇ㌿ࡉࡏ࡚ࡶࣇࣛࢵࢺࢽࣥࢢࣇ࢕ࣝࢱ
ᐊෆ࡟⨨࠸࡚࠾ࡃᚲせࡀ࠶ࡿࠋ
ࡢᙧ≧᝟ሗࡣᚓࡽࢀ࡞࠸ࡓࡵࠊࢥ࣓࣮ࣜࢱᅇ㌿࡟ࡼ
ࣅ࣮࣒ࢫ࢟ࣕࢽࣥࢢࡣ୍⯡ⓗ࡟ᩘ᪥㛫௨ୖ࠿࠿
ࡗ࡚ࡇࢀࡽࡢࢹ࣮ࢱࢆྲྀᚓࡋ࡚ࡣ࡞ࡽ࡞࠸ࠋ
ࡿࡓࡵࠊ⸴㢮ࡀⓎ⏕ࡋ࡚ࣅࣝࢻ࢔ࢵࣉࢆᙧᡂࡍࡿࡇ
ᑐゅ⥺᪉ྥࡢࣉࣟࣇ࢓࢖࡛ࣝࡣ 75 × 75 cm2 ࡼࡾ
࡜ࡀ࠶ࡿࠋࡇࢀࡣࢱࣥࢡෆࡢỈࡀ㏱᫂࠿ࡽ᭎ࡗࡓ≧
኱ࡁ࡞ࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡀዲࡲࡋ࠸ࡀࠊ⌧ᐇ࡟ࡣ
ែ࡟ኚ໬ࡍࡿࡇ࡜ࡀ♧၀ࡢ 1 ࡘ࡜࡞ࡿࠋࡈࡃᑡ㔞ࡢ
SSD = 100 cmࠊ30 cm ῝௨ୖࠊ↷ᑕ㔝 40 × 40 cm2 ࡜
Ὑ๣ࡸሷ⣲ࢆຍ࠼ࡿࡇ࡜࡛⸴㢮ࢆຠᯝⓗ࡟㝖ཤ࡛
࠸࠺᮲௳ࡢᑐゅ⥺᪉ྥࣉࣟࣇ࢓࢖ࣝ+5 cm ࡢ࣮࢜ࣂ
ࡁࡿࠋࡇࢀࡽࡣ ᐃࢆ㛤ጞࡍࡿ๓࠿ࠊỈࡀ⃮ࡾࡔࡋ
࣮ࢫ࢟ࣕࣥࢆ ᐃ࡛ࡁࡿၟ⏝ࡢࢫ࢟ࣕࢽࣥࢢࢩࢫ
ࡓࡽ༶ᗙ࡟⾜࠺ᚲせࡀ࠶ࡿࠋὙ๣ࢆຍ࠼ࡿࡇ࡜ࡢࡶ
ࢸ࣒ࡣ࡯࡜ࢇ࡝Ꮡᅾࡋ࡞࠸ࠋጇ༠Ⅼ࡜ࡋ࡚ࠊ↷ᑕ㔝
࠺୍ࡘࡢ฼Ⅼࡣ⾲㠃ᙇຊࢆῶᑡࡉࡏࠊࢭࢵࢺ࢔ࢵࣉ
ࡢ∦ഃ༙ศࡢࡳࢆࢫ࢟ࣕࣥࡍࡿ᪉ἲ㸦ࣁ࣮ࣇࢫ࢟ࣕ
᫬ࡢ᳨ฟჾ఩⨨ࢆどぬⓗ࡟ࢃ࠿ࡾࡸࡍࡃ࡛ࡁࡿⅬ
ࣥ㸧ࡀ࠶ࡿࡀࠊࣁ࣮ࣇࢫ࡛࢟ࣕࣥࡣ᭱኱↷ᑕ㔝 ᐃ
࡛࠶ࡿࠋከࡃࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡢ〇㐀ᴗ⪅ࡣ
࡟ᑐࡋ࡚୰ᚰ㍈࡟࢜ࣇࢭࢵࢺࢆຍ࠼࡚ ᐃࡋ࡞ࡅ
ࣁ࣮ࢻ࢙࢘࢔ࢆಖㆤࡍࡿࡓࡵࡢ⸆ရࢆᥦ౪ࡋ࡚࠸
ࢀࡤ࡞ࡽ࡞࠸ࠋࣁ࣮ࣇࢫ࢟ࣕࣥࢆ⾜࠺๓࡟ࠊ࣮࢜ࣉ
ࡿࠋ
ࣥ↷ᑕ㔝ࡢ㠀ᑐ⛠ᛶࡀ 0.5%௨ୗ࡛࠶ࡿࡇ࡜ࢆ☜ㄆ
ຍ࠼࡚ࠊࢫ࢟ࣕࢽࣥࢢࢹ࣮ࢱྲྀᚓ୰ࡢỈࡢ⵨Ⓨࡶ
ࡍࡿࡇ࡜࡟ࡼࡾࠊ࣑࣮ࣛࢥࣆ࣮ࡋࡓࢹ࣮ࢱࡀ඲యࢆ
୍⯡ⓗ࡞ၥ㢟࡛࠶ࡿࠋࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢ኱ࡁࡉ
⾲ࡋ࡚࠸ࡿ࡜ࡳ࡞ࡍࡇ࡜ࡀ࡛ࡁࡿࠋࡲࡓࠊࡼࡾ῝࠸
࡟ࡶࡼࡿࡀࠊỈࡢ⵨Ⓨࡣ᫬࡟↓ど࡛ࡁ࡞࠸࡯࡝᳨ฟ
㡿ᇦ࡛ࡣᶓ᪉ྥࡢᩓ஘ࢆ༑ศ࡟⪃៖ࡍࡿࡓࡵࠊࣁ࣮
ჾࡢ῝ࡉࢆኚ࠼࡚ࡋࡲ࠺ࡇ࡜ࡀ࠶ࡿࡢ࡛ࠊ≉࡟㛗ᮇ
ࣇࢫ࢟ࣕࣥ᫬࡟ࡣ୰ᚰ㍈ࡼࡾ᭱ప࡛ࡶ+5 cm ཯ᑐഃ
㛫࡟ཬࡪࢫ࢟ࣕࢽࣥࢢ࡛ࡣࠊᐃᮇⓗ࡟Ỉ㠃ࢆ☜ㄆࡍ
ࡲ࡛ࢫ࢟ࣕࣥࡍࡿࡇ࡜ࡀ᥎ዡࡉࢀࡿࠋࣁ࣮ࣇࢫ࢟ࣕ
ࡿࡇ࡜ࢆ᥎ዡࡍࡿࠋࣅ࣮࣒ࢫ࢟ࣕࢽࣥࢢࢆ⤊஢ࡋࡓ
ࣥࡣࢭࢵࢸ࢕ࣥࢢ࡟ࡼࡾ㛗࠸᫬㛫ࢆせࡍࡿࠋTPS ࡢ
㝿ࡣࠊࢫ࢟ࣕࢽࣥࢢࢱࣥࢡෆࡢỈࢆ᏶඲࡟᤼ฟࡋ஝
せ௳࡟ࡼࡿࡀࠊࢫ࢟ࣕࣥࡢ᏶඲࡞ࢹ࣮ࢱࢭࢵࢺࢆస
⇱ࡉࡏࡿᚲせࡀ࠶ࡿࠋ᫬࡟ࡣࢫ࢟ࣕࢽࣥࢢࡢࣁ࣮ࢻ
ᡂࡍࡿࡓࡵ࡟ࢹ࣮ࢱ᧯సࡀᚲせ࡟࡞ࡿሙྜࡶ࠶ࡿࠋ
࢙࢘࢔࡟ᑐࡋᑡ㔞ࡢ࢜࢖ࣝࢆὀࡍᚲせࡀ࠶ࡿሙྜ
᫬㛫๐ῶࢆ⾜࠺࡟ࡋ࡚ࡶࠊධຊࢹ࣮ࢱ࡜ࡋ࡚ࢩࢫࢸ
ࡶ࠶ࡿࠋ࣑ࢿࣛࣝỿ╔ࡸ⸴㢮ࡢⓎ⏕ࡣࣁ࣮ࢻ࢙࢘࢔
࣒㸦TPS㸧࡟㐺ྜࡋࡓࢹ࣮ࢱ࡛࠶ࡿ࠿☜ㄆࡍࡿᚲせ
ࡢࢲ࣓࣮ࢪ࡜࡞ࡿࡓࡵࠊࢫ࢟ࣕࢽࣥࢢࢱࣥࢡෆ࡟Ỉ
ࡀ࠶ࡿࠋ
ࢆṧࡉ࡞࠸ࡇ࡜ࢆ᥎ዡࡍࡿࠋ
II.C. ᅛయࣇ࢓ࣥࢺ࣒
II.B. ࣇ࢓ࣥࢺ࣒ࡢᑍἲ
࣏࢖ࣥࢺ⥺㔞࠾ࡼࡧࣀࣥࢫ࢟ࣕࣥࢹ࣮ࢱ㸦ฟຊಀ
ࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢࢧ࢖ࢬࡣ᭱኱↷ᑕ㔝ࡢࣉ
ᩘࠊ⾲㠃⥺㔞ࠊ₃࠼࠸/㏱㐣 ᐃࠊ࢙࢘ࢵࢪ࠾ࡼࡧࢺ
ࣟࣇ࢓࢖ࣝ ᐃ࡟ᑐࡋ࡚༑ศ኱ࡁ࠸ᚲせࡀ࠶ࡿ㸦ග
ࣞ࢖ಀᩘ࡞࡝㸧ࡢ ᐃࡣỈࣇ࢓ࣥࢺ࣒࡛ྍ⬟࡛ࠊከ
2
Ꮚ⥺࡛ࡣ 40 × 40 cm ࡟ຍ࠼࡚༑ศ࡞ഃ᪉ࣅࣝࢻ࢔
ࡃࡢሙྜࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࢆ⏝࠸࡚⾜ࢃࢀࡿ
ࢵࣉ㸦5 cm㸧࡜࣮࢜ࣂ࣮ࢫ࢟ࣕࣥ㊥㞳ࢆྵࡵࡓࢧ࢖
ࡀࠊỈࢆᶍᨃࡋࡓᅛయࣇ࢓ࣥࢺ࣒ࡶ⡆౽ᛶ࠿ࡽ⏝࠸
ࢬ㸧
ࠋTPS ࡟ࡼࡗ࡚ࡣࠊࣔࢹࣜࣥࢢࡢࡓࡵ࡟᭱኱↷
ࡿࡇ࡜ࡀ࡛ࡁࡿࠋ࢔ࢡࣜࣝࡸ࣏ࣜࢫࢳࣞࣥ࡞࡝Ỉ௨
ᑕ㔝࠿ࡘ 40 cm ῝࡛ᶓ᪉ྥ࡟ࡼࡾ኱ࡁ࡞ࢫ࢟ࣕࣥࡸࠊ
እࡢࣉࣛࢫࢳࢵࢡ⣲ᮦࡣ Table II ࡸ௚ࡢᩥ⊩
ᑐゅ⥺᪉ྥࡢࢫ࢟ࣕࣥࢆᚲせ࡜ࡍࡿሙྜࡶ࠶ࡿࠋ㐺
♧ࡍࡼ࠺࡟㟁Ꮚ⃰ᗘࠊ㜼Ṇ⬟㸦S㸧
ࠊ㉁㔞࢚ࢿࣝࢠ࣮
ษ࡞ࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࢧ࢖ࢬࢆỴᐃࡍࡿࡓࡵࠊ࢜
྾཰ಀᩘ㸦Pen/U㸧࡞࡝ࡀ␗࡞ࡾ⿵ṇࡀᚲせ࡛࠶ࡿࡓ
࣮ࣂ࣮ࢫ࢟ࣕࣥ㡿ᇦ࡜ 40 cm ῝࡛ࡢࣅ࣮࣒ࡢᗈࡀࡾ
ࡵࠊὀពࡋ࡚౑⏝ࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋTello 29 ࡽࡣࠊ
ࢆ⪃៖ࡍࡿᚲせࡀ࠶ࡿࠋ᭱኱↷ᑕ㔝ࡢ 1.6 ಸࡀᏳ඲
Ỉ࡟ᑐࡋ࡚ᅛయࣇ࢓ࣥࢺ࣒ෆ࡛ࡢගᏊࡸ㟁Ꮚࡢᣲ
2
28, 29
࡟
࡛࠶ࡾࠊ༢⣧ィ⟬࡛ࡣ 75 × 75 cm ࡀ⌮᝿ⓗ࡞ࢧ࢖ࢬ
ືࡀࣅ࣮࣒ࡢ࢚ࢿࣝࢠ࣮࡟ࡼࡗ࡚␗࡞ࡿࡇ࡜ࢆ♧
࡛࠶ࡿࠋࡶࡋࢫ࢟ࣕࢽࣥࢢࢯࣇࢺ࢙࢘࢔ࡀᑐゅ⥺᪉
ࡋࠊᅛయࣇ࢓ࣥࢺ࣒ࡢᨺᑕ⥺Ꮫⓗ≉ᛶࡀṇ☜࡟ࡣỈ
ྥࡢࢫ࢟ࣕࣥ࡟ᑐᛂࡋ࡚࠸࡞ࡅࢀࡤࠊࢸ࣮ࣈࣝࢆᅇ
࡜␗࡞ࡿࡇ࡜ࡀᣦ᦬ࡉࢀ࡚࠸ࡿࠋ
23
医学物理 第 33 巻 第 1 号
II. ファントムの材質と使用法、検出器
Table II. Physical characteristics of commercially available water equivalent materials. NA: Nuclear Associates, NY; Radiation Product Design,
Albertsville, MN; RMI: Radiation Measurements, Inc., Middleton, WI; CIRS: Computerized Imaging Reference Systems, Inc. Norfolk, VA.
water
Pen / U med
Material, manufacturer
Color
Density (kg/m3)
6 MV
10 MV
15 MV
Polystyrene, NA, RPD
Opaque
1050
1.035
1.037
1.049
1.059
Acrylic/PMMA, RPD
Clear
1185
1.031
1.033
1.040
1.044
18 MV
Solid water, RMI
Maroon
1030
1.032
1.039
1.049
1.052
Plastic water, CIRS
Lavender
1012
1.032
1.031
1.030
1.030
White
1045
1.035
1.036
1.049
1.056
White water-RW-3, NA
ᅛయࣇ࢓ࣥࢺ࣒ࡣ᳨ฟჾᙧ≧࡟ྜࢃࡏࡓ✸Ꮝຍ
ᕤࡀᚲせ࡛ࠊ᳨ฟჾࢆᤄධࡋࡓ≧ែ࡛ kV ࡢ X ⥺࡛
ࣉࢆ㑅ࡪࡇ࡜ࡀ㔜せ࡛࠶ࡾࠊࡉࡶ࡞ࡅࢀࡤㄗࡗࡓࢹ
࣮ࢱࢆྲྀᚓࡍࡿྍ⬟ᛶࡀ࠶ࡿࠋSec. IV. C.࡛ヲ㏙ࡍࡿࠋ
᧜ᙳࡋࠊᙧ≧ࡢ୍⮴ࢆ☜ㄆࡍ࡭ࡁ࡛࠶ࡿࠋ᳨ฟჾࡈ
࡜ࡢᙧ≧࡟ྜࢃࡏ࡚ຍᕤࡉࢀࡓࣇ࢓ࣥࢺ࣒ࢆ౑⏝
II.E. ᳨ฟჾ
ࡍࡿᚲせࡀ࠶ࡿࠋ᳨ฟჾࢆᅛయࣇ࢓ࣥࢺ࣒࡟ᤄධࡋ
II.E.1. ྛ᳨ฟჾࡢ᭷⏝ᛶ
ᵝࠎ࡞〇㐀ᴗ⪅ࡀᖜᗈ࠸✀㢮ࡢ᳨ฟჾࢆసࡗ࡚
ࡓࡢࡕࠊ ᗘࡀᖹ⾮࡟࡞ࡿࡲ࡛⨨࠸࡚࠾ࡃᚲせࡀ࠶
30
ࡿ ࠋࣇ࢓ࣥࢺ࣒ࡢရ㉁ࡣ CT ࢆ᧜ീࡋࠊ࢔࣮ࢳࣇ
࠾ࡾࠊ㟁㞳⟽ࠊ༙ᑟయࠊࢲ࢖࢔ࣔࣥࢻ᳨ฟჾ࡞࡝ࡀ
࢓ࢡࢺࡸ CT ್ࢆ௓ࡋ࡚㟁Ꮚ⃰ᗘࡢ୙ᆒ㉁࡞㒊ศࡀ
Ꮡᅾࡍࡿࠋࡇࢀࡽࡢ᳨ฟჾࡣࢧ࢖ࢬ࡟ࡼࡗ࡚ᶆ‽ᆺࠊ
࡞࠸࠿ࢆ☜ㄆࡍ࡭ࡁ࡛࠶ࡿࠋ ࡲࡓࠊࣇ࢓ࣥࢺ࣒ࡣ
࣑ࢽᆺࠊ࣐࢖ࢡࣟᆺ࡟ศ㢮࡛ࡁࡿࠋ᫂☜࡞ᐃ⩏ࡣ࡞
MV ࡢ࢚ࢿࣝࢠ࣮࡟࠾࠸࡚Ỉ࡜ྠ➼ࡢᣲືࢆ♧ࡍࡼ
࠸ࡀࠊ㟁㞳⟽ࡣ᭷ឤయ✚࡟ࡼࡗ࡚௨ୗࡢࡼ࠺࡟ศࡅ
࠺࡟సࡽࢀ࡚࠸ࡿࡓࡵࠊkV ࡢ CT ್ࡀỈ࡜␗࡞ࡗ
ࡽࢀࡿࠋ
࡚࠸ࡿྍ⬟ᛶࡀ࠶ࡿⅬ࡟ὀពࡍࡿࠋ
x
㞳⟽ࡣ 0.6 cm3 ࡢ᭷ឤయ✚ࢆ᭷ࡋ࡚࠸ࡿࠋ
II.D. ࣅࣝࢻ࢔ࢵࣉ࢟ࣕࢵࣉ
✵୰ฟຊಀᩘࠊࡶࡋࡃࡣ࣊ࢵࢻᩓ஘ಀᩘ㸦Sc㸧ࡢ
x
ࣇ࢓ࣥࢺ࣒ࡀ⏝࠸ࡽࢀ࡚ࡁࡓࠋၟ⏝࡛฼⏝ྍ⬟࡞ࣅ
࣑ࢽᆺ㸦~10-2 cm3㸧– ࣑ࢽᆺࡢ㟁㞳⟽ࡣᖹᆒ࡜
ࡋ࡚ 0.05 cm3 ࡢ᭷ឤయ✚ࢆ᭷ࡋ࡚࠸ࡿࠋ
ᐃ࡛ࡣࠊᚑ᮶ࣅࣝࢻ࢔ࢵࣉ࢟ࣕࢵࣉࡶࡋࡃࡣ࣑ࢽ
x
࣐࢖ࢡࣟᆺ㸦~10-3 cm3㸧– ࣐࢖ࢡࣟᆺࡢ㟁㞳⟽
ࡣᖹᆒ࡜ࡋ࡚ 0.007 cm3 ࡢ᭷ឤయ✚ࢆ᭷ࡋ࡚࠾
ࣝࢻ࢔ࢵࣉ࢟ࣕࢵࣉ㸦Radiation Products Design,
Albertville, MN 230㸧ࡣ࢚ࢿࣝࢠ࣮࡟ࡼࡗ࡚ࡣΰධ㟁
Ꮚࢆ㝖ཤࡍࡿࡢ࡟༑ศ࡛࡞࠸ሙྜࡀ࠶ࡿࠋTG-74
ᶆ‽ᆺ㸦~10-1 cm3㸧 – ᶆ‽ⓗ࡞ࣇ࢓࣮࣐ᙧ㟁
20
ࡾࠊᐃ఩↷ᑕࡸ Gamma KnifeࠊCyberKnifeࠊIMRT
࡞࡝ᑠ↷ᑕ㔝ࡢ ᐃ࡟㐺ࡋ࡚࠸ࡿࠋ
࡛ࡣ஧ḟ㟁Ꮚᖹ⾮ࢆ㐩ᡂࡋࠊΰධ㟁Ꮚࢆ㝖ཤ࡛ࡁࡿ
࣑ࢽࣇ࢓ࣥࢺ࣒ࡢ౑⏝ࡀ᥎ዡࡉࢀ࡚࠸ࡿࠋ4 × 4 cm2
II.E.2. ᳨ฟჾࡢ✀㢮
௨ୗࡢᑠ↷ᑕ㔝࡛ࡣỈ➼౯ࡢ࣑ࢽࣇ࢓ࣥࢺ࣒ࢆ⏝
II.E.2.a. 㟁㞳⟽
࠸ࡿሙྜࡣ SCD = 300 cm ࡟ࡍࡿ᪉ἲࡀ౑⏝ࡉࢀ࡚
㟁㞳⟽ࡣ࢚ࢿࣝࢠ࣮ࠊ⥺㔞ࠊ⥺㔞⋡࡟ᑐࡍࡿᏳᐃ
࠸ࡿࠋࡲࡓࠊTG-74 ࡛ࡣ㧗ཎᏊ␒ྕ㸦high-Z㸧ࡢᮦ
ᛶࡸ෌⌧ᛶࡀⰋዲ࡛࠶ࡿࡇ࡜࠿ࡽࠊᨺᑕ⥺ࡢⓎぢ᫬
㉁ࡢ࣑ࢽࣇ࢓ࣥࢺ࣒ࢆ⏝࠸࡚ࠊࡍ࡭࡚ࡢ Sc ࢆྠ୍ࡢ
ࡼࡾ⌧ᅾࡲ࡛ᖜᗈࡃ౑ࢃࢀ࡚࠸ࡿࠋ㟁㞳⟽ࡣᅜᐙᶆ
㊥㞳࡛⾜࠺ࡇ࡜ࡀࡼࡾࡼ࠸᪉ἲ࡜ࡋ࡚᥎ዡࡉࢀ࡚
‽࡟ᑐࡋ࡚ᰯṇࡍࡿࡇ࡜ࡀྍ⬟࡛ࠊ⥺㔞ࢆ┤᥋ ᐃ
࠸ࡿࠋ㔠ᒓࡢ࣑ࢽࣇ࢓ࣥࢺ࣒ࢆ࢔࢖ࢯࢭࣥࢱ࡛౑⏝
ࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋ㟁㞳⟽ࡣẚ㍑ⓗᏳ౯࡛ࠊᐜ᫆࡟
࡛ࡁࡿࡼ࠺ࠊTG-74 ࡛㐺ษ࡞⿵ṇಀᩘࡀ♧ࡉࢀ࡚࠸
ධᡭ࡛ࡁࠊᵝࠎ࡞ᙧ≧㸦෇⟄ᙧࠊ⌫ᙧࠊᖹ⾜ᖹᯈᙧ
ࡿ
31
ࠋ࣑ࢽࣇ࢓ࣥࢺ࣒ࡢ඾ᆺⓗ࡞㛗㍈᪉ྥࡢ㛗ࡉࡣ
2
࡞࡝㸧࡜ࢧ࢖ࢬ㸦ᶆ‽ᆺࠊ࣑ࢽᆺࠊ࣐࢖ࢡࣟᆺ㸧ࡢ
10 g/cm ࡔࡀࠊ⿵ṇಀᩘࢆ㐺⏝ࡍࢀࡤࡇࢀ௨እࡢ㛗
ࡶࡢࡀ〇㐀ࡉࢀ࡚࠸ࡿࠋHumphries ࡜ Purdy 33 ࡣᵝࠎ
ࡉࡶ౑⏝ྍ⬟࡛࠶ࡿ 32ࠋヲ⣽ࡣ TG-74 ࡟グ㍕ࡉࢀ࡚
࡞ࣅ࣮࣒ࢹ࣮ࢱࢫ࢟ࣕࢽࣥࢢࡢࡓࡵࡢ㟁㞳⟽࡜ࡑ
࠸ࡿࠋSc ࡢ ᐃࡣ༑ศ࡞ཌࡉࡢࣅࣝࢻ࢔ࢵࣉ࢟ࣕࢵ
ࡢ≉ᛶࢆࣜࢫࢺ໬ࡋࡓࠋࡋ࠿ࡋࠊ⌧ᅾ࡛ࡣከࡃࡢ࣋
24
II. ファントムの材質と使用法、検出器
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
ࣥࢲ࣮ࡀᨺᑕ⥺ィ ࡟࠾ࡅࡿᵝࠎ࡞฼⏝ࡢࡓࡵ࡟
࡞ࡽ࡞࠸ࠋከࡃࡢሙྜࡣᕤሙฟⲴ᫬࡟㐺ษ࡟ᰯṇࡉ
␗࡞ࡗࡓ㟁㞳⟽ࢆ㈍኎ࡋ࡚࠸ࡿࠋ᭱᪂ࡢ◊✲ᡂᯝࡸ
ࢀ࡚࠸ࡿࡀࠊ౑⏝๓࡟ࢳ࢙ࢵࢡࢆ⾜࠺ࡇ࡜ࡣ⢭ᗘࢆ
ᚲせᛶ࡟ᇶ࡙࠸ࡓࠊ౑⏝┠ⓗࡈ࡜ࡢᨺᑕ⥺᳨ฟჾࡢ
ᢸಖࡍࡿୖ࡛ᚲせ࡛࠶ࡿࠋ㟁㞳⟽࢔ࣞ࢖࡜ࢲ࢖࣮࢜
ศ㢮ࡣᵝࠎ࡞〇㐀ᴗ⪅㸦PTW, BEST, IBA, Standard
ࢻ࢔ࣞ࢖࡛ࢲ࢖ࢼ࣑ࢵࢡ࢙࢘ࢵࢪ࡟ᑐࡍࡿ ᐃ࡟
Imaging ࡞࡝㸧࠿ࡽᚓࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
㐪࠸ࡣ࡞࠸ࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿࡢ࡛ࠊ࡝ࡕࡽࡢࢩ
ࢫࢸ࣒ࡶ౑⏝ྍ⬟࡛࠶ࡿ 44, 45ࠋ
II.E.2.b. ࢲ࢖࣮࢜ࢻ
༙ᑟయࢲ࢖࣮࢜ࢻ᳨ฟჾࡣගᏊ⥺࣭㟁Ꮚ⥺࠸ࡎࢀ
࡟࠾࠸࡚ࡶࣅ࣮࣒ࢹ࣮ࢱ ᐃ࡟ᗈࡃ⏝࠸ࡽࢀ࡚࠸
II.E.2.d. ࢲ࢖࢔ࣔࣥࢻ᳨ฟჾ
ࢲ࢖࢔ࣔࣥࢻ᳨ฟჾࡣ㟁Ꮚ-ṇᏍᑐࡢྍືᛶ࡟ඃ
ࡿࠋࢲ࢖࣮࢜ࢻࡢ≉ᚩࡣ㏿࠸ᛂ⟅᫬㛫㸦㟁㞳⟽࡛ࡣ
ࢀࡓᅛయ᳨ฟჾ࡛ࠊ㟁㞳ᨺᑕ⥺ࡢ ᐃ࡟ᑐࡋ࡚㨩ຊ
msec ࡛࠶ࡿࡢ࡟ᑐࡋPsec ࣮࢜ࢲ࣮㸧࡜ඃࢀࡓ✵㛫
ⓗ࡞༙ᑟయ᳨ฟჾ࡛࠶ࡿࠋࢲ࢖࢔ࣔࣥࢻ᳨ฟჾࡢ
ศゎ⬟ࢆᣢࡘࡇ࡜ࠊ㟁ᅽࢆ༳ຍࡍࡿᚲせࡀ࡞࠸ࡇ࡜ࠊ
㸦 ᐃ㸧⌮ㄽࡣࢲ࢖࣮࢜ࢻ᳨ฟჾ࡜㠀ᖖ࡟ఝ࡚࠾ࡾࠊ
㧗ឤᗘ࡛࠶ࡿࡇ࡜ࡀᣲࡆࡽࢀࡿࠋຍ࠼࡚ࠊࢲ࢖࣮࢜
㟁㞳ᨺᑕ⥺ࡀ྾཰ࡉࢀࡿ࡜≀㉁ࡢఏᑟᛶࡀ୍᫬ⓗ
ࢻࡣ⮫ᗋ౑⏝ࡉࢀ࠺ࡿ 4-20 MeV ࡢ㟁Ꮚ⥺࡟࠾࠸࡚ࠊ
࡟ኚ໬ࡍࡿ 46-50ࠋࢲ࢖࢔ࣔࣥࢻ᳨ฟჾࡢᛂ⟅ࡣ྾཰
ࢩࣜࢥࣥ࡜Ỉࡢ㛫࡟࠾ࡅࡿ㉁㔞⾪✺㜼Ṇ⬟ẚࡀ࢚
⥺㔞⋡࡟ṇẚ౛ࡋࠊ᪉ྥ౫Ꮡᛶࡣ♧ࡉࡎࠊ⤌ᡂࡣே
ࢿࣝࢠ࣮࡟౫Ꮡࡋ࡞࠸
34-36
ࠋࡑࢀࡺ࠼ࠊࢲ࢖࣮࢜ࢻ
య࡟㏆࠸ࠋ᭷ឤయ✚ࡣ 1.0-6.0 mm3 ࡜㠀ᖖ࡟ᑠࡉࡃࠊ
ࡣ≉࡟㟁Ꮚ⥺ࡢ ᐃ࡟࠾࠸࡚᭷ຠ࡞᳨ฟჾ࡜࡞ࡿࠋ
ᑠ↷ᑕ㔝ࡢ࣏࢖ࣥࢺ⥺㔞 ᐃ࡜ࣉࣟࣇ࢓࢖ࣝ ᐃ
≉ᐃࡢࢲ࢖࣮࢜ࢻࡣ≉ᐃࡢᨺᑕ⥺࡟ࡢࡳ౑⏝ࡍ࡭
࡟㐺ࡋ࡚࠸ࡿࠋࢲ࢖࢔ࣔࣥࢻ᳨ฟჾࡣࢃࡎ࠿࡟⥺㔞
ࡁ࡛࠶ࡾࠊ㟁Ꮚ⥺⏝ࡣ㟁Ꮚ⥺ࡢࠊගᏊ⥺⏝ࡣගᏊ⥺
⋡౫Ꮡࢆ♧ࡍࡀࠊỈ୰࡟࠾ࡅࡿࢫ࢟ࣕࢽࣥࢢ ᐃ࡟
ࡢ ᐃ࡟ࡢࡳ౑⏝࡛ࡁࡿࡇ࡜࡟ὀពࡍࡿᚲせࡀ࠶
౑⏝ࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋࢲ࢖࢔ࣔࣥࢻ᳨ฟჾࡣ〇㐀
ࡿࠋࡲࡓࠊࢲ࢖࣮࢜ࢻ᳨ฟჾࡣ ᗘࠊ⥺㔞⋡㸦SSD
ࡀ㞴ࡋ࠸ࡓࡵࠊ࡯࠿ࡢᅛయ᳨ฟჾ࡟ẚ࡭࡚㧗౯࡛࠶
ࡢ㐪࠸ࡸ࢙࢘ࢵࢪ౑⏝᫬࡞࡝㸧
ࠊ࢚ࢿࣝࢠ࣮
34, 36-38
ࡿࠋ
࡟ᑐࡋ࡚౫Ꮡᛶࡀ࠶ࡾࠊࡲࡓゅᗘ౫Ꮡᛶࡀ࠶ࡿࡶࡢ
ࡶᏑᅾࡍࡿࠋTG-62 39 ࡛᥎ዡࡉࢀ࡚࠸ࡿ⢭ᗘࢆ㐩ᡂ
ࡍࡿࡓࡵ࡟ࡣࠊࡇࢀࡽࡢ౫Ꮡᛶࢆ⿵ṇࡍࡿ࠿ࠊ⥺㔞
II.E.2.e. ⇕⺯ග⥺㔞ィ
⇕⺯ග⥺㔞ィ 51㸦TLD㸧ࡣ࣏࢖ࣥࢺ⥺㔞ࡢ ᐃࡸ
⋡ࡸ࢚ࢿࣝࢠ࣮࡬ࡢ౫Ꮡᛶࡀ᭱ࡶᑠࡉ࡞ࢲ࢖࣮࢜
in-vivo ࢻࢩ࣓ࢺࣜ࡟౑⏝ࡉࢀ࡚ࡁࡓࠋTLD ࡢᙧ≧ࡣ
ࢻࢆ౑⏝ࡍ࡭ࡁ࡛࠶ࡿࠋࣅ࣮࣒ࢹ࣮ࢱྲྀᚓ࡟࠾ࡅࡿ
ࣟࢵࢻᙧࠊࢳࢵࣉᙧࠊࣃ࢘ࢲ࣮≧࡞࡝ᵝࠎ࡛࠶ࡿࠋ
ࢲ࢖࣮࢜ࢻ᳨ฟჾࡢ౑⏝࡟㛵ࡋ࡚ࡣ▩┪ࡍࡿᩥ⊩
ࣟࢵࢻᙧ࡜ࢳࢵࣉᙧࡣࠊ㐺ษ࡟⇕ฎ⌮㸦࢔ࢽ࣮ࣜࣥ
40-43
ࡀᏑᅾࡍࡿࡢ࡛ࠊࢲ࢖࣮࢜ࢻ᳨ฟჾࢆ౑⏝ࡍࡿ
ࢢ㸧ࡍࡿࡇ࡜࡛෌౑⏝ࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋTLD ࡣᙉ
๓࡟ࠊྛ᪋タ࡛㟁㞳⟽࡜ẚ㍑ࡋ࡚ṇᖖ࡞ືస࡜ࢹ࣮
࠸࢚ࢿࣝࢠ࣮౫Ꮡᛶࡸࣇ࢙࣮ࢹ࢕ࣥࢢ⌧㇟ࠊ㠀⥺ᙧ
ࢱࡢṇ☜ᛶࢆ☜ㄆࡍ࡭ࡁ࡛࠶ࡿࠋ
࡞⥺㔞ฟຊࢆᣢࡘࠋࡋ࠿ࡋ࡞ࡀࡽࠊࡇࢀࡽࡢຠᯝࡣ
MV ࣅ࣮࣒࡟ᑐࡋ࡚ࡣẚ㍑ⓗᑠࡉ࠸ 52, 53ࠋ⢭ᗘࡣ↷
II.E.2.c. 㓄ิᆺ᳨ฟჾ
㓄ิᆺ᳨ฟჾࡣ࣮࢜ࣉࣥࣅ࣮࣒࡟ᑐࡋ࡚ྠ᫬ ᑕἲ࡜ ᐃἲ࡟౫Ꮡࡋࠊs5%௨ୗࡢ⢭ᗘࢆ㐩ᡂࡍࡿ
ࡇ࡜ࡀ࡛ࡁ 54ࠊRadiological Physics Center ࡜
ᐃࡀྍ⬟࡛࠶ࡿࡢ࡛ࠊ≉࡟ࢯࣇࢺ࢙࢘ࢵࢪ㸦ࢲ࢖ࢼ
calibration laboratories ࡛ࡣs1%௨ୗࡢ⢭ᗘ࡛ࡢ ᐃ
࣑ࢵࢡ࢙࢘ࢵࢪࡸࣂ࣮ࢳ࢙ࣕࣝ࢘ࢵࢪ㸧ࡢࣉࣟࣇ࢓
ࢆ㐩ᡂࡋ࡚࠸ࡿࠋTLD ࡣࢥ࣑ࢵࢩࣙࢽࣥࢢࢹ࣮ࢱࡢ
࢖ࣝ ᐃ࡟㐺ࡋ࡚࠸ࡿࠋ〇㐀ᴗ⪅࡟ࡼࡗ᳨࡚ฟࢩࢫ
ᐃ࡟ࡣ୙ྥࡁ࡛࠶ࡿࡀࠊᑠ↷ᑕ㔝ࡸ IMRT ࡢ࣏࢖
ࢸ࣒ࡣ㸦✵Ẽ࠶ࡿ࠸ࡣᾮయ࡛‶ࡓࡉࢀࡓ㸧㟁㞳⟽࢔
ࣥࢺ⥺㔞ࡢ᳨ド࡟⏝࠸ࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
ࣞ࢖࠿ࢲ࢖࣮࢜ࢻ࢔ࣞ࢖࡜࡞ࡗ࡚࠸ࡿࠋ」ᩘࡢ᳨ฟ
ჾࡀ┤⥺ⓗ࡟㓄⨨ࡉࢀ࡚࠸ࡿࡓࡵࠊࢹ࣮ࢱ ᐃࢆ⾜
࠺๓࡟ࠊྛ᳨ฟჾࡢቑᖜ⋡ࢆỴᐃࡍࡿࡓࡵ〇㐀ᴗ⪅
ࡢᐃࡵࡓ↷ᑕ㔝ࢧ࢖ࢬ࡛ឤᗘᰯṇࢆ⾜ࢃ࡞ࡅࢀࡤ
II.E.2.f. ࣇ࢕࣒ࣝ
ࣇ࢕࣒ࣝࡣගᏛ⃰ᗘࡢኚ໬࡟ᇶ࡙ࡃ⥺㔞 ᐃ࡟
⏝࠸ࡽࢀࡿࠋ TG-69 21 ࡟♧ࡉࢀ࡚࠸ࡿࡼ࠺࡟ࠊ୍⯡
25
医学物理 第 33 巻 第 1 号
II. ファントムの材質と使用法、検出器
ⓗ࡟ࣇ࢕࣒ࣝࡣ↷ᑕ㔝ࢧ࢖ࢬࠊ῝ࡉࠊࣅ࣮࣒࢚ࢿࣝ
ჾࡀࡼࡃ㐺ࡋ࡚࠸ࡿࠋ㟁㞳⟽ࡣࡑࡢ᭷ຠᛶࠊ౯᱁ࠊ
ࢠ࣮ࠊ⌧ീᶵࡢ≧ែࡸࡑࡢ௚ࡢせᅉ࡟ᙳ㡪ࢆཷࡅࡿࠋ
⢭ᗘࠊ౑࠸ࡸࡍࡉ࠿ࡽ᭱ࡶ୍⯡ⓗ࡟౑⏝ࡉࢀࡿࠋ᳨
ࣇ࢕࣒ࣝ࡟ࡣࠊࣁࣟࢤࣥ໬㖟ࢆྵࡴࡶࡢ࡜ࠊ࢞ࣇࢡ
ฟჾࡣ ᐃࢹ࣮ࢱࢆ࡝ࡢࡼ࠺࡟౑⏝ࡍࡿ࠿ࠊ↷ᑕ㔝
࣑ࣟࢵࢡࣇ࢕࣒ࣝࡢ 2 ✀㢮ࡀᏑᅾࡍࡿࠋTG-69 ࡜
ࢧ࢖ࢬࠊศゎ⬟ࠊࢹ࣮ࢱ཰㞟࡟ᚲせ࡞᫬㛫࡞࡝ࡢほ
TG-55
55
࡛ࡣࠊࡑࢀࡒࢀࣁࣟࢤࣥ໬㖟ࣇ࢕࣒ࣝ࡜࢞
Ⅼ࠿ࡽៅ㔜࡟㑅ᢥࡍࡿᚲせࡀ࠶ࡿࠋ౛࠼ࡤࠊ୍⯡ⓗ
ࣇࢡ࣑ࣟࢵࢡࣇ࢕࣒ࣝ࡟ᑐࡋ࡚ᴫㄝࡉࢀ࡚࠸ࡿࠋࣁ
࡞ෆᚄ 4-6 mm ࡢ㟁㞳⟽ࡣ 4 × 4 cm2 ௨ୖࡢ↷ᑕ㔝ࢧ
ࣟࢤࣥ໬㖟ࣇ࢕࣒ࣝࡣගᏊ⥺࡟ᑐࡋ࡚ᙉ࠸࢚ࢿࣝ
࢖ࢬࡢ ᐃ࡟᭷ຠ࡛࠶ࡿࡀࠊ IMRT ࡞࡝࡟ᚲせ࡜ࡉ
ࢠ࣮౫Ꮡᛶࢆ♧ࡍࡀࠊMeV 㡿ᇦࡢ㟁Ꮚ⥺࡛ࡣẚ㍑ⓗ
ࢀࡿᑠ↷ᑕ㔝࡟࠾ࡅࡿ ᐃ࡟ࡣ㐺ᙜ࡛࡞ࡃࠊ༙ᙳ㡿
ᙳ㡪ࡀᑡ࡞࠸ࠋࡇࡢ⌮⏤࠿ࡽࣇ࢕࣒ࣝࡣ㟁Ꮚ⥺࡟ᑐ
ᇦ࡟ࡰࡅࡀⓎ⏕ࡋṇ☜࡟ ᐃࡍࡿࡇ࡜ࡣ࡛ࡁ࡞࠸ࠋ
ࡋ࡚౑⏝ࡍࡿࡇ࡜ࡀ࡛ࡁࡿ
22, 56
ࠋࣇ࢕࣒ࣝ࡟ࡼࡗ࡚
4 × 4 cm2 ௨ୗࡢ ᐃ࡟ࡣࠊከࡃࡢሙྜ࠶ࡿ⛬ᗘᑠࡉ
ྲྀᚓࡉࢀࡓࣅ࣮࣒ࢹ࣮ࢱࡣ㟁㞳⟽࡟ࡼࡿࡶࡢ࡟ẚ
࡞య✚ࡢ㟁㞳⟽࠿ࢲ࢖࣮࢜ࢻࡀ⏝࠸ࡽࢀࡿ 64-68ࠋᑠ
࡭࡚⢭ᗘࡀప࠸࠿ࡶࡋࢀ࡞࠸ࡀࠊᑠ↷ᑕ㔝ࡸࢯࣇࢺ
ࡉ࡞య✚ࡢ㟁㞳⟽ࡸࢲ࢖࣮࢜ࢻࡣᑠ↷ᑕ㔝࡜ẚ㍑
࢙࢘ࢵࢪࡢ 2 ḟඖ⥺㔞ศᕸࢆྲྀᚓࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
ࡋ࡚኱↷ᑕ㔝࡟ᑐࡋ࡚␗࡞ࡿ≉ᛶࢆ♧ࡍࡓࡵࠊࡍ࡭
Yin ࡢሗ࿌ࡢࡼ࠺࡟ࠊᑠ↷ᑕ㔝࡟ᑐࡋ࡚ࣇ࢕࣒ࣝࢆ
࡚ࡢ↷ᑕ㔝ࢧ࢖ࢬ࡛⏝࠸ࡿࡇ࡜ࡣ࡛ࡁ࡞࠸ࠋᑠ↷ᑕ
⏝࠸ࡿሙྜࠊࣇ࢕࣒ࣝࢫ࢟ࣕࢼ࡟ࡼࡿࡰࡅࢆ⪃៖ࡍ
㔝ࡢࣉࣟࣇ࢓࢖ࣝࡣ SFD㸦Stereotactic field diodes㸧
60
ࡿᚲせࡀ࠶ࡿ ࠋ
ࡸࣆ࣏ࣥ࢖ࣥࢺࢳ࢙ࣥࣂ࣮ࡢࡼ࠺࡞࣐࢖ࢡࣟᆺ᳨
ฟჾ࡛ ᐃࡍࡿᚲせࡀ࠶ࡿࠋࡇࢀࡽࡢ᳨ฟჾࡣࢩࢢ
II.E.2.g. MOSFET ᳨ฟჾ
ࢼࣝࡀẚ㍑ⓗᑠࡉ࠸ࡓࡵࠊSec.III.A.3.g ࡛㆟ㄽࡉࢀ
61
MOSFET ᳨ฟჾࡣ⮫ᗋ࡟࠾ࡅࡿ ᐃ ࡜ IMRT ᳨
ド
62
ࡢ౑⏝࡟࠾࠸࡚Ⓨᒎࡋ࡚ࡁࡓࠋᚤᑠࢧ࢖ࢬ࡛࠶
ࡿࡼ࠺࡟ࢫ࢟ࣕࢽࣥࢢ㸦ࢧࣥࣉࣜࣥࢢ㸧᫬㛫ࢆቑࡸ
ࡋ࡚ SN ẚࢆᨵၿࡍࡿᚲせࡀ࠶ࡿࠋ
ࡿࡇ࡜࠿ࡽࠊMOSFET ࡣᑠ↷ᑕ㔝ࡢ ᐃࠊᑠ⥺※἞
⒪ࠊin-vivo ࢻࢩ࣓ࢺࣜ࡟㐺ࡋ࡚࠸ࡿࠋMOSFET ࡢ෌
⌧ᛶࠊ┤⥺ᛶࠊ࢚ࢿࣝࢠ࣮࣭ゅᗘ౫Ꮡᛶ࡞࡝ࡣᚑ᮶
61
II.E.4. ᳨ฟჾࡢᛂ⟅࡜⿵ṇ
᭷㝈ࡢయ✚ࢆࡶࡘ᳨ฟჾࡣࣉࣟࣇ࢓࢖ࣝࡢᗈࡀ
ࡢ᳨ฟჾ࡜ྠ➼࡛࠶ࡿ ࠋMOSFET ࡣᑑ࿨㸦 ᐃྍ
ࡾ࡟ᑐࡋ࡚᭷ឤయ✚࡛ᖹᆒࡉࢀࡓᛂ⟅ࢆ♧ࡍࠋࡶࡋ
⬟࡞⥲⥺㔞㸧ࡀ▷࠸ࡓࡵࠊࣅ࣮࣒ࢹ࣮ࢱࢥ࣑ࢵࢩࣙ
ᑠయ✚ࡢ᳨ฟჾࡀ౑࠼࡞࠸࡞ࡽࡤࠊࢹࢥ࣮ࣥ࣎ࣜࣗ
ࢽࣥࢢ࡟ࡣྥ࠿ࡎࠊ≉ᐃࡢ࣏࢖ࣥࢺ⥺㔞 ᐃ࡟౑⏝
ࢩࣙࣥἲ㸦㏫␚ࡳ㎸ࡳ✚ศ㸧ࡀ౑⏝࡛ࡁࡿ 69-76ࠋ ࡉࢀࡿࠋ
ᐃࡉࢀࡓࣉࣟࣇ࢓࢖ࣝࡢ᳨ฟჾࢧ࢖ࢬ࡟ࡼࡿ༙ᙳ
㡿ᇦࡢᗈࡀࡾࡣ detector convolution kernel ࡟ࡼࡗ࡚
II.E.2.h. Bang gel ᳨ฟჾ
ㄝ࡛᫂ࡁ70-76ࠊ ┿ࡢ༙ᙳ㡿ᇦࢆ detector convolution
Bang gel ᳨ฟჾ 63 ࡣ⤌ᡂࡀேయ࡟㏆ࡃࠊ3 ḟඖ⥺
kernel ࢆ⏝࠸࡚እᤄࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࠋࢹࢥࣥ
㔞ศᕸࢆ㧗ศゎ⬟࡛ ᐃ࡛ࡁࡿࠋᖜᗈ࠸࢚ࢿࣝࢠ࣮
࣮࣎ࣜࣗࢩࣙࣥἲࡣࣀ࢖ࢬࡢᙳ㡪ࢆཷࡅࡸࡍࡃࠊࣀ
࡟ᑐࡋ࡚౫Ꮡᛶࡣ࡞ࡃࠊ3 ḟඖ⥺㔞ศᕸࢆ ᐃࡍࡿ
࢖ࢬࢆ㝖ཤࡍࡿᚲせࡀ࠶ࡿ 72ࠋࡇࡢၥ㢟ࡣ༙ᙳ࡜
ࡢ࡟⌮᝿ⓗ࡛࠶ࡿࠋ⥺㔞ศᕸࡢ࢖࣓࣮ࢪࢆసᡂࡍࡿ
detector convolution kernel ࡢ୧᪉ࡀゎᯒⓗ㛵ᩘ࡛グ
ࡢ࡟ MRI ࡸ CTࠊoptical CT ࡀᚲせ࡜࡞ࡾࠊࡇࢀࡽ
㏙࡛ࡁࢀࡤゎỴ࡛ࡁࡿࠋ༙ᙳ࡜ detector convolution
ࡢ᧜ീᢏ⾡ࡣ࢔࣮ࢳࣇ࢓ࢡࢺࡢᙳ㡪ࢆཷࡅࡸࡍ࠸ࠋ
kernel ࡢゎᯒⓗ㛵ᩘ࡟ࡣ࠸ࡃࡘ࠿ࡢ◊✲ࡀ࠶ࡿࡀ
୍⯡ⓗ࡟ࠊࢤࣝࢆ⏝࠸ࡓ ᐃ࡛ࡣከࡃࡢᡭ㡰ࢆᚲせ
77,78
࡜ࡋࠊSRS ࡸ IMRT ࢆ㝖࠸࡚ࣅ࣮࣒ࢹ࣮ࢱࢥ࣑ࢵࢩ
ᑠ↷ᑕ㔝ࡢ ᐃ࡟ࡣ࣐࢖ࢡࣟࢳ࢙ࣥࣂ࣮ࢆ⏝࠸ࡓ
ࣙࢽࣥࢢ࡟ࡣ㐺ࡉ࡞࠸ࠋ
࡯࠺ࡀࡼ࠸ࠋࢹࢥ࣮ࣥ࣎ࣜࣗࢩࣙࣥἲࡣ」㞧࡛ࠊከ
ࠊࡇࡢࡼ࠺࡞෕㛗࡞ࣉࣟࢭࢫࢆ㑊ࡅࡿࡓࡵ࡟ࡶ
ᩘࡢࣉࣟࣇ࢓࢖ࣝ࡟ᑐࡋ࡚⏝࠸ࡿ࡟ࡣ᫬㛫ࡀ࠿࠿
II.E.3. ᳨ฟჾࡢ㑅ᢥ
ࢫ࢟ࣕࢽࣥࢢỈࣇ࢓ࣥࢺ࣒ࢆ⏝࠸ࡓࣅ࣮࣒ࢹ࣮
ࢱ ᐃ࡟ࡣ㟁㞳⟽ࠊࢲ࢖࣮࢜ࢻࠊࢲ࢖࢔ࣔࣥࢻ᳨ฟ
26
ࡿࡓࡵࠊၟ⏝ࢯࣇࢺ࢙࢘࢔ࡀ฼⏝ྍ⬟࡛࡞࠸㝈ࡾࠊ
㝈ᐃࡋࡓࢹ࣮ࢱࢭࢵࢺ࡟ᑐࡍࡿ᭱⤊ⓗ࡞㑅ᢥ⫥࡜
ࡋ࡚฼⏝ࡍ࡭ࡁ࡛࠶ࡿࠋ
III. スキャニングシステムのセットアップ
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
࡛ࡁ࡞࠸ࠋ
III. ࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡢࢭࢵࢺ࢔ࢵࣉ
ᵝࠎ࡞⏝㏵࡟ᛂࡌࡓᑓ⏝ࡢ᳨ฟჾࡀቑ࠼࡚ࡁࡓ
㐺ษ࡟Ỉࣇ࢓ࣥࢺ࣒ࢩࢫࢸ࣒ࢆࢭࢵࢺ࢔ࢵࣉࡍ
ࡓࡵࠊ࣮ࣘࢨ࣮ࡣ᪂ࡋ࠸࢔ࢡࢭࢧࣜ㸦᳨ฟჾࠊࢣ࣮
ࡿࡇ࡜ࡣ࣮࣡ࢡࣇ࣮ࣟࡢᨵၿ࡟ࡘ࡞ࡀࡿࡀࠊࡼࡾ㔜
ࣈࣝࠊࢥࢿࢡࢱࠊ࢔ࢲࣉࢱ㸧࡜᪤Ꮡࡢࢫ࢟ࣕࢽࣥࢢ
せ࡞ࡇ࡜ࡣࠊ኱㔞ࡢࢹ࣮ࢱฎ⌮ࡸ෌ ᐃ࡞࡝࡟ࡘ࡞
ࢩࢫࢸ࣒ࢆ᥋⥆ࡍࡿᚲせࡀ࠶ࡿࠋࡑࡢ⤖ᯝࠊᵝࠎ࡞
ࡀࡿ᭱㐺࡛࡞࠸ࢹ࣮ࢱࢆᚓࡿྍ⬟ᛶࢆῶࡽࡍࡇ࡜
ჾලࢆ⤌ࡳྜࢃࡏ࡚౑⏝ࡍࡿࡇ࡜࡟࡞ࡾࠊ࣮ࣘࢨ࣮
࡛࠶ࡿࠋࣇ࢓ࣥࢺ࣒ࡢタ⨨ࡸࢹ࣮ࢱ཰㞟ࡢィ⏬ࢆ❧
ࡣࡑࢀࡽ⤫ྜࢩࢫࢸ࣒ࡢᛶ⬟ࢆ☜ㄆࡋ࡞ࡅࢀࡤ࡞
࡚ࡿ๓࡟ࠊࡲࡎࡣ⌧ᅾࡢࢣ࣮ࣈࣝ㓄⥺ࢆ☜ㄆࡍࡿᚲ
ࡽ࡞࠸ࠋ୍⯡ⓗ࡟ࡣࠊࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡈ࡜࡟
せࡀ࠶ࡿࠋࡶࡋࠊ⌧ᅾ౑⏝ࡉࢀ࡚࠸ࡿࢣ࣮ࣈࣝࡀࢫ
㐺ษ࡞᳨ฟჾࡢ࢔ࢱࢵࢳ࣓ࣥࢺࡀᚲせ࡜࡞ࡿࠋ
࢟ࣕࣥ࡟฼⏝࡛ࡁ࡞ࡅࢀࡤࠊ᪂ࡓ࡟ࢣ࣮ࣈࣝࢆ㓄⥺
ࡍࡿᚲせࡀ࠶ࡿࠋࡲࡓࠊ἞⒪⿦⨨ࡢࢥࣥࢯ࣮ࣝ࡜ࣇ
III.A.1. ࢫ࢟ࣕࢽࣥࢢ㸦ࣇ࢕࣮ࣝࢻ㸧⥺㔞ィ࡜ࣜࣇ
࢓ࣥࢺ࣒ไᚚ⏝ࡢ PC ࢆ୪࡭࡚౑⏝ࡍࡿࡇ࡜࡛୙せ
࢓ࣞࣥࢫ⥺㔞ィ
࡞ືసࡀῶࡿࡓࡵࠊࢹ࣮ࢱࡢ཰㞟᫬㛫ࢆ▷ࡃࡍࡿࡇ
୍⯡ⓗ࡟ࡣࠊࢫ࢟ࣕࢽࣥࢢࢱࣥࢡෆࢆࣉࣟࢢ࣒ࣛ
ࡢ࡜࠾ࡾ࡟⛣ືࡋ࡚ ᐃࢆ⾜࠺ࣇ࢕࣮ࣝࢻ⥺㔞ィ
࡜ࡀ࡛ࡁࡿࠋ
㸦ࡶࡋࡃࡣࢫ࢟ࣕࢽࣥࢢ⥺㔞ィ㸧࡜ࠊ↷ᑕ㔝ෆ࡟ᅛ
III.A. ࢫ࢟ࣕࢼࡢ᳨ド࡜☜ㄆ
ᐃࡋ࡚ ᐃࢆ⾜࠺㸦ฟຊࡢࡤࡽࡘࡁࢆ⿵ṇࡍࡿ㸧ࣜ
㏆ᖺ౑⏝ࡉࢀ࡚࠸ࡿ 3D ࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡣ
ࣇ࢓ࣞࣥࢫ⥺㔞ィࡢ஧ࡘࡢ⥺㔞ィࡀࢫ࢟ࣕࢽࣥࢢ
㠀ᖖ࡟㧗⢭ᗘ࡛ṇ☜࡛࠶ࡿࠋࡋ࠿ࡋ࡞ࡀࡽ
ᐃ࡟ᚲせ࡜࡞ࡿࠋࣜࣇ࢓ࣞࣥࢫ⥺㔞ィࢆ⏝࠸ࡿࡇ
Mellenberg ࡽ
79
33
ࡸࠊHumphries ࡜ Purdy
ࡀᥦ᱌ࡋ
࡜࡛ฟຊࡢ▐㛫ⓗ࡞ኚືࡸࢻࣜࣇࢺࢆ㝖ཤࡍࡿࡇ
ࡓࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡢᇶᮏⓗ࡞ QA ࡣ⾜࠺࡭ࡁ
࡜ࡀ࡛ࡁࡿࡓࡵࠊࡍ࡭࡚ࡢ ᐃ࡟࠾࠸࡚౑⏝ࡍࡿࡇ
࡛࠶ࡿࠋᐃᮇⓗ࠿ࠊᑡ࡞ࡃ࡜ࡶỈࣇ࢓ࣥࢺ࣒ࡢ౑⏝
࡜ࢆᙉࡃ᥎ዡࡍࡿࠋ
๓࡟ࡣ࢔࣮࣒ࡀ xࠊyࠊzࠊᑐゅ⥺᪉ྥ࡟⮬⏤࡟ືࡃ
ࣇ࢕࣮ࣝࢻ⥺㔞ィ࡜ࣜࣇ࢓ࣞࣥࢫ⥺㔞ィࡣࠊࢫ࢟
ࡇ࡜ࢆ☜ㄆࡍࡿࡇ࡜࡛ရ㉁ࢆಖドࡍࡿࡇ࡜ࡀ࡛ࡁ
ࣕࣥࡢṇ☜ࡉ࡜෌⌧ᛶࢆಖࡘࡓࡵ࡟ࠊ≉ὀࡶࡋࡃࡣ
ࡿ࡛࠶ࢁ࠺ࠋࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡢ〇㐀ᴗ⪅ࡣᖺ
ᑓ⏝ࡢಖᣢල࡛ᚲࡎᅛᐃࡋ࡞ࡃ࡚ࡣ࡞ࡽ࡞࠸ࠋᩓ஘
࡟୍ᅇ⾜ࢃࢀࡿ࡭ࡁண㜵ⓗ࣓ࣥࢸࢼࣥࢫࢧ࣮ࣅࢫ
⥺ࡀ ᐃࢹ࣮ࢱࡢ⢭ᗘにᙳ㡪ࢆཬࡰࡍࡢ࡛ࠊ㔠ᒓ〇ࡢ
ࢆᥦ౪ࡋ࡚࠸ࡿࠋࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡢṇ☜ࡉ࡜
ಖᣢලࡣ㑊ࡅࡿ࡭ࡁ࡛࠶ࡿࠋ౑⏝ࡍࡿ⥺㔞ィ࡜ࢫ࢟
┤⥺ᛶࡣ㛗࠸㊥㞳ࢆ㉮ᰝࡋ࡚ࢳ࢙ࢵࢡࡍ࡭ࡁ࡛࠶
ࣕࢽࣥࢢࢩࢫࢸ࣒ࡢ〇㐀ᴗ⪅ࡀ␗࡞ࡿሙྜࡣࠊ᪂ࡋ
ࡿࠋࢥ࣑ࢵࢩࣙࢽࣥࢢ⏝ࡢࣅ࣮࣒ࢹ࣮ࢱࢆ ᐃࡍࡿ
࠸⥺㔞ィࡢ〇㐀ᴗ⪅ࡀసᡂࡋࡓ㐺ษ࡞࢔ࢲࣉࢱࢆ
๓࡟ࡣࠊ᥋⥆ࢣ࣮ࣈࣝࡢ₃㟁ࡸ෌⌧ᛶ࡜ྠᵝ࡟ࠊࢫ
౑⏝ࡍ࡭ࡁ࡛࠶ࡿࠋỈ୰ࡢ⥺㔞ࢆ ᐃࡍࡿ㝿࡟ࠊ⥺
࢟ࣕࢽࣥࢢࢱࣥࢡࡢ≀⌮ⓗ࡞≧ែ㸦Ỉࡢ₃ࢀࡸࠊࡦ
㔞ィࢆࢸ࣮ࣉࡸῧ࠼ᮌ࡛ᅛᐃࡍࡿ࡜ࠊᅛᐃࡀ⦆ࡃ࡞
33
ࡧ㸧ࡸᶵᲔⓗ࡞Ᏻᐃᛶࢆ☜ㄆࡍࡿ࡭ࡁ࡛࠶ࡿ ࠋ
ࡗ࡚ࡋࡲ࠺ࡓࡵࠊ෌⌧ᛶࡢప࠸ࢹ࣮ࢱࢆ཰㞟ࡋ࡚ࡋ
ࡍ࡭࡚ࡢ㒊ရࡀྠࡌ〇㐀ᴗ⪅࡟ࡼࡗ࡚సࡽࢀ࡚
ࡲ࠺ࡇ࡜࡟࡞ࡾࠊࢥ࣑ࢵࢩࣙࢽࣥࢢࡢ᫬㛫ࡀቑຍࡍ
࠸ࡿࢩࢫࢸ࣒ࡢሙྜࠊ୍⯡ⓗ࡟ࡣⰋዲ࡞ࢹ࣮ࢱࡀ཰
ࡿࡓࡵ⾜ࡗ࡚ࡣ࡞ࡽ࡞࠸ࠋ
㞟࡛ࡁࡿ⤌ࡳྜࢃࡏࡔ࡜⪃࠼ࡽࢀࡿࡀࠊ࣮ࣘࢨ࣮ࡣ
ࣜࣇ࢓ࣞࣥࢫ⥺㔞ィࡣࣇ࢕࣮ࣝࢻ⥺㔞ィࡢࢫ࢟
౑⏝๓࡟୙ලྜࡸ㏻ಙ࢚࣮ࣛࡢ᭷↓ࢆ☜ㄆࡍࡿ࡭
ࣕࣥ⠊ᅖୖ࡟ࡣタ⨨ࡋ࡚ࡣ࡞ࡽ࡞࠸ࠋࣜࣇ࢓ࣞࣥࢫ
ࡁ࡛࠶ࡿࠋࡉࡽ࡟ࠊỈᵴ࡜ྠࡌ〇㐀ᴗ⪅ࡀ㈍኎ࡋ࡚
⥺㔞ィࡀࣇ࢕࣮ࣝࢻ⥺㔞ィࡢࢫ࢟ࣕࣥ⠊ᅖୖ࡟ࡁ
࠸ࡿ㒊ရ㸦≉࡟᳨ฟჾ㸧࡟࠾࠸࡚ࡶࠊࡑࢀࡒࢀ࡟஫
࡚ࡋࡲ࠺ࡼ࠺࡞ᑠࡉ࡞↷ᑕ㔝ࡢሙྜ࡟ࡣࠊࣜࣇ࢓ࣞ
80
᥮ᛶࡀ࡞࠸ሙྜࡶ࠶ࡿࠋSchmid ࡜ Morris ࡀ㛤Ⓨ
ࣥࢫ⥺㔞ィࢆ౑⏝ࡍࡿ௦ࢃࡾ࡟ࠊࢫ࢟ࣕࣥ᫬㛫ࢆ㛗
ࡋࡓࡼ࠺࡞ࠊࢫ࢟ࣕࢼ࡜἞⒪⿦⨨ࢆྠᮇࡉࡏࡿࡇ࡜
ࡃࡋ࡚ࢹ࣮ࢱ㔞ࢆቑࡸࡍ᪉ἲࡀ⏝࠸ࡽࢀࡿࠋ
࡟ࡼࡾ↷ᑕ㔝࡞࡝ࢆ⮬ື࡟ኚ໬ࡉࡏࡿࢩࢫࢸ࣒ࡣ
ࣜࣇ࢓ࣞࣥࢫ⥺㔞ィ࡜ࣇ࢕࣮ࣝࢻ⥺㔞ィࡢ✀㢮
ṇ☜࡟ືసࡍࡿ࠿ࢆヨ㦂ࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋࡇࡢ
ࡣ๓㏙㸦II.E.3.㸧ࡢࡼ࠺࡟ࠊ ᐃࡍࡿࣅ࣮࣒ࢹ࣮ࢱ
ࡼ࠺࡞ᮍ᮶ⓗ࡞ࢩࢫࢸ࣒ࡣၟ⏝⿦⨨࡛ࡣࡲࡔ฼⏝
ࡢ⏝㏵࡟ᛂࡌ࡚㑅ࡪ࡭ࡁ࡛࠶ࡿࠋࡲࡓࠊ஧ࡘࡢ⥺㔞
27
医学物理 第 33 巻 第 1 号
III. スキャニングシステムのセットアップ
FIG. 2. Comparison of depth doses with good and bad chambers with
correct and incorrect bias.
FIG. 3. Ratio of depth doses with positive and negative (s) polarity
on various chambers.
ィࡣྠࡌࡶࡢ࡛࠶ࡿᚲせࡣ࡞࠸ࡀࠊ⥺㔞ィࢆࢫ࢟ࣕ
࢖ࣉ࡜㟁ᅽࡢ㐺ṇ࡞᮲௳࡟⢭㏻ࡋ࡚࠾ࡃࡇ࡜ࢆ᥎
ࢽࣥࢢࢩࢫࢸ࣒࡟᥋⥆ࡍࡿሙྜࡣୗグࡢⅬ࡟ࡘ࠸
ዡࡍࡿࠋࢹ࣮ࢱ཰㞟୰࡟᳨ฟჾࢆኚ᭦ࡋࡓሙྜࡸࠊ
࡚⪃៖ࡋ࡞ࡃ࡚ࡣ࡞ࡽ࡞࠸ࠋ
㟁఩ィࡢ㟁※ࢆධࢀࡿ๓࡟ࡣࠊࣂ࢖࢔ࢫࡢᚲせ᮲௳
ࡢ☜ㄆࡀᚲせ࡛࠶ࡿࠋㄗࡗࡓࣂ࢖࢔ࢫ࡛౑⏝ࡍࡿ࡜
III.A.1.a. ᳨ฟჾࡢಖᣢල
୍⯡ⓗ࡟ࠊࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡜ࢭࢵࢺ࡛㈍኎
᳨ฟჾࢆᦆയࡍࡿྍ⬟ᛶࡀ࠶ࡿࠋFig. 2 ࡣ₃㟁ࡀ㉳
ࡁ࡚࠸ࡿ㟁㞳⟽࡜ṇᖖ࡟ືసࡍࡿ㟁㞳⟽࡛ࠊタᐃࢤ
ࡉࢀࡿ᳨ฟჾࡣ㛗㍈ࡢ㛗ࡉ࡜ෆᚄࡀ࡯ࡰྠࡌᑍἲ
࢖ࣥࡀṇࡋ࠸ሙྜ࡜ṇࡋࡃ࡞࠸ሙྜࡢ PDD ࢆ♧ࡋ
࡛࠶ࡿࠋࡶࡋࡑ࠺࡛࡞࠸ሙྜ࡟ࡣࠊ㉮ᰝ᪉ྥࢆỴᐃ
࡚࠸ࡿࠋࢫ࢟ࣕࣥࢹ࣮ࢱࡀ␗ᖖ࡞ࣃࢱ࣮ࣥࢆ♧ࡍሙ
ࡍࡿ㝿࡟᳨ฟჾࡢᑍἲࡢᙳ㡪ࢆ⪃៖ࡍ࡭ࡁ࡛࠶ࡿࠋ
ྜࡸࠊࢫࣃ࢖ࢡ≧ࢆ♧ࡍሙྜࡣࠊࣂ࢖࢔ࢫࡸࢤ࢖ࣥ
ࡲࡓࠊ᳨ฟჾࡢᑍἲ࡜ࡣู࡟ࠊ㉮ᰝ᪉ྥࢆ⪃៖ࡋ࡞
ࡀ㐺ษ࡛࡞࠸ྍ⬟ᛶࡀ࠶ࡿࠋࢫ࢟ࣕࣥ୰࡟ࡑࡢࡼ࠺
ࡃ࡚ࡣ࡞ࡽ࡞࠸ࠋࣅ࣮࣒ࡢ୰ᚰ㍈࡟㛵ࡋ࡚ࠊ᳨ฟჾ
࡞⌧㇟ࡀ㉳ࡁࡓሙྜࡣࠊࡍࡄ࡟ ᐃࢆ୰Ṇࡋࠊ᳨ฟ
ࡢ㛗㍈ࡣ 3 ࡘࡢ᪉ྥ࡟タ⨨ྍ⬟࡛࠶ࡿࠋ(1) 㛗㍈ࡣ
ჾࡢࣂ࢖࢔ࢫࡀ㐺ษ࠿ࢳ࢙ࢵࢡࡍ࡭ࡁ࡛࠶ࡿࠋ
ࣅ࣮࣒㍈࡟ᆶ┤࡛ gun-target ᪉ྥ㸦y ᪉ྥ㸧࡟ᖹ⾜ࠊ
(2) 㛗㍈ࡣࣅ࣮࣒㍈࡟ᆶ┤࡛ left-right ᪉ྥ㸦x ᪉ྥ㸧
࡟ᖹ⾜ࠊ(3) ࣅ࣮࣒㍈࡟ᖹ⾜ࠊࡢ 3 ࡘ࡛࠶ࡿࠋ᳨ฟ
III.A.1.c. ᴟᛶ
㟁㞳⟽⥺㔞ィࡢಙྕࡢᴟᛶࡣࠊ㧗㟁ᅽࣂ࢖࢔ࢫࡢ
ჾࡢྥࡁࡣࣉࣟࣇ࢓࢖ࣝࡸ༙ᙳ㒊ศࡢ ᐃ࡛㔜せ
ᴟᛶ࡟ࡼࡾỴᐃࡉࢀࠊࡶࡋ㧗㟁ᅽࣂ࢖࢔ࢫࡢไᚚࡀ
࡜࡞ࡾࠊSec. IV A 4 a.࡛㆟ㄽࡉࢀࡿࠋ᳨ฟჾࡣࠊ㉮
㟁఩ィ࡛⾜ࢃࢀ࡚࠸ࡿࡢ࡛࠶ࢀࡤၥ㢟ࡣ࡞࠸ࠋࡋ࠿
ᰝ᪉ྥ࡟ᑐࡋ࡚᭱ᑠࡢయ✚࡟࡞ࡿࡼ࠺࡟タ⨨ࡍ࡭
ࡋࠊࢲ࢖࣮࢜ࢻ᳨ฟჾࡢಙྕࡢᴟᛶࡣࠊ᳨ฟჾࡢᵓ
ࡁ࡛࠶ࡿࠋࣅ࣮࣒㍈࡜ᖹ⾜࡟タ⨨ࡍࡿሙྜࡣ₃㟁ࡸ
㐀࡟౫Ꮡࡍࡿࠋ〇㐀ᴗ⪅ࡣྠᵝࡢࣔࢹࣝࡢࢲ࢖࣮࢜
㟁㞳య✚እຠᯝ㸦Sec. III D 4 ࡛㆟ㄽࡉࢀࡿ㸧࡟ࡘ࠸
ࢻ᳨ฟჾ࡟ᑐࡋ࡚୧᪉ࡢᴟᛶࢆᥦ♧ࡋ࡚ࡃࡿྍ⬟
࡚⪃៖ࡍ࡭ࡁ࡛࠶ࡿࠋ
ᛶࡀ࠶ࡿࠋࡑࡢࡓࡵ࣮ࣘࢨ࣮ࡣࢲ࢖࣮࢜ࢻ᳨ฟჾࢆ
㉎ධࡍࡿ㝿ࡣࠊᡤ᭷ࡢ㟁఩ィ࡛౑⏝࡛ࡁࡿᴟᛶ࠿☜
III.A.1.b. ༳ຍ㟁ᅽ㸦ࣂ࢖࢔ࢫ㸧
࡯࡜ࢇ࡝ࡢ㟁㞳⟽⥺㔞ィࡣ 300 V ࠿ࡽ 400 V ࡢ㛫
ㄆࡋ࡞ࡃ࡚ࡣ࡞ࡽ࡞࠸ࠋ୍⯡ⓗ࡟ࠊ࡯࡜ࢇ࡝ࡢ᳨ฟ
ჾࡣ࡝ࡕࡽࡢᴟᛶ࡛࠶ࡗ࡚ࡶ౑⏝ࡍࡿࡇ࡜ࡣ࡛ࡁ
ࡢ㟁ᅽ࡛౑⏝ࡉࢀࡿࠋ୍᪉ࠊࢲ࢖࣮࢜ࢻ᳨ฟჾࡢሙ
ࡿࡀࠊ࣮ࣘࢨ࣮ࡣ࡝ࡕࡽࡢᴟᛶ࡛ࡶ್ࡀ୍⮴ࡋ࡚࠸
ྜࠊ㟁ᅽࡣ 0 V ࡟タᐃࡋ࡞ࡃ࡚ࡣ࡞ࡽ࡞࠸ࠋࢲ࢖࢔
ࡿࡇ࡜ࢆ☜ㄆࡋ࡞ࡃ࡚ࡣ࡞ࡽ࡞࠸ࠋFig. 3 ࡣᵝࠎ࡞
ࣔࣥࢻ⥺㔞ィࡣ୍⯡ⓗ࡟ 100 V ࡛౑⏝ࡉࢀࡿࠋ᳨ฟ
᳨ฟჾ࡟࠾࠸࡚ᴟᛶࡀ㸩ࡢሙྜ࡜㸫ࡢሙྜ࡟ᚓࡽ
ჾࢆ㟁఩ィ࡟᥋⥆ࡍࡿ๓࡟ࠊ࣮ࣘࢨ࣮ࡣ᳨ฟჾࡢࢱ
ࢀࡓ PDD ࡢẚࢆ♧ࡋ࡚࠸ࡿࠋ1.0 ࡢ⥺ࡣᴟᛶຠᯝࡀ
28
III. スキャニングシステムのセットアップ
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
࡞࠸ࡇ࡜ࢆព࿡ࡋ࡚࠾ࡾࠊࡑࡢሙྜࡣ࡝ࡕࡽࡢᴟᛶ
࡛ࡶ ᐃࡀྍ⬟࡛࠶ࡿࡀࠊᗄࡘ࠿ࡢ᳨ฟჾࡣ኱ࡁ࡞
ᕪࢆ♧ࡋࡓࠋKim ࡽ 81 ࡣప⥺㔞⋡ࡢ ᐃࡢ㝿࡟ࡶࠊ
ᣦ㢌ᙧ㟁㞳⟽ࡢᴟᛶຠᯝࢆホ౯ࡍࡿᚲせࡀ࠶ࡿࡇ
࡜ࢆⓎ⾲ࡋࡓࠋ୍⯡ⓗ࡟ࡣࠊᴟᛶ࡟ࡼࡾⱝᖸࡢ㐪࠸
ࡀ㉳ࡇࡿࡇ࡜ࡣண᝿ࡉࢀࡿࡀࠊᴟᛶ࡟ࡼࡿᕪࡣ 0.5%
௨ෆ࡟ᢚ࠼ࡿ࡭ࡁ࡛࠶ࡿࠋࢹ࣮ࢱ཰㞟ࡣࠊ⧞ࡾ㏉ࡋ
ᐃ࡟࠾࠸࡚෌⌧ྍ⬟࡞୍㈏ࡋࡓ୍ࡘࡢᴟᛶ࡟࠾
࠸࡚⾜࠺ࡇ࡜ࢆ່ࡵࡿࠋFig. 3 ࡛♧ࡋࡓࡼ࠺࡟ࠊ୍
FIG. 4. BNC, TNC, and components of the triaxial cable.
ࡘࡢᴟᛶ࡛ࡍ࡭࡚ࡢ ᐃࢆ⾜࠸ࠊᴟᛶຠᯝࡢᙳ㡪ࡀ
ᑠࡉ࠸᳨ฟჾࢆ⏝࠸ࡿࡇ࡜࡛ࠊ඲యࡢㄗᕪࢆపࡃᢚ
࣮࡟ࡼࡾᛂ⟅ࡀኚ໬ࡍࡿࡓࡵࠊ ᐃ್࡟ᙳ㡪ࢆཬࡰ
࠼ࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
ࡍࠋࢲ࢖࣮࢜ࢻ᳨ฟჾࡢ࢚ࢿࣝࢠ࣮ᛂ⟅ࡣ 6 MV ග
Ꮚ⥺ࠊ↷ᑕ㔝 40™40 cm2 ࡢ᮲௳࡛ PDD ࢆ ᐃࡋࠊ
III.A.1.d. ෌⤖ྜ
࢖࢜ࣥ෌⤖ྜࡣ㧗㟁ᅽ㸦300 V ௨ୖ㸧࡛౑⏝ࡍࡿ
㟁㞳⟽⥺㔞ィࡢ PDD ࡜ẚ㍑ࡍࡿࡇ࡜࡛☜ㄆ࡛ࡁࡿࠋ
ࢫ࢟ࣕࣥ⏝ࡢ㟁㞳⟽࡛ࡣ≉࡟ၥ㢟࡞࠸ࡀࠊ〇㐀ᴗ⪅
ࡶࡋࠊࢲ࢖࣮࢜ࢻ᳨ฟჾ࡛ ᐃࡋࡓ PDD ࡢഴࡁࡀ
ࡀ᥎ዡࡋ࡚࠸ࡿ㟁ᅽࡢタᐃࡣ☜ㄆࡋ࡚࠾ࡃ࡭ࡁ࡛
㟁㞳⟽⥺㔞ィ࡛ ᐃࡋࡓࡶࡢࡼࡾࡶ⦆ࡸ࠿࡛࠶ࢀ
࠶ࡿࠋࡲࡓࠊ㟁㞳య✚ࡢᑠࡉ࡞㟁㞳⟽ࡢሙྜࠊᶆ‽
ࡤࠊࡑࢀࡣ࢚ࢿࣝࢠ࣮ᛂ⟅ࡢኚ໬ࢆ⾲ࡋ࡚࠸ࡿࠋ୍
ⓗ࡞ 300 V ࡼࡾప࠸㟁ᅽࡀ᥎ዡࡉࢀ࡚࠸ࡿሙྜࡀ࠶
⯡ⓗ࡟ࠊ᳨ド࡟ࡼࡗ࡚≉ᐃࡢ⿵ṇἲࡀጇᙜ࡛࠶ࡿ࡜
ࡿࠋࡶࡋྍ⬟࡛࠶ࢀࡤࢫ࡛࢟ࣕࣥ౑⏝ࡍࡿ⥺㔞⋡࡛ࠊ
ㄆࡵࡽࢀ࡞࠸㝈ࡾࡣࠊࢲ࢖࣮࢜ࢻ᳨ฟჾࡣ኱↷ᑕ㔝
82
༳ຍ㟁ᅽࢆ᥎ዡࡢ༙ศࡢ್࡟ࡋ࡚෌⤖ྜຠᯝ ࢆ☜
ࡢ PDD ࡢ ᐃ࡟ࡣ౑⏝ࡍ࡭ࡁ࡛ࡣ࡞࠸ࠋ
ㄆࡋࠊ෌⤖ྜ⿵ṇࡢᚲせࡀ࡞࠸ࡇ࡜ࢆ☜ㄆࡍ࡭ࡁ࡛
࠶ࡿࠋ
III.A.2. ࢣ࣮ࣈࣝࠊࢥࢿࢡࢱࠊ࢔ࢲࣉࢱ
㧗⢭ᗘ࡞ࢹ࣮ࢱ ᐃࢆ⾜࠺ࡓࡵ࡟ࡣࠊ㧗ရ㉁࡞ࢣ
III.A.1.e. ឤᗘ
࣮ࣈࣝ࡜㟁఩ィࡀᚲせ࡜࡞ࡿࠋࡶࡋࡑࢀࡽࢆ౑⏝ࡋ
᳨ฟჾࡢឤᗘࡣᚲࡎࠊጇᙜ࡞ SN ẚ࡛ࠊ࠿ࡘಙྕ
࡞ࡅࢀࡤࠊᵝࠎ࡞せᅉ࡟ࡼࡾ ᐃ್ࡣ୙☜࠿࡞ࡶࡢ
ࡀ㣬࿴ࡋ࡞࠸⛬ᗘ࡟ࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋࢫ࢟ࣕࣥ
࡟࡞ࡿࠋࡑࢀࡽࡢせᅉࡢ࠸ࡃࡘ࠿ࡣࢣ࣮ࣈࣝࡢ㸦ಙ
ࢆ⾜࠺๓࡟ࠊ᳨ฟჾࡢឤᗘ࡟㐺ࡋࡓ㟁఩ィࡢ ᐃࣞ
ྕ㸧ᛅᐇᗘࡸࢥࢿࢡࢱࡢရ㉁ࠊ࢔ࢲࣉࢱ࡞࡝࡜ࡢ㐺
ࣥࢪࢆ☜ㄆࡋ࡚࠾ࡃ࡭ࡁ࡛࠶ࡿࠋ᳨ฟჾࡢឤᗘࡣࠊ
ྜᛶ࡜㛵ಀࡀ࠶ࡿࠋ࣮ࣘࢨ࣮ࡣ௨ୗࡢ❶࡛㏙࡭ࡿ
᳨ฟჾࡢ〇㐀ᴗ⪅࠿ࡽධᡭ࡛ࡁࡿࠋࡲࡓࠊࣜࣇ࢓ࣞ
ᵝࠎ࡞ࢱ࢖ࣉࡢࢥࢿࢡࢱ࡟㛵ࡍࡿ▱㆑ࡀᚲせ࡟࡞
ࣥࢫ⥺㔞ィ࡜ࣇ࢕࣮ࣝࢻ⥺㔞ィࡢឤᗘࡣྠ⛬ᗘ࡟
ࡿࠋ
ࡍ࡭ࡁ࡛࠶ࡿࠋࢫ࢟ࣕࣥ⏝ࡢࢯࣇࢺ࢙࢘࢔࡟ࡣࠊࣜ
ࣇ࢓ࣞࣥࢫ࡜ࣇ࢕࣮ࣝࢻࡢ㟁఩ィࡢಙྕࡀᆒ➼࡟
࡞ࡿࡼ࠺⮬ືⓗ࡟ࢤ࢖ࣥࢆㄪᩚࡍࡿࡶࡢࡶ࠶ࡿࠋ↷
III.A.2.a. BNC ࢥࢿࢡࢱ࠾ࡼࡧ TNC ࢥࢿࢡࢱ
BNC 㸦࠿ࡂ∎ᘧ Bayonet Neill - Concelman㸧ࡣ
ᑕ㔝ࢧ࢖ࢬࢆኚ࠼ࡓ㝿࡟ࢤ࢖ࣥࡢ☜ㄆࢆ⾜࠺ࡇ࡜
ࡑࡢⓎ᫂⪅࡟ࡕ࡞ࢇ࡛ྡ࡙ࡅࡽࢀ࡚࠾ࡾࠊ∎ࢆࡦࡡ
ࡣ㔜せ࡛ࠊᙜ↛ࠊ࣮࢜ࣉࣥ↷ᑕ㔝࠿ࡽ࢙࢘ࢵࢪ↷ᑕ
ࡾ࡞ࡀࡽࢫࢺࢵࣃ࣮࡟⿦╔ࡍࡿࢱ࢖ࣉࡢ࢔ࢱࢵࢳ
㔝࡟ኚ᭦ࡋࡓሙྜࡣࢤ࢖ࣥࡢㄪᩚࡀᚲせ࡜࡞ࡿࠋ
࣓ࣥࢺࢆᣢࡘࠋࡇࢀࡣࠊ2 ㍈࠾ࡼࡧ 3 ㍈ࡢ୧᪉࡟ᑐ
ࡋ࡚〇㐀ࡉࢀ࡚࠸ࡿࠋTNC 㸦ࡡࡌᒣᘧ Threaded
III.A.1.f. ࢚ࢿࣝࢠ࣮ᛂ⟅
Neill-Concelman㸧ࡣ BNC ࡢࡡࡌᒣᘧ࡛࠶ࡿࠋ୧⪅
୍⯡ⓗ࡟ࠊ㟁㞳⟽⥺㔞ィࡢ㧗࢚ࢿࣝࢠ࣮ගᏊ⥺࡟
࡜ࡶ⥺㔞 ᐃ࡟ࡼࡃ⏝࠸ࡽࢀࠊከᑡࡢ័ࢀࡀᚲせ࡛
ᑐࡍࡿ࢚ࢿࣝࢠ࣮ᛂ⟅ࡣ࡯ࡰ୍ᐃ࡛ࠊ≉࡟⿵ṇࢆ⾜
࠶ࡿࠋFig. 4 ࡟᥋⥆㒊ศࡢ౛ࢆ♧ࡋࡓࡀࠊBNC ࡜ TNC
࠺ᚲせࡣ࡞࠸ࠋ୍᪉ࠊࢲ࢖࣮࢜ࢻ᳨ฟჾࡣ࢚ࢿࣝࢠ
ࢥࢿࢡࢱࡢእぢࡣⰋࡃఝ࡚࠸ࡿࠋࢥࢿࢡࢱࡢ୰࡛ࡶ
29
医学物理 第 33 巻 第 1 号
III. スキャニングシステムのセットアップ
᥋⥆㒊ࡢ✀㢮㸦BNCࠊTNC ࡞࡝㸧
ࠊ࢜ࢫ࣭࣓ࢫࠊᑟ
యࡢ✀㢮㸦2 ㍈ࠊ3 ㍈㸧࡞࡝ᵝࠎ࡞⤌ࡳྜࢃࡏࡀ࠶
ࡿࠋ≉࡟ᣓᘼෆࡢ౛࡟ᣲࡆࡓࡶࡢࡣࠊࢫ࢟ࣕࢽࣥࢢ
ࢱࣥࢡ࡛౑⏝ࡉࢀࡿ᳨ฟჾ࡜㟁఩ィࢆ᥋⥆ࡍࡿ㒊
ศ࡟ᗈࡃ౑⏝ࡉࢀ࡚࠸ࡿࠋ࠶ࡿ〇㐀ᴗ⪅ࡣࠕ3 ㍈ᆺࠖ
ࢆᨵⰋࡋࡓࢥࢿࢡࢱࢆ᥇⏝ࡋ࡚࠾ࡾࠊࡇࡢࢥࢿࢡࢱ
ࡢぢࡓ┠ࡣ 2 ㍈ࡔࡀࠊ㟁ᴟࡀࢥࢿࢡࢱ࡟ෆⶶࡉࢀ࡚
࠸ࡿࠋࢥࢿࢡࢱࡢヲ⣽࡟ࡘ࠸࡚ࡣ〇㐀ᴗ⪅㸦CNMC
♫ࠊStandard Imaging ♫ࠊ PTW ♫ࠊ Wellhöfer ♫࡞
࡝㸧࠿ࡽ☜ㄆ࡛ࡁࡿࠋ࠶ࡽ࠿ࡌࡵ〇㐀ᴗ⪅ࡈ࡜ࡢࢥ
ࢿࢡࢱࡢᙧ≧ࢆᢕᥱࡋ࡚࠾ࡃࡇ࡜࡟ࡼࡾࠊᑗ᮶〇㐀
FIG. 5. Effect of cable length in radiation beam. The cables are of
ᴗ⪅࠿ࡽ᪂ࡋ࠸᳨ฟჾࢆ㉎ධࡍࡿሙྜ࡟ᙺ࡟❧ࡘࠋ
different types from various manufacturers.
x
࢜ࢫ: ୰ᚰࡢᑟ⥺ࡀࣆࣥ≧ࡢࡶࡢ
x
࣓ࢫ: ୰ᚰࡢᑟ⥺ࡀࢯࢣࢵࢺ࣮࣍ࣝ≧ࡢࡶࡢ
x
3 ㍈: 3 ᮏࡢఏᑟయࡀྠᚰ≧࡟㓄⨨ࡉࢀࡓࠊࢣ࣮
᥋⥆ࡢ㝿࡟᭱ࡶⰋࡃ㉳ࡁࡿㄗࡾࡣࠊ2 ㍈ࡢ BNC ࢥࢿ
ࣈࣝࡶࡋࡃࡣࢥࢿࢡࢱ
ࢡࢱ࡜ 3 ㍈ࡢ BNC ࢥࢿࢡࢱࢆ↓⌮ࡸࡾ⧅ࡆࡿࡇ࡜
2 ㍈: 2 ᮏࡢఏᑟయࡀྠᚰ≧࡟㓄⨨ࡉࢀࡓࠊࢣ࣮
࡛࠶ࡿࠋࡇࡢሙྜࠊ(1) ࢥࢿࢡࢱ㒊ศࡀ◚ᦆࡍࡿࠊ
ࣈࣝࡶࡋࡃࡣࢥࢿࢡࢱ
(2)
࢔ࢲࣉࢱ: ␗࡞ࡿ✀㢮ࡢࢥࢿࢡࢱྠኈࢆ᥋⥆ࡍ
ࡋ᳨࡚ฟჾࡸ㟁఩ィࡀ◚ᦆࡍࡿࠊ࡞࡝ࡢ㔜኱࡞஦ᨾ
ࡿࡓࡵࡢࠊኚ᥮⏝ࢥࢿࢡࢱࡶࡋࡃࡣ▷࠸ࢣ࣮ࣈ
ࡀ㉳ࡁࡿࠋࡲࡓࠊࢣ࣮ࣈࣝࢆࡡࡌࡿࠊ᭤ࡆࡿࠊຊࢆ
ࣝ
ຍ࠼ࡿ࡞࡝ࡢ⾜Ⅽࡣࢩ࣮ࣙࢺࡢཎᅉ࡜࡞ࡿࡓࡵࠊ⤯
x
x
㟁఩ィࡢ㧗㟁ᅽࡀㄗࡗࡓ᥋⥆࡟ࡼࡾࢩ࣮ࣙࢺ
ᑐ࡟⾜ࡗ࡚ࡣ࡞ࡽ࡞࠸ࠋ୙㐺ษ࡞⤌ࡳྜࢃࡏ࡛ࡶಙ
III.A.2.b. ୍⯡ⓗ࡞᥋⥆࢚࣮ࣛ
࡯࡜ࢇ࡝ࡢ⥺㔞 ᐃ࠾ࡼࡧࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ
ྕࢆྲྀᚓࡍࡿࡇ࡜ࡀ࡛ࡁࡿ࠿ࡶࡋࢀ࡞࠸ࡀࠊࡑࡢࡼ
࠺࡞ಙྕ࡟ࡣ෌⌧ᛶࡀ࡞࠸ࠋ
࣒࡟࠾࠸࡚ 3 ㍈ࢣ࣮ࣈࣝࡀ᥇⏝ࡉࢀ࡚࠸ࡿࠋ㟁㞳⟽
⥺㔞ィࡣ 3 ㍈ࢣ࣮ࣈࣝ࡟┤᥋᥋⥆࡛ࡁࡿࡀࠊ࠸ࡃࡘ
III.A.2.c. ₃ࢀ㟁ὶ
࠿ࡢ〇㐀ᴗ⪅ࡀ⏝࠸࡚࠸ࡿ 3 ㍈ࢣ࣮ࣈࣝࡢሙྜࠊ㏻
ࢹ࣮ࢱ཰㞟࡟౑⏝ࡍࡿࢣ࣮ࣈࣝࡣࠊࢣ࣮ࣈࣝࡢရ
ᖖࡢ㟁㞳⟽⥺㔞ィࡣ᥋⥆࡛ࡁࡎࠊᑓ⏝ࡢ࢔ࢲࣉࢱࡀ
㉁ࡸྲྀᢅ≧ἣࠊ⥔ᣢ≧ែ࡟ࡼࡾ୍ᐃ㔞ࡢ₃ࢀ㟁ὶࡀ
ᚲせ࡜࡞ࡿࠋPTW ♫ࡣ≉Ṧ࡞ 3 ㍈ࢣ࣮ࣈࣝࢆ᥇⏝ࡋ
Ⓨ⏕ࡍࡿࠋࡁࡘࡃࡡࡌ᭤ࡆࡽࢀࡓࢣ࣮ࣈࣝࢆ౑⏝ࡋ
࡚࠸ࡿᴗ⪅ࡢ୍ࡘ࡛࠶ࡿࠋࢲ࢖࣮࢜ࢻࡢሙྜࠊ࢔ࣀ
ࡓሙྜࠊࣀ࢖ࢬࡀⓎ⏕ࡍࡿࠋࡓ࠸࡚࠸ࡢᕷ㈍ࢣ࣮ࣈ
࣮ࢻ࡜࢝ࢯ࣮ࢻࡢ 2 ࡘࡢ㟁ᴟࡀ࠶ࡾࠊ2 ㍈ࢣ࣮ࣈࣝ
ࣝࡢ₃ࢀ㟁ὶࡣ 10í13–10í14 A ⛬ᗘ࡛࠶ࡿ 83-85ࠋࢣ࣮
ࡀᚲせ࡟࡞ࡿࠋ㟁㞳⟽⥺㔞ィࡢሙྜ 3 ࡘࡢ㟁ᴟ㸦㞟
ࣈࣝࡢ᭤ࡆࠊࡡࡌࡾࠊ஘㞧࡞ಖ⟶࡞࡝࡟ࡼࡾࠊ₃ࢀ
㟁ᴟࠊ࣮࢞ࢻࠊHV ࣂ࢖࢔ࢫ㸧ࡀ࠶ࡿࡓࡵࠊ3 ㍈ࢣ
㟁ὶࡣ᫂ࡽ࠿࡟኱ࡁࡃ࡞ࡿࠋᑠ↷ᑕ㔝ࡸ↷ᑕ㔝እࡢ
࣮ࣈࣝࡀᚲせ࡟࡞ࡿࠋࢲ࢖࣮࢜ࢻ᳨ฟჾࡢሙྜࠊ㐺
ᐃࡢ㝿࡟ࡣࠊ ᐃࡢಙྕ࡟ẚ࡭ࣀ࢖ࢬࡀከࡃ࡞ࡾ
ษ࡞࢔ࢲࣉࢱࢆ౑⏝ࡍࡿࡇ࡜࡟ࡼࡾ 3 ㍈ࢣ࣮ࣈࣝࢆ
࠺ࡿࠋ₃ࢀ㟁ὶࡣ୍⯡ⓗ࡟ࠊࢣ࣮ࣈࣝࡢရ㉁ࠊ↷ᑕ
౑⏝࡛ࡁࡿࡀࠊ㟁㞳⟽⥺㔞ィ࡜ 2 ㍈ࢣ࣮ࣈࣝࡣ᥋⥆
ࡉࢀ࡚࠸ࡿࢣ࣮ࣈࣝࡢ㛗ࡉࠊࢥࢿࢡࢱ࡟౫Ꮡࡍࡿࠋ
ࡍࡿࡇ࡜ࡣ࡛ࡁ࡞࠸ࠋࡉࡽ࡟ࠊ㟁㞳⟽⥺㔞ィࢆ౑⏝
࠸ࡃࡘ࠿ࡢ㟁఩ィࡣࠊ㞽Ⅼㄪᩚ࡟ࡼࡾ₃ࢀ㟁ὶࢆ࢜
ࡍࡿሙྜࡣ㧗㟁ᅽࢆ༳ຍࡍࡿࡓࡵࠊேࡸ㟁Ꮚᶵჾ࡬
ࣇࢭࢵࢺࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋ㞽Ⅼㄪᩚࡣࣅ࣮࣒࢜ࣇ
ឤ㟁ࡍࡿࡇ࡜ࡀ࡞࠸ࡼ࠺࡟ᚲࡎὀពࢆࡋ࡞ࡅࢀࡤ
ࡢ≧ែ࡛⾜࠺࡭ࡁ࡛࠶ࡿࠋ᳨ฟჾ࣐࢘ࣥࢺࡢྥࡁ࡟
࡞ࡽ࡞࠸ࠋࡲࡓࠊࢣ࣮ࣈࣝ࡞࡝ࢆ᥋⥆ࡍࡿ㝿ࡣ㟁ᅽ
ࡼࡗ࡚↷ᑕࡉࢀࡿࢣ࣮ࣈࣝࡢ㛗ࡉࡀኚࢃࡿࡓࡵࠊ₃
ࢆⴠ࡜ࡋࡓ≧ែ࡛⾜ࢃ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋ
ࢀ㟁ὶࡢ㔞࡟ᙳ㡪ࢆ୚࠼ࡿࠋ
㟁㞳⟽⥺㔞ィ⏝ࡢ㟁఩ィ࡜ࢲ࢖࣮࢜ࢻ᳨ฟჾࡢ
30
Fig. 5 ࡣࠊ␗࡞ࡿ〇㐀ᴗ⪅ࡢᵝࠎ࡞✀㢮ࡢࢣ࣮ࣈ
III. スキャニングシステムのセットアップ
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
ࣝ࡟࠾ࡅࡿࠊ↷ᑕ㔝ෆ࡟ධࡿࢣ࣮ࣈࣝࡢ㛗ࡉ࡟ࡼࡿ
ᐃ್ࡢኚ໬ࢆ♧ࡋ࡚࠸ࡿࠋDas ࡽ
86
ࡣࠊ㟁Ꮚ⥺ࡢ
➃Ꮚࡢ㟁ᅽࡣྠࡌ࠿ࡑࢀ࡟㏆࠸ࠋࡶࡋࠊ1 mV ⛬ᗘ
ࡢධຊ࢜ࣇࢭࢵࢺ㟁ᅽࡀ⏕ࡌࡿ࡜ࠊ㟁㞳⟽⥺㔞ィ࡟
ᐃ᫬࡟ࡣ↷ᑕ㔝ෆ࡟ධࡿࢣ࣮ࣈࣝࡢ㛗ࡉࡀ ᐃ
࠾࠸࡚₃ࢀ㟁ὶࡢࡼ࠺࡞ຠᯝࢆ⏕ࡌࡿࠋࡶࡋࠊࢲ࢖
್࡟㔜኱࡞ᙳ㡪ࢆཬࡰࡍ࡜ሗ࿌ࡋ࡚࠸ࡿࠋࡑࡢࡓࡵࠊ
࣮࢜ࢻ᳨ฟჾ࡛ ᐃࢆ⾜࠺࡜ࠊධຊ࢜ࣇࢭࢵࢺ࡟ࡼ
ࢣ࣮ࣈࣝࡀ↷ᑕ㔝ෆ࡟ᗈ࠸⠊ᅖ࡛ྵࡲࢀࡿሙྜࠊ≉
ࡾ┤᥋ㄞࡳ್࡟್ࡀຍ࠼ࡽࢀ࡚ࡋࡲ࠺ࠋ
ู࡞⪃៖ࡀᚲせ࡜࡞ࡿࠋࢫ࢟ࣕࣥࢆ⾜࠺๓࡟ࠊỈ୰
࡟ධࡿࢣ࣮ࣈࣝࡢ᳨ฟჾ࡟㏆࠸㒊ศ࡟യࡸࠊࡁࡘࡃ
III.A.3.d. 㐃⥆ᛶ
᭤ࡀࡿ㒊ศࡀ࡞࠸࠿ㄪ࡭࡚࠾ࡃ࡭ࡁ࡛࠶ࡿࠋࢣ࣮ࣈ
ᑠయ✚ࡢ㟁㞳⟽ࡣప࠸ࣂ࢖࢔ࢫ㟁ᅽ࡛ࡶ࢖࢜ࣥ
ࣝࡢ‴᭤ࡸᑠࡉ࡞യࡣ᩿⥺ࡢཎᅉ࡜࡞ࡾࠊ⤯⦕ㄏᑟ
ࡀ཰㞟ࡉࢀࡿ࡜࠸࠺ၥ㢟ࡀ࠶ࡿࠋᩘ mV ࡢ࣮࢞ࢻ࡜
యࡸࣀ࢖ࢬపῶᮦࡀࢲ࣓࣮ࢪࢆཷࡅࡓሙྜ࡜ྠᵝ
㟁ᴟࡢ㛫࡟⏕ࡌࡿ⛬ᗘࡢ㟁ᅽ࡛ࡶࠊ㣬࿴ࡋ࡞࠸⛬ᗘ
࡛ࠊỈ࡟ỿࡵ࡚ ᐃࢆ⾜࠺࡜㟁఩ィ࡟㟁Ẽⓗ࡞ၥ㢟
ࡢ࢖࢜ࣥࡢ཰㞟ࡀྍ⬟࡛࠶ࡿࠋࡇࡢ⛬ᗘࡢ㟁ᅽࡣࠊ
ࢆ㉳ࡇࡍࠋ
㟁఩ィࡢ࣮࢞ࢻ࡜㟁ᴟ㛫ࡢධຊ࢜ࣇࢭࢵࢺ࡜ࡋ࡚
Ꮡᅾࡍࡿࠋࡑࡢࡓࡵࠊࣂ࢖࢔ࢫ㟁ᅽࡀṇ☜࡟༳ຍࡉ
III.A.3. 㟁఩ィ
ࢀ࡚࠸࡞࠸ሙྜࡸࠊ㟁㞳⟽ࡢ㧗ᅽ㟁ᴟࡀࡁࡕࢇ࡜᥋
ࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡟⏝࠸ࡽࢀࡿ㟁఩ィࡣࠊᗈ
í6
࠸ࢲ࢖ࢼ࣑ࢵࢡࣞࣥࢪࢆᣢࡕࠊ10 ࠿ࡽ 10
í14
⥆ࡉࢀ࡚࠸࡞࠸ሙྜ࡛ࡶࠊ㟁Ⲵࡣ ᐃࡉࢀ࡚ࡋࡲ࠺ࠋ
C ࡢ⠊
౵くⓗ࡞㸦ᶵᲔⓗ࡞㸧ࢸࢫࢺ࡜ࡣู࡟ࠊ㐃⥆ᛶࢆ
ᅖࡢ㟁Ⲵࢆ ᐃࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋࢫ࢟ࣕࢽࣥࢢࢆ
ಖドࡍࡿࡓࡵࡢࢸࢫࢺࡀ࠶ࡿࠋࡶࡋ㟁఩ィ࡜ࣂ࢖࢔
⾜࠺๓࡟㟁఩ィࡢ㞽Ⅼㄪᩚࢆ⾜࠺࡭ࡁ࡛࠶ࡿࠋࡲࡓࠊ
ࢫࢆㄪᩚ࡛ࡁࡿሙྜࠊࣅ࣮࣒ࢹ࣮ࢱࡢ ᐃ୰࡟ᴟᛶ
౑⏝ࡍࡿ๓࡟ ᐃࣞࣥࢪࢆኚ᭦ࡋ࡚ࡶᛂ⟅㸦 ᐃ್㸧
ࢆኚ᭦ࡋࠊ ᐃ್ࡢᴟᛶࡀኚ໬ࡍࡿ࠿☜ㄆࡍࡿࠋࡶ
ࡢ┤⥺ᛶࡀಖࡓࢀ࡚࠸ࡿࡇ࡜ࢆ☜ㄆࡋ࡚࠾ࡃ࡭ࡁ
ࡋࠊ㏻ಙࡀ㏵⤯࠼࡚࠸ࡿሙྜࡸࠊධຊ࢜ࣇࢭࢵࢺࡀ
࡛࠶ࡿࠋㄞࡳ್ࡣࠊ᳨ฟჾ࡜㟁఩ィࡢᛂ⟅ࢆྜᡂࡋ
࠶ࡿሙྜࡣᴟᛶࢆኚ࠼࡚ࡶಙྕࡣኚ໬ࡋ࡞࠸ࡓࡵࠊ
ࡓ್࡛࠶ࡿࠋ୍⯡ⓗ࡟᳨ฟჾࡢᛂ⟅ࡣ࣐࢖ࢡࣟ⛊ࡔ
ᴟᛶ࡜࡜ࡶ࡟ಙྕࡢኚ໬ࡀ☜ㄆ࡛ࡁࢀࡤࠊ㐃⥆ᛶࡀ
ࡀࠊ㟁఩ィࡢᛂ⟅ࡣ࣑ࣜ⛊࡛࠶ࡿࡓࡵࠊ㟁఩ィࡢᛂ
ಖドࡉࢀࡿࠋ
⟅ࡣࢫ࢟ࣕࢽࣥࢢ࡟࠾࠸࡚ᴟࡵ࡚㔜せ࡜࡞ࡿࠋ
㐃⥆ᛶࡀಖ࡚࡞࠸஦౛࡜ࡋ࡚ࠊỈ୰࡟᳨ฟჾ࡜ࢣ
࣮ࣈࣝࢆධࢀࡓሙྜࡀ⪃࠼ࡽࢀࡿࠋࢥࢿࢡࢱࡸ࢔ࢲ
III.A.3.a. ᐃࡢᴟᛶ
㟁఩ィࡢධຊᴟᛶࡣ 2 ᴟᆺ࡜ 1 ᴟᆺ࡟ศࡅࡽࢀࡿࠋ
ࣉࢱࠊࢣ࣮ࣈࣝ࡞࡝ࡢྲྀࡾᢅ࠸ࡀ㐺ษ࡛࡞࠸ሙྜࠊ
ṇࡋ࠸᮲௳ୗ࡛ࡶ㟁㞳⟽ࡢࣂ࢖࢔ࢫ㟁ᅽࡀࢩ࣮ࣙ
2 ᴟᆺࡣṇ࡜㈇ࡢ୧ᴟᛶ࡛ ᐃࡀྍ⬟ࡔࡀࠊ1 ᴟᆺ
ࢺࡋ࡚ࡋࡲ࠺ࡇ࡜ࡀ࠶ࡿࠋ௨ୗࡢ❶࡛ヲࡋࡃ㏙࡭ࡿ
ࡣ∦᪉ࡢᴟᛶࡢ㟁Ⲵࡋ࠿ ᐃࡍࡿࡇ࡜ࡣ࡛ࡁ࡞࠸ࠋ
✵୰࠾ࡼࡧỈ୰࡛ࡢ ᐃࡢẚ㍑࡛ࡣࠊ㐪࠸ࢆ♧ࡍࡇ
ヲࡋࡃࡣࠊୖグࡢᴟᛶࡢ㒊ศ㸦III.A.1.c.㸧࡜₃ࢀࡢ
࡜ࡀ࠶ࡿࠋࡲࡓࠊ๓㏙ࡢᴟᛶ཯㌿ࢸࢫࢺ࡛ࡶࡑࢀࡽ
㒊ศ㸦III.A.2.c.㸧ࢆཧ↷ࠋ
ࡢၥ㢟ࡣ᫂ࡽ࠿࡟࡞ࡿࠋ
III.A.3.b. ධຊ࢜ࣇࢭࢵࢺ㟁ὶ㸦₃ࢀ㟁ὶ㸧
III.A.3.e. ࢤ࢖ࣥ࡜⮬ືࣞࣥࢪㄪᩚ
ᐃ್࡟ࡣ ᐃಙྕ࡟஺ࡌࡾࠊ₃ࢀ㟁ὶࡶಙྕ࡜
㟁఩ィࡣᵝࠎ࡞ࢤ࢖ࣥࡢ㑅ᢥࡀྍ⬟࡛ࠊ᳨ฟჾࡢ
ࡋ࡚ྵࡲࢀ࡚࠸ࡿࠋࡓ࠸࡚࠸ࡢ ᐃ᮲௳࡛࠶ࢀࡤ₃
ឤᗘࡢ㐪࠸࡟ྜࢃࡏ࡚㑅ᢥࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋࢤ࢖
ࢀ㟁ὶࡣၥ㢟࡟࡞ࡽ࡞࠸ࡀࠊୖグࡢ࡜࠾ࡾࠊឤᗘࡢ
ࣥࡣ⮬ືࡶࡋࡃࡣᡭື࡛タᐃࡍࡿࡇ࡜ࡀ࡛ࡁࠊᡭື
ప࠸ᑠయ✚ࡢ⥺㔞ィ࡟ࡼࡿࣉࣟࣇ࢓࢖ࣝ ᐃࡢ㝿
࡛ࢤ࢖ࣥࢆタᐃࡍࡿሙྜࠊᇶ‽Ⅼ࡛ࣇ࢕࣮ࣝࢻ⥺㔞
࡟ࡣၥ㢟࡜࡞ࡿሙྜࡀ࠶ࡿࠋ
ィ࡜ࣜࣇ࢓ࣞࣥࢫ⥺㔞ィࡢឤᗘࡀ࡯ࡰ➼ࡋࡃ࡞ࡿ
ࡼ࠺࡟タᐃࡍࡿ࡭ࡁ࡛࠶ࡿࠋ
III.A.3.c. ධຊ࢜ࣇࢭࢵࢺ㟁ᅽ
㟁఩ィࡶࡲࡓࠊ཯㌿ධຊ࡜㠀཯㌿ධຊ࡜ࡢ㛫࡟ධ
ຊ࢜ࣇࢭࢵࢺ㟁ᅽࢆ⏕ࡌࡿࠋ⌮ㄽⓗ࡟ࡣ஧ࡘࡢධຊ
III.A.3.f. ಙྕࡢ㣬࿴
ึᮇタィ࡛ࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡟⤌ࡳ㎸ࡲࢀ
31
医学物理 第 33 巻 第 1 号
III. スキャニングシステムのセットアップ
࡚࠸࡞࠸᳨ฟჾࢆ౑⏝ࡍࡿሙྜࠊ㟁఩ィࡢ ᐃࣞࣥ
ୖ࡟ࢱࣥࢡࢆ⨨࠸࡚ࡣ࠸ࡅ࡞࠸ࠋ୍⯡ⓗ࡟ࡣࠊỈࢆ
ࢪ࠿ࡽ ᐃ್ࡀእࢀ࡚ࡋࡲ࠺ሙྜࡀ࠶ࡿࠋᑠయ✚ࡢ
㈓ࡵࡓࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢ㔜ࡉࡣ 280 kg ㏆ࡃ࡟
㟁㞳⟽ࡢሙྜࠊឤᗘࡣ 0.5 nC/Gy ࡛࠶ࡿࠊࢲ࢖࣮࢜
࡞ࡾࠊᐷྎࡢ㔜㔞ไ㝈ࢆ㉸࠼࡚ࡋࡲ࠺ࠋࡑࡢࡓࡵࠊ
ࢻ࡛ࡣ 50 nC/Gy ࠿ࡑࢀ௨ୖࡢሙྜࡶ࠶ࡾࠊឤᗘᕪ
࡯࡜ࢇ࡝ࡢ〇㐀ᴗ⪅ࡣࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࢆ㈓Ỉ
ࡀ 100 ಸ㏆ࡃ࡟࡞ࡿࠋࡶࡋࠊᑠయ✚ࡢ㟁㞳⟽ࡢ ᐃ
ࢱࣥࢡࡢୖ࡟ಖᣢ࡛ࡁࡿࡼ࠺࡞ࢩࢫࢸ࣒࠿ࠊࡶࡋࡃ
ࣞࣥࢪ࡛ࢲ࢖࣮࢜ࢻ᳨ฟჾࢆ౑⏝ࡍࡿ࡜ࠊಙྕࡣᐜ
ࡣࡑࢀࡽࢆูࠎ࡟ࡋ࡚ᑓ⏝ࡢ㡹୔࡞ಖᣢල࡛ᨭ࠼
᫆࡟㣬࿴ࡋ࡚ࡋࡲ࠺ࠋಙྕࡢ㣬࿴≧ἣ࠿ࡽࠊࢫ࢟ࣕ
ࡿࡼ࠺࡞㡹୔࡞ࢩࢫࢸ࣒ࢆᥦ౪ࡋ࡚࠸ࡿࠋࢫ࢟ࣕࢽ
ࣥࡢ␗ᖖࢆศᯒࡍ࡭ࡁ࡛࠶ࡿࠋࡇࡢࡼ࠺࡞≧ἣࡣࠊ
ࣥࢢࢱࣥࢡࡣࠊ᳨ฟჾࢆື࠿ࡍ㝿࡟㥑ື㒊ࡢືࡁࡀ
࢙࢘ࢵࢪࣉࣟࣇ࢓࢖ࣝࡢࡼ࠺࡟ಙྕࡀ኱ࡁࡃኚ໬
᭱ᑠ࡟࡞ࡿࡼ࠺࡟タ⨨ࡍ࡭ࡁ࡛࠶ࡿࠋ౛࠼ࡤࠊከࡃ
ࡍࡿ ᐃ࡛Ⓨ⏕ࡍࡿࠋ
ࡢ 3D ࢩࢫࢸ࣒࡛ࡣ x ᪉ྥࡢࢫ࢟ࣕࣥࡣ᳨ฟჾࡢࡳ
ࡀ㥑ື࢔࣮࣒࡟ἢࡗ࡚㥑ືࡍࡿࡀࠊy ᪉ྥࡢࢫ࢟ࣕ
III.A.3.g. ಙྕࣀ࢖ࢬẚ
ࣥࡢ㝿ࡣ࢔࣮࣒඲యࢆື࠿ࡍᚲせࡀ࠶ࡿࠋx ᪉ྥࡢ
㣬࿴࡜ࡣ㏫࡟ࠊಙྕ୙㊊ࡢࡓࡵ࡟ࣀ࢖ࢬࡀಙྕࡼ
ࢫ࡛࢟ࣕࣥࡣ㥑ື㒊ศࡀᑡ࡞࠸ࡓࡵࠊỈ㠃ࡀᦂࢀࡿ
ࡾ኱ࡁࡃ࡞ࡿሙྜࠊಙྕࣀ࢖ࢬ㸦SN㸧ẚࡣᑠࡉࡃ࡞
๭ྜࡀᑡ࡞ࡃࠊࡼࡾࡁࢀ࠸࡞ࢹ࣮ࢱ཰㞟ࡀྍ⬟࡜࡞
ࡿࠋ㐺ษ࡞᳨ฟჾ࡜ࢤ࢖ࣥࠊపࣀ࢖ࢬࡢ㧗ရ㉁ࢣ࣮
ࡿࠋࡲࡓࠊ἞⒪ィ⏬⿦⨨ෆ࡛ࡢᗙᶆ࡜ࢫ࢟ࣕࣥࡢ㝿
ࣈࣝࢆ㑅ࡧࠊ㧗࠸ SN ẚࢆಖࡘ࡭ࡁ࡛࠶ࡿࠋගᏊ⥺
ࡢᗙᶆࡀ୍⮴ࡍࡿࡼ࠺࡟ࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࢆタ
ࡢ༙ᙳ㒊ศࡢ ᐃࡸࠊ㟁Ꮚ⥺ࡢไືᨺᑕ࡟ࡼࡿࢸ࣮
⨨ࡍࡿ࡭ࡁ࡛࠶ࡿࠋࢥ࣑ࢵࢩࣙࢽࣥࢢ୰࡛ࡢᗙᶆࡢ
ࣝ㒊ศࡢ ᐃࡢ㝿࡟ࠊࢫ࢟ࣕࣥࢹ࣮ࢱࡀ⁥ࡽ࠿࡛࡞
ࣛ࣋ࣜࣥࢢࡢኚ᭦ࡣࠊవィ࡞᫬㛫ࢆ⏕ࡌࡉࡏࠊΰ஘
࠸ሙྜࡣ SN ẚࢆ☜ㄆࡍࡿ࡭ࡁ࡛࠶ࡿࠋࢫ࢟ࣕࢽࣥ
ࢆᣍࡃࡓࡵ⾜࠺࡭ࡁ࡛ࡣ࡞࠸ࠋ
ࢢࡢ㝿࡟ࡣ SN ẚࢆᑡ࡞ࡃ࡜ࡶ 100 ௨ୖ࡟⥔ᣢࡍࡿ
ࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢཎⅬ㸦0,0,0㸧ࡣ⿦⨨ࡢ࢔࢖
ࡇ࡜ࡀⰋ࠸ᇶ‽࡜࡞ࡿࠋ
ࢯࢭࣥࢱ࡟㏆࡙ࡅࡿ࡭ࡁ࡛ࠊ㞳ࢀ࡚࠸ࡿ࡜኱ࡁ࡞↷
ᑕ㔝ࢆ ᐃࡍࡿ㝿࡟ၥ㢟࡜࡞ࡿࡇ࡜ࡀ࠶ࡿࠋx ㍈ࡣ
III.A.3.h. ᛂ⟅᫬㛫
࣮ࣞࢨࡢ cross-plane㸦left-right ᪉ྥ㸧࡟ྜࢃࡏࠊy
㟁఩ィࡢᛂ⟅᫬㛫ࡣࠊಙྕࡢኚ໬ࡢ᳨ฟ㏿ᗘࢆỴ
㍈ࡣ in-plane㸦gun-target ᪉ྥ㸧࡟ྜࢃࡏࡿࡢࡀⰋ࠸
ᐃࡍࡿࠋࣅ࣮࣒ࡢ㎶⦕㒊ศ࡛ࢫ࢟ࣕࣥ㏿ᗘࡀ㏿࠸ሙ
᪉ἲ࡛࠶ࡿࠋx ࣉࣟࣇ࢓࢖ࣝ࡜ y ࣉࣟࣇ࢓࢖ࣝࡢᕪ
ྜࠊ᳨ฟჾࡢಙྕࡣᛴ㏿࡟ኚ໬ࡍࡿࠋࡶࡋᛂ⟅᫬㛫
ࡣ 1%⛬ᗘぢ㎸ࡲࢀࠊࡓ࠸࡚࠸ࡢ⿦⨨ࡣࡇࡢ࠶ࡓࡾ
ࡀ㛗ࡃࢫ࢟ࣕࣥ㏿ᗘࡀ㏿࠸ሙྜࠊ༙ᙳ㒊ศࡢᙧ≧ࡣ
ࡀチᐜ್࡜࡞ࡿࠋSiemens ♫ࡢ἞⒪⿦⨨ࡢࡼ࠺࡟ࣅ
ᗈࡀࡿࠋࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡟ࡼࡾ␗࡞ࡿ࢔ࣉࣟ
࣮࣒ࢫࢸ࢔ࣜࣥࢢࡀ in-plane ᪉ྥࡢࡳࡢሙྜࡣࠊx
࣮ࢳ࡜ከᵝ࡞ᛂ⟅᫬㛫ࢆᣢࡘࡓࡵࠊᩘ್ࢆ୍⯡໬ࡋ
᪉ྥࡢࣉࣟࣇ࢓࢖ࣝࡣࡼࡾ⁥ࡽ࠿࡟࡞ࡾࠊၥ㢟ࡣᑡ
࡚ᥦ౪ࡍࡿࡇ࡜ࡣᅔ㞴࡛࠶ࡿࠋ⌧ᅾࡢࢫ࢟ࣕࢽࣥࢢ
࡞ࡃ࡞ࡿࠋࡲࡓࠊྍ⬟࡛࠶ࢀࡤ〇㐀ᴗ⪅ࡀᥦ౪ࡍࡿ
ࢩࢫࢸ࣒ࡢ඾ᆺⓗ࡞ᛂ⟅᫬㛫ࡣ 10 ms ௨ୗ࡛ࠊࢫ࢟
ᐃ㍈ࡢㄪᩚ⿦⨨ࢆ౑⏝ࡍ࡭ࡁ࡛࠶ࡿࠋከࡃࡢࢫ࢟
ࣕࣥ㏿ᗘࡣ 1 ࠿ࡽ 500 mm/s ࡛⛣ື࡛ࡁࡿࡇ࡜࠿ࡽࠊ
ࣕࢽࣥࢢࢩࢫࢸ࣒࡟ࡣ xࠊyࠊz ࡢࣛ࣋ࣜࣥࢢࢩࢫࢸ
᭱㧗 100 mm/s ࡲ࡛ࡢࢫ࢟ࣕࣥ㏿ᗘ࡟ࡍࢀࡤၥ㢟࡞
࣒ࡀ⤌ࡳ㎸ࡲࢀ࡚࠸ࡿࠋࣛ࣋ࣜࣥࢢࡣ TPS ࡜୍⮴ࡉ
࠸࡛࠶ࢁ࠺ࠋ
ࡏࡿࡇ࡜ࡀᮃࡲࡋ࠸ࠋ
III.B. ࢫ࢟ࣕࢽࣥࢢ⏝Ỉࢱࣥࢡ
III.B.2. ࢫ࢟ࣕࢼࡢ㥑ື
III.B.1. ࣏ࢪࢩࣙࢽࣥࢢ࡜ࣛ࣋ࣜࣥࢢ
᳨ฟჾࢆࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢᅄ㝮࡟ື࠿ࡋࠊ࡝
ࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢ㐺ษ࡞タ⨨࡜ࣛ࣋ࣜࣥࢢ
ࡢⅬ࡛ࡶỈ㠃࡜᳨ฟჾࡢỈᖹࣞ࣋ࣝࡀ୍⮴ࡋ࡚࠸
㸦㍈ྡࡢタᐃ㸧ࡣࠊ ᐃࢹ࣮ࢱࡢရ㉁ಖド࡜ࠊࢫ࢟
ࡿࡇ࡜ࢆ☜ㄆࡍࡿᚲせࡀ࠶ࡿࠋࡶࡋࠊ᳨ฟჾࡢỈᖹ
ࣕࣥࢹ࣮ࢱࡢ࢚࣮ࣛࡢཎᅉࢆ᳨ฟࡍࡿࡓࡵ࡟ࡣ୙
ࣞ࣋ࣝࢆ☜ㄆࡍࡿࡓࡵࡢ࢟ࣕࢵࣉᆺࡢᑓ⏝ჾලࢆ
ྍḞ࡛࠶ࡿࠋࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢ㔜ࡳ࡛἞⒪ᐷྎ
ᡤ᭷ࡋ࡚࠸ࡿࡢ࡛࠶ࢀࡤ౑⏝ࡍ࡭ࡁ࡛࠶ࡿࠋࡲࡓࠊ
ࡢᨭᣢᶵᵓࡣ⡆༢࡟ቯࢀ࡚ࡋࡲ࠺ࡓࡵࠊỴࡋ࡚ᐷྎ
᳨ฟჾୖࡢ࣐࣮ࢡࡸࡑࡢ௚ࡢ☜ㄆ⏝ჾලࢆ฼⏝ࡍ
32
III. スキャニングシステムのセットアップ
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
ࡿࡇ࡜࡛ࡶỈ㠃࡜ࡢ୍⮴ࢆ☜ㄆ࡛ࡁࡿࠋ
III.B.2.a. ࣅ࣮࣒୰ᚰ㍈ࡢࢫ࢟ࣕࢼࡢ㥑ື
z ㍈᪉ྥࡢ᳨ฟჾࡣࠊ࢞ࣥࢺࣜゅᗘ 0 ᗘࡢ୰ᚰ㍈
࡟ἢࡗ࡚ᖹ⾜࡟ື࠿࡞ࡅࢀࡤ࡞ࡽࡎࠊୗグࡢ᪉ἲ࡛
☜ㄆࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
x
㔜㗽࡟ἢࡗ࡚ᆶ┤᪉ྥ࡟࢔࣮࣒ࢆື࠿ࡋࠊṇ☜
࡟ᆶ┤࡟⛣ືࡋ࡚࠸ࡿ࠿☜ㄆࡍࡿࠋ
x
jaw ࢆ᳨ฟჾࡢഃ㠃࠾ࡼࡧඛ➃࠿ࡽ 1 mm ⛬ᗘ
FIG. 6. Sequential appearance of chamber and its reflection in water
viewed from tank side. The correct position is when both images form
a perfect circle.
㛤ࡁࠊ᳨ฟჾࢆỈ㠃࠿ࡽᆶ┤࡟ỿࡵࠊ↷ᑕ㔝ෆ
ࡢࢡࣟࢫ࣊࢔࡜᳨ฟჾࠊ࠾ࡼࡧග↷ᑕ㔝➃࡜᳨
ฟჾࡢ఩⨨㛵ಀࢆぢࡿࡇ࡜࡛㍈ࢆ☜ㄆࡍࡿࠋࡶ
III.B.2.c. 㟁㞳⟽ࡢኚ఩
Ỉ㠃࡜᳨ฟჾࡢ఩⨨ࢆṇ☜࡞SSD࡟ྜࢃࡏࡿࡇ࡜࡛ࠊ
ࡋ㍈ࡀࡎࢀ࡚࠸ࢀࡤ᫂ࡽ࠿࡟᳨ฟࡍࡿࡇ࡜ࡀ࡛
ࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡢཎⅬࢆタᐃࡍࡿࡇ࡜ࡀ࡛
ࡁࡿࠋ
ࡁࡿࠋ࠸ࡃࡘ࠿ࡢ ᐃࣉࣟࢺࢥ࡛ࣝࡣ᳨ฟჾࡢᗄఱ
ࡇࢀࡽࡢࢸࢫࢺࡣࠊࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢỈᖹㄪᩚ
Ꮫⓗ୰ᚰࡣ ᐃⅬ࡛ࡣ࡞࠸ࡓࡵࠊ ᐃࡢ㝿ࡣᐇຠ୰
࡟ᙳ㡪ࡍࡿࡓࡵࠊỈࡣ‶ᮼࡢ≧ែ࡛⾜࠺࡭ࡁ࡛࠶ࡿࠋ
ᚰ࡟ኚ఩ࡍࡿᚲせࡀ࠶ࡿࠋගᏊ࡜㟁Ꮚ࡛ᐇຠ୰ᚰࡣ
␗࡞ࡾࠊࡉࡽ࡟ࣉࣟࢺࢥࣝ࡟ࡼࡗ࡚ࡶᐇຠ୰ᚰࡣ␗
III.B.2.b. ࢮࣟⅬࡢ῝ࡉ
SSD ࢆタᐃࡍࡿ㝿ࡣࠊ఩⨨Ỵࡵ࣮ࣞࢨࠊODIࠊ࣓
࡞ࡿヂ⪅ὀ 2
82,87,88
ࠋ෇⟄ᙧ㟁㞳⟽ࢆỈࣇ࢓ࣥࢺ࣒୰࡛
౑⏝ࡍࡿሙྜࠊFig. 6 ࡟♧ࡍࡼ࠺࡟ᗄఱᏛⓗ୰ᚰࡣ
࢝ࢽ࣏࢝ࣝ࢖ࣥࢱ࡞࡝࠿ࡽࠊᑡ࡞ࡃ࡜ࡶ஧ࡘࡢ᪉ἲ
ṇ☜࡟タ⨨ࡍࡿࡇ࡜ࡀ࡛ࡁࠊ㟁㞳⟽⥺㔞ィࡢࢩࣇࢺ
࡟ࡼࡾ☜ㄆࡍ࡭ࡁ࡛࠶ࡿࠋ࣮ࣞࢨࡀ㊥㞳ィ࡜ࡋ࡚ᶵ
ࡣࡇࡢึᮇ఩⨨࠿ࡽ⾜࠺ࡇ࡜ࡀ࡛ࡁࡿࠋከࡃࡢࢫ࢟
⬟ࡍࡿࡢ࡛࠶ࢀࡤ࡜࡚ࡶ⡆౽࡞᪉ἲ࡛࠶ࡿࡀࠊࡇࡢ
ࣕࢽࣥࢢࢩࢫࢸ࣒࡛ࡣࡇࡢ࢜ࣇࢭࢵࢺࢆࢯࣇࢺ࢘
᪉ἲࡢሙྜ࣮ࣞࢨࡢ఩⨨⢭ᗘࢆ☜ㄆࡋ࡚࠾ࡃᚲせ
࢙࢔ୖ࡛ࠊࡶࡋࡃࡣᡭື࡛タᐃ࡛ࡁࡿࠋࡶࡋࢫ࢟ࣕ
ࡀ࠶ࡿࠋỈ㠃ࢆ࣮ࣞࢨ࠾ࡼࡧ࣓࢝ࢽ࣏࢝ࣝ࢖ࣥࢱࡢ
ࢽࣥࢢࢩࢫࢸ࣒ࡢࢯࣇࢺ࢙࢘࢔࡛࢜ࣇࢭࢵࢺࢆ⿵
఩⨨࡟ṇ☜࡟୍⮴ࡉࡏࠊ᳨ฟჾࡢ୰ᚰࢆỈ㠃࡟ࢭࢵ
ṇࡍࡿ࡜ࠊ ᐃࡋࡓ್࡟㛵㐃ࡍࡿ῝ࡉࡣᩚᩘ࡛ࡣ࡞
ࢺࡍࡿࠋ෇⟄ᙧࡢ㟁㞳⟽ࡢሙྜࢭࢵࢺࡣᐜ࡛᫆ࠊୗ
ࡃ࡞ࡿࠋከࡃࡢ㟁㞳⟽ࡢ࢜ࣇࢭࢵࢺࡣ 1.5 mm࠿ࡽ
࠿ࡽぢ࡚Ỉ㠃࡟཯ᑕࡋࡓ㟁㞳⟽ࡢᙧ≧࡛Ỵᐃ࡛ࡁ
2.0 mmࡢ㛫࡛ࠊࢮࣟⅬ࠿ࡽୗഃ࡟ࢩࣇࢺࡉࡏࡿࠋࡇ
ࡿࠋFig. 6 ࡢࡼ࠺࡟ࠊ
㸦Ỉ୰ࡢ㸧㟁㞳⟽࡜Ỉ㠃࡟཯ᑕ
ࡢ᪉ἲ࡟ࡼࡾࠊṇ☜࡞῝ࡉ࡛ࡢ ᐃࡀྍ⬟࡜࡞ࡿࠋ
ࡋࡓീࡀࡁࢀ࠸࡞෇ࢆᥥ࠸࡚࠸ࢀࡤࠊ㟁㞳⟽୰ᚰ࡜
Ỉ㠃ࡀṇ☜࡟୍⮴ࡋ࡚࠸ࡿࠋࡇࡢ࣏ࢪࢩࣙࣥࢆࢮࣟ
III.B.3. ࢫ࢟ࣕࢽࣥࢢࡢ᪉ྥ
Ⅼ࡜ࡋࠊࢫ࢟ࣕࣥ࡟౑⏝ࡍࡿ PC ࡟ᗙᶆࢆࢭࢵࢺࡍ
ከࡃࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡣࢫ࢟ࣕࢽࣥࢢࢱ
࡭ࡁ࡛࠶ࡿࠋỈࡢ⵨Ⓨ࡟ࡼࡗ࡚Ỉ㠃ࡣኚ໬ࡍࡿྍ⬟
ࣥࢡ࡜࢞ࣥࢺࣜࡢ㍈ࡢ㛵ಀࢆᐃ⩏ࡍࡿࡇ࡜ࡀ࡛ࡁ
ᛶࡀ࠶ࡿࡓࡵࠊ ᐃ᪥ࡢ᭱ึ࡜ࠊࡑࡢᚋᑡ࡞ࡃ࡜ࡶ
ࡿࠋ୍⯡ⓗ࡟ࡣ y ㍈ࡣ gun-target ᪉ྥ࡛ࠊx ㍈ࡣ
6 ᫬㛫࠾ࡁ࡟Ỉ㠃ࢆ☜ㄆࡍ࡭ࡁ࡛࠶ࡿࠋ࠶ࡿࢫ࢟ࣕ
cross-plane ᪉ྥ࡛࠶ࡿࡀࠊࡇࡢ఩⨨࡙ࡅ࡜ࢫ࢟ࣕࣥ
ࢽࣥࢢࢩࢫࢸ࣒ࡣࢫ࢟ࣕࣥ᫬࡟㸦᳨ฟჾ࠾ࡼࡧ㥑ື
᪉ྥࡀṇࡋ࠸ࡇ࡜ࢆ☜ㄆࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋタ⨨
࢔࣮࣒ࡀ㸧Ỉ࡟ỿࢇࡔศỈ㠃ࢆኚ᭦ࡍࡿ࣮ࣔࢱࢆᣢ
ࡍࡿ఩⨨㛵ಀ࡜ࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡟ᐃ⩏ࡍࡿ
ࡘࠋࢯࣇࢺ࢙࢘࢔ࡣỈࡢኚ఩࡟ᇶ࡙࠸࡚῝ࡉࢆኚ᭦
఩⨨㛵ಀࡀṇࡋࡃ࡞࠸ሙྜࠊTPS ࡟ධຊࡍࡿࢹ࣮ࢱ
ࡍࡿࡀࠊࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡀ኱ࡁ࠸ሙྜࡣࡇࡢㄗ
ࢆㄗࡿྍ⬟ᛶࡀ࠶ࡿࠋ౛࠼ࡤࠊTPS ࡟ 45 ᗘࡢ࢙࢘
ᕪࡣᑠࡉ࠸ࠋࡇࡢࡼ࠺࡞ࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࢆ౑
⏝ࡍࡿሙྜࡣࠊ᧯సࡣ༑ศ࡟Ẽࢆࡘࡅࡿ࡭ࡁ࡛ࠊ౑
⏝๓࡟ࢯࣇࢺ࢙࢘࢔࡟ࡼࡿ⿵ṇࡀṇ☜࠿☜࠿ࡵ࡚
࠾ࡃ࡭ࡁ࡛࠶ࡿࠋ
ヂ⪅ὀ2
ᶆ‽ ᐃἲ 01 ࠾ࡼࡧᶆ‽ィ ἲ 12 ࡟࠾࠸࡚
ࡣࠊගᏊ⥺ࡢࡓࡵࡢኚ఩㔞ࡣ 0.6rcyl ࡛࠶ࡾࠊrcyl ࡣ㟁
㞳✵Ὕࡢ༙ᚄࢆ♧ࡍࠋ
33
医学物理 第 33 巻 第 1 号
III. スキャニングシステムのセットアップ
FIG. 8. Effect of gantry angle tilt on the profiles of a 6 MV beam for
30×30 cm2 field at 10 cm depth.
࣮ࢱࡶṇ☜࡛ࡣ࡞ࡃ࡞ࡿࠋࡶࡋࠊFig. 7 ࡢࡼ࠺࡟ග
Ꮚ⥺ࡸ㟁Ꮚ⥺ࡢࣉࣟࣇ࢓࢖ࣝࡀ㐺ษ࡞ᙧ≧࡛࡞࠸
ሙྜࡣࠊ࢔࣮࣒ࡸỈᵴࡀഴ࠸࡚࠸ࡿࡇ࡜ࡀ⪃࠼ࡽࢀࠊ
ㄪᩚࢆ⾜࠺࡭ࡁ࡛࠶ࡿࠋ
III.B.3.b. ࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢഴࡁ
FIG. 7. (a) Beam profiles of a 6 MV beam at different depth with
ࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡢỈᖹᗘࡢㄪᩚࡣࢫ࢟ࣕ
scanning arm tilt for a 4×4 cm2 field, (b) electron beam profiles at
ࢽࣥࢢࢱࣥࢡ඲య࡛⾜࠺࠿ࠊ࢔࣮࣒ࡔࡅ࡛⾜࠺࠿ࡢ
depth of 80% depth dose for 20×20 cm2 cone with gantry tile. Arrows
2 ㏻ࡾ࠶ࡿࠋගᏊ⥺ࡢ ᐃ࡟࠾࠸࡚ࠊ࢔࣮࣒ࡢഴࡁ
and circle are shown to represent the impact of arm and gantry tilt.
ࡀᑐ⛠ᛶ࡟୚࠼ࡿᙳ㡪ࡣᑠࡉ࠸ࠋࡋ࠿ࡋࠊFig. 7(a)
࡟♧ࡍࡼ࠺࡟ࠊ࢔࣮࣒ࡀഴ࠸࡚࠸ࡿሙྜࠊಶࠎࡢࢫ
࢟ࣕࣥࡢ୰ᚰࡣ῝㒊࡟࡞ࡿ࡯࡝ࡎࢀࡿࠋᑠ↷ᑕ㔝ࡸ
ࢵࢪࣉࣟࣇ࢓࢖ࣝࢆධຊࡍࡿ࡜ࡁ࡟ࠊᐇ㝿࡟ ᐃࡋ
࢙࢘ࢵࢪ↷ᑕ㔝࡛ࡇࡢᙳ㡪ࡣ㔜኱࡛ࠊPDD ࡣ୰ᚰ㍈
ࡓࢹ࣮ࢱࡀ࢙࢘ࢵࢪࡢ㠀໙㓄᪉ྥ࡛࠶ࡿሙྜࡣࠊ῝
࠿ࡽࡎࢀࠊ࢙࢘ࢵࢪࡢཌࡳࡀ␗࡞ࡿ㒊ศࢆ ᐃࡍࡿ
้࡞ࢹ࣮ࢱධຊ࣑ࢫ࡟ࡘ࡞ࡀࡿࠋ
ࡇ࡜࡟࡞ࡿࠋ㟁Ꮚ⥺࡛ࡣࠊFig. 7(b)ࡀ♧ࡍࡼ࠺࡟ࠊ
≉࡟⥺㔞໙㓄ࡀᛴ࡞ప࢚ࢿࣝࢠ࣮ࡢሙྜࡣࠊdmax ௨
III.B.3.a. ࢫ࢟ࣕࣥ㍈ࡢ࢔ࣛ࢖࣓ࣥࢺ
ṇ☜࡞ࢹ࣮ࢱ ᐃࢆ⾜࠺ࡓࡵ࡟ࡣࠊ࢞ࣥࢺࣜࡢ y
㝆ࡢ῝ࡉ࡛࢔࣮࣒ࡢഴࡁ࡟ࡼࡿᙳ㡪ࡣ㢧ⴭ࡟⾲ࢀ
ࡿࠋ
᪉ྥ㸦in-plane㸧࡜ x ᪉ྥ㸦cross-plane㸧࡟ᑐࡋ࡚ࠊ
ࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࢆṇ☜࡟ྜࢃࡏ࡞ࡅࢀࡤ࡞ࡽ
࡞࠸ࠋࡇࢀࡣࠊࢫ࢟ࣕࢽࣥࢢࢱࣥࢡࡢഃ㠃࡟࠶ࡿ࣐
III.B.3.c. ࢞ࣥࢺࣜࡢഴࡁ
ࢫ࢟ࣕࣥ୰࡟࢞ࣥࢺࣜࡀഴ࠸࡚࠸ࡿሙྜࠊ
࣮ࢡ࡜࣮ࣞࢨࢆྜࢃࡏࡿ࠿ࠊ᳨ฟჾࡢಖᣢලࢆࣇ࢕
cross-plane ࡢࣉࣟࣇ࢓࢖ࣝࡸ PDD ࡟ᙳ㡪ࢆཬࡰࡍࠋ
࣮ࣝࢻࡢ➃࡟ྜࢃࡏࡿࡇ࡜࡛㐩ᡂࡉࢀࡿࠋࡇࢀࡣࡲ
ࡇࡢᙳ㡪ࡣᑠࡉ࠸ࡀࠊ῝㒊࡛ࣉࣟࣇ࢓࢖ࣝࡢ㠀ᑐ⛠
ࡓࠊ㍈࡟ἢࡗ᳨࡚ฟჾࢆᡭື࡛⛣ືࡉࡏࡓ࡜ࡁ࡟ࠊ
ࡀ⏕ࡌࡿ㸦Fig. 8㸧
ࠋࢫ࢟ࣕࣥ๓࡟࢞ࣥࢺࣜࢆỈᖹ࡟
᳨ฟჾ୰ᚰࡀࢡࣟࢫ࣊࢔࡜࡝ࡢⅬ࡛ࡶ୍⮴ࡍࡿࡇ
ࡍࡿࡇ࡜ࡣ୙ྍḞ࡛ࠊcross-plane ᪉ྥࡢ ᐃ࡛㠀ᑐ
࡜ࢆಖドࡍࢀࡤ☜ㄆ࡛ࡁࡿࠋ఩⨨ྜࢃࡏࢆṇ☜࡟⾜
⛠ࢆ㑊ࡅࡿࡓࡵࠊ࢞ࣥࢺࣜゅᗘࡣ⢭ᐦ࡞Ỉ‽ჾ࡛☜
ࢃ࡞࠸࡜ࠊ ᐃࡋࡓࣉࣟࣇ࢓࢖ࣝࡢ↷ᑕ㔝ࢧ࢖ࢬࡣ
ㄆࡍ࡭ࡁ࡛࠶ࡿࠋ
ṇ☜࡛ࡣ࡞ࡃ࡞ࡾࠊ࢙࢘ࢵࢪࣉࣟࣇ࢓࢖ࣝ࡞࡝ࡢࢹ
34
III. スキャニングシステムのセットアップ
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
III.C. ࢫ࢟ࣕࣥࡢ㥑ືᶵᵓ࡜ືࡁ
ࡍࡿ๓࡟ࡣࠊ஦๓࡟ ᐃࢸࢫࢺࢆ⾜࠺࡭ࡁ࡛࠶ࡿࠋ
III.C.1. 㓄ิᆺ᳨ฟჾࡢ㔜㔞
ࡲࡓࠊ⿦⨨ࡢ⢭ᗘ⟶⌮ࡢࡓࡵࡢẖᖺࡢᰯṇࢆ⾜࠺๓
Ỉࣇ࢓ࣥࢺ࣒ࢩࢫࢸ࣒࡟࠾࠸࡚ࠊ㸦᳨ฟჾࡢ㸧ಖ
࡟ࡶࠊ஦๓ࡢ ᐃࢸࢫࢺࡣ୙ྍḞ࡛࠶ࡿࠋࡍ࡭࡚ࡢ
ᣢල࡜ࢫ࢟ࣕࣥᶵᵓࡣẚ㍑ⓗᑠࡉࡃ㍍࠸᳨ฟჾࢆ
ࢣ࣮ࣈࣝࢆ᥋⥆ࡋ࡚ࢫ࢟ࣕࢽࣥࢢࢱࣥࢡ࡟Ỉࢆ㈓
᝿ᐃࡋ࡚సࡽࢀ࡚࠸ࡿࠋᗄࡘ࠿ࡢ㓄ิᆺࡢ᳨ฟჾࡣ
ࡵ࡞࠸≧ែ࡛ࠊࣇ࢕࣮ࣝࢻ⥺㔞ィࢆ࢔࢖ࢯࢭࣥࢱୖ
ಖᣢලࡢไ㝈ࢆ㉸࠼ࡓ㔜ࡉ࡛࠶ࡿࠋࢫ࢟ࣕࢽࣥࢢࢩ
࡟タ⨨ࡋࠊࣜࣇ࢓ࣞࣥࢫ⥺㔞ィࡣࣇ࢕࣮ࣝࢻ⥺㔞ィ
ࢫࢸ࣒࡛㓄ิᆺ᳨ฟჾࢆ౑⏝ࡍࡿ๓࡟ࠊ〇㐀ᴗ⪅࡟
ࡢࢫ࢟ࣕࣥ⠊ᅖୖ࡟ධࡽ࡞࠸ࡼ࠺࡟㐺ษ࡟タ⨨ࡍ
☜ㄆࢆ࡜ࡽࡡࡤ࡞ࡽ࡞࠸ࠋ㓄ิᆺ᳨ฟჾࡢ㔜ࡉ࡜ࢧ
ࡿࠋࢫ࢟ࣕࣥ⏝ࡢ᳨ฟჾ࡟ࣅࣝࢻ࢔ࢵࣉ࢟ࣕࢵࣉࢆ
࢖ࢬࡢᙳ㡪ࢆ⪃៖ࡍࡿࡓࡵࠊࢹ࣮ࢱ཰㞟ࡢ๓࡟ࢫ࢟
⿦╔ࡋࠊ㟁఩ィ࡟ᚲせ࡞ㄪᩚࢆ⾜࠸ࠊ20 × 20 cm2 ࡢ
ࣕࣥ࢔࣮࣒ࡢືࡁࢆ☜ㄆࡍࡿ࡭ࡁ࡛࠶ࡿࠋ
↷ᑕ㔝࡛ࠊ㸫20 ࠿ࡽ 20 cm ࡲ࡛✵୰࡛ࢫ࢟ࣕࣥࢆ⾜
࠺ࠋࢫ࢟ࣕࢼ࡟ࡼࡗ࡚ࡣࠊࣜࣇ࢓ࣞࣥࢫ⥺㔞ィ࠿ࡽ
III.C.2. ㏿ᗘ࡜఩⨨ࡢ⢭ᗘ
᳨ฟჾࡢಙྕࡢᙉᗘࠊឤᗘࠊ㟁఩ィࡢ཰㞟᫬㛫ࠊ
ಙྕࡀ࡞࠸ሙྜࠊࢫ࢟ࣕࣥࡀ೵Ṇࡍࡿࡓࡵࢻࣛ࢖ࣛ
ࣥࢆ⾜࠼࡞࠸ࢱ࢖ࣉࡶ࠶ࡿࠋ
఩⨨⢭ᗘ࡟ࡼࡗ࡚ࡣ᳨ฟჾࡢ⛣ື㏿ᗘ࡟ࢫ࢟ࣕࢽ
ᐃࢆ⧞ࡾ㏉ࡋ⾜࠸ࠊ᳨ฟჾࡀࢡࣟࢫ࣊࢔୰ᚰ࡟
ࣥࢢࢩࢫࢸ࣒ࡀᑐᛂ࡛ࡁ࡞࠸ሙྜࡀ࠶ࡿࠋࡇࢀࡽࢆ
㐩ࡋࡓࡽ↷ᑕࢆ୰᩿ࡍࡿࠋࢫ࢟ࣕࣥࢹ࣮ࢱࢆಖᏑࡋ
☜ㄆࡍࡿࡓࡵ࡟ࠊ᭱㧗㏿ᗘ࡜᭱ప㏿ᗘ࡟࠾࠸࡚ࠊ20
࡚ࠊࢫ࢟ࣕࢼࡢࢯࣇࢺ࢙࢘࢔ࡸࢫࣉࣞࢵࢻࢩ࣮ࢺࢆ
cm ࡢ↷ᑕ㔝࡛ 40 cm ࡢ⠊ᅖࢆࢫ࢟ࣕࣥࡋࠊ஧ࡘࡢ
౑⏝ࡋ࡚ࠊḟࡢ㡯┠ࢆゎᯒࠊ᳨ウࢆ⾜࠺ࠋ
ࣉࣟࣇ࢓࢖ࣝࢆẚ㍑ࡍ࡭ࡁ࡛࠶ࡿࠋࡶࡋ┦ᑐⓗ࡞ᙧ
x
ࣀ࢖ࢬ㸸ࣉࣟࣇ࢓࢖ࣝࡢᖹᆠ࡞㒊ศࡢᶆ‽೫ᕪ
≧ࡣ୍⮴ࡋ࡚࠸࡚ࠊ఩⨨ࡀࢩࣇࢺࡋ࡚࠸ࢀࡤࠊࢫ࢟
ࢆồࡵࡿࠋࡇࢀࡣ↷ᑕ᫬ࡢࣀ࢖ࢬࡢᶆ‽೫ᕪࢆ
ࣕࣥ㏿ᗘ࡟㝈⏺ࡀ࠶ࡿࡇ࡜ࡀ☜ㄆ࡛ࡁࡿࠋ
♧ࡋ࡚࠸ࡿࠋ
x
III.C.3. ࣄࢫࢸࣜࢩࢫ
ືಀᩘ㸧ࡢィ⟬ࢆ⾜࠺ࠋࡇࡢ್ࡣ SN ẚ࡟㏆࠸
ࢫ࢟ࣕࢼࡢ఩⨨ࡢ࢚ࣥࢥ࣮ࢹ࢕ࣥࢢ࡟࠾࠸࡚ࣄ
ࢫࢸࣜࢩࢫࡀ㉳ࡁ࡚࠸࡞࠸࠿☜ㄆࡍ࡭ࡁ࡛࠶ࡿࠋࣄ
SN ẚ㸸ྠࡌ㡿ᇦ࡛ࠊᶆ‽೫ᕪ࡜ᖹᆒ್ࡢẚ㸦ኚ
್࡜࡞ࡿࠋ
x
᫬ᐃᩘ㸸↷ᑕࢆṆࡵࡓ᫬Ⅼ࠿ࡽ᳨ฟჾࡢಙྕࡀ
ࢫࢸࣜࢩࢫ⌧㇟ࡣ୍⯡ⓗ࡟ᪧᆺࡢࢫ࢟ࣕࢽࣥࢢࢩ
࡞ࡃ࡞ࡿࡲ࡛ࡢ᫬㛫ࢆ ᐃࡍࡿࠋࡇࢀࡣࠊ᳨ฟ
ࢫࢸ࣒࡛ၥ㢟࡟࡞ࡾࠊࡇࡢ⌧㇟ࡣྠࡌ↷ᑕ㔝࡛ࠊ୰
ჾ࡟ṧࡿ㟁Ⲵࡶྵࡵࡓࠊ᫬ᐃᩘࡶࡋࡃࡣᛂ⟅᫬
⛬ᗘࡢࢫࣆ࣮ࢻ࡛ ᚟ࡋ࡚ࢫ࢟ࣕࣥࢆ⾜࠺ࡇ࡜࡛
㛫࡜㛵ಀࡋ࡚࠸ࡿࠋ
☜ㄆ࡛ࡁࡿࠋࡶࡋࠊ஧ࡘࡢࣉࣟࣇ࢓࢖ࣝࡀ᏶඲࡟୍
x
₃ࢀ㟁ὶ㸸↷ᑕࢆ⾜ࡗ࡚࠸࡞࠸࡜ࡁࡢ್ࡀⴠࡕ
⮴ࡋ࡚࠸࡞࠸ሙྜࠊࢫ࢟ࣕࣥࡢືస࡟ࣄࢫࢸࣜࢩࢫ
╔࠸࡚ᖹᆠ࡟࡞ࡗࡓ㡿ᇦࡢࠊᖹᆒ್࡜ᶆ‽೫ᕪ
ࡀ㉳ࡁ࡚࠸ࡿࡇ࡜࡟࡞ࡿࠋࡇࡢࡼ࠺࡞⌧㇟ࡀⓎ⏕ࡋ
ࢆồࡵࡿࠋ
ࡓሙྜࡣ〇㐀ᴗ⪅࡟ಟ⌮ࢆ౫㢗ࡋࠊࢫ࢟ࣕࢽࣥࢢ x
ᐃ࡟౑⏝ࡍ࡭ࡁ࡛ࡣ࡞࠸ࠋ
㟁఩ィ࢜ࣇࢭࢵࢺ㸸ࡶࡋࠊ㟁఩ィ࡟ࢤ࢖ࣥࡢ⮬
ືㄪᩚᶵ⬟ࡀ࡞࠸ࡢ࡛࠶ࢀࡤࠊ↷ᑕࢆ⾜ࡗ࡚࠸
࡞࠸㒊ศࡢᶆ‽೫ᕪ࡜ࠊᖹᆠ࡟↷ᑕࡉࢀ࡚࠸ࡿ
III.C.4. ⭉㣗㸦ࡉࡧ㸧
㒊ศࡢᶆ‽೫ᕪࡣ࡯ࡰྠ➼࡟࡞ࡿ࡭ࡁ࡛࠶ࡿࠋ
Ỉ࡬ࡢῧຍ≀ࡸಖᏑ᪉ἲ࡞࡝࡟ࡘ࠸࡚ࡣᴗ⪅ࡢ
↷ᑕࡋ࡚࠸࡞࠸ሙྜࡢ್ࡢᖹᆒ್ࡣ㟁఩ィࡢ࢜
ᥦ᱌࡟ᚑ࠺࡭ࡁ࡛࠶ࡿࠋ㛗ᮇ࡟ࢃࡓࡾ౑⏝ࡋ࡞࠸ሙ
ࣇࢭࢵࢺ࡛ࠊྠࡌࢤ࢖ࣥ࡟࠾ࡅࡿ ᐃ࡛ࡣࡍ࡭
ྜࠊ≉࡟᪥ࢆࡲࡓࡄࡼ࠺࡞ሙྜࡣࠊࢫ࢟ࣕࣥᶵᵓࢆ
࡚ࡢࢹ࣮ࢱ࠿ࡽῶ⟬ࡍ࡭ࡁ࡛࠶ࡿࠋ
Ỉ࡟ᾐࡋ࡚࠾ࡃ࡭ࡁ࡛ࡣ࡞࠸ࠋ
x
㸦ಙྕࡀ㸧㈇
ᴟᛶ㸸ࡶࡋ㟁఩ィࡀ 2 ᴟ࡛࠶ࢀࡤࠊ
ࡢ್ࢆ࡜ࡿࡇ࡜ࡶ࠶ࡾࠊᖹᆒ್ࡀ㈇࡟࡞ࡿࡇ࡜
III.D. ᐃ๓ࡢヨ㦂
ࡶ࠶ࡿࠋ
㸦࢜ࣇࢭࢵࢺࢆᕪࡋᘬࡃሙྜ࡞࡝࡟㸧㈇
III.D.1. ࢻࣛ࢖ࣛࣥ
ࡢᖹᆒ್ࢆῶ⟬ࡍࡿሙྜࡣࠊ⤖ᯝ࡜ࡋ࡚ṇࡢ್
᪂ࡋ࠸ࢫ࢟ࣕࢼࢆ౑⏝ࡋ࡚ࣅ࣮࣒ࢹ࣮ࢱࢆ ᐃ
ࢆຍ⟬ࡍࡿࡇ࡜࡟࡞ࡿࡢ࡛ࠊṇ㈇ࡢ➢ྕࡣṧࡋ
35
医学物理 第 33 巻 第 1 号
x
III. スキャニングシステムのセットアップ
࡚࠾ࡃ࡭ࡁ࡛࠶ࡿࠋ
ࡀ᭷ព࡛࠶ࡿ࠿ࠊࣉࣟࣇ࢓࢖ࣝࡢࢸ࣮ࣝ㒊ศࡢ ᐃ
↓ຠ࡞್㸸↷ᑕࢆ⾜ࡗ࡚࠸࡞࠸᫬ࡢ್㸦ࣂࢵࢡ
್ࢆẚ㍑ࡍࡿࡇ࡜࡛☜ㄆࡋ࡞ࡃ࡚ࡣ࡞ࡽ࡞࠸ࠋ
ࢢࣛ࢘ࣥࢻ㸧ࡀᖖ࡟ 0 ࡛ኚືࡀ࡞࠸ሙྜࠊࢹ࣮
ࢱࡀᙉไⓗ࡟ 0 ࡟⿵ṇࡉࢀ࡚࠸ࡿྍ⬟ᛶࡀ࠶ࡿࠋ
ࡇࢀ࡟ࡼࡾࠊ༙ᙳ㒊ศࡸࢸ࣮ࣝࡢ㒊ศ࡟ ᐃㄗ
III.D.5. ࢚ࢿࣝࢠ࣮ᛂ⟅ᛶࡢヨ㦂
ࢲ࢖࣮࢜ࢻ᳨ฟჾ࡛ PDD ࢆ ᐃࡍࡿሙྜࠊ࢚ࢿ
ࣝࢠ࣮ᛂ⟅ࡣ 6 MV ࡢගᏊ⥺ࡢ኱↷ᑕ㔝㸦40 × 40
ᕪࡀ㉳ࡁࡿྍ⬟ᛶࡀ࠶ࡿࠋ
cm2㸧࡟࠾ࡅࡿ኱ࡁ࡞య✚ࡢ㟁㞳⟽࡛ ᐃࡋࡓ PDD
III.D.2. ࢛࣮࢘ࢱࣛࣥ
࡜ẚ㍑ࡍࡿࡇ࡜࡛ࠊホ౯ࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋdmax ௨
᳨ฟჾ࡜ࢣ࣮ࣈࣝࡀᾐỈࡋࡓ≧ែ࡛ࠊࢣ࣮ࣈࣝࡢ
㝆ࡢ῝ࡉࡢ PDD ࡟࠾࠸࡚ࠊ㟁㞳⟽⥺㔞ィ࡟ẚ࡭ࢲ
ࢪࣕࢣࢵࢺࡢட⿣ࡸ₃㟁ࡀ㉳ࡁ࡚࠸ࡿሙྜࠊ ᐃᶵ
࢖࣮࢜ࢻ᳨ฟჾࡢ⥺㔞᭤⥺ࡢῶᙅࡍࡿഴࡁࡀᑠࡉ
ჾࡢᅇ㊰ࡢࣃ࣓࣮ࣛࢱࡀኚ໬ࡋࠊ ᐃ⤖ᯝࡶኚ໬ࡍ
࠸ሙྜࠊࡇࢀࡣ࢚ࢿࣝࢠ࣮ᛂ⟅ࡢ㐪࠸ࢆ♧ࡋ࡚࠸ࡿࠋ
ࡿྍ⬟ᛶࡀ࠶ࡿࠋࡶࡋࢥࢿࢡࢱࡀ㜵ᾐᆺ࡛࡞࠸ࡢ࡛
ࡇࡇ࡛౑⏝ࡍࡿ኱ࡁ࠸ࢧ࢖ࢬࡢ㟁㞳⟽⥺㔞ィ㸦౛࠼
࠶ࢀࡤࠊỈ࡟ỿࡵ࡚ࡣ࡞ࡽ࡞࠸ࠋࢫ࢟ࣕࢽࣥࢢࢱࣥ
ࡤ 0.6 cm3㸧ࡣࠊ௚ࡢࡍ࡭࡚ࡢヨ㦂࡟ྜ᱁ࡋ࡚࠾ࡾࠊ
ࢡ࡟Ỉࢆ㈓ࡵࠊ᳨ฟჾ࡜ࢣ࣮ࣈࣝࢆỈ࡟ỿࡵࡓᚋࠊ
ࢫࢸ࣒ࡢ₃ࢀ㟁ὶࡢᙳ㡪࡞࡝ࢆཷࡅ࡞࠸ࡇ࡜ࡀ๓
☜ㄆࢆ⾜࠺ࡲ࡛࡟ 30 ศ࠿ࡑࢀ௨ୖ⤒ࡗ࡚࠿ࡽ⾜࠺
ᥦ࡛࠶ࡿࠋ
ࡢࡀ᭱㐺࡛࠶ࡿࠋࢻࣛ࢖ࣛࣥ࡜ྠࡌࢸࢫࢺࢆ⧞ࡾ㏉
ࡋࠊࡑࢀࡽࡢࣃ࣓࣮ࣛࢱࡀ࡯ࡰ୍⮴ࡋ࡚࠸ࡿࡇ࡜ࢆ
III.E. ࢹ࣮ࢱྲྀᚓ
☜ㄆࡍࡿࠋࣀ࢖ࢬࡢᶆ‽೫ᕪࡀቑຍࡋࡓሙྜࠊࢫ࢟
ࢹ࣮ࢱ཰㞟ࡣΰ஘ࢆ㑊ࡅࡿࡓࡵ࡟ࠊ⣔⤫❧࡚࡚⾜
ࣕࣥྍ⬟࡞᭱኱῝࡛ࡢ ᐃࡀ෌ᗘᚲせ࡜࡞ࡿࠋࡇࡢ
࠺࡭ࡁ࡛࠶ࡿࠋከࡃࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡟࠾࠸
ᐃ್ࡢ SN ẚࡣ᭱ࡶపࡃ࡞ࡿࡣࡎ࡛࠶ࡿࡀࠊࡇࡢ
࡚ࢹ࣮ࢱ཰㞟ࡢᡭ㡰ࢆᩚ࠼ࡿࡇ࡜ࡣࠊࡢࡕࡢࢹ࣮ࢱ
SN ẚࡣ᪤▱ࡢࢩࢫࢸ࣒ࡢឤᗘ࠿ࡑࢀ௨ୖ࡛࠶ࡿ࡭
ゎᯒࡢຠ⋡ࢆ኱ᖜ࡟ྥୖࡉࡏࡿࠋࡲࡓࠊࢹ࣮ࢱࡢ୍
ࡁ࡛࠶ࡿࠋ
㈏ᛶ࡜ṇ☜ࡉࢆྥୖࡉࡏࡿࡓࡵ࡟ࠊྠࡌࢭࢵࢺ࢔ࢵ
ࣉ࡛ྲྀᚓ࡛ࡁࡿࢹ࣮ࢱࡣྠ᫬࡟཰㞟ࡍࡿ࡭ࡁ࡛࠶
III.D.3. 㣬࿴ヨ㦂
ࡿࠋTable I ࡢࡼ࠺࡞ࢫࣉࣞࢵࢻࢩ࣮ࢺࢆ⏝࠸࡚ ᐃ
ୖグࡢࢻࣛ࢖ࣛࣥ࡜ྠࡌᡭ㡰࡛ࠊ⥺㔞⋡ࢆ᭱኱࡜
2
୰⛬ᗘ࡟タᐃࡋ࡚ 20 × 20 cm ࡢ↷ᑕ㔝ࡢ ᐃࢆ⾜
㡯┠ࢆᩚ⌮ࡍࡿࡇ࡜࡛ࠊࢹ࣮ࢱ཰㞟ࢆࡍࡤࡸࡃฎ⌮
࡛ࡁࡿࠋ
࠸ࠊࣉࣟࣇ࢓࢖ࣝࡢẚ㍑ࢆ⾜࠺ࠋ
III.E.1. ࢫ࢟ࣕࣥࣃ࣓࣮ࣛࢱࡢࣉࣟࢺࢥࣝ
III.D.4. 㟁㞳య✚እຠᯝ
ࢹ࣮ࢱ཰㞟࡟ࡣࠊ౑⏝ࡍࡿࢯࣇࢺ࢙࢘࢔࡟౫Ꮡࡍ
ࢫ࢟ࣕࣥ⏝ࡢ㟁㞳⟽⥺㔞ィࡢ㟁㞳య✚ࡣ㠀ᖖ࡟
ࡿᗄࡘ࠿ࡢせ⣲ࡀ࠶ࡿࠋࢹ࣮ࢱࡢ㉁ࡣࠊࢫ࢟ࣕࣥ㏿
ᑠࡉ࠸ࡓࡵࠊࢣ࣮ࣈࣝࡸࢥࢿࢡࢱ࡞࡝ࡢ㟁㞳య✚௨
ᗘࠊ㐜ᘏ᫬㛫ࠊࢧࣥࣉࣜࣥࢢ᫬㛫࡟౫Ꮡࡍࡿࡓࡵࠊ
እࡢ㒊ศ㸦Extracameral volume㸧࡟ᩓ஘⥺ࡸ୍ḟ⥺
ࢯࣇࢺ࢙࢘࢔ࡢ≉ᚩࢆά⏝ࡋ࡚᭱㐺࡞ࢹ࣮ࢱ཰㞟
ࡀ↷ᑕࡉࢀࡿ࡜ࠊ㟁㞳ࡀ㉳ࡁ࡚ ᐃಙྕ࡟ᙳ㡪ࢆཬ
ࢆࡍ࡭ࡁ࡛࠶ࡿࠋSec. I B 4 ࡛㏙࡭ࡓࡼ࠺࡟ࠊࣅ࣮࣒
ࡰࡍ㸦㟁㞳య✚እຠᯝ㸸Extracameral effect㸧
83,84,89
ࠋ
ࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟ࡣከࡃࡢ᫬㛫ࡀᚲせ࡜࡞ࡿࠋᘧ
Extracameral volume ࡣࠊ཰㞟ຠ⋡ࡢ㧗࠸㟁㞳✵Ὕෆ
(1)࡛♧ࡍࡼ࠺࡟ࠊࢫ࢟ࣕࣥ㏿ᗘࢆୖࡆࠊࢧࣥࣉࣜࣥ
㒊࠿ࡽ⏕ࡌࡿࡢ࡛ࡣ࡞࠸ࡓࡵࠊ୍ᐃ࡛ࡣ࡞࠸ࠋ㣬࿴
ࢢ᫬㛫ࢆ▷ࡃࡋ࡚⢒࠸཰㞟ࢆ⾜࠺࡜඲యࡢࢫ࢟ࣕ
ࢸࢫࢺ⤊஢ᚋ࡟᳨ฟჾࢆ࣐࢘ࣥࢺ࠿ࡽእࡋ࡚㟁఩
ࣥ᫬㛫ࡣῶࡿࡀࠊప࢚ࢿࣝࢠ࣮㟁Ꮚ⥺࡛ࡣࢫ࢟ࣕࣥ
ィࡢ㏆ࡃ࡟࠾ࡁࠊ᭱኱⥺㔞⋡࡛↷ᑕࡋࡓሙྜ࡜↷ᑕ
㏿ᗘࢆୖࡆ࡚ࢧࣥࣉࣜࣥࢢ᫬㛫ࢆῶࡽࡍ࡜᭱㐺࡞
ࢆ⾜ࢃ࡞࠸ሙྜࡢ᳨ฟჾࡢᛂ⟅ࢆグ㘓ࡍࡿࠋ᳨ฟჾ
ࢹ࣮ࢱࡣᚓࡽࢀ࡞࠸ࠋࡇࢀࡽࡢヲ⣽ࡣྛࢭࢡࢩࣙࣥ
ࡢ཯ᛂࡀኚ໬ࡋࡓሙྜࠊࡑࢀࡣ Extracameral volume
࡛㏙࡭ࡿࠋ
࡟ࡼࡿᙳ㡪࡛࠶ࡿࠋࡇࢀࡣࠊ᳨ฟయ✚ࡀ Extracameral
volume ࡟ẚ࡭ᑠࡉ࠸ࡓࡵࡔ࡜⪃࠼ࡽࢀࡿࠋࡇࡢຠᯝ
36
III.E.2. ࢫ࢟ࣕࣥ㏿ᗘ
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
III. スキャニングシステムのセットアップ
ࢫ࢟ࣕࣥ㏿ᗘࢆ㏿ࡃࡍࡿ࡜ࣀ࢖ࢬࡣቑຍࡋࠊࡲࡓࠊ
࢔࣮࣒ࡢືࡁ࡟ࡼࡾἼࡀ❧ࡘࡇ࡜࡛ ᐃ್ࡶἼᡴ
ࡘࠋࡇࢀࡣࠊప࢚ࢿࣝࢠ࣮㟁Ꮚ⥺࡟࠾࠸࡚ dmax ௨ୖ
ࡢ῝ࡉࡢࣉࣟࣇ࢓࢖ࣝࢆ ᐃࡍࡿ㝿࡟኱ࡁ࡞ᙳ㡪
ࢆཬࡰࡍࠋ࢔࣮࣒ࡀ㏿ࡃືࡁࡍࡂࡿ࡜Ỉ㠃ࡀἼ❧ࡕ
ୖୗࡍࡿࡓࡵࠊ ᐃ῝࡟ᙳ㡪ࢆ୚࠼ࡿࠋࡇࡢᙳ㡪ࡣ
Fig. 9 ࡛♧ࡉࢀ࡚࠾ࡾࠊPDD ࡛ࡶྠࡌࡼ࠺࡟Ἴᡴࡗ
ࡓ᭤⥺ࡀほᐹࡉࢀࡿࠋࢫ࢟ࣕࣥ㏿ᗘࡣࠊᑠࡉ࡞㟁㞳
య✚ࡢ㟁㞳⟽ࢆ౑⏝ࡋࡓᑠ↷ᑕ㔝ࡢ ᐃ࡟ࡶ㔜኱
࡞ᙳ㡪ࢆ୚࠼ࡿࠋ㟁㞳య✚ࡀᑠࡉ࡞㟁㞳⟽ࡢሙྜࡣ
ಙྕࡀᑠࡉ࠸ࡓࡵࠊࢫ࢟ࣕࣥ㏿ᗘࢆ㐜ࡃࡍࡿࡇ࡜࡛
FIG. 9. Impact of scanning speed on the quality of electron profile.
ಙྕ㔞ࢆቑࡸࡋࠊ⤫ィⓗኚືࢆῶࡽࡍᚲせࡀ࠶ࡿࠋ
III.E.3. 㐜ᘏ᫬㛫
㐜ᘏ᫬㛫࡜ࡣ㞄ࡾྜ࠺ ᐃⅬ㛫ࢆ⛣ືࡍࡿ᫬㛫
ࢆᣦࡍࠋ㛗࠸㐜ᘏ᫬㛫ࢆ࡜ࡿࡇ࡜࡛ ᐃ᫬㛫ࡣ㛗ࡃ
III.F. ࢹ࣮ࢱࣇ࢓࢖ࣝ
III.F.1. ࢹ࣮ࢱࣇ࢓࢖ࣝࡢᵓᡂ
ࢹ࣮ࢱ᳨⣴ࢆ⡆౽࡟ࡍࡿࡓࡵ࡟ࠊගᏊ⥺ࡢࢹ࣮ࢱ
࡞ࡿࡀࠊప࢚ࢿࣝࢠ࣮㟁Ꮚ⥺ࡢ ᐃࡢࡼ࠺࡟ᑠࡉ࡞
࡜㟁Ꮚ⥺ࡢࢹ࣮ࢱࡣ␗࡞ࡿྡ๓ࡢࣇ࢛ࣝࢲ࡟ศࡅ
ࡉࡊἼࡢᙳ㡪ࢆ኱ࡁࡃཷࡅࡿሙྜ࡟ࡣࠊࡑࢀࡽࡢᙳ
࡚ಖᏑࡍ࡭ࡁ࡛࠶ࡿࠋࡉࡽ࡟ࠊගᏊ⥺ࡢࣇ࢛ࣝࢲࡢ
㡪ࡢపῶ࡟᭷ຠ࡛࠶ࡿࠋ
୰࡛ࡶ࣮࢜ࣉࣥࡸ࢙࢘ࢵࢪ࡞࡝ࡢྡ๓ࡢࣇ࢛ࣝࢲ
ࢆసࡿࡇ࡜࡛ࠊ⣽ศ໬ࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋඃࢀࡓࣇ
III.E.4. ࢧࣥࣉࣜࣥࢢ᫬㛫࡜ಙྕ
ࢧࣥࣉࣜࣥࢢ᫬㛫࡜ࡣࠊ᳨ฟჾࡀࢹ࣮ࢱ཰㞟ࡢࡓ
ࡵ࡟೵Ṇࡋ࡚࠸ࡿ᫬㛫ࢆᣦࡍࠋࢧࣥࣉࣜࣥࢢ᫬㛫ࡣࠊ
࢓࢖ࣝࡢᵓᡂࢆ⤌ࡳୖࡆࡿࡇ࡜࡛ࠊከࡃࡢࢹ࣮ࢱࡢ
୰࠿ࡽ≉ᐃࡢࢹ࣮ࢱࢆ᥈ࡋฟࡍసᴗ᫬㛫ࢆ኱ᖜ࡟
ᢚ࠼ࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
㟁఩ィࡢࢤ࢖ࣥࡸ᳨ฟჾࡢࢧ࢖ࢬ㸦ಙྕࡢ㔞㸧࡟ࡼ
ࡗ࡚ㄪᩚࡍࡿ࡭ࡁ࡛࠶ࡿࠋࡲࡓࠊࢹ࣮ࢱ཰㞟ࢆ⾜࠺
III.F.2. ࣇ࢓࢖ࣝࡢྡ๓
๓࡟ࠊ ᐃࢆ⾜࠺᭱኱῝ᗘࡢ༙ᙳ㡿ᇦ࡟࡚ಙྕࡢ㔞
ࢹ࣮ࢱࢆ཰㞟ࡍࡿ㝿࡟ࠊࡢࡕࡢࢹ࣮ࢱ᳨⣴ࢆ⡆౽
ࢆ☜ㄆࡋࠊ㐺ษ࡞ࢧࣥࣉࣜࣥࢢ᫬㛫ࢆỴᐃࡍ࡭ࡁ࡛
࡟ࡍࡿࡓࡵ࡟ࠊࣇ࢓࢖ࣝྡࡢỴᐃἲࢆ☜❧ࡋ࡚࠾ࡃ
࠶ࡿࠋࡲࡓࠊ๭ࡾᙜ࡚ࡽࢀࡓࢥ࣑ࢵࢩࣙࢽࣥࢢ᫬㛫
࡭ࡁ࡛࠶ࡿࠋከࡃࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡛ࡣࠊ⮬
ࢆ㉸࠼࡞࠸ࡼ࠺࡞ࢧࣥࣉࣜࣥࢢ᫬㛫ࢆタᐃࡍࡿࡇ
ືⓗ࡟ࣇ࢓࢖ࣝࡢྡ๓ࡀ๭ࡾᙜ࡚ࡽࢀࡿ࠿ 8 ᩥᏐ௨
࡜ࡶᚲせ࡛࠶ࡿࠋ
ෆࡲ࡛࡜㝈ᐃࡉࢀ࡚࠾ࡾࠊࡇࢀࡽࡣྡ๓ࡢỴᐃἲࢆ
」㞧࡟ࡍࡿࠋࡶࡋࣇ࢓࢖ࣝྡࡢᩥᏐᩘࡀ 8 ᩥᏐ௨ෆ
III.E.5. 㧗࿘Ἴࣀ࢖ࢬࡢᖸ΅
࡟㝈ᐃࡉࢀ࡚ࡋࡲ࠺ሙྜࠊΰ஘ࡋ࡞࠸ࡼ࠺࡞ྡ๓ࢆ
ᐃࢩࢫࢸ࣒඲యࡢఏᑟᛶ㐽ⶸయ㸦㟁㞳⟽ࡸࢲ࢖
ࡘࡅࡿࡇ࡜ࡸࠊ㔜」ࡋ࡞࠸ྡ๓ࢆ௜ࡅࡿࡓࡵࡢᕤኵ
࣮࢜ࢻࡢࢩ࢙ࣝࠊࢣ࣮ࣈࣝࡢࢩ࣮ࣝࢻࠊࢥࢿࢡࢱ࢔
ࡀᚲせ࡜࡞ࡿࠋࣇ࢓࢖ࣝྡࡢỴᐃἲࡢ౛࡜ࡋ࡚ࠊ࢚
ࢲࣉࢱࠊ㟁఩ィࡢࢥࢿࢡࢱࠊ㟁఩ィࡢ⟂య㸧ࡀṇᖖ
ࢿࣝࢠ࣮࣭࣮࢜ࣉࣥࡲࡓࡣ࢙࢘ࢵࢪ࣭ࢫ࢟ࣕࣥ᪉ἲ
࡛࠶ࢀࡤࠊ᳨ฟჾࡢಙྕ࡟ᑐࡋ࡚㧗࿘Ἴ࡟ࡼࡿᖸ΅
ࡢࡼ࠺࡟༊ศࡅࡍࡿ㸦౛㸸6P15WDD㸧
ࠋࡓ࡜࠼
ࡣ࡞࠸ࠋ༢⣧࡞ఏᑟᛶ㐽ⶸయࡢࢸࢫࢺࡣࠊ஝⇱ࡋࡓ
Windows ࡢࣇ࢓࢖ࣝྡไ㝈ࡢࡳ࡛࠶ࡗࡓ࡜ࡋ࡚ࡶࠊ
㒊ᒇࡢ୰࡛ࣇࣟ࢔࡟㠐ࢆࡘࡅ࡚ᘬࡁࡎࡾ࡞ࡀࡽṌ
ࠕ6 MV open depth dose setࠖࡸࠕ18 MV 15 deg wedge
ࡃࠊ ᐃࢩࢫࢸ࣒ࡢୖ࡛ᡭࢆ᣺ࡿ࡞࡝ࡢ⾜Ⅽࢆ⾜࠸ࠊ
10×10 profilesࠖࡢࡼ࠺࡟ࠊࡢࡕ࡟᳨⣴ࡍࡿ㝿࡟ΰ஘
㟼㟁ẼࢆⓎ⏕ࡉࡏࡿࡇ࡜࡛⾜࠺ࡇ࡜ࡀ࡛ࡁࡿࠋࡉࡽ
ࡋ࡞࠸ࡼ࠺࡞ࣇ࢓࢖ࣝྡࡢỴᐃἲࢆ᥇⏝ࡍ࡭ࡁ࡛
࡟ࠊ㒊ရ࡟ゐࢀࡓሙྜࡢ ᐃᛂ⟅ࡢኚ໬ࢆ☜ㄆࡍࡿ
࠶ࡿࠋ࠸ࡃࡘ࠿ࡢᪧᘧࡢࢩࢫࢸ࣒࡛ࡣࠊࣇ࢓࢖ࣝࡣ
ࡇ࡜࡛ࠊ᥋⥆ࡢၥ㢟ࢆ᫂ࡽ࠿࡟ࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
ࢩࣥࢢࣝࣇ࢓࢖ࣝ࡜ࡋ࡚ෆ㒊࡟ಖᏑࡉࢀࡿࡶࡢࡶ
37
医学物理 第 33 巻 第 1 号
IV. 光子線のビームデータ
࠶ࡿࠋࡇࡢࡼ࠺࡞ሙྜ࡛ࡣࠊࡢࡕ࡟᳨⣴ࡸゎᯒ࡟ᙺ
TPS࡛ࡣSSDࢆ 90 cm࡜ࡋ࡚ࢥ࣑ࢵࢩࣙࢽࣥࢢࢆ⾜
❧ࡘࡼ࠺࡟ࠊಶࠎࡢࢫ࢟ࣕࣥࢹ࣮ࢱࢆಖᏑࡍࡿ㝿࡟
࠺ࠋࡋ࠿ࡋࠊTPS࣋ࣥࢲ࣮ࡣ័⩦ⓗ࡟SSD=100 cmࢆ
ヲ⣽࡞ࢥ࣓ࣥࢺࢆグධࡍࡿ࡭ࡁ࡛࠶ࡿࠋ
ᣦᐃࡍࡿሙྜࡀ࠶ࡿࠋࡉࡽ࡟ࠊ⌧ᅾࡢ୍㒊ࡢ⥺㔞ᰯ
ṇࣉࣟࢺࢥࣝヂ⪅ὀ 3࡛ࡣࠊSSD=100 cmࡢPDDࡀᚲせ
IV. ගᏊ⥺ࡢࣅ࣮࣒ࢹ࣮ࢱ
࡛࠶ࡿࠋࡼࡗ࡚ࠊࣅ࣮࣒ࢥ࣑ࢵࢩࣙࢽࣥࢢࡢ 1 ࡘ࡜
IV.A. ගᏊ⥺ࢫ࢟ࣕࣥࢹ࣮ࢱ ᐃ
ࡋ࡚ࠊᵝࠎ࡞SSD࡛⥺㔞ࢆ☜ㄆࡍࡿ࡭ࡁ࡛࠶ࡿࠋ
ᚲせ࡜࡞ࡿ ᐃ㡯┠ࡣࠊ⥺㔞ィ⟬ࢩࢫࢸ࣒㸦TPSࠊ
௨ୗ࡟ࠊSSD ࡀኚ໬ࡋࡓሙྜ࡟῝㒊⥺㔞࡟ᙳ㡪ࡍ
MU ィ⟬ࢩࢫࢸ࣒ࠊ࡞࡝㸧࡟౫Ꮡࡍࡿࠋࡲࡓ≉Ṧ࡞
ࡿᅉᏊࢆ♧ࡍࠋගᏊ⥺ࡢ῝㒊⥺㔞ࡣ SSD ࡢኚ໬࡟ࡼ
἞⒪ἲ࡛ࡣ἞⒪ィ⏬ࢩࢫࢸ࣒ࡢṇ☜ࡉࢆ☜ㄆࡍࡿ
ࡗ࡚ྛᡂศࡀ␗࡞ࡿኚ໬ࢆ♧ࡍࡓࡵࠊ༢⣧࡞㊥㞳⿵
2
ࡓࡵࡢ㏣ຍࢹ࣮ࢱࢆ ᐃࡍࡿᚲせࡀ࠶ࡿ ࠋࡇࢀࡽ
ṇ࡛ࡣ୙༑ศ࡛࠶ࡿࠋࡇࡢࡓࡵࠊᣦᐃࡉࢀࡓ SSD ࡛
඲࡚ࡢࢹ࣮ࢱࡣࢫ࢟ࣕࣥ ᐃ࡜㠀ࢫ࢟ࣕࣥ ᐃ㸦࣏
ࡢ ᐃࢆᚲࡎᐇ᪋ࡋࠊ␗࡞ࡿ SSD ࡛ᚓࡓࢹ࣮ࢱࡣᩚ
࢖ࣥࢺ⥺㔞 ᐃ㸧࡟ࡼࡾྲྀᚓࡉࢀࡿࠋࢫ࢟ࣕࣥ ᐃ
ྜᛶࢆ☜ㄆࡍࡿࡓࡵࡢ QA ࡜ࡋ࡚఩⨨௜ࡅࡿ࡭ࡁ࡛
ࡣࠊ↷ᑕ᮲௳㸦౛㸸↷ᑕ㔝ࢧ࢖ࢬࠊSSDࠊ⿵ຓჾල
࠶ࡿࠋ㸸
ࡢ᭷↓ࠊ➼㸧ࢆᅛᐃࡋࡓ≧ែ࡛␗࡞ࡿ఩⨨ࡢ⥺㔞ࢆ
㐃⥆ⓗ࡟ ᐃࡍࡿ᪉ἲ࡛࠶ࡾࠊ῝ࡉ᪉ྥࡸ㍈እ᪉ྥ
x
ΰධ㟁Ꮚ㸦Electron contamination㸧
㸸⾲㠃⥺㔞
ࡢ⥺㔞ኚ໬ࢆ ᐃࡍࡿࠋ୍᪉࡛ࠊ㠀ࢫ࢟ࣕࣥ ᐃࡣ
࡜ࣅࣝࢻ࢔ࢵࣉ㡿ᇦ࡛ࡣΰධ㟁Ꮚࡀ」㞧࡟
↷ᑕ᮲௳ࢆᵝࠎ࡟ኚ໬ࡉࡏ࡚⥺㔞ࡢኚ໬ࢆ ᐃࡍ
ᙳ㡪ࡍࡿࠋΰධ㟁Ꮚࡣ↷ᑕ㔝ࢧ࢖ࢬࠊගᏊ࢚
ࡿ᪉ἲ࡛ࠊ㏻ᖖࡣ⥺㔞ࢆࣀ࣮࣐ࣛ࢖ࢬࡍࡿᇶ‽῝࡛
ࢿࣝࢠ࣮ࠊSSDࠊࣅ࣮࣒ಟ㣭ჾලࠊࣅ࣮࣒ゅ
ᐃࡍࡿࠋTable I ࡟♧ࡋࡓࢫࣉࣞࢵࢻࢩ࣮ࢺࡣከ㔞
ᗘ࡞࡝ࢆྵࡴᵝࠎ࡞ᅉᏊ࡟ᙳ㡪ࡉࢀࡿ 90-101ࠋ
ࡢࢹ࣮ࢱࡢయ⣔ⓗ࡞⟶⌮࡟᭷⏝࡛࠶ࡿࠋࡇࡢ࡜ࡁࠊ
ࡇࡢኚ໬ࡣ〇㐀ᴗ⪅࡟ࡼࡿ㐺ṇ࡞ᢏ⾡࡟ࡼ
ྠ᫬࡟ࣇ࢓࢖ࣝྡ࡞࡝ࡶ୍ᣓࡋ࡚⟶⌮ࡍࡿᚲせࡀ
ࡾྍ⬟࡞㝈ࡾపῶࡉࢀ࡚࠸ࡿࡀࠊ㏻ᖖࠊྛ
࠶ࡿࠋ
SSD ࡟࠾ࡅࡿΰධ㟁Ꮚࡢኚ໬ࡣ⿵ṇ࡛ࡁ࡞
࠸ 102, 103ࠋΰධ㟁Ꮚࡢ┦ᑐⓗ࡞㔞ࡣ✵Ẽᒙࡢ
IV.A.1. ῝㒊⥺㔞
㛗ࡉ㸦ҸSSD㸧࡛ኚ໬ࡋࠊ㛗࠸ SSD ࡛ࡣ࣊ࢵ
PDD ࡣ୍ᐃࡢ SSD㸦㏻ᖖࡢࣜࢽ࢔ࢵࢡ࡛ࡣ⥺※ᅇ
ࢻᩓ஘㟁Ꮚࡢ✵୰ᩓ஘ࡀቑ኱ࡍࡿࡓࡵΰධ
㌿㍈㛫㊥㞳࡛࠶ࡿ 100 cm㸧࡛ ᐃࡍࡿࠋཷࡅධࢀヨ
㦂࡟࠾ࡅࡿ PDD ᐃ࡛ࡣ≉ᐃࡢ ᐃᶵჾ㸦౛࠼ࡤࠊ
㟁Ꮚࡣῶᑡࡍࡿࠋ
x
୍ḟ⥺㔞㸦Primary dose㸧
㸸୍ḟ⥺㔞ࡣ␗࡞ࡿ
ᕤሙฟⲴ᫬ࡢࣅ࣮࣒ࣃ࣓࣮ࣛࢱ࡟୍⮴ࡉࡏࡿࡓࡵࠊ
SSD ࡟ᑐࡋ࡚㊥㞳ࡢ㏫஧஌๎ࢆ㐺⏝ࡍࡿࡇ
ࣜࢽ࢔ࢵࢡࡢタ⨨⪅ࡀ⏝࠸ࡿ Wellhofer Buddelschif
࡜࡛⿵ṇྍ⬟࡛࠶ࡿࠋࡓࡔࡋࠊഃ᪉㟁Ꮚᖹ⾮
ࡸ PTW ࢩࢫࢸ࣒࡞࡝㸧ࡀ⏝࠸ࡽࢀࡿࠋࡋ࠿ࡋࠊࡇ
ࡀᡂ❧ࡋ࡞࠸ᑠ↷ᑕ㔝࡛ࡣ῝ࡉ࡟ࡼࡾ↷ᑕ
ࢀࡽࡢࢹ࣮ࢱࡣࣅ࣮࣒ࣔࢹࣜࣥࢢࡸࢥ࣑ࢵࢩࣙࢽ
㔝ࢧ࢖ࢬࡀኚ໬ࡋࠊᖹ⾮ࣞ࣋ࣝࡀኚ໬ࡍࡿࡓ
ࣥࢢ࡛⏝࠸࡚ࡣ࡞ࡽ࡞࠸ࠋࡇࡢ௚࡟ࠊࢫ࢟ࣕࣥ㏿ᗘࠊ
ࡵ⿵ṇࡣᅔ㞴࡛࠶ࡿࠋ
ࢫࢸࢵࣉࠊࢤ࢖ࣥ࡞࡝࡟ὀពࡀᚲせ࡛࠶ࡿ㸦III ❶ཧ
x
ᩓ஘⥺㔞㸦Scatter dose㸧㸸኱↷ᑕ㔝࡛ࡣࣇ࢓
↷㸧
ࠋࡲࡓࠊ῝㒊⥺㔞ࡢ ᐃ࡛ࡣỈ㠃ࡢἼ❧ࡕࢆ᭱
ࣥࢺ࣒ෆ࡛⏕ࡌࡿᩓ஘⥺ࡀቑ኱ࡍࡿࡓࡵ㊥
ᑠ࡟ࡍࡿࡓࡵࠊࢱࣥࢡࡢᗏ࠿ࡽ ᐃࢆ㛤ጞࡍࡿ࡞࡝
㞳ࡢ㏫஧஌ࡢᙳ㡪ࡀᙅࡲࡿࠋࡇࡢᩓ஘⥺ࡣ␗
ࢫ࢟ࣕࣥ᪉ྥࢆ⪃៖ࡍࡿᚲせࡀ࠶ࡿࠋ
࡞ࡿ SSD ࡛ྲྀᚓࡉࢀࡿ㸦ΰධ㟁Ꮚࡢ฿㐩῝
ᗘ௨㝆ࡢ㸧PDD ࡀᕪ␗ࢆ⏕ࡌࡿ୺࡞ཎᅉ࡛
IV.A.1.a. ᶆ‽ⓗ࡞ SSD ࡜㠀ᶆ‽ⓗ࡞ SSD
ྛ✀ࡢࢫࢣ࣮ࣜࣥࢢᡭᢏ࡛⏕ࡌࡿㄗᕪࢆ᭱ᑠ࡟
࠶ࡿࠋ
x
ࡍࡿࡓࡵࠊࢹ࣮ࢱࡣ⮫ᗋ࡛ࡢࢭࢵࢺ࢔ࢵࣉ᮲௳࡟㏆
࣊ࢵࢻᩓ஘⥺㸦Head scatter㸧㸸࣊ࢵࢻᩓ஘⥺
ࡣ࢞ࣥࢺࣜ࣊ࢵࢻෆ࡛⏕ࡌࡓᩓ஘⥺࡛࠶ࡾࠊ
࠸᮲௳࡛ྲྀᚓࡍࡿࠋ୍⯡ⓗ࡟࢔࢖ࢯࢭࣥࢺࣜࢵࢡ࡞
↷ᑕἲ࡛ࡣᰯṇ῝ࡀ 10 cmࠊSSDࡀ 90 cm࡛࠶ࡿࡓࡵࠊ
38
ヂ⪅ὀ3
AAPM TG-51 ࡞࡝
IV. 光子線のビームデータ
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
ࡑࡢ୺⥺※㸦ࣇࣛࢵࢺࢽࣥࢢࣇ࢕ࣝࢱ㸧࠿ࡽ
Ṧ࡞἞⒪ἲ࡛ࡣࠊ῝㒊⥺㔞ࠊTPR ࡲࡓࡣ TMRࠊ⥺
ࡢ㏫஧஌࡟ᚑ࠺ࠋ࣊ࢵࢻᩓ஘ගᏊࡢᐇຠ⥺※
㔞ࣉࣟࣇ࢓࢖ࣝࡣࠊAAPM ࡢ࣏࣮ࣞࢺ࡟グ㏙ࡉࢀ࡚
఩⨨ࡣࣇࣛࢵࢺࢽࣥࢢࣇ࢕ࣝࢱ௜㏆࡟࠶ࡿ
࠸ࡿࡼ࠺࡟ࡑࢀࡒࢀᘏ㛗ࡋࡓ㊥㞳࡛ྲྀᚓࡍࡿᚲせ
ࡓࡵࠊ㏫஧஌ࡢᙳ㡪ࡣࢱ࣮ࢤࢵࢺ࠿ࡽࡢ┤᥋
ࡀ࠶ࡿ 23,24ࠋࡋ࠿ࡋࠊỈᵴࡢࢧ࢖ࢬࡀ㝈ᐃࡉࢀࡿࡓ
ගᏊ࡜࣊ࢵࢻᩓ஘ගᏊ࡛␗࡞ࡿࠋࡉࡽ࡟ࠊ
ࡵࡇࢀࡽࡢࢹ࣮ࢱ཰㞟ࡣᅔ㞴࡛࠶ࡿࠋࡉࡽ࡟ࠊࡇࢀ
PDD㸦┤᥋ගᏊ࡜࣊ࢵࢻᩓ஘ගᏊࡢΰྜ㸧࡜
ࡽࡢࢹ࣮ࢱࡣ༑ศ࡞ࢧ࢖ࢬࡢࣇ࢓ࣥࢺ࣒ࢆ⏝࠸ࡓ
ഃ᪉ࡢ⥺㔞ࣉࣟࣇ࢓࢖ࣝ㸦ᐇຠ⥺※఩⨨ࡀࣇ
࣏࢖ࣥࢺ⥺㔞 ᐃ࡟ࡼࡗ᳨࡚ドࡍࡿᚲせࡀ࠶ࡿࠋ
࢓ࣥࢺ࣒࡟㏆࡙ࡃࡓࡵࠊ࣊ࢵࢻᩓ஘ගᏊࡣ┤
x
x
᥋ගᏊࡼࡾእഃ࡟ᗈࡀࡿ㸧࡛␗࡞ࡿᙳ㡪ࢆࡶ
IV.A.2. ⤌⧊᭱኱⥺㔞ẚ࣭⤌⧊ࣇ࢓ࣥࢺ࣒⥺㔞ẚ
ࡓࡽࡍࠋ
㸦TMR/TPR㸧
࢚ࢿࣝࢠ࣮㸦Energy㸧㸸⾲㠃࡛ྠࡌ↷ᑕ㔝ࢧ
TMR ࡢ ᐃࡣከ኱࡞᫬㛫ࢆせࡍࡿࠋỈࣇ࢓ࣥࢺ
࢖ࢬ࡛࠶ࡗ࡚ࡶࠊSSD ࡀ␗࡞ࡿሙྜࡣ␗࡞ࡿ
࣒࡟ࡼࡗ࡚ࡣࠊ᪤▱ࡢỈ㔞ࢆ࣏ࣥࣉ࡛Ữࡳࡔࡍࡇ࡜
ᐇຠ࢚ࢿࣝࢠ࣮ࢫ࣌ࢡࢺࣝࢆ♧ࡍࠋࡇࢀࡣᩓ
࡟ࡼࡗ࡚ TMR/TPR ࢆ ᐃࡍࡿࢩࢫࢸ࣒ࢆ᭷ࡍࡿࡀࠊ
஘⥺ࡢᡂศࡀ␗࡞ࡿࡓࡵ࡛ࠊ㍈እ࡟࠾ࡅࡿ⥺
ࡑࢀࡒࢀ࣏࢖ࣥࢺ⥺㔞 ᐃ࡟ࡼࡾṇ☜ࡉࢆ᳨ドࡍ
㉁ࡢ㌾໬ࡣ㍈እゅᗘ࡟౫Ꮡࡍࡿࠋ
ࡿᚲせࡀ࠶ࡿࠋ᭱ࡶ⡆༢࡞ TMR/TPR ࡢྲྀᚓἲࡣࠊ
༙ᙳ㸦Penumbra㸧㸸㟁㞳⟽ࡀࢧ࢖ࢬ࡟ࡼࡗ࡚
῝㒊⥺㔞 ᐃ࠿ࡽኚ᥮ࡋ࡚సᡂࡍࡿ᪉ἲ࡛࠶ࡿࠋከ
᭷ពࡢᗈࡀࡾ㛵ᩘࢆᣢࡘࡓࡵࠊ㟁㞳⟽ࢆ⏝࠸
ࡃࡢࢯࣇࢺ࢙࢘࢔࡛ࡣ BJR Supplement 25104 ࡟♧ࡉ
࡚ ᐃࡋࡓ࠶ࡿ SSD ࡢ༙ᙳ࠿ࡽ௚ࡢ SSD ࡢ
ࢀࡓ Khan ࡽ 88 ࡢᡭἲࢆ᥇⏝ࡋࡓኚ᥮ࣉࣟࢢ࣒ࣛࡀ
༙ᙳࢆỴᐃࡍࡿࡇ࡜ࡣᅔ㞴࡛࠶ࡿࠋᑠᆺࡢ᳨
⤌ࡳ㎸ࡲࢀ࡚࠸ࡿࠋ῝ࡉ d ࡜↷ᑕ㔝 rd ࡢ TMR ࡣࠊ
ฟჾࡀ౑⏝࡛ࡁ࡞࠸ሙྜࠊࣉࣟࣇ࢓࢖ࣝࡣࢹ
PDD ࠿ࡽḟᘧ࡛⟬ฟ࡛ࡁࡿࠋ
ࢥ࣮ࣥ࣎ࣜࣗࢩࣙࣥ㸦㏫␚ࡳ㎸ࡳ✚ศ㸧࡛ᚓ
ࡿࡇ࡜ࡀ࡛ࡁࡿ㸦Sec. IV A ཧ↷㸧ࠋ
TMRd , rd 㸦ᑠ↷ᑕ㔝ࢆ㝖ࡃ㸧⡆༢࡞ QA ࡛ࡣࠊഹ࠿࡞ SSD
PDDc, d r , SSD SSD d 2 S p r , c d max ˜
˜
.
100
SSD d max 2 S p r , c d (2)
ࡢ㐪࠸࡟ᑐࡋ࡚㏫஧஌๎࡟ࡼࡿ⿵ṇࡀྍ⬟࡛࠶ࡿࠋ
ࡓࡔࡋࠊࡑࢀ௨እ࡛ࡣ␗࡞ࡿ SSD ࡛ᚓࡓࢹ࣮ࢱࢆ⿵
ṇࡋ࡚⏝࠸ࡿࡇ࡜ࡣ᥎ዡࡉࢀ࡞࠸ࠋ
IV.A.1.b. ␗࡞ࡿ SSD ࡟࠾ࡅࡿ PDD ࡢኚ᥮
PDD ࡣࠊSSD ୍ᐃࡢ἞⒪ࡸࡑࡢ௚ࡢ῝㒊⥺㔞ࢹ࣮
ࢱ㸦౛࠼ࡤ TMR/TPR㸧ࢆỴᐃࡍࡿࡓࡵ࡟⏝࠸ࡽࢀ
ࡿࠋ័⩦ⓗ࡟ PDD ࡣ SSD=100 cm ࡛ホ౯ࡉࢀࡿࡀࠊ
SSD=90 cm ࡞࡝࡛ࡶ ᐃࡉࢀࡿࡇ࡜ࡀ࠶ࡿࠋ▷࠸
SSD ࡛ࡣ኱↷ᑕ㔝ࡢ ᐃ࡛༑ศ࡞ࣇ࢓ࣥࢺ࣒ࢧ࢖
ࢬࢆᐜ᫆࡟‽ഛ࡛ࡁࡿࠋPDD ࡣ↷ᑕ㔝㸦s㸧࡜῝ࡉ
㸦d㸧࡟ຍ࠼ SSD ࡢ㛵ᩘ࡛࠶ࡿࠋ␗࡞ࡿ SSD ࡛ ᐃ
ࡉࢀࡓ PDD ࡢ㛵ಀࢆồࡵࡿ᪉ἲࡀᵝࠎ࡞ᩥ⊩࡛ሗ
࿌ࡉࢀ࡚࠸ࡿ 88,104ࠋ
IV.A.1.c. ᘏ㛗ࡋࡓ㊥㞳࡟࠾ࡅࡿࣅ࣮࣒ࢹ࣮ࢱ
඲㌟↷ᑕ㸦total body irradiation, TBI㸧ࡸ඲⓶⭵㟁
ኚ᥮ࡢጇᙜᛶࢆ☜ㄆࡍࡿࡓࡵࠊᘧ(2)࡛ᚓࡓ TMR
ࡣ኱↷ᑕ㔝ࠊᑠ↷ᑕ㔝࠾ࡼࡧ῝㒊࡛ᚲࡎ᳨ドࡋ࡞ࡅ
ࢀࡤ࡞ࡽ࡞࠸ࠋࡲࡓࠊࡇࢀࡽࡢ⾲ࡢసᡂ࡟ࡣ PDD
ࡢ⿵㛫ࡀᚲせ࡛࠶ࡿࡓࡵࠊᑠ↷ᑕ㔝ࡢ TMR ࡛ࡣࡉ
ࡽ࡟ᑠ↷ᑕ㔝ࡢ PDD ࡀᚲせ࡛࠶ࡿࠋ࣋ࣥࢲ࣮ࡀᥦ
౪ࡍࡿࢯࣇࢺ࢙࢘࢔ࢆ⏝࠸࡚ PDD ࠿ࡽ TMR ࡟ኚ᥮
ࡍࡿሙྜࠊᑠ↷ᑕ㔝࡜῝㒊࡛ࡣእᤄ࡟ࡼࡿㄗᕪࡀ⏕
ࡌ࡚࠸࡞࠸ࡇ࡜ࢆᚲࡎ☜ㄆࡍࡿᚲせࡀ࠶ࡿࠋ࣏࢖ࣥ
ࢺ⥺㔞 ᐃ࡟ࡼࡾࡇࢀࡽࡢጇᙜᛶࢆ☜ㄆࡍࡿࡇ࡜
ࢆ᥎ዡࡍࡿࠋ
IV.A.3. ⾲㠃⥺㔞࡜ࣅࣝࢻ࢔ࢵࣉ㡿ᇦ
⾲㠃⥺㔞ࡣ⿦⨨࡟౫Ꮡࡋࠊ↷ᑕ㔝ࢧ࢖ࢬࠊ⥺※⾲㠃㛫㊥㞳ࠊࣅ࣮࣒ಟ㣭ჾල࠾ࡼࡧࣅ࣮࣒ධᑕゅᗘ
࡞࡝ከࡃࡢࣃ࣓࣮ࣛࢱࡢᙳ㡪ࢆཷࡅࡿ 97, 105-115ࠋ㏻ᖖࠊ
Ꮚ⥺↷ᑕ㸦total skin electron irradiation㸧ࡢࡼ࠺࡞≉
39
医学物理 第 33 巻 第 1 号
IV. 光子線のビームデータ
FIG. 10. Surface and buildup dose for 10×10 cm2 field of a 6 MV
beam with various detectors. The actual surface dose is also marked by
the arrow.
ࣜࢽ࢔ࢵࢡࡢࢥ࣑ࢵࢩࣙࢽࣥࢢ࡛ࡣ⾲㠃⥺㔞ࡢ ᐃࡀྵࡲࢀࡿࠋࣅࣝࢻ࢔ࢵࣉ㡿ᇦ࡜ྠᵝࠊ⾲㠃௜㏆
ࡣᛴᓧ࡞⥺㔞໙㓄࡛࠶ࡿࡓࡵ᳨ฟჾࡢ㑅ᢥ࡟⣽ᚰ
ࡢὀពࡀᚲせ࡛࠶ࡿ 115-118ࠋFig. 10 ࡣ␗࡞ࡿ᳨ฟჾ
࡛ ᐃࡋࡓࣅࣝࢻ࢔ࢵࣉ㡿ᇦ࡜⾲㠃⥺㔞ࢆ♧ࡍࠋ㏻
ᖖࠊࣅ࣮࣒᪉ྥࡢ᳨ฟჾ᭷ឤ㒊ࡢ኱ࡁࡉࡣྍ⬟࡞㝈
ࡾᑠࡉࡃࡍࡿࠋ⾲㠃⥺㔞ࡢ ᐃ࡛ࡣ㉮ᰝᘧࡢ ᐃჾ
ࢆ౑⏝ࡋ࡞࠸ࡇ࡜ࢆᙉࡃ᥎ዡࡍࡿࠋ
FIG. 11. Effect of chamber orientation on photon beam profiles for a
10×10 cm2 fields: (a) long axis scan, (b) short axis scan with various
size detectors. Only half scans are shown.
⾲㠃⥺㔞ࡢ ᐃ࡛ࡣእᤄ㟁㞳⟽ࡀ᭱㐺࡛࠶ࡿࠋࡋ
࠿ࡋࠊධᡭᅔ㞴࡛࠶ࡾࠊ㠀ᖖ࡟ ᐃ᫬㛫ࡀ࠿࠿ࡿၥ
㢟ࡀ࠶ࡿࠋࡼࡗ࡚ࠊࡑࡢ௦⏝࡜ࡋ࡚ᖹ⾜ᖹᯈᙧ㟁㞳
ᑠ↷ᑕ㔝࡜⥺㔞໙㓄ࡀᛴᓧ࡞㡿ᇦ࡟࠾ࡅࡿ⥺㔞
⟽ࡀ⾲㠃⥺㔞࡜ࣅࣝࢻ࢔ࢵࣉ㡿ᇦࡢ⥺㔞 ᐃ୍࡛
ࣉࣟࣇ࢓࢖ࣝ㸦㸻㍈እ⥺㔞ẚ㸧ࡢ ᐃ࡛ࡣࠊ᳨ฟჾ
⯡ⓗ࡟⏝࠸ࡽࢀ࡚࠸ࡿࡀࠊᖹ⾜ᖹᯈᙧ㟁㞳⟽ࡣࣅࣝ
ࡢタ⨨᪉ྥࡀᴟࡵ࡚㔜せ࡛࠶ࡿࠋFig. 11 ࡟♧ࡍࡼ࠺
ࢻ࢔ࢵࣉ㡿ᇦࠊ≉࡟⾲㠃㏆ഐ࡛⥺㔞ࢆ㐣኱ホ౯ࡍࡿ
࡟ࠊẚ㍑ⓗ኱ࡁ࠸↷ᑕ㔝࡟࠾ࡅࡿ⥺㔞ࣉࣟࣇ࢓࢖ࣝ
90, 119
ᐃ࡛ࡣࠊ㐺ษ࡞᳨ฟჾ࡜ࡑࡢタ⨨᪉ྥࡀ㑅ᢥࡉࢀ
ࠋࡇࢀࡣእᤄ㟁㞳⟽࡜ẚ㍑ࡋ࡚㟁ᴟ㛫㝸ࡀ኱ࡁ
࠸ࡇ࡜࡜ࠊ࣮࢞ࢻࣜࣥࢢࡀᑠࡉ࠸ࡇ࡜࡟㉳ᅉࡍࡿࠋ
࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋFig. 11 ࡣࣉࣟࣇ࢓࢖ࣝ ᐃ࡟࠾
ࡼࡗ࡚ࠊᑠࡉ࠸㟁ᴟ㛫㝸࡜ᖜࡢᗈ࠸࣮࢞ࢻࣜࣥࢢࢆ
ࡅࡿయ✚ᖹᆒຠᯝࢆ♧ࡋࠊࢫ࢟ࣕࣥ᪉ྥ࡛᭷ឤ㒊ࡀ
ഛ࠼ࡓ㟁㞳⟽ࢆ⏝࠸ࡿࡇ࡜࡛ࡇࡢ୙ṇ☜ࡉࡣపῶ
ⷧ࠸㸦✵㛫ศゎ⬟ࡀ㧗࠸㸧᳨ฟჾࡀࣉࣟࣇ࢓࢖ࣝ ࡛ࡁࡿࠋࡉࡽ࡟ࠊ㟁㞳⟽ࡢᴟᛶຠᯝࡣṇ㈇ࡢᴟᛶ࡛
90
ᚓࡽࢀࡓㄞࡳ್ࢆᖹᆒࡍࡿࡇ࡜࡛⿵ṇྍ⬟࡛࠶ࡿ ࠋ
ᐃ࡟㐺ࡋ࡚࠸ࡿࠋ
㏻ᖖࠊࢥ࣑ࢵࢩࣙࢽࣥࢢ࡛ࡣ in-plane㸦gun-target
ⷧᒙ TLDࠊ᭷ឤయ✚ࡢᑠࡉ࠸ࢲ࢖࣮࢜ࢻ᳨ฟჾࠊ
᪉ྥ㸧࡜ cross-plane㸦left-right ᪉ྥ㸧ࡢ⥺㔞ࣉࣟࣇ
MOSFETࠊࣛࢪ࢜ࢡ࣑ࣟࢵࢡࣇ࢕࣒ࣝ࡟ࡼࡿ⾲㠃⥺
࢓࢖ࣝࡀᚲせ࡛࠶ࡿࠋin-plane ࡜ cross-plane ࢆ௵ព
㔞ࡢ ᐃࡶሗ࿌ࡉࢀ࡚࠸ࡿ
117,120,121
ࠋ
࡟㑅ᢥ࡛ࡁࡿሙྜࠊcross-plane ࣉࣟࣇ࢓࢖ࣝࢆྲྀᚓ
ࡍ࡭ࡁ࡛࠶ࡿࠋࡇࢀࡣࠊ୍㒊ࡢ⿦⨨࡛ࡣຍ㏿㟁Ꮚࢆ
IV.A.4. ࣅ࣮࣒ࣉࣟࣇ࢓࢖ࣝ
ㄪᩚࡍࡿ gun-target ᪉ྥ࡛ࠊ㠀ᑐ⛠ᛶࡸᖹᆠᛶࡀḞ
IV.A.4.a. ࣉࣟࣇ࢓࢖ࣝ㸦༙ᙳ㒊࡜㍈እ⥺㔞ẚ㸧
ዴࡍࡿྍ⬟ᛶࡀ࠶ࡿࡓࡵ࡛࠶ࡿࠋcross-plane ࡢࣉࣟ
40
IV. 光子線のビームデータ
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
ࣇ࢓࢖ࣝࡣᏳᐃࡋ࡚࠾ࡾࠊࢹ࣮ࢱ཰㞟࡛ࡣࡇࡢ㉮ᰝ
ࣇ࢓࢖ࣝࡶ ᐃࡍࡿࠋ⥺㔞໙㓄ࡀᛴᓧ࡞㡿ᇦ࡛ࡣࡼ
᪉ྥࢆ㑅ᢥࡍࡿᚲせࡀ࠶ࡿࠋ
ࡾᑠࡉ࠸㛫㝸࡛ ᐃࡍࡿᚲせࡀ࠶ࡿࠋ≀⌮࢙࢘ࢵࢪ
⥺㔞ࣉࣟࣇ࢓࢖ࣝࡣࠊࢥ࣑ࢵࢩࣙࢽࣥࢢᮇ㛫࡟
࡛ࡣ໙㓄᪉ྥ࡜㠀໙㓄᪉ྥ࡛ࣅ࣮࣒ࡢῶᙅࡀ⏕ࡌ
TPS ࡬ࡢධຊࡸࡑࡢ௚ࡢᡭィ⟬ࠊᕷ㈍ࡢࢯࣇࢺ࢙࢘
ࡿࠋ኱↷ᑕ㔝ࡢ㎶⦕࡛ࡣ࢙࢘ࢵࢪ࡟ᩳධᑕࡍࡿࡇ࡜
࢔ࢆ⏝࠸ࡓ MU ィ⟬⏝࡟ྲྀᚓࡍࡿࠋ ᐃ᮲௳ࡣ TPS
࡟ࡼࡾࠊ㍈እ࡛࠶ࡿ࡯࡝ῶᙅࡀ኱ࡁ࠸ࡇ࡜࡟ὀពࡀ
࡟౫Ꮡࡍࡿࡀࠊከࡃࡢ TPS ࡛ࡣ࣮࢜ࣉࣥ࡜࢙࢘ࢵࢪ
ᚲせ࡛ࠊࡇࢀࢆホ౯ࡍࡿࡓࡵࠊ㠀໙㓄᪉ྥ࡛ࡶࢹ࣮
↷ᑕ㔝࡟ࡘ࠸࡚༙ᙳ㒊࡜㍈እ⥺㔞ẚࢆࣔࢹࣝ໬ࡍ
ࢱࢆྲྀᚓࡍࡿ 123, 124ࠋ
ࡿࡓࡵࠊᑠ↷ᑕ㔝࠿ࡽ᭱኱↷ᑕ㔝ࡢ⥺㔞ࣉࣟࣇ࢓࢖
ࣝࢆᚲせ࡜ࡍࡿࠋࢹ࣮ࢱ㛫㝸ࡣ༙ᙳ㒊࡛ᑡ࡞ࡃ࡜ࡶ
1 mmࠊࡑࡢ௚ࡣ 2 mm ࢆ㉸࠼࡞࠸㛫㝸ࡀᮃࡲࡋ࠸ࠋ
IV.A.4.d. ࢯࣇࢺ㸦࢚ࣞࢡࢺࣟࢽࢵࢡ㸧࢙࢘ࢵࢪ
ࢯࣇࢺࡲࡓࡣ࢚ࣞࢡࢺࣟࢽࢵࢡ࢙࢘ࢵࢪ㸦ࢲ࢖ࢼ
ࣉࣟࣇ࢓࢖ࣝࢹ࣮ࢱ࠿ࡽ㍈እ⥺㔞ẚࡢ⾲ࢆసᡂࡍ
࣑ࢵࢡ࢙࢘ࢵࢪࠊࣂ࣮ࢳ࢙ࣕࣝ࢘ࢵࢪ㸧ࡢ⥺㔞ࣉࣟ
ࡿ㝿ࡣ୰ᚰ㍈ࡢ್࡛つ᱁໬ࡋࠊ࢔࢖ࢯࢭࣥࢱ㠃࡛ࡢ
ࣇ࢓࢖ࣝࢆ ᐃࡍࡿࡓࡵ࡟ࡣࠊ୍⯡ⓗ࡞ࢫ࢟ࣕࢽࣥ
㍈እ㊥㞳࡟⦰ᑻࢆྜࢃࡏࡿᚲせࡀ࠶ࡿࠋከࡃࡢࢫ࢟
ࢢࢩࢫࢸ࣒࡜ࡣ␗࡞ࡿ ᐃᶵჾࡀᚲせ࡛࠶ࡿࠋࢯࣇ
ࣕࢽࣥࢢࢩࢫࢸ࣒࡟௜ᒓࡍࡿࢯࣇࢺ࢙࢘࢔ࡣࡇࡢ
ࢺ࢙࢘ࢵࢪࡣࣅ࣮࣒↷ᑕ᫬࡟ࢥ࣓࣮ࣜࢱࢆ㛤㛢㥑
ᶵ⬟ࢆഛ࠼࡚࠸ࡿࠋ
ືࡍࡿࠋࡇࡢሙྜࡢ࢙࢘ࢵࢪࣉࣟࣇ࢓࢖ࣝࡣ༢୍ࡢ
⥺㔞ࣉࣟࣇ࢓࢖ࣝࡢ ᐃᩘࡣ TPS ࡟౫Ꮡࡋࠊᐃࡵ
㟁㞳⟽ࢆ౑⏝ࡍࡿᶆ‽ࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡛
ࡽࢀࡓ↷ᑕ㔝࡜῝ࡉ࡛ྲྀᚓࡍࡿࠋࣅ࣮࣒ࡢᇶᮏⓗ࡞
ࡣ ᐃ࡛ࡁ࡞࠸ࠋྛ ᐃⅬ࡛඲ᩓ஘⥺ࡢᙳ㡪ࢆ⪃៖
ᙧ≧ࡣ῝ࡉࡲࡓࡣ↷ᑕ㔝࡛኱ࡁࡃኚ໬ࡋ࡞࠸ࡓࡵࠊ
ࡋࡓ ᐃࢆ⾜࠺ࡓࡵࠊࣇ࢕࣒ࣝࡸࠊࢫ࢟ࣕࢽࣥࢢࢩ
ࣉࣟࣇ࢓࢖ࣝࡣ㐣๫࡟ྲྀᚓࡍࡿᚲせࡣ࡞࠸ࠋ㏻ᖖࠊ
ࢫࢸ࣒ࡢ㥑ື㒊࡟࣐࢘ࣥࢺ࡛ࡁࡿ㸯ḟඖ᳨ฟჾ㸦ิ
2
2
6 × 6 cm ࡲ࡛ࡣ 1 cm 㛫㝸ࡢ↷ᑕ㔝ࠊ10 × 10 cm ௨
ᆺ᳨ฟჾࠊ⣲Ꮚࡣ㟁㞳⟽ࡲࡓࡣࢲ࢖࣮࢜ࢻ㸧44, 45, 59
ୖ࡛ࡣ 5 cm 㛫㝸ࡢ↷ᑕ㔝࡛ྲྀᚓࡍࢀࡤ༑ศ࡛࠶ࡿࠋ
ࡀ⏝࠸ࡽࢀࡿࠋࡋ࠿ࡋࠊከࡃࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ
ࡲࡓ῝ࡉ࡟ࡘ࠸࡚ࡣ 5-7 ✀㢮ࡢ῝ࡉ࡛ྲྀᚓࡋࠊdmax
࣒࡛ࡣࡇࡢ࣐࢘ࣥࢺ࢜ࣉࢩࣙࣥ࡞࡝⤌ࡳྜࢃࡏ࡚
ࢆྵࡴ 5 cm 㛫㝸࡛༑ศ࡛࠶ࡿࠋࡲࡓࠊ୍㒊ࡢ TPS
౑⏝࡛ࡁࡿ᳨ฟჾ࡟ไ㝈ࡀ࠶ࡾࠊࡲࡓ᪋タ࡟ࡼࡗ࡚
࡛ࡣ in-plane ࡜ cross-plane ࡟ຍ࠼ᑐゅ⥺ୖ
ࡣ㈝⏝ࡶၥ㢟࡜࡞ࡿࠋࡑࡢ௚ࡢ㑅ᢥ⫥࡜ࡋ࡚ Profiler
㸦diagonal-plane㸧ࡢࣉࣟࣇ࢓࢖ࣝࡀᚲせ࡛࠶ࡿࠋ
㸦Sun Nuclear, Melbourne, FL㸧ࡢࡼ࠺࡞ࢲ࢖࣮࢜ࢻ
࢔ࣞ࢖࡜ࠊ࡯ࡰỈ➼౯࡜ࡉࢀࡿᅛయࣇ࢓ࣥࢺ࣒ࢆ⏝
IV.A.4.b. ࢫࢱ࣮ࣃࢱ࣮ࣥ
࠸࡚ᑡ࡞ࡃ࡜ࡶ 20 cm ࡲ࡛ࡢ␗࡞ࡿ῝ࡉ࡛ ᐃࡍࡿ
୍㒊ࡢ TPS ࢔ࣝࢦࣜࢬ࣒࡛ࡣࢥ࣓࣮ࣜࢱᅇ㌿㍈
᪉ἲࡀ࠶ࡿࠋࢲ࢖࣮࢜ࢻ࢔ࣞ࢖ࡣỈ୰ࢫ࢟ࣕࣥ࡜Ⰻ
࡜ᆶ┤࡞㠃ࡢ࠸ࡃࡘ࠿ࡢゅᗘ࡛⥺㔞ࣉࣟࣇ࢓࢖ࣝ
ዲ࡞୍⮴ࢆ♧ࡋ࡚࠾ࡾ 45ࠊTPS ࡬ࡢࢹ࣮ࢱ㌿㏦ࡀྍ
ࡀᚲせ࡞ሙྜࡀ࠶ࡿࠋࡇࡢ⥺㔞ࣉࣟࣇ࢓࢖ࣝࡣ୍⯡
⬟࡛࠶ࡿሙྜࡀከ࠸ࠋࡓࡔࡋࠊࢲ࢖࣮࢜ࢻ࢔ࣞ࢖ࡣ
ⓗ࡟ 10r㛫㝸ࠊ᭱኱↷ᑕ㔝ࡢ dmax ࡲࡓࡣỈ୰῝ࡉ
ᐃྍ⬟࡞᭱኱↷ᑕ㔝ࡀ㝈ࡽࢀ࡚࠸ࡿࠋࡑࡢ௚ࡢ㑅
10 cm ࡛ྲྀᚓࡉࢀࠊࢫࢱ࣮ࣃࢱ࣮ࣥ㸦star-pattern㸧࡜
ᢥ⫥࡜ࡋ࡚ࡣࠊࣇ࢕࣒ࣝࢆᅛయࣇ࢓ࣥࢺ࣒࡟ᤄධࡋࠊ
࿧ࡤࢀࡿࠋ୍㒊ࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡣ≉ᐃࡢゅ
⏬ീゎᯒࢯࣇࢺ࡛⥺㔞ࣉࣟࣇ࢓࢖ࣝࢆྲྀᚓࡍࡿ᪉
ᗘ࡛ࢫࢱ࣮ࣃࢱ࣮ࣥࢆྲྀᚓࡍࡿࢯࣇࢺ࢙࢘࢔ࡀෆ
ἲࡀ࠶ࡿࠋࣇ࢕࣒ࣝࢆ⏝࠸ࡓ⥺㔞 ᐃ࡛ࡣ⃰ᗘ-⥺㔞
ⶶࡉࢀ࡚࠸ࡿࠋࢯࣇࢺ࢙࢘࢔ࡀ฼⏝࡛ࡁ࡞࠸ሙྜࡣࠊ
ᛂ⟅᭤⥺ࢆసᡂࡋ࡚ᰯṇࢆ⾜࠺ᚲせࡀ࠶ࡾࠊࡲࡓ⮬
⿦⨨ࡢ࢝࢘ࢳᅇ㌿ྎ࡛Ỉᵴࢆᅇ㌿ࡍࡿࡇ࡜࡛ྲྀᚓ
ື⌧ീᶵࡢ QA ࡶᚲ㡲࡛࠶ࡿࠋࣇ࢕࣒ࣝࢆ⏝࠸ࡓ⥺
ࡍࡿࠋࢫࢱ࣮ࣃࢱ࣮ࣥࡣࣇࣛࢵࢺࢽࣥࢢࣇ࢕ࣝࢱࡢ
㔞 ᐃࡢၥ㢟Ⅼࡣ≉ᛶ᭤⥺ࡢ⥺㉁౫Ꮡᛶ 21 ࡜ࣇ࢕ࣝ
≉ᛶ㸦ᙧ≧᝟ሗ㸧ࢆỴᐃࡍࡿࡓࡵࡢࡶࡢ࡛࠶ࡿࡢ࡛ࠊ
࣒ࢧ࢖ࢬ࡟ࡼࡿ ᐃ⠊ᅖࡢไ㝈࡛࠶ࡿࠋ
ࢥ࣓࣮ࣜࢱࢆᅇ㌿ࡋ࡚ྲྀᚓࡋ࡚ࡣ࡞ࡽ࡞࠸
122
ࠋ
IV.B. MLC ࢹ࣮ࢱ
IV.A.4.c. ≀⌮㸦ࣁ࣮ࢻ㸧࢙࢘ࢵࢪ
Table I(a)࡟♧ࡍࡼ࠺࡟ࠊ࢙࢘ࢵࢪ᪉ྥࡢ⥺㔞ࣉࣟ
㏆ᖺࠊMLC ࡣࣜࢽ࢔ࢵࢡ࡟ᶆ‽ᦚ㍕ࡉࢀ࡚࠾ࡾࠊ
⏝㏵࡟ྜࢃࡏ࡚ᵝࠎ࡞ࢧ࢖ࢬ㸦ࣞࢠ࣮ࣗࣛࠊ࣑ࢽࠊ
41
医学物理 第 33 巻 第 1 号
IV. 光子線のビームデータ
࣐࢖ࢡࣟ㸧ࡀ࠶ࡿࠋᶵᲔⓗᏳᐃᛶ࡜≉ᛶࡣᵝࠎ࡞〇
࡞ࡃ࡜ࡶᡭィ⟬࡟ࡼࡿ⥺㔞ィ⟬࡛ࡣ௨ୗࡢࢹ࣮ࢱ
㐀ᴗ⪅࡟ᑐࡍࡿሗ࿌࡟ᇶ࡙࠸࡚ࠊ⿦⨨ࡢ࢔ࢡࢭࣉࢱ
ࢆ཰㞟ࡍࡿᚲせࡀ࠶ࡿࠋ
ࣥࢫࢸࢫࢺ᳨࡛ドࡉࢀ࡞ࡅࢀࡤ࡞ࡽ࡞࠸
125-145
ࠋ㏻
ᖖࠊMLC ࡢྲྀᚓࡍ࡭ࡁࢥ࣑ࢵࢩࣙࢽࣥࢢࢹ࣮ࢱࡣ
IV.C.1. ඲ᩓ஘ಀᩘ
⮫ᗋ౑⏝࡟౫Ꮡࡍࡿࡀࠊࡑࢀ௨ୖ࡟ TPS ࡟౫Ꮡࡍࡿࠋ
἞⒪⿦⨨ࡢฟຊಀᩘࡣࠊᇶ‽࡜࡞ࡿỈ୰῝ࡉࡢ↷
MLC ࡢタィ࡜ࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟㛵ࡍࡿヲ⣽ࡣ
ᑕ㔝㸦10 × 10 cm2㸧࡟ᑐࡍࡿ௵ពࡢ↷ᑕ㔝ࡢ⥺㔞ẚ
AAPM Report 72 145 ࡜ IPEM Report 94 16 ࡛ᥦ౪ࡉࢀ
࡜ࡋ࡚ᐃ⩏ࡉࢀࡿࠋ඲ᩓ஘ಀᩘ㸦Total scatter factor,
࡚࠸ࡿࠋࡋ࠿ࡋࠊୗグࡢࣃ࣓࣮ࣛࢱࡣྛගᏊ࢚ࢿࣝ
Scp㸧ࡣྠࡌ MU タᐃ್㸦M㸧࡟࠾࠸࡚࠶ࡿ↷ᑕ㔝࡜
ࢠ࣮࡜ࠊ㔜ຊࡢᙳ㡪ࢆ᳨ドࡍࡿࡓࡵࠊᑡ࡞ࡃ࡜ࡶ 4
ᇶ‽↷ᑕ㔝ࡢ⥺㔞ẚ࡜ࡋ࡚ᐃ⩏ࡉࢀࡿࠋ୧⪅ࡣ༑ศ
ࡘࡢ࢞ࣥࢺࣜゅᗘ㸦0°ࠊ90°ࠊ180°ࠊ270°㸧࡛ᐃ㔞໬
࡟኱ࡁ࠸Ỉࣇ࢓ࣥࢺ࣒୰࡛ᇶ‽῝࡟タ⨨ࡋࡓ⥺㔞
ࡉࢀ࡞ࡅࢀࡤ࡞ࡽ࡞࠸
146, 147
ࠋ
ィ࡛ ᐃࡍࡿࠋ
S cp ( s )
x
ග↷ᑕ㔝࡜ᨺᑕ⥺↷ᑕ㔝ࡢ୍⮴ࠋ
x
MLC 㛫㝽ࡢ₃ὤ㸦Inter-leaf leakage㸧
x
MLC ୰ࡢ₃ὤ㏱㐣㸦Intra-leaf leakage㸧
x
↷ᑕ㔝ෆࡢ Tongue and Groove ຠᯝ
x
༙ᙳ㒊
D( s, d ref ) M
,
D( sref , d ref ) M
(3)
ࡇࡇ࡛ࠊD ࡣ௵ពࡢ↷ᑕ㔝 s ࡜ᇶ‽↷ᑕ㔝 sref ࡟ࡘ
࠸࡚ࠊỈ୰ࡢᇶ‽῝ dref ࡛ ᐃࡋࡓ⥺㔞࡛࠶ࡾࠊM
ࡣ MU タᐃ್࡛࠶ࡿࠋྛ↷ᑕ㔝࡛ഃ᪉ྥࡢࣅࣝࢻ࢔
ࢵࣉࢆ☜❧ࡉࡏࡿࡓࡵࠊ኱ࡁ࠸ࢧ࢖ࢬࡢỈࣇ࢓ࣥࢺ
ຍ࠼࡚ࠊ⥺㔞 ᐃ࡛㔜せ࡜࡞ࡿ఩⨨ࡢṇ☜ࡉࡣࣇ
147, 149
࣒ࢆ౑⏝ࡍࡿࠋ῝ࡉ᪉ྥࡣᚋ᪉ᩓ஘ࢆ⪃៖ࡋࠊ᭱῝
ࠋMLC ࡢඛ➃
ࡢ ᐃⅬ࠿ࡽᑡ࡞ࡃ࡜ࡶ 10 cm ࡣࣇ࢓ࣥࢺ࣒ࡀᚲせ
ࡀ‴᭤ࡋ࡚࠸ࡿሙྜ㸦ࣛ࢘ࣥࢻ࢚ࣥࢻ MLC㸧ࡣࠊ
࡛࠶ࡿࠋࡲࡓࠊ඲ᩓ஘ಀᩘࡣ ᐃ῝࡛ኚ໬ࡋࠊ౛࠼
50%➼⥺㔞⥺ࡀ MLC ඛ➃࡟୍⮴ࡋ࡞࠸ࡇ࡜ࢆ⪃៖
ࡤ῝ࡉ 10 cm ࡜ dmax ࡛ࡣ඲ࡃ␗࡞ࡿࡇ࡜࡟ὀពࡍࡿ
ࡋ࡚ MLC ఩⨨ࡢ࢜ࣇࢭࢵࢺ㊥㞳ࢆỴᐃࡍࡿᚲせࡀ
ᚲせࡀ࠶ࡿࠋ ᐃ๓࡟ᚲせ࡞ࢹ࣮ࢱࢆ☜ㄆࡋ࡚࠾ࡃ
࢕࣒ࣝࡲࡓࡣ EPID ࡛Ỵᐃࡍࡿ
࠶ࡿ
141
ࠋ༙ᙳ㒊ࢆ㝖ࡃୖグࡢࣃ࣓࣮ࣛࢱࡣ඲࡚ࣇ࢕
ࡇ࡜ࡀ㔜せ࡛࠶ࡿࠋ
࣒ࣝࢆ⏝࠸ࡓ⥺㔞 ᐃ࡟ࡼࡗ࡚ྲྀᚓࡋ࡞ࡅࢀࡤ࡞
ࡽ࡞࠸ࠋMLC 㛫㝽
㸦inter-leaf㸧࡜ MLC ୰㸦intra-leaf㸧
IV.C.1.a. ᐃ
ࡢ₃ὤ⥺㔞ࡣ㧗࠸ゎീᗘࢆࡶࡘࣇ࢕࣒ࣝ࠿ EPID ࡛
Table I ࡟♧ࡉࢀࡿࡼ࠺࡟ࠊฟຊಀᩘࡣᇶ‽Ⅼ㸦౛ࠊ
ᐃ࡛ࡁࡿࠋࣂࢵࢡ࢔ࢵࣉ⏝ࡢ jaw ࢆక࠺ MLC ࡛
10 cm ࡲࡓࡣ dmax㸧ࠊSSD ࡲࡓࡣ SAD=100 cm ࡟࠾࠸
ࡣࠊjaw ࢆ᱁⣡ࡋࡓ≧ែ࡛ྲྀᚓࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋ
࡚ྛ↷ᑕ㔝ࢧ࢖ࢬ࡛ ᐃࡍࡿࠋ⌮᝿ⓗ࡟ࡣࠊࣔࢽࢱ
ගᏛ⃰ᗘ࡜⥺㔞ࡢ㛵ಀࢆᚓࡿࡓࡵࠊࣜࣇ࢓ࣞࣥࢫࣇ
㟁㞳⟽ࡢᰯṇ࡜ྠࡌ᪉ἲ㸦SSD ἲࡲࡓࡣ SAD ἲ㸧
࢕࣒ࣝࡣᇶ‽῝࡛↷ᑕࡍ࡭ࡁ࡛࠶ࡿࠋࡑࡢ௚ࡢ jaw
࡛ฟຊಀᩘࡢ ᐃࢆ⾜࠺ࡇ࡜ࡀᮃࡲࡋ࠸ࠋIMRT ࡛
ࢆ඲㛤ࡋ MLC ࡢࡳ඲㛢ࡋࠊ඲࡚ࡢ MLC ࡀྵࡲࢀࡿ
ࡣࠊᑠ↷ᑕ㔝ࡢฟຊಀᩘࡀᚲせ࡛࠶ࡿࡓࡵᑠᆺ㟁㞳
኱ࡁ࠸ࢧ࢖ࢬࡢࣇ࢕࣒ࣝࢆ⏝࠸࡚↷ᑕࡍࡿࠋMLC
⟽ࢆ⏝࠸ࡿࠋ㟁㞳⟽ࡢయ✚ᖹᆒຠᯝࢆ㑊ࡅࡿࡓࡵࠊ
↷ᑕ㔝ࢧ࢖ࢬ࡜ẚ㍑ࡋ࡚ࣇ࢕࣒ࣝࡀᑠࡉ࠸࡜ࡁࡣ
㟁㞳⟽ࢧ࢖ࢬࡣ᭱ᑠ↷ᑕ㔝࡜ẚ㍑ࡋ࡚ᑡ࡞ࡃ࡜ࡶ
▷࠸ SSD ࡛ ᐃࡍࡿࠋࡇࢀࡣᇶ‽↷ᑕࡢ 10~20 ಸᚲ
㸦┤ᚄࡲࡓࡣ㛗ࡉࡢ㸧ྛഃ㠃࡛ 0.5 cm ࡣᑠࡉࡃ࡞ࡅ
せ࡜࡞ࡿ MU ࢆపῶࡍࡿࡇ࡜࡟ࡶᙺ❧ࡘࠋMLC 㛫
ࢀࡤ࡞ࡽ࡞࠸ࠋࡇࢀࡽᑠᆺ㟁㞳⟽࡛ᚓࡓࢹ࣮ࢱࡣẚ
㝽࡜ MLC ୰ࡢ₃ὤ⥺㔞ࢆྲྀᚓࡍࡿࡓࡵࠊࣇ࢕࣒ࣝ
㍑ⓗ኱ࡁ࠸↷ᑕ㔝࡛኱ࡁ࠸ࢧ࢖ࢬࡢ㟁㞳⟽࡛ ᐃ
ࡣ⌧ീᚋ࡟ࢫ࢟ࣕࣥࡋࠊගᏛ⃰ᗘࢆ⥺㔞࡟ኚ᥮ࡍࡿ
ࡋࡓࢹ࣮ࢱ࡜ẚ㍑ࡋࠊ↷ᑕ㔝࡟ᑐࡍࡿ Scp ᭤⥺ࡀⰋ
ᚲせࡀ࠶ࡿࠋࡉࡽ࡟ࠊྲྀᚓࡋࡓ MLC ₃ὤ⥺㔞ࡣ࣓
ዲ࡟୍⮴ࡋࠊࢫ࣒࣮ࢬ࡟ࡘ࡞ࡀࡿࡇ࡜ࢆ☜ㄆࡍࡿࡇ
࣮࣮࢝ࡈ࡜࡟ᩥ⊩್࡜ẚ㍑ࡍࡿᚲせࡀ࠶ࡿ
150
ࠋ
࡜ࡀᮃࡲࡋ࠸ࠋࡇࡢሙྜࠊᑠᆺ㟁㞳⟽ࡣᇶ‽࡜࡞ࡿ
↷ᑕ㔝 10 × 10 cm2 ࡛㢧ⴭ࡟ࢫࢸ࣒ຠᯝࡸࢣ࣮ࣈࣝ
IV.C. ගᏊ⥺࣏࢖ࣥࢺ⥺㔞ࢹ࣮ࢱ
ྛ TPS ࡛ᚲせ࡞ࢹ࣮ࢱࡣᵝࠎ࡛࠶ࡿࠋࡋ࠿ࡋࠊᑡ
42
↷ᑕࡢᙳ㡪ࢆ♧ࡍྍ⬟ᛶࡀ࠶ࡿࠋࡲࡓࠊ3 × 3 cm2 ௨
ୗ࡛ࡣ㟁㞳⟽ࡢㄞࡳ್࡟య✚ᖹᆒຠᯝࡀ⏕ࡌࡿྍ
IV. 光子線のビームデータ
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
⬟ᛶࡀ࠶ࡾࠊタ⨨⢭ᗘ࡜⥺㔞ࣉࣟࣇ࢓࢖ࣝ࡟౫Ꮡࡋ
࡚ 5-10%⛬ᗘప࠸್ࢆ♧ࡍሙྜࡀ࠶ࡿ
151-153
ࠋ
ࣥࢺ࣒࡛⏕ࡌࡓᩓ஘⥺࡟ࡼࡿ⾪✺࣮࣐࢝ࡣྵࡲ࡞
࠸ࡇ࡜࡟ὀពࡀᚲせ࡛࠶ࡿࠋ
ᐇ㦂ⓗ࡟ࠊSc ࡣΰධ㟁Ꮚࢆ᤼㝖ࡍࡿ༑ศ࡞ཌࡉࡢ
IV.C.1.b. ࣔࣥࢸ࢝ࣝࣟἲ࡟ࡼࡿ࢔ࣉ࣮ࣟࢳ
࣑ࢽࣇ࢓ࣥࢺ࣒ࢆ⏝࠸࡚ࠊ㟁㞳⟽࡛ ᐃࡋࡓ㟁Ⲵࡢ
ࣔࣥࢸ࢝ࣝࣟἲࡣᨺᑕ⥺἞⒪࡟㛵ࡍࡿ≀⌮ⓗ࡞
ẚ࠿ࡽồࡵࡿ 32ࠋ࣑ࢽࣇ࢓ࣥࢺ࣒ࡢഃ᪉ྥࡢࢧ࢖ࢬ
ࣉࣟࢭࢫࢆṇ☜࡟ࣔࢹࣝ໬ࡍࡿࡇ࡜ࡀ࡛ࡁࠊ࡝ࢇ࡞
ࡣ᳨ฟჾ఩⨨࡛ഃ᪉㟁Ꮚᖹ⾮ࡀᡂ❧ࡋࠊྠ᫬࡟ഃ᪉
࡟」㞧࡞ࢪ࣓࢜ࢺ࡛ࣜ࠶ࡗ࡚ࡶຠᯝⓗ࡛࠶ࡿࡇ࡜
࠿ࡽࡢΰධ㟁Ꮚࢆྲྀࡾ㝖ࡃࢧ࢖ࢬ࡜ࡍ࡭ࡁ࡛࠶ࡿࠋ
ࡀド᫂ࡉࢀ࡚࠸ࡿ
154-156
ࠋཎ⌮ⓗ࡟ࡣࠊPhase-space
ࡲࡓࠊ࣑ࢽࣇ࢓ࣥࢺ࣒ࡢ⤌ᡂࡣៅ㔜࡟㑅ᢥࡋ࡞ࡅࢀ
ࢹ࣮ࢱ㸦⢏Ꮚ᝟ሗࢹ࣮ࢱ㸧ࢆ฼⏝ࡋࠊ㐺ษ࡞࣋ࣥࢳ
ࡤ࡞ࡽࡎࠊc ࡜ cref 㛫ࡢࢫ࣌ࢡࢺࣝࡢ㐪࠸࡟ࡼࡗ࡚≀
࣐࣮ࢡࢸࢫࢺࢆ⾜࠺ࡇ࡜࡟ࡼࡗ࡚࡯࡜ࢇ࡝඲࡚ࡢ
㉁࡟౫Ꮡࡋࡓ᭷ព࡞Ỉ୰࣮࣐࢝ẚࡢᕪࢆ⏕ࡌࡉࡏ
≧ἣ࡛ṇ☜࡞⥺㔞ィ⟬ࡀྍ⬟࡛࠶ࡿࠋヲ⣽࡞ຍ㏿ჾ
࡞࠸ࡇ࡜ࡀ㔜せ࡛࠶ࡿࠋࡋ࠿ࡋࠊ⥺㉁ࡀᇶ‽᮲௳࠿
࣊ࢵࢻࢪ࣓࢜ࢺࣜࢆ⏝࠸ࡓࢩ࣑࣮ࣗࣞࢩࣙࣥ࡟ࡼ
ࡽ␗࡞ࡿ᮲௳ୗ㸦౛ࠊ≀⌮࢙࢘ࢵࢪࡢ౑⏝㸧࡛ࡣࠊ
ࡗ࡚ࠊࣔࣥࢸ࢝ࣝࣟἲࡣຍ㏿ჾ࣊ࢵࢻ㒊ࡢྛᵓᡂせ
Sc ࡣ࢚ࢿࣝࢠ࣮ࣇ࢚ࣝࣥࢫẚࡢホ౯್࡛࠶ࡾࠊ⾪✺
⣲࡛⏕ࡌࡿ⢏Ꮚ᝟ሗࢆṇ☜࡟Ỵᐃ࡛ࡁࡿࡓࡵࠊࣅ࣮
࣮࣐࢝࡜ ᐃ῝ࡲ࡛ࡢῶᙅ࡟ࡼࡗ࡚ኚ໬ࡍࡿࡇ࡜
࣒ࡢ≉ᛶࢆ᫂ࡽ࠿࡟ࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿ
157, 159
ࠋ
࡟ὀពࡀᚲせ࡛࠶ࡿࠋ
≉࡟ࠊࣔࣥࢸ࢝ࣝࣟィ⟬ࡣࠊ(1) ┦ᑐᩓ஘ಀᩘࢆỴ
័⩦ⓗ࡟ࠊSc ࡣࣅࣝࢻ࢔ࢵࣉ࢟ࣕࢵࣉࢆ௜ࡅࡓ㟁
ᐃࡍࡿࡇ࡜ࠊ(2) ᩓ஘ಀᩘࡢྛᵓᡂᡂศࢆศᯒࡍࡿ
㞳⟽ࢆ⏝࠸࡚ ᐃࡍࡿሙྜࡀ࠶ࡿࠋࡇࡇ࡛ࠊࣅࣝࢻ
ࡇ࡜ࠊ(3) ᩓ஘ಀᩘࡢ ᐃࡢࡓࡵࡢ᪂ࡋ࠸ᡭἲࢆ⪃
࢔ࢵࣉ࢟ࣕࢵࣉࡢ㑅ᢥࡣ㠀ᖖ࡟㔜せ࡛ࠊ࢟ࣕࢵࣉཌ
᱌ࡍࡿࡇ࡜ࠊ࡛⏝࠸ࡽࢀ࡚ࡁࡓ
10, 11, 13
ࠋ౛࠼ࡤࠊࣔ
ࡣ㐣ᑠ࡛࠶ࡿࡼࡾࡣ㐣኱࡛࠶ࡿ᪉ࡀⰋ࠸ࠋ࢟ࣕࢵࣉ
ࣥࢸ࢝ࣝࣟィ⟬ࡣᑠ↷ᑕ㔝࡛ࢥ࣓࣮ࣜࢱ㸦jaw ࡜
ࡢཌࡉࡀ୙༑ศ࡞ሙྜࠊ㟁㞳⟽ࡢᛂ⟅ࡣගᏊ࡜࢟ࣕ
MLC ࡞࡝㸧࠿ࡽࡢᩓ஘⥺ࡢᐤ୚ࡀ㢧ⴭ࡛࠶ࡿࡇ࡜
ࢵࣉࡢ┦஫స⏝࡛⏕ࡌࡓ㟁Ꮚࡢࡳ࡛ࡣ࡞ࡃࠊࣅ࣮࣒
ࢆ♧ࡋ࡚࠸ࡿ
160-162
ࠋࣔࣥࢸ࢝ࣝࣟἲࡣ ᐃࡢ᳨ド
ࡸᑠ↷ᑕ㔝ࡢࢹ࣮ࢱసᡂ࡛⏝࠸ࡽࢀ࡚࠸ࡿ
164
13, 153, 163,
ࠋ
୰ࡢΰධ㟁Ꮚࡶྵࡴࡓࡵㄗᕪࡢཎᅉ࡜࡞ࡿࠋTG-74
ࢆཧ↷ࡋࠊ㐺ษ࡞ࢧ࢖ࢬࡢࣅࣝࢻ࢔ࢵࣉ࢟ࣕࢵࣉࢆ
㑅ᢥࡍࡿᚲせࡀ࠶ࡿࠋ࢟ࣕࢵࣉࡢཌࡉࡀ୙༑ศ࡞ሙ
ྜࡣ↷ᑕ㔝ࢧ࢖ࢬ࡟ᑐࡍࡿ✵୰ฟຊಀᩘ㸦Sc㸧ࡀⴭ
IV.C.2. ✵୰ฟຊಀᩘ
ࡋࡃኚ໬ࡍࡿࡓࡵࠊࡑࡢ⤖ᯝ࡜ࡋ࡚ࣇ࢓ࣥࢺ࣒ᩓ஘
Sc ࡣ✵୰ฟຊಀᩘ㸦in-air output factor
165
㸧ࠊࢥ࣓ࣜ
ಀᩘ㸦Sp㸧ࡣ↷ᑕ㔝࡟ᑐࡋ࡚ᖹᆠ࡜࡞ࡿࠋᑠ↷ᑕ㔝
࣮ࢱᩓ஘ಀᩘ㸦collimator-scatter factor 㸧ࠊ࣊ࢵࢻᩓ
㸦” 4 × 4 cm2㸧࡛ྠࡌ࣑ࢽࣇ࢓ࣥࢺ࣒ࢆ⏝࠸ࡿሙྜ
஘ಀᩘ㸦head scatter factor166, 167㸧࡜ࡶ࠸ࢃࢀࡿࠋᚋ 2
ࡣ㊥㞳ࢆ㞳ࡋ࡚ ᐃ࡛ࡁࡿࠋࡇࡢሙྜࠊ␗࡞ࡿ SSD
⪅ࡣฟຊಀᩘࡢ 1 せ⣲࡛࠶ࡿࡇ࡜ࡀᙉㄪࡉࢀࡿሙྜ
࡛ྲྀᚓࡋࡓ 2 ࡘࡢ Sc ࢆ⤫ྜ࡛ࡁࡿࡼ࠺࡟ࠊᘏ㛗㊥㞳
࡟⏝࠸ࡿࠋTG-74㸦Ref. 20㸧࡛ࡣ✵୰ฟຊಀᩘ Sc ࡢ
࡛ࡶ 10 × 10 cm2 ࡢฟຊಀᩘࢆ ᐃࡍࡿࡇ࡜ࡀ㔜せ
ヲ⣽ࡀ♧ࡉࢀ࡚࠾ࡾࠊ௵ពࡢ↷ᑕ㔝࡜ᇶ‽↷ᑕ㔝ࡢࠊ
࡛࠶ࡿࠋTG-74 ࡛ࡣ඲࡚ࡢ Sc ࢆྠࡌ SSD ࡛ ᐃࡍ
༢఩ MU タᐃ್࠶ࡓࡾࡢ✵Ẽ୰࡟࠾ࡅࡿỈࡢ୍ḟ⾪
ࡿࡓࡵࠊ㧗ཎᏊ␒ྕࡢ࣑ࢽࣇ࢓ࣥࢺ࣒ࡢ౑⏝ࢆ᥎ዡ
✺࣮࣐࢝; Kp ࡢẚ࡜ࡋ࡚ᐃ⩏ࡉࢀࡿࠋ
ࡋ࡚࠸ࡿࠋ ᐃྍ⬟࡞᭱ᑠ↷ᑕ㔝ࡣࠊ࣑ࢽࣇ࢓ࣥࢺ
88
Sc
K p c; z ref M
K p cref ; z ref M
࣒ࡢእ࿘࠿ࡽᑡ࡞ࡃ࡜ࡶ 1 cm ࡢ⠊ᅖࡀ↷ᑕࡉࢀࡿ
,
(4)
ࡇࡇ࡛ c ࡣ௵ពࡢࢥ࣓࣮ࣜࢱࢭࢵࢺࠊcref ࡣᇶ‽ࡢࢥ
2
࣓࣮ࣜࢱࢭࢵࢺࢆ♧ࡋࠊ㏻ᖖࡣ 10 × 10 cm ࡛࠶ࡿࠋ
᮲௳࡛࠶ࡿࠋ
IV.C.3. ࣇ࢓ࣥࢺ࣒ᩓ஘ಀᩘ ࣇ࢓ࣥࢺ࣒ᩓ஘ಀᩘ㸦Sp㸧ࡣࣇ࢓ࣥࢺ࣒୰ࡢᇶ‽
ࡉࡽ࡟ࠊzref ࡣᇶ‽ࡢ⥺※-᳨ฟჾ㛫㊥㞳࡛࠶ࡾࠊ㏻
῝ dref ࡟࠾ࡅࡿ↷ᑕ㔝ࢧ࢖ࢬ s ࡜ᇶ‽↷ᑕ㔝 sref ࡜ࡢ
ᖖࡣ 100 cm ࡛࠶ࡿࠋࡲࡓࠊ୍ḟ⾪✺࣮࣐࢝ࡣ἞⒪
ᩓ஘ಀᩘẚ࡜ࡋ࡚ᐃ⩏ࡉࢀࡿࠋ
࣊ࢵࢻ࡛⏕ࡌࡓ඲࡚ࡢᩓ஘⥺ࢆྵࡴࡀࠊ࿘ᅖࡢࣇ࢓
43
医学物理 第 33 巻 第 1 号
S p (s)
IV. 光子線のビームデータ
SF ( s, d ref )
SF ( s ref , d ref )
(5)
࡝ 2 ✀㢮ࡢタ⨨᪉ἲ࡛≀⌮࢙࢘ࢵࢪࢆ฼⏝࡛ࡁࡿሙ
ྜࠊࢹ࣮ࢱࡢ᳨ドࡀᚲせ࡛࠶ࡿࠋࡇࢀࡣ↷ᑕ㔝࡜῝
ࡇࡇ࡛ SF ࡣࠊྠࡌ↷ᑕ㔝ࢧ࢖ࢬ࡜῝ࡉ࡛ࠊྠࡌ఩
ࡉ࡟ࡘ࠸࡚ᩘⅬ࡛☜ㄆࡍࢀࡤⰋࡃࠊCheng ࡽ 175 ࡣ
⨨࡟࠾ࡅࡿࠊ୍ḟ⥺ࡢ⥺㔞㸦Dp㸧࡟ᑐࡍࡿỈ୰ࡢ඲
lower ࡜ upper ࡢ࢙࢘ࢵࢪಀᩘࡣ࡯ࡰ୍⮴ࡍࡿࡇ࡜
⥺㔞㸦D㸧ࡢẚ࡛࠶ࡿࠋࡲࡓࠊࣇ࢓ࣥࢺ࣒ᩓ஘ಀᩘ
ࢆ♧ࡋ࡚࠸ࡿࠋ
ࡣ㏆ఝⓗ࡟ḟᘧ࡛Ỵᐃ࡛ࡁࡿࠋ
S p (s) |
S cp
(6)
Sc
IV.C.4.b. ࢯࣇࢺ࢙࢘ࢵࢪ
ࢯࣇࢺ࢙࢘ࢵࢪࡣ࢚ࣞࢡࢺࣟࢽࢵࢡ࢙࢘ࢵࢪࡲ
ᘧ(6)ࡢ Sp ࡣࠊᘧ(3)࡜ᘧ(4)࡛ᐃ⩏ࡉࢀࡿ Scp ࡜ Sp ࢆ
ࡓࡣ㠀≀⌮࢙࢘ࢵࢪ࡜࿧ࡤࢀࠊၟᶆ࡛ࡣࢲ࢖ࢼ࣑ࢵ
⏝࠸࡚ྲྀᚓࡍࡿࠋ୍ḟ⥺ࡢ྾཰⥺㔞࡜⾪✺࣮࣐࢝ࡢ
ࢡ࢙࢘ࢵࢪࡲࡓࡣࣂ࣮ࢳ࢙ࣕࣝ࢘ࢵࢪ࡜ࡋ࡚▱ࡽ
ẚ ȕp ࢆ⏝࠸࡚ࠊ୍ḟ⥺㔞࡜୍ḟỈ⾪✺࣮࣐࢝ࡢ㛵ಀ
ࢀ࡚࠸ࡿࠋࡇࢀࡽࡣ〇㐀ᴗ⪅࡟ࡼࡗ࡚ືసࡀ␗࡞ࡿࠋ
ࢆ⾲ࡏࡿ㸦Dp=ȕp˜Kp㸧ࠋᘧ(6)ࡣࠊ୍ḟ⥺ࡢ⥺㔞-࣮࢝
Varian ♫ࡣ࢚ࣥࣁࣥࢫࢻࢲ࢖ࢼ࣑ࢵࢡ࢙࢘ࢵࢪ
࣐ẚࡀ↷ᑕ㔝ࢧ࢖ࢬ࡟౫Ꮡࡋ࡞࠸ሙྜ
㸦Enhanced dynamic wedge; EDW㸧ࠊSiemens ♫ࡣࣂ
㹙ȕp(s)=ȕp(sref) 㹛ࠊཝᐦ࡟ᡂ❧ࡍࡿࠋ
࣮ࢳ࢙ࣕࣝ࢘ࢵࢪ㸦Virtual wedge; VW㸧ࢆ᥇⏝ࡋ࡚
࠸ࡿ 176-179ࠋ୧〇㐀ᴗ⪅࡜ࡶ୍᪉ࡢ Y-jaw ࢆ㥑ືࡋ࡚
IV.C.4. ࢙࢘ࢵࢪಀᩘ
⥺㔞໙㓄ࢆ⏕ࡌࡉࡏࠊ௚᪉ࡢ Y-jaw ࡣ㟼Ṇࡉࡏ࡚࠸
IV.C.4.a. ≀⌮࢙࢘ࢵࢪ
ࡿࠋEDW ࡜ VW ࡢ୺࡞㐪࠸ࡣࠊEDW ࡣ jaw ࡢ⛣ື
㏻ᖖࠊ࢙࢘ࢵࢪಀᩘࡣ࢙࢘ࢵࢪゅᗘࠊ῝ࡉࠊගᏊ
࢚ࢿࣝࢠ࣮࠾ࡼࡧ↷ᑕ㔝ࢧ࢖ࢬ࡟౫Ꮡࡍࡿ
168-173
ࠋ
≀⌮࢙࢘ࢵࢪࡢಀᩘࡣᇶ‽῝㸦10 cm ࡲࡓࡣ dmax㸧ࠊ
SSD=100 cm ࡟࠾࠸࡚␗࡞ࡿ↷ᑕ㔝࡛ ᐃࡍࡿࠋຍ
㏿ᗘ࡜⥺㔞⋡ࡀኚ໬ࡍࡿࡢ࡟ᑐࡋࠊVW ࡣ jaw ࡢ⛣
ື㏿ᗘࡀ୍ᐃ࡛ゎᯒ㛵ᩘ࡟ᚑࡗ࡚⥺㔞⋡ࢆኚ໬ࡉ
ࡏࡿⅬ࡛࠶ࡿࠋ
ࢯࣇࢺ࢙࢘ࢵࢪࡢ࢙࢘ࢵࢪಀᩘࡣ≀⌮࢙࢘ࢵࢪ
㏿ჾࡢ୰࡟ࡣ኱↷ᑕ㔝࡛࢙࢘ࢵࢪಀᩘࡀ↷ᑕ㔝࡟
ࡢಀᩘ࡜ࡣ඲ࡃ␗࡞ࡿࠋEDW ࡢ࢙࢘ࢵࢪಀᩘࡣ࢜
ᙉࡃᙳ㡪ࡉࢀࡿࡶࡢࡀ࠶ࡾࠊࡑࡢሙྜᗈ⠊ᅖࡢ↷ᑕ
࣮ࣉࣥ↷ᑕ㔝ࡢ୰ᚰ࡛῝ࡉ 10 cm ࡟ࡘ࠸࡚ᐃ⩏ࡉࢀࠊ
170, 171, 174
ࠋ࡯࡜
↷ᑕ㔝ࢧ࢖ࢬ࡜࢙࢘ࢵࢪゅᗘ࡟౫Ꮡࡋࠊ≀⌮࢙࢘ࢵ
ࢇ࡝ࡢ TPS ࡛ࡣࠊࡑࢀࡒࢀࡢ↷ᑕ㔝࡟ࡘ࠸࡚࢙࢘ࢵ
ࢪ࡜ẚ㍑ࡋ࡚ 10%-30%㧗࠸ᩘ್ࢆ♧ࡍࠋ⥺㉁ࡀኚ໬
ࢪಀᩘࢆỴᐃࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
ࡋ࡞࠸ࡓࡵ EDW ࡢ࢙࢘ࢵࢪಀᩘࡣ῝ࡉ࡟ᙳ㡪ࡉࢀ
㔝⠊ᅖ࡟ᑐࡋ࡚ ᐃࡍࡿ࡭ࡁ࡛࠶ࡿ
᳨ฟჾࢆࣅ࣮࣒୰ᚰ࡟ṇ☜࡟タ⨨ࡍࡿࡇ࡜ࡀ㔜
࡞࠸ࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ 175, 180ࠋ୍᪉࡛ Siemens
せ࡛࠶ࡿࡓࡵࠊ᳨ฟჾࡢ㛗㍈ࢆ㠀໙㓄᪉ྥ࡟㓄⨨ࡋࠊ
♫ࡢ VW ࡛ࡣࠊ࢙࢘ࢵࢪಀᩘࡣ↷ᑕ㔝࠾ࡼࡧ࢙࢘ࢵ
60°࢙࢘ࢵࢪࢆ⏝࠸࡚ᑐྥࡍࡿ 2 ࡘࡢࢥ࣓࣮ࣜࢱゅ
ࢪゅᗘ࡟࡯࡜ࢇ࡝౫Ꮡࡏࡎࠊ1.0% ± 2%ࡢ⠊ᅖࡢ್
ᗘ㸦90°࡜ 270°࡞࡝㸧࡛ㄞࡳ್ࡢ୍⮴ࢆ☜ㄆࡍࡿࠋ
ࢆ♧ࡍࠋ࢙࢘ࢵࢪಀᩘࡣࠊ␗࡞ࡿ↷ᑕ㔝ࢧ࢖ࢬ࡟ࡘ
᳨ฟჾࡀࣅ࣮࣒୰ᚰ࡟㓄⨨ࡉࢀ࡚࠸ࡿࡇ࡜ࢆ☜ㄆ
࠸࡚ SSD/SAD=100 cm ࡛࣋ࣥࢲ࣮࡟ࡼࡗ࡚ᣦᐃࡉ
ࡋࡓᚋࠊ୍᪉ࡢ࢙࢘ࢵࢪ᪉ྥ࡜ 180 ᗘ཯ᑐ࡟ᤄධࡋ
ࢀࡓᇶ‽῝㸦10 cm ࡲࡓࡣ dmax㸧࡛ ᐃࡍࡿࠋࡉࡽ
ࡓ࢙࢘ࢵࢪ᪉ྥ࡛ ᐃࡍࡿࠋ࢙࢘ࢵࢪಀᩘࡣ୍ᐃࡢ
࡟ࠊ࢙࢘ࢵࢪಀᩘࡣᅛᐃ jaw ࡢ఩⨨ࡼࡾ㥑ື jaw ࡢ
ࢥ࣓࣮ࣜࢱゅᗘ࡛ᚓࡓ 2 ࡘࡢ࢙࢘ࢵࢪ᪉ྥࡢㄞࡳ್
ࢧ࢖ࢬ࡟౫Ꮡࡍࡿࡓࡵࠊ㛗᪉ᙧ↷ᑕ㔝ࡢ࢙࢘ࢵࢪಀ
ࡢᖹᆒࢆ࣮࢜ࣉࣥ↷ᑕ㔝ࡢㄞࡳ್࡛㝖ࡋ࡚ᚓࡿࠋ࢘
ᩘࢆ㏣ຍࡋ࡚ ᐃࡍ࡭ࡁ࡛࠶ࡿࠋ౛࡜ࡋ࡚ࠊVarian
࢙ࢵࢪಀᩘࡣྲྀᚓࡍࡿ῝ࡉ࡟ࡼࡗ࡚㢧ⴭ࡟␗࡞ࡿ
♫ࡢ EDW ࡢ 10 × 20 cm2 ࡢ࢙࢘ࢵࢪಀᩘࡣ 10 × 10
ሙྜࡀ࠶ࡿࠋᇶᮏⓗ࡟ࠊ࢙࢘ࢵࢪಀᩘࡢ ᐃ῝ࡣ TPS
cm2 ࡢ࢙࢘ࢵࢪಀᩘ࡜㠀ᖖ࡟㏆࠸್ࢆ♧ࡋࠊࡇࢀࡣ
࡟ࡼࡗ࡚ᣦᐃࡉࢀ࡚࠸ࡿࠋࡋ࠿ࡋࠊᡭィ⟬⏝࡟࣮࢜
≀⌮࢙࢘ࢵࢪ࡛ࡣ⏕ࡌ࡞࠸⌧㇟࡛࠶ࡿࠋ
ࣉࣥ↷ᑕ㔝࡜࢙࢘ࢵࢪ↷ᑕ㔝ࡢ PDD ⾲ࡸ TMR ⾲ࢆ
ูࠎ࡟⏝࠸ࡿሙྜࠊࣅ࣮࣒ࣁ࣮ࢻࢽࣥࢢ⿵ṇࢆ 2 㔜
࡟⾜ࢃ࡞࠸ࡓࡵ࢙࢘ࢵࢪಀᩘࡣ dmax ࡛ྲྀᚓࡍࡿ᪉ࡀ
㐺ษ࡛࠶ࡿࠋVarian ♫ࡢ lower ࡜ upper ࢙࢘ࢵࢪ࡞
44
IV.C.4.c. ࣘࢽࣂ࣮ࢧ࢙ࣝ࢘ࢵࢪ
Elekta ♫ࡢࣜࢽ࢔ࢵࢡ࡛ࡣࠊ␗࡞ࡿ࢙࢘ࢵࢪゅᗘ
ࢆ⏕ᡂࡍࡿࡓࡵࠊ࣮࢜ࣉࣥ↷ᑕ㔝࡜ෆⶶᘧࡢ 60° ≀
V. 電子線
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
⌮࢙࢘ࢵࢪ↷ᑕ㔝ࢆࢯࣇࢺ࢙࢘࢔࡟ࡼࡿไᚚ࡛ྜ
࡭ࡁ࡛࠶ࡿࠋฟຊಀᩘࡣ᳨ฟჾࡢタ⨨⢭ᗘ࡟ᙉࡃᙳ
ᡂࡍࡿᡭἲࢆ᥇⏝ࡋ࡚࠸ࡿࠋ࢙࢘ࢵࢪࡣ࣮ࣔࢱ㥑ື
㡪ࡉࢀࡿࡓࡵࠊタ⨨఩⨨ࡢ᳨ドࡣ㔜せ࡛࠶ࡿ 151,202ࠋ
࡛↷ᑕ㔝ෆ࡟ฟࡋධࢀࡉࢀࡿࠋࡇࡢࢱ࢖ࣉࡢ࢙࢘ࢵ
ࡇࢀࡣ xy ୧᪉ྥ࡛ࢫ࢟ࣕࣥࡋࠊ᭱኱್ࢆ♧ࡍࡇ࡜
ࢪࢩࢫࢸ࣒ࡣෆ㒊࢙࢘ࢵࢪࡲࡓࡣࣘࢽࣂ࣮ࢧࣝ࢘
ࢆ☜ㄆࡍࡿ᪉ἲ࡛⾜࠺ࠋ㏆ᖺࠊࡼࡾ⢭ᗘࡢ㧗࠸᪉ἲ
࢙ࢵࢪ࡜ࡋ࡚▱ࡽࢀ࡚࠸ࡿࠋ࢙࢘ࢵࢪಀᩘࡣ TPS ࡛
ࡀ Li ࡽ 203 ࡟ࡼࡗ࡚ᥦ᱌ࡉࢀ࡚࠸ࡿࠋᑠ↷ᑕ㔝࡛ࡣ
ᚲせ࡜࡞ࡿᵝࠎ࡞↷ᑕ㔝ࢧ࢖ࢬ࡜῝ࡉ࡛ྲྀᚓࡍࡿ
↷ᑕ㔝ࢧ࢖ࢬࡢഹ࠿࡞ㄗᕪ࡟ࡼࡗ࡚㢧ⴭ࡟ฟຊࡀ
ᚲせࡀ࠶ࡾࠊከࡃࡢᩥ⊩࡛♧ࡉࢀ࡚࠸ࡿ
181-184
ࠋ
ኚ໬ࡍࡿࡓࡵࠊᐇ㝿ࡢ↷ᑕ㔝ࢧ࢖ࢬࡶ᳨ドࡍࡿᚲせ
ࡀ࠶ࡿࠋࡋ࠿ࡋࠊഃ᪉㟁Ꮚᖹ⾮ࡀᡂ❧ࡋ࡞࠸᮲௳࡛
IV.C.5. ࢺࣞ࢖ಀᩘ
ࡣṇ☜࡞↷ᑕ㔝ࢧ࢖ࢬࡀᚓࡽࢀ࡞࠸ሙྜࡀ࠶ࡿࠋ≉
ࣈࣟࢵࢡࢺࣞ࢖ࠊMLCࠊjaw ࡢ㏱㐣ಀᩘࡣỈ୰ࡢ
࡟ࠊ㟁Ꮚᖹ⾮ᡂ❧᮲௳࡜ẚ㍑ࡋ࡚᭱኱್ࡀ㐣ᑠホ౯
ᇶ‽῝㸦10 cm ࡲࡓࡣ dmax㸧࡛ ᐃࡉࢀࠊ࣮࢜ࣉࣥ
ࡉࢀࡓሙྜࠊ್༙㸦half-maximum㸧ࡀప⥺㔞ࣞ࣋ࣝ
↷ᑕ㔝࡟ᑐࡍࡿࣈࣟࢵࢡࢺࣞ࢖ࠊMLC ࠾ࡼࡧ jaw ┤
ࡼࡾ࡟ࢩࣇࢺࡍࡿ㸦ࡘࡲࡾࠊ⥺㔞ࣉࣟࣇ࢓࢖ࣝࡢእ
ୗ࡛ࡢㄞࡳ್ࡢẚ࡛ᐃ⩏ࡉࢀࡿࠋMLC ࡸ jaw ࡢ㏱㐣
ഃ࡟ࢩࣇࢺࡍࡿ㸧ࡇ࡜࡟ࡼࡗ࡚↷ᑕ㔝ࢧ࢖ࢬࢆ㐣኱
ࡣ㠀ᖖ࡟ᑠࡉ࠸ࡓࡵࠊ㟁఩ィ/᳨ฟჾࢩࢫࢸ࣒ࡢ┤⥺
ホ౯ࡍࡿࡇ࡜ࡀ࠶ࡾࠊὀពࢆせࡍࡿࠋࡲࡓࠊග↷ᑕ
ࣞࣥࢪ࡟ྵࡲࢀࠊ⤫ィⓗ୙☜࠿ࡉࢆ᤼㝖࡛ࡁࡿࡼ࠺
㔝࡜ࢥ࣓࣮ࣜࢱ⛣ື఩⨨ࢆࡑࢀࡒࢀㄪᩚࡍࡿࡇ࡜
MU ್ࡣ༑ศ࡟኱ࡁࡃタᐃࡍࡿᚲせࡀ࠶ࡿࠋࢺࣞ࢖
࡛ࠊ↷ᑕ㔝➃ࡢ఩⨨ࢆ⟶⌮ࡍࡿᚲせࡀ࠶ࡿࠋ
㏱㐣ಀᩘࡣỈࣇ࢓ࣥࢺ࣒࡞ࡋ࡛ࡶ ᐃࡍࡿࡇ࡜ࡀ
V. 㟁Ꮚ⥺
࡛ࡁࡿࠋ
V.A. 㟁Ꮚ⥺ࢫ࢟ࣕࣥࢹ࣮ࢱ ᐃ
IV.C.6. ᑠ↷ᑕ㔝࡛ࡢ⪃៖
V.A.1. ῝㒊⥺㔞
୍⯡ⓗ࡞ᨺᑕ⥺἞⒪࡛⏝࠸ࡽࢀࡿ↷ᑕ㔝ࡣ 4 × 4
2
2
Followill ࡽ࡟ࡼࡗ࡚♧ࡉࢀ࡚࠸ࡿࡼ࠺࡟ࠊ㟁Ꮚ⥺
cm ࠿ࡽ 40 × 40 cm ࡛࠶ࡿࠋࡋ࠿ࡋࠊIMRTࠊSRSࠊ
ࡢ῝㒊⥺㔞≉ᛶࡣࠊ᪋タࡸ⿦⨨ẖ࡟኱ࡁࡃ␗࡞ࡿ 204ࠋ
CyberKnifeࠊGamma Knife ࡞࡝㧗⢭ᗘ࡛≉Ṧ࡞ᨺᑕ
ࡼࡗ࡚ࢥ࣑ࢵࢩࣙࢽࣥࢢ࡛ࡣࠊ⿦⨨ẖ࡟ࣅ࣮࣒ࢹ࣮
⥺἞⒪࡛ࡣᩘ mm ࡢᴟ➃࡟ᑠࡉ࠸↷ᑕ㔝ࢆ౑⏝ࡍࡿࠋ
ࢱࢆ ᐃࡍࡿࡇ࡜ࡀ᥎ዡࡉࢀࡿࠋ㟁Ꮚ⥺ࡢࣅ࣮࣒ࢹ
ᑠ↷ᑕ㔝ࡢ⥺㔞 ᐃ࡟㛵ࡍࡿၥ㢟Ⅼࡢヲ⣽࡞ࣜࢫ
࣮ࢱ ᐃ࡟ࡣࠊࢲ࢖࣮࢜ࢻ᳨ฟჾࠊᖹ⾜ᖹᯈᙧ㟁㞳
ࢺ࡜ᑗ᮶ࡢືྥࡣ Das ࡽ 152 ࡟ࡼࡗ࡚㆟ㄽࡉࢀ࡚࠸
⟽ࠊᣦ㢌ᙧ㟁㞳⟽ࡸࣇ࢕࣒ࣝ࡞࡝ࡀ⏝࠸ࡽࢀࡿࠋ
ࡿࠋ≉࡟ࠊഃ᪉㟁Ꮚᖹ⾮ࡢḞዴ
ࢧ࢖ࢬ
186
ࠊ༙ᙳ㒊࡜᳨ฟჾ
152
ࠊ࢚ࢿࣝࢠ࣮ࢫ࣌ࢡࢺࣝࡢኚ໬࡟క࠺⥺㔞
ᐃ࡟㛵ಀࡍࡿࣃ࣓࣮ࣛࢱࡸ㜼Ṇ⬟ẚࡢኚ໬
187-189
163,
࡞࡝ࠊᑠ↷ᑕ㔝ࡢ⥺㔞 ᐃࡣከࡃࡢ▱㆑ࢆᚲせ
Ⰻ㉁࡞PDDࢆྲྀᚓࡍࡿ࡟ࡣࠊṇ☜࡞ 0 mm῝ࡢỴ
ᐃࡀ㔜せ࡛࠶ࡿࠋᣦ㢌ᙧ㟁㞳⟽ࡢᐇຠ୰ᚰࡣࠊᗄఱ
Ꮫⓗ୰ᚰ࠿ࡽ 0.5rcyl⥺※ഃ࡛࠶ࡿ 56, 145
ヂ⪅ὀ 4
ࠋ 6
MeV࡞࡝ࡢప࢚ࢿࣝࢠ࣮㟁Ꮚ⥺ࡢ῝㒊㟁㞳㔞᭤⥺
࡜ࡍࡿࠋᑠ↷ᑕ㔝ࡢ⥺㔞 ᐃࡢၥ㢟࡜ഴྥࡣከࡃࡢ
㸦Percentage Depth Ionization, PDI㸧ࢆྲྀᚓࡍࡿࡇ࡜
ⴭ⪅࡟ࡼࡗ࡚㆟ㄽࡉࢀ࡚࠸ࡿ
࡛ࠊ0 mm῝ࡀṇࡋ࠸タᐃ࡛࠶ࡿ࠿☜ㄆ࡛ࡁࡿࠋṇࡋ
11,13,64,66,67,151,152,163,164,187-202
࠸PDI᭤⥺ࡣࠊ〇㐀ᴗ⪅࡟࠿࠿ࢃࡽࡎ 6 MeV࡛ࡣᖹ
ࠋ
ᑠᆺ᳨ฟჾ࡟࠾࠸࡚ࡶࠊ࢚ࢿࣝࢠ࣮ࠊ⥺㔞࠾ࡼࡧ
ᆒ 1.1 s 0.2 cmࡢ᭱኱῝㸦dmax㸧࡜࡞ࡿࡣࡎ࡛࠶ࡿࠋ
⥺㔞⋡౫Ꮡᛶࡀᑠࡉ࠸᳨ฟჾࡀᮃࡲࡋ࠸ࠋ࣐࢖ࢡࣟ
ࡇࡢ㟁㞳㔞࡟ࡼࡿdmaxࡀ 0.2 cm௨ୖ␗࡞ࡿ࡜ࠊ0 mm
3
ᆺ㟁㞳⟽㸦⣙ 0.01 cm 㸧ࡣᑠ↷ᑕ㔝ࡢ⥺㔞 ᐃ࡟᭷
῝ࡢタᐃࡀㄗࡗ࡚࠸ࡿྍ⬟ᛶࡀ࠶ࡿࡓࡵࠊ㟁㞳⟽࡜
ຠ࡛࠶ࡿࡀࠊಙྕ࡟ᑐࡍࡿࣀ࢖ࢬࡢẚ⋡ࡀቑ኱ࡍࡿ
Ỉ㠃ࡢタ⨨ࢆ෌☜ㄆࡍࡿᚲせࡀ࠶ࡿࠋ
ࡓࡵホ౯ࡀᚲせ࡛࠶ࡿࠋࡉࡽ࡟ࠊSauer ࡽ
ࡸ
PDI ᭤⥺ࡣ඲࢚ࢿࣝࢠ࣮ࡢࣜࣇ࢓ࣞࣥࢫ࡜࡞ࡿࢥ
ࡀ♧ࡍࡼ࠺࡟ࠊࡇࢀࡽࡢ᳨ฟჾ࡛ࡣ
࣮ࣥ㸦10 × 10 cm2 ࡸ 15 × 15 cm2㸧࡛ࠊᐇ⏝㣕⛬㸦Rp㸧
ᨐ஘ಀᩘ࡟ࡘ࠸࡚⪃៖ࡍࡿᚲせࡀ࠶ࡿࠋ↷ᑕ㔝୰ᚰ
+ 10 cm ࡢ῝ࡉࡲ࡛ 0.1 cm 㛫㝸࡛ ᐃࡍࡿ࡭ࡁ࡛࠶
Francescon ࡽ
153
164
࡛ࡢࢫ࢟ࣕࣥ ᐃ࡛ࠊ᳨ฟჾ┤ᚄࡢ⠊ᅖ࡛⥺㔞ࡀ
1%௨ୖኚ໬ࡍࡿሙྜࡣࠊࡼࡾᑠࡉ࠸᳨ฟჾ࡟ኚ᭦ࡍ
ヂ⪅ὀ4
rcyl ࡣ㟁㞳✵Ὕࡢ༙ᚄ࡛࠶ࡿࠋ
45
医学物理 第 33 巻 第 1 号
V. 電子線
ࡿࠋ㟁Ꮚ⥺ࢹ࣮ࢱࡢࢥ࣑ࢵࢩࣙࢽࣥࢢࡣࠊ10 × 10 cm2
ࡲࡓࡣ 15 × 15 cm2 ࡀࣜࣇ࢓ࣞࣥࢫࡢࢥ࣮ࣥ࡜ࡋ࡚
౑⏝ࡉࢀࡿࠋࣜࣇ࢓ࣞࣥࢫ࡜࡞ࡿࢥ࣮ࣥࢆ౑⏝ࡋࡓ
඲࢚ࢿࣝࢠ࣮ࡢ PDI ᭤⥺࠿ࡽࠊࣉࣟࣇ࢓࢖ࣝࢫ࢟ࣕ
ࣥࢆࡍࡿ῝ᗘ dmax, d90, d80, d70, d60, d50, d40, d30, d20, ࠾
ࡼࡧ Rp ࡀỴᐃࡉࢀࡿࠋཝᐦ࡟ゝ࠼ࡤࠊRp ࡣࣅ࣮࣒
ࢆ⿵ṇࡋࡓ῝㒊㔞ⓒศ⋡㸦PDD㸧࠿ࡽồࡵࡽࢀࡿ࡭
ࡁ࡛࠶ࡿࡀࠊSSD •100 cm ࡛ࡣࠊ῝㒊⥺㔞࡟ࡼࡿ Rp
࡜῝㒊㟁㞳㔞࡟ࡼࡿ Rp ࡢ┦㐪ࡣࢃࡎ࠿࡛࠶ࡿࠋ
㟁㞳⟽࡟ࡼࡿỈ୰࡛ࡢ PDI ᭤⥺ࡣࠊ㐺ษ࡞ኚ఩⿵
ṇಀᩘ࡜Ỉ㸭✵Ẽࡢᖹᆒไ㝈㉁㔞⾪✺㜼Ṇ⬟ẚࢆ
FIG. 12. Effect of water ripple on low energy electron beam depth
౑⏝ࡋ࡚ࠊ῝㒊⥺㔞᭤⥺࡟ኚ᥮ࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋ
dose.
࡯ࡰ඲࡚ࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡟ࠊ㟁㞳㔞ࢆ⥺㔞
࡟ኚ᥮ࡍࡿࡓࡵࡢࣉࣟࢢ࣒ࣛࡀᐇ⿦ࡉࢀ࡚࠸ࡿࠋࡇ
ࢀࡽࢆ౑⏝ࡍࡿሙྜࡣࠊࣜࣇ࢓ࣞࣥࢫࢹ࣮ࢱࢆᇶ࡟ࠊ
ືᨺᑕ⥺ᡂศࡢホ౯ࡣṇ☜࡛ࡣ࡞࠸ヂ⪅ὀ 6ࠋ
ྛ῝ࡉ࡛ኚ᥮⢭ᗘࢆ᳨ドࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸
22,56,88,205
V.A.2. ࣉࣟࣇ࢓࢖ࣝ
ࠋ
III❶࡛グ㏙ࡋࡓࢫ࢟ࣕࣥ㏿ᗘࠊ㐜ᘏ᫬㛫ࡸࢧࣥࣉ
ከࡃࡢ TPS ࡛ࡣ୍⯡ⓗ࡟ࠊdmaxࠊd90ࠊd70ࠊd50ࠊd30
ࣜࣥࢢ᫬㛫ࡣࠊ ᐃࢹ࣮ࢱࡢ㉁࡟ᙳ㡪ࢆ୚࠼ࡿࡓࡵࠊ
࡜ d10㸦ࡘࡲࡾࠊ100%ࠊ90%ࠊ70%ࠊ50%ࠊ30%࡜ 10%
ៅ㔜࡟タᐃࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋFig. 12 ࡟ỈࡢἼ❧
⥺㔞ࡢ῝ࡉ㸧࡞࡝ࡢ῝ࡉ࡛ࡢ⥺㔞ࣉࣟࣇ࢓࢖ࣝࢆᚲ
ࡕ࡟ࡼࡿPDD᭤⥺࡬ࡢᙳ㡪ࢆ♧ࡍࠋࡇࡢࡼ࠺࡞ሙྜ
せ࡜ࡍࡿࠋࡓࡔࡋࠊ⥺㔞ࣉࣟࣇ࢓࢖ࣝࢆྲྀᚓࡋ࡞ࡅ
ࡣࠊࢫ࢟ࣕࣥࣃ࣓࣮ࣛࢱࡢ෌タᐃࡀᚲせ࡛࠶ࡿࠋ㟁
ࢀࡤ࡞ࡽ࡞࠸῝ࡉࡣࠊTPS ࡢ௙ᵝ࡟ࡼࡗ࡚␗࡞ࡿࠋ
Ꮚ⥺ࡢࢫ࡛࢟ࣕࣥ⌮᝿ⓗ࡞ ᐃჾࡣࠊ✵㛫ศゎ⬟ࡢ
≉࡟ప࢚ࢿࣝࢠ࣮㟁Ꮚ⥺࡛ࡣࠊdmax ࡼࡾ῝࠸఩⨨࡛
㧗࠸ᑠᆺࡢ㟁Ꮚ⥺⏝ࢲ࢖࣮࢜ࢻ᳨ฟჾ࡛࠶ࡿࠋࡑࡢ
ࡢࣉࣟࣇ࢓࢖ࣝࡢ ᐃ࡟ὀពࡀᚲせ࡜࡞ࡿࠋࣉࣟࣇ
⌮⏤ࡣࠊ(1) 㟁㞳㔞࠿ࡽ⥺㔞࡟ኚ᥮ࡍࡿᚲせࡀ↓࠸
ヂ
࢓࢖ࣝᙧ≧ࡀ㢧ⴭ࡟㠀ᑐ⛠࡛࠶ࢀࡤࠊࢫ࢟ࣕࢽࣥࢢ
⪅ὀ 5
ࠋ(2) ᐃⅬࡢኚ఩ࢆ⾜࠺ᚲせࡀ↓࠸ࠋࡓࡔࡋࠊ
ࢱࣥࢡࡸࢫ࢟ࣕࣥ࢔࣮࣒ࡢỈᖹࠊ࢞ࣥࢺࣜゅᗘ࡞࡝
㜵Ỉࢥ࣮ࢸ࢕ࣥࢢ㸦㏻ᖖ~0.2 mm㸧ࡀ᪋ࡉࢀ࡚࠸ࡿ
ࡢ෌☜ㄆࡀᚲせ࡛࠶ࡿࠋప࢚ࢿࣝࢠ࣮㟁Ꮚ⥺ࡢ῝࠸
ࢲ࢖࣮࢜ࢻ᳨ฟჾ࡟ࡣᙜ࡚ࡣࡲࡽ࡞࠸ྍ⬟ᛶࡀ࠶
఩⨨࡛ࡢ⥺㔞ࣉࣟࣇ࢓࢖ࣝࡣࠊ࡛ࡇࡰࡇ࡜ࡋࡓᙧ≧
ࡿࠋ
࡜࡞ࡿࡇ࡜ࡀ࠶ࡿࠋ㟁఩ィࡢࢤ࢖ࣥࠊࣜࣇ࢓ࣞࣥࢫ
࠸ࡃࡘ࠿ࡢ TPS ࡛ࡣࠊไືᨺᑕ⥺ᡂศࡢ᝟ሗࡀ㔜
᳨ฟჾࡢタ⨨఩⨨ࠊࢫ࢟ࣕࣥ᪉ྥࠊ᳨ฟჾࡢ⛣ື㏿
せ࡜࡞ࡿࠋไືᨺᑕ⥺ࡣࠊ(1) ࢞ࣥࢺࣜ࣊ࢵࢻࠊ(2) 㖄
ᗘࠊࢧࣥࣉࣜࣥࢢ᫬㛫ࠊ⧞ࡾ㏉ࡋᩘࠊ࡞࡝ࢫ࢟ࣕࣥ
ࣈࣟࢵࢡ࠾ࡼࡧ(3) Ỉ࡜㟁Ꮚ⥺ࡢ┦஫స⏝࡟ࡼࡾⓎ
ࡢᨵၿࡢࡓࡵ࡟࠸ࡃࡘ࠿ࡢせᅉࢆ᳨ウࡍ࡭ࡁ࡛࠶
⏕ࡍࡿࠋࡑࢀࡒࢀࡢᙳ㡪ࢆ㝖ཤࡍࡿࡇ࡜࡛ࠊไືᨺ
ࡿࠋ⮫ᗋ࣮ࣔࢻ᳨࡛ドࡍࡿᚲせࡀ࠶ࡿࡀࠊࣜࢽ࢔ࢵ
ᑕ⥺ࡢ๭ྜࢆṇ☜࡟ྲྀᚓ࡛ࡁࡿ᪉ἲࢆ Zhu ࡽࡀሗ࿌
ࢡ࡟ࡼࡗ࡚ࡣࠊࢧ࣮࣎ไᚚࢆ࢜ࣇ࡟ࡍࡿࡇ࡜࡟ࡼࡗ
ࡋ࡚࠸ࡿ
206
ࠋ
㟁Ꮚ⥺⏝ࢲ࢖࣮࢜ࢻ᳨ฟჾ࡛࢝ࢵࢺ࢔࢘ࢺ↷ᑕ
࡚ࣉࣟࣇ࢓࢖ࣝࢆᨵၿࡍࡿࡇ࡜ࡀ࡛ࡁࡿࡶࡢࡀ࠶
ࡿࠋࡲࡓࠊ≉ᐃࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡛ࡣࠊࣉࣟ
㔝࡟ࡼࡿ PDD ࢆ ᐃࡍࡿሙྜࠊࢲ࢖࣮࢜ࢻ࡜ගᏊ
ࣇ࢓࢖ࣝࡣ⮬ືࢤ࢖ࣥタᐃ࡜ࣂࢵࢡࢢࣛ࢘ࣥࢻࢆ
⥺࡜ࡢ┦஫స⏝࡟࢚ࢿࣝࢠ࣮౫Ꮡᛶࡀ࠶ࡿࡓࡵࠊไ
෌ㄪᩚࡍࡿࡇ࡜࡟ࡼࡗ࡚ᨵၿࡉࢀࡿྍ⬟ᛶࡶ࠶ࡿࠋ
Fig. 9 ࡟ࠊ㟁Ꮚ⥺ࣉࣟࣇ࢓࢖ࣝࡢࢫ࢟ࣕࣥ㏿ᗘ࡟ࡼ
ヂ⪅ὀ5
Ỉ㸭ࢩࣜࢥࣥࡢᖹᆒไ㝈㉁㔞⾪✺㜼Ṇ⬟ẚࡀࠊ
౑⏝ࡍࡿ࢚ࢿࣝࢠ࣮࡟ࢃࡓࡾ኱ࡁࡃኚ໬ࡋ࡞࠸ࡓ
ࡵࠋ
46
ヂ⪅ὀ6
ṇ☜࡞ไືᨺᑕ⥺ᡂศࢆྲྀᚓࡍࡿࡓࡵ࡟ࡣࠊ
㟁㞳⟽⥺㔞ィ࡛ ᐃࡍࡿᚲせࡀ࠶ࡿࠋ
V. 電子線
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
ࡿᙳ㡪ࢆ♧ࡍࠋⰋዲ࡞ࣉࣟࣇ࢓࢖ࣝࢹ࣮ࢱࢆྲྀᚓࡍ
SSD ࡜୙ᩚᙧ࡞࢝ࢵࢺ࢔࢘ࢺࡢ⥺㔞/MU ࢆண ࡍ
ࡿࡓࡵ࡟ࡣࠊࢫ࢟ࣕࣥ㏿ᗘࡢపῶࡸࢧࣥࣉࣜࣥࢢ᫬
ࡿࡓࡵ࡟ࠊࢡ࣮ࣛࢡࢯࣥἲ࡟㢮ఝࡋࡓᡪᙧ✚ศἲࢆ
㛫ࡢᘏ㛗ࡀᚲせ࡜࡞ࡿࠋ
౑⏝ࡍࡿࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ 208, 209ࠋ
V.B. 㟁Ꮚ⥺࣏࢖ࣥࢺ⥺㔞ࢹ࣮ࢱ
V.B.3. ௬᝿/ᐇຠ⥺※఩⨨
V.B.1. ࢥ࣮ࣥಀᩘ
㟁Ꮚ⥺ࡣ≀㉁ࢆ㏻㐣ࡍࡿ㝿࡟ᩓ஘ࡉࢀࡿࡓࡵࠊཝ
௵ពࡢࢥ࣮ࣥࡢฟຊಀᩘࡣࠊᇶ‽ࢧ࢖ࢬࡢࢥ࣮ࣥ
2
2
ᐦ࡞㊥㞳ࡢ㏫஧஌๎࡟ᚑࢃ࡞࠸ࠋ≉࡟ࠊࢥ࣓࣮ࣜࢱ
㸦㏻ᖖࡣ 10 × 10 cm ࡲࡓࡣ 15 × 15 cm 㸧ࡢ᭱኱῝
࡜ࢥ࣮ࣥ࠿ࡽࡢᩓ஘㟁Ꮚ⥺ࡣࠊ༢୍ࡢ⥺※࡜ࡋ࡚ࡢ
྾཰⥺㔞㸦Ddmax㸧࡟ᑐࡍࡿ௵ពࡢࢥ࣮ࣥࡢ Ddmax ࡢ
≉ᛶ࡟ᚑࢃ࡞࠸ 210ࠋࡇࡢ≉ᛶࢆᢕᥱࡍࡿࡓࡵ࡟ࠊ㏫
ẚ࡛࠶ࡿࠋ25 × 25 cm2 ࡢࢥ࣮ࣥಀᩘࡣࠊ30 × 30 cm2
஧஌๎ࡀ㐺⏝࡛ࡁࡿࡼ࠺࡞௬᝿ⓗ࡞⥺※఩⨨ࢆỴ
௨ୖࡢỈࣇ࢓ࣥࢺ࣒࠿ᅛయࣇ࢓ࣥࢺ࣒࡛ ᐃࡍ࡭
ᐃࡍࡿ᪉ἲࡀ࠶ࡿ 56ࠋ
ࡁ࡛࠶ࡿࠋྠ୍ࡢ〇㐀ᴗ⪅࡟ࡼࡿྠࡌࣔࢹࣝࡢ἞⒪
ࣂ࣮ࢳࣕࣝࢯ࣮ࢫ㸦௬᝿⥺※㸧ࢆ᥎ᐃࡍࡿ᪉ἲ࡜
⿦⨨㸦౛࠼ࡤ 2 ྎࡢ 21EX㸧࡛࠶ࡗ࡚ࡶࠊࢥ࣮ࣥಀ
ࡋ࡚ࢠࣕࢵࣉἲ࡜VTFἲ 205, 211 ࡀᥦ᱌ࡉࢀ࡚࠸ࡿࠋ
ᩘࡣ␗࡞ࡿࡇ࡜ࡀ࠶ࡿࡀࠊࡑࡢᕪࡣ኱ࡁࡃࡣ࡞࠸
Khan ࡟ࡼࡿࢠࣕࢵࣉἲࡶࡋࡃࡣᐇຠ SSD ἲࡣࠊྛ
㸦2%⛬ᗘ㸧ࡔࢁ࠺ࠋྠ୍ࣔࢹࣝࡢ␗࡞ࡿ⿦⨨ࡢࢥ࣮
㊥㞳࡟࠾ࡅࡿ㟁Ꮚ⥺⥺㔞ࢆ㏫஧஌๎࡟ࡼࡗ࡚ィ⟬
ࣥಀᩘࢆὶ⏝ࡍࡿሙྜࡣࠊ࠶ࡽ࠿ࡌࡵ඲࡚ࡢ࢚ࢿࣝ
ࡇࡢᡭἲࡣẚ㍑ⓗ༢⣧࡛ࠊ
ࡍࡿࡓࡵࡢᡭἲ࡛࠶ࡿ 88ࠋ
ࢠ࣮࡜ࢥ࣮࡛ࣥࢥ࣮ࣥಀᩘࢆ ᐃࡋ࡚ࠊ☜ㄆࡍࡿࡇ
⿦⨨ࠊ↷ᑕ㔝ࢧ࢖ࢬࠊ࢚ࢿࣝࢠ࣮࡟౫Ꮡࡍࡿᐇຠ
࡜ࢆ᥎ዡࡍࡿࠋ
SSD ࡢỴᐃࡀᚲせ࡜࡞ࡿࠋ㟁Ꮚ⥺ࢥ࣮ࣥ࡜Ỉ㠃ࡢࢠ
ࣕࢵࣉࢆኚ໬ࡉࡏ࡞ࡀࡽ dmax ࡛ ᐃࢆ⾜࠸ࠊࢠࣕࢵ
V.B.2. ࢝ࢵࢺ࢔࢘ࢺಀᩘ
ࣉ࡟ᑐࡍࡿ I0/I ࡢᖹ᪉᰿ࢆࣉࣟࢵࢺࡍࡿ࡜ࠊࡑࡢഴ
࢝ࢵࢺ࢔࢘ࢺಀᩘࡣࠊྛࢥ࣮࡛ࣥࡢ࢝ࢵࢺ࢔࢘ࢺ
ࡢ᭷↓࡟ࡼࡿࠊࡑࢀࡒࢀࡢdmax࡛ࡢ⥺㔞ẚ࡛࠶ࡿ
ヂ⪅
ࡁ࡟ࡼࡗ࡚ᐇຠ SSD ࡀỴᐃࡉࢀࡿࠋICRU-35 ࡜ van
Battum ࡽ࡟ࡼࡗ࡚㏙࡭ࡽࢀ࡚࠸ࡿ Sigma-theta-F
ὀ7
㸦VTF㸧ࡣࠊ᭱⤊ⓗ࡞↷ᑕ㔝㝈ᐃჾࡢ࠶ࡿᖹ㠃࡛ࡢࠊ
ẖࡢ⾲ࢆ‽ഛࡍࡿ࡜Ⰻ࠸ࠋ࢝ࢵࢺ࢔࢘ࢺࡢᙧ≧ࡣ㛗
࢞࢘ࢫศᕸ࡜ࡋ࡚ぢ✚ࡽࢀࡓゅᗘศᕸࡢ஧஌ᖹᆒ
᪉ᙧࠊ෇ࠊᴃ෇ࡸṇ᪉ᙧ࡞࡝ࡀ࠶ࡿࠋ࢝ࢵࢺ࢔࢘ࢺ
್ࡢᖹ᪉᰿㸦root-mean-square㸧࡛࠶ࡿ 205, 211ࠋࡇࡢ
ಀᩘࡣࠊ㏻ᖖࡑࢀࡽࡢ➼౯ṇ᪉ᙧ࡛⾲࡜ࡋ࡚ࡲ࡜ࡵ
᪉ἲࡣࠊ᭱኱ࢧ࢖ࢬࡢࢥ࣮ࣥࢆ⏝࠸࡚ࠊ␗࡞ࡿ࢔࢖
ࡽࢀࡿࠋ㟁Ꮚ⥺ࡢ➼౯ṇ᪉ᙧ࡜ฟຊ⥺㔞ࡢ⟬ฟࡣࠊ
ࢯࢭࣥࢱ᳨ฟჾ㛫㊥㞳࡛ࠊࣇ࢕࣒ࣝࡸ 217 ࢲ࢖࣮࢜
௚ࡢᩥ⊩࡛ヲ⣽࡟㏙࡭ࡽࢀ࡚࠸ࡿ 22,56,205,207ࠋ
ࢻ 34 ࡛ ᐃࡉࢀࡓ✵୰࡛ࡢ༙ᙳ㒊ศ㸦20-80%㸧ࡢࣉ
1 × 2 cm2ࠊ2 × 2 cm2 ࡞࡝ࡢ㠀ᖖ࡟ᑠࡉ࠸࢝ࢵࢺ࢔
ࣟࣇ࢓࢖ࣝࢆᚲせ࡜ࡍࡿࠋ
ࠋ㢖⦾࡟⏝࠸ࡿ࢝ࢵࢺ࢔࢘ࢺಀᩘࡣࠊ࢚ࢿࣝࢠ࣮
࢘ࢺࡢ dmax ࡣࠊ኱ࡁ࡞࢝ࢵࢺ࢔࢘ࢺ࡜␗࡞ࡿࡇ࡜ࡀ
࠶ࡿࡓࡵࠊྛ࢝ࢵࢺ࢔࢘ࢺ࡛ ᐃ࡟ࡼࡾỴᐃࡍࡿᚲ
V.B.4. ࣔࣥࢸ࣮࢝ࣝࣟ࣋ࢫࡢ⥺㔞ィ⟬ࡢࡓࡵࡢࢹ
せࡀ࠶ࡿࠋࡇࡢሙྜࠊ㟁㞳⟽ࡢ㑅ᢥ࡜タ⨨఩⨨⢭ᗘ
࣮ࢱ
ࡀࠊ㠀ᖖ࡟㔜せ࡜࡞ࡿࠋ
ࣔࣥࢸ࢝ࣝࣟࢩ࣑࣮ࣗࣞࢩࣙࣥ࡟ࡼࡿ㟁Ꮚ⥺ࣅ
SSD㸻110 cm ࡢࡼ࠺࡟㊥㞳ࢆᘏ㛗ࡋࡓ࢝ࢵࢺ࢔
࣮࣒ࡢࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟㛵ࡍࡿ◊✲ࡀᗈࡃ⾜ࢃ
࢘ࢺಀᩘࡣࠊ(1) ᐃࢆ⾜࠺ࠊࡲࡓࡣࠊ(2) ࢥ࣑ࢵࢩ
ࢀ࡚࠸ࡿ 13, 157, 210, 218-221ࠋࡑࢀࡽࡣࠊࣔࣥࢸ࢝ࣝࣟἲ
ࣙࢽࣥࢢࡉࢀࡓ 100 cm SSD ࡛ࡢ࢝ࢵࢺ࢔࢘ࢺಀᩘ
࡟ࡼࡗ࡚ࣅ࣮࣒ࢹ࣮ࢱࢆసᡂ࡛ࡁࡿྍ⬟ᛶࢆ᫂ࡽ
࠿ࡽࠊ௬᝿ SSD ࢆ⏝࠸ࡿࠊࡢ 2 ࡘࡢ᪉ἲ࡛⟬ฟ࡛ࡁ
࠿࡟ࡋࡓࠋPhase-space ࢹ࣮ࢱ㸦ྛ⢏Ꮚࡢ㟁Ⲵࠊ఩⨨ࠊ
ࡿࠋ2 ࡘࡢ᪉ἲ㸦 ᐃ࡜௬᝿ SSD ࡟ࡼࡿ⟬ฟ㸧㛫ࡢ
᪉ྥࠊ࢚ࢿࣝࢠ࣮࡜ࣄࢫࢺ࣭ࣜࢱࢢࡢࢹ࣮ࢱ㸧ࡣࠊ
┦㐪ࡣ 2%௨ෆ࡛࠶ࡿࠋs2%ࡢ⥺㔞⢭ᗘ࡛ᵝࠎ࡞
ࣔࣥࢸ࣮࢝ࣝࣟ࣋ࢫࡢ἞⒪ィ⏬࡟ᚲせ࡜ࡉࢀࡿࠋࣔ
ࣥࢸ࢝ࣝࣟィ⟬ࡢጇᙜᛶࢆ᳨ドࡍࡿࡓࡵࠊࣔࣥࢸ࢝
ヂ⪅ὀ7
࢝ࢵࢺ࢔࢘ࢺ࡜ࡣ㟁Ꮚ⥺ࢥ࣮ࣥࡢඛ➃㒊࡟タ
⨨ࡍࡿࣈࣟࢵࢡࢆᣦࡍࠋ
ࣝࣟࢩ࣑࣮ࣗࣞࢩࣙࣥ࡜ ᐃ࡜ࢆ⤌ࡳྜࢃࡏࡿᚲ
せࡀ࠶ࡿࠋᚑ᮶ࡢ ᐃࢹ࣮ࢱ㸦౛࠼ࡤࠊPDDࠊࣉࣟ
47
医学物理 第 33 巻 第 1 号
VI. ビームデータの加工
ࣇ࢓࢖ࣝࠊฟຊಀᩘࠊ⤯ᑐ⥺㔞㸧࡟ຍ࠼࡚ࠊࣔࣥࢸ
࣮࢝ࣝࣟ࣋ࢫࡢࢩࢫࢸ࣒ࡢࡓࡵ࡟௚ࡢࢥ࣑ࢵࢩࣙ
ࢽࣥࢢ᝟ሗࡀᚲせ࡞ࡇ࡜ࡀ࠶ࡿ 9, 13, 220-226ࠋ
㟁Ꮚ⥺ࡢࢥ࣑ࢵࢩࣙࢽࣥࢢ࡛ࠊࣔࣥࢸ࢝ࣝࣟィ⟬
࡟ࡼࡗ࡚ᚓࡓ࢚ࢿࣝࢠ࣮ࢫ࣌ࢡࢺࣝ࡜⥺㔞ィ⟬ࢆ
ᐇドࡍࡿࡓࡵࡢࢹ࣮ࢱࡀᚲせ࡜࡞ࡿࡇ࡜ࡀ࠶ࡿࠋࡑ
ࢀࡒࢀࡢࣔࣥࢸ࣭࢝ࣝࣟ࢔ࣝࢦࣜࢬ࣒ࠊ౛࠼ࡤ࣎ࢡ
ࢭ࣭ࣝࣔࣥࢸ࢝ࣝࣟ 222 ࡲࡓࡣ࣐ࢡࣟࣔࣥࢸ࢝ࣝࣟ
223, 224
࡛ࠊࢥ࣑ࢵࢩࣙࢽࣥࢢ࡟ᚲせ࡞ࢹ࣮ࢱࢭࢵࢺ
ࡀ␗࡞ࡿࡇ࡜ࡀ࠶ࡿࠋ
VI. ࣅ࣮࣒ࢹ࣮ࢱࡢຍᕤ
VI.A. ࢹ࣮ࢱࡢຍᕤ࡜᧯స
FIG. 13. Effect of data smoothing on the 6 MV 60° wedge profiles.
Circles are drawn to show the effect of smoothing.
ࢫ࢟ࣕࣥ࠾ࡼࡧࣀࣥࢫ࢟ࣕࣥࡢࣅ࣮࣒ࢹ࣮ࢱྲྀ
ᚓᚋࠊTPS ࡟ࢹ࣮ࢱࢆⓏ㘓ࡍࡿ๓࡟ຍᕤࡀᚲせ࡞ࡇ
࡜ࡀ࠶ࡿࠋከࡃࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡛ࡣࠊࣉࣟ
ࣇ࢓࢖ࣝࡢࢭࣥࢱࣜࣥࢢࠊࢫ࣒࣮ࢪࣥࢢࡸᑐ⛠໬࡞
࡝ࠊከᩘࡢࢶ࣮ࣝࡀ౑⏝࡛ࡁࡿࠋຍᕤࡢ⛬ᗘࡣࠊࢫ
࢟ࣕࢼࡢࢱ࢖ࣉ㸦ࢲ࢖࣮࢜ࢻࡸ㐃⥆ⓗ࡞⥺㔞⋡࣮ࣔ
ࢻ࡛ࡢࢫ࢟ࣕࣥ㸧
ࠊࢭࢵࢺ࢔ࢵࣉ⢭ᗘ࠾ࡼࡧ⿦⨨⮬
యࡢ≉ᛶ࡞࡝࡟౫Ꮡࡍࡿࠋ
VI.B. ࢫ࣒࣮ࢪࣥࢢ࣭࣑࣮ࣛࣜࣥࢢ࠾ࡼࡧࢧ࣐ࣛ࢖
ࢪࣥࢢ
ࡍ࡭࡚ࡢ ᐃࢹ࣮ࢱࡣࠊࢩࢫࢸ࣒࡟౫Ꮡࡋࡓࣀ࢖
ࢬࢆྵࡴࠋࢫ࣒࣮ࢪࣥࢢ࡜ࣇ࢕ࣝࢱࣜࣥࢢ᧯సࡣࠊ
ࣀ࢖ࢬࢆ㝖ཤࡋࠊ┿ࡢࢹ࣮ࢱࢆྲྀࡾฟࡍࡇ࡜࡟ᙺ❧
ࡘࠋࡇࢀࡣపᇦ㏻㐣ࣇ࢕ࣝࢱ࡛ࡶ࠶ࡾࠊ㠀㐃⥆ⓗࠊ
㗦ᩄࠊᲲ≧࡞࡝ࡢ㧗࿘Ἴᡂศࢆ㝖ཤࡍࡿࠋࢫ࣒࣮ࢪ
ࣥࢢἲ࡟ࡣࠊ᭱ᑠ஧஌ࠊ୰ኸ್ࠊ⟬⾡ᖹᆒࠊᗄఱᖹ
ᆒࠊ⛣ືᖹᆒࠊ3 ḟࢫࣉࣛ࢖ࣥࠊᣦᩘ㛵ᩘࠊໟ⤡⥺ࠊ
࢞࢘ࢩ࢔ࣥࠊࣇ࣮࢚ࣜኚ᥮ࠊ࣋ࢪ࢙ἲ࡞࡝ࠊከᩘࡢ
ᡭἲࡀ࠶ࡿ 227 - 229ࠋࡋ࠿ࡋ࡞ࡀࡽࠊࡍ࡭࡚ࡢᡭ㡰ࡀࠊ
‶㊊࡛ࡁࡿ⤖ᯝࢆ୚࠼ࡿ࡜࠸࠺ࢃࡅ࡛ࡣ࡞࠸ࠋ࡝ࡢ
ᡭ㡰ࡀࠊ ᐃࡋࡓ᭤⥺ࡢᮏ㉁ⓗ࡞ᙧ≧ࢆᦆ࡞ࢃࡎ࡟ࠊ
ࣀ࢖ࢬࢆపῶ࡛ࡁࡿ࠿ࢆุ᩿ࡍࡿࡓࡵࠊ␗࡞ࡿࢫ࣒
࣮ࢪࣥࢢ᧯సࢆヨࡉ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋࡍ࡞ࢃࡕࠊ
60°࢙࢘ࢵࢪࡢ⥺㔞ࣉࣟࣇ࢓࢖࡛ࣝࠊᲲ≧ࡢࣀ࢖ࢬ
ࢆ㝖ཤࡍࡿࡼ࠺࡞ሙྜ࡛࠶ࡿࠋ㐣ᗘࡢࢫ࣒࣮ࢪࣥࢢ
ࡀᚲせ࡞ሙྜࡣࠊࢫ࢟ࣕࣥ㏿ᗘࡢపୗࡸࢧࣥࣉࣜࣥ
ࢢ㛫㝸ࡢᘏ㛗࡞࡝ࢆ⾜࠸ࠊࢹ࣮ࢱࢆᨵၿࡉࡏࡿࡇ࡜
ࡀᚲせ࡜࡞ࡿࠋ
48
ࢭࣥࢱࣜࣥࢢ࣭ࢶ࣮ࣝࡣࠊ࣮࢜ࣉࣥ↷ᑕ㔝࡛ࡣ㐺
ษ࡟ᶵ⬟ࡍࡿࠋࡋ࠿ࡋ࡞ࡀࡽࠊ෌ࢭࣥࢱࣜࣥࢢࡢ㔞
ࡀ㐣๫࡛࠶ࡿ㸦౛࠼ࡤ 0.05 cm ࢆ㉸࠼ࡿ㸧ሙྜࡣࠊ
ࢫ࢟ࣕࣥࢭࢵࢺ࢔ࢵࣉࡢࣅ࣮࣒୰ᚰࡢᨵၿࢆ᳨ウ
ࡍࡿᚲせࡀ࠶ࡿࠋ౛࠼ࡤࠊࢭࣥࢱࣜࣥࢢ࣭ࢶ࣮ࣝࡣ
࢙࢘ࢵࢪࢆ⏝࠸ࡓ↷ᑕ㔝࡟ࡣᶵ⬟ࡋ࡞࠸ࡓࡵࠊ఩⨨
ㄗᕪࢆ⏕ࡌࡿྍ⬟ᛶࡀ࠶ࡿࠋ
ࣉࣟࣇ࢓࢖ࣝࡢᑐ⛠໬ࢆ⾜࠺͆make symmetrical͇
ࡸ͆mirror͇ࢶ࣮ࣝࡣࠊ࣮࢜ࣉࣥ↷ᑕ㔝࡛ࡣ᭷⏝࡛
࠶ࢁ࠺ࠋࡋ࠿ࡋ࡞ࡀࡽࠊ㝖ཤࡍ࡭ࡁ㠀ᑐ⛠ࡢ㔞ࡀ㐣
๫࡞ሙྜ㸦࣮࢜ࣉࣥ↷ᑕ㔝ࡢࢫ࡛࢟ࣕࣥ 0.5%ࢆ㉸࠼
ࡿ㠀ᑐ⛠ᛶ࡞࡝㸧ࠊ3 ḟඖỈࣇ࢓ࣥࢺ࣒ࡀỈᖹタ⨨ࡉ
ࢀ࡚࠸ࡿ࠿ࠊࡲࡓࣅ࣮࣒ࡢᑐ⛠ᛶ࡞࡝ࢆ☜ㄆࡍ࡭ࡁ
࡛࠶ࡿࠋࡇࢀࡣ࢙࢘ࢵࢪ↷ᑕ㔝࠿ࡽ࣮࢜ࣉࣥ↷ᑕ㔝
ࡢ㠀ᑐ⛠ࢆ㝖ཤࡍࡿ᪉ἲࡣ↓࠸ࡓࡵ࡛࠶ࡿࠋ ᐃࢹ
࣮ࢱ࡟㔜኱࡞ຍᕤ㸦ࡍ࡞ࢃࡕࠊࢭࣥࢱࣜࣥࢢࠊࢫ࣒
࣮ࢪࣥࢢࠊ㠀ᑐ⛠ࢆಟṇࡍࡿ࣑࣮ࣛࣜࣥࢢ㸧ࢆᚲせ
࡜ࡍࡿሙྜࡣࠊࢹ࣮ࢱࡢ෌ྲྀᚓࢆ᳨ウࡍ࡭ࡁ࡛࠶ࡿࠋ
Ⰻዲ࡞ ᐃࢹ࣮ࢱࢭࢵࢺࡣࠊ᭱ప㝈ࡢຍᕤ࡛༑ศ࡛
࠶ࡿࠋ
VI.B.1. ᩘᏛ㛵ᩘ࡜ࣇ࢕ࣝࢱ
ࡓ࠸࡚࠸ࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡣࠊࢫ࣒࣮ࢪࣥ
ࢢࠊ࣑࣮ࣛࣜࣥࢢ࠾ࡼࡧࢧ࣐ࣛ࢖ࢪࣥࢢ࡟౑⏝ࡍࡿ
㛵ᩘ࡜ࣇ࢕ࣝࢱࡢヲ⣽࡞ㄝ᫂᭩ࡀ⏝ពࡉࢀ࡚࠸ࡿࠋ
ࢩࢫࢸ࣒ࡢ᝟ሗࡣࠊ〇㐀ᴗ⪅ࡢㄝ᫂᭩ࢆཧ↷ࡋ࡚ᚓ
ࡿᚲせࡀ࠶ࡿࠋࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡟௜ᒓࡍࡿ㏻
VII. まとめと勧告
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
ᖖࡢࢯࣇࢺ࢙࢘࢔ࡣࠊ⛣ືᖹᆒࠊ3 ḟࢫࣉࣛ࢖ࣥࠊ
ෆᤄᶵ⬟࡜ࣇ࣮࢚ࣜኚ᥮࡞࡝ࡀ฼⏝࡛ࡁࡿࠋ࠶ࡽ࠿
(1) ⿦⨨ࡢ✀㢮ࠊTPS ࡟≉᭷࡞ᚲせ᮲௳ࠊ᧯సୖࡢ
ࡌࡵᇶ‽࡜࡞ࡿ↷ᑕ㔝ࢹ࣮ࢱ࡜ẚ㍑ࡋ࡚ࠊࡇࢀࡽࡢ
ၥ㢟Ⅼࠊ⿦⨨ࡢ᧯స≧ែ࡜ࣅ࣮࣒࢚ࢿࣝࢠ࣮࡟
ᶵ⬟ࡢ᭷ຠᛶࢆ☜ㄆࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋ
ࡼࡿࢹ࣮ࢱྲྀᚓࡢ⠊ᅖࢆつᐃࡍࡿࠋ
(2) ᘧ(1)ࡢ௬ᐃ࡟ᇶ࡙࠸࡚ࠊ⿦⨨ࡢࢥ࣑ࢵࢩࣙࢽࣥ
VI.B.2. ࢫ࣒࣮ࢪࣥࢢ࡟࠾ࡅࡿࡺࡀࡳ
ከࡃࡢࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡣࠊ ᐃࢹ࣮ࢱࢆࢫ
ࢢࡢࡓࡵ࡟ᚲせ࡞᫬㛫ࢆᴫ⟬ࡍࡿࠋ
(3) ឤᗘࡀ㧗ࡃࠊయ✚ࡀᑠࡉࡃࠊࣀ࢖ࢬࡀᑠࡉࡃࠊ
࣒࣮ࢪࣥࢢࡍࡿࡓࡵ࡟ᵝࠎ࡞ࣇ࢕ࣝࢱࡀ⏝ពࡉࢀ
࠿ࡘ⥺㔞⋡౫Ꮡᛶ࠾ࡼࡧ࢚ࢿࣝࢠ࣮౫Ꮡᛶࡢ
࡚࠸ࡿࠋࡶࡗ࡜ࡶࡼࡃ฼⏝ࡉࢀࡿࡶࡢࡣࠊ3 ḟࢫࣉ
ᑠࡉ࠸㐺ษ࡞᳨ฟჾࢆ⏝࠸ࡿࠋ
ࣛ࢖ࣥἲ࡛࠶ࡿࠋࡓࡔࡋ࢜ࣜࢪࢼࣝࢹ࣮ࢱࢆࢫ࣒࣮
ࢪࣥࢢࡍࡿࡇ࡜࡛ࠊࢹ࣮ࢱࢆṍࡵ࡚ࡋࡲ࠺ࡇ࡜ࡀ࠶
(4) య✚ࡢᑠࡉ࠸㟁㞳⟽⥺㔞ィࡣࠊගᏊ⥺ࡢ┦ᑐ⥺
㔞 ᐃ࡟ᮃࡲࡋ࠸ࠋ
ࡿࠋ≉࡟ࠊ༙ᙳ㒊ࡸ࢙࢘ࢵࢪࣉࣟࣇ࢓࢖ࣝࡢࡼ࠺࡞
(5) 㟁Ꮚ⥺⏝ࢲ࢖࣮࢜ࢻ᳨ฟჾࡣࠊ㟁Ꮚ⥺ࡢ┦ᑐ⥺
⥺㔞໙㓄ࡢ኱ࡁ࡞㡿ᇦ࡛㢧ⴭ࡜࡞ࡿࠋFig. 13 ࡟ࠊࢫ
㔞ࡢ ᐃ࡟ᮃࡲࡋ࠸ࠋࡓࡔࡋࠊไືᨺᑕ⥺࡟ᑐ
࣒࣮ࢪࣥࢢࢆ⧞ࡾ㏉ࡋࡓࡇ࡜࡟ࡼࡿࣉࣟࣇ࢓࢖ࣝ
ࡍࡿᛂ⟅ࡀ␗࡞ࡿ஦ࡀ࠶ࡿࡓࡵࠊไືᨺᑕ⥺ᡂ
ࡢኚᙧࢆ♧ࡍࠋ
ศࡣ㟁㞳⟽⥺㔞ィ࡛ ᐃࡍࡿࠋ
ࢫ࣒࣮ࢪࣥࢢࡀఱᅇࡲ࡛チᐜࡉࢀࡿ࠿࡟ࡘ࠸࡚
(6) ᐃࢆ㛤ጞࡍࡿ๓࡟ࠊࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒ࡢ
ࡢ࣮ࣝࣝࡸሗ࿌ࡣ࡞࠸ࠋ୍⯡ⓗ࡟ࡣࢹ࣮ࢱࢆṍࡵࡎ
ࣛ࣋ࣜࣥࢢ㸦x ࡸ y ࡞࡝㍈ྡࡢタᐃ㸧࡜タ⨨఩
࡟ࠊ༢⣧࡟ࢫ࣒࣮ࢪࣥࢢ࡛ࡁࡿࡼ࠺࡞࢜ࣜࢪࢼࣝࢹ
⨨ࢆ☜ㄆࡍࡿࠋ
࣮ࢱࢆྲྀᚓࡍࡿᚲせࡀ࠶ࡿࠋ1㹼2 ᅇࡢࢫ࣒࣮ࢪࣥࢢ
(7) ࢫ࢟ࣕࢽࣥࢢࢩࢫࢸ࣒࡟ࡣࠊ㐺ษ࡞㏿ᗘࠊ㐜ᘏ
ࡣチᐜࡉࢀࡿࡔࢁ࠺ࠋ஦ᚋホ౯ࡢࡓࡵ࡟࢜ࣜࢪࢼࣝ
᫬㛫࠾ࡼࡧࢧࣥࣉࣜࣥࢢ᫬㛫ࢆタᐃࡍࡿࠋ
ࡢࢹ࣮ࢱࢆ↓ຍᕤࡢ≧ែ࡛ಖᏑࡍࡿࡇ࡜ࢆᙉࡃ᥎
ዡࡍࡿࠋ
(8) PDD ࡢࢫ࢟ࣕࣥࡣࠊ⾲㠃Ѝ῝㒊ࡼࡾ῝㒊Ѝ⾲㠃
ࡢ᪉ྥ࡛ྲྀᚓࡍࡿࠋ
(9) ࢹ࣮ࢱࡢྲྀᚓ࡟せࡍࡿ᫬㛫࡜⢭ᗘࢆ⪃៖ࡋ࡚ࠊ
VI.C. ࣀࣥࢫ࢟ࣕࣥࢹ࣮ࢱࡢຍᕤ
㐺ษ࡞ ᐃ㛫㝸ࢆタᐃࡍࡿࠋ
ࣀࣥࢫ࢟ࣕࣥࢹ࣮ࢱ࡟ࡘ࠸࡚ࡣࠊࣅ࣮࣒ࣃ࣓࣮ࣛ
(10) ᳨ฟჾ࡟㐺ษ࡞༳ຍ㟁ᅽ࡜ᴟᛶࢆタᐃࡍࡿࠋ
ࢱࡢ᫂☜࡞࢚࣮ࣛ㸦እࢀ್㸧ࢆᙉㄪ࡛ࡁࡿࡓࡵࠊࢢ
(11) ↷ᑕ㔝࡟ධࡿࢣ࣮ࣈࣝࡢ㛗ࡉࡣࠊྍ⬟࡞㝈ࡾ▷
ࣛࣇ໬ࢆ່ࡵࡿࠋ౛࠼ࡤࠊ↷ᑕ㔝ࢧ࢖ࢬ࡟ᑐࡍࡿ Scࠊ
Sp ࡢࣉࣟࢵࢺࡣࠊᑠࡉ࠸↷ᑕ㔝࡛ᛴ⃭࡟ኚ໬ࡋࠊ୍
ࡃࡍࡿࠋ
(12) ࢹ࣮ࢱ ᐃࡢ✵㛫ศゎ⬟ࡀ᭱㧗࡜࡞ࡿࡼ࠺࡟ࠊ
᪉኱ࡁ࡞↷ᑕ㔝࡛ࡣࠊ⦆ࡸ࠿࡞࣮࢝ࣈࢆ♧ࡉ࡞ࡅࢀ
᳨ฟჾࡢ▷㍈ࢆ ᐃ᪉ྥ࡜୍⮴ࡉࡏࡿࠋ
ࡤ࡞ࡽ࡞࠸ࠋ᫂ࡽ࠿࡟࣮࢝ࣈ࡟ἢࢃ࡞࠸ ᐃⅬࡣࠊ
(13) TPS ࡢᇶ‽᮲௳࡟࡛ࡁࡿࡔࡅ㏆࠸ṇつ໬ࡢⅬ
ィ⟬㛫㐪࠸ࢆ෌☜ㄆࡍ࡭ࡁ࡛࠶ࡿࠋࡲࡓᚲせ࡟ᛂࡌ
࡜ᡭ㡰ࢆ⏝࠸ࡿ㸦౛ࠊගᏊ⥺ࡣࠊ⾲㠃࡛ࡣΰධ
࡚ࠊࢹ࣮ࢱࡢ⢭ᗘࢆྥୖࡉࡏࡿࡓࡵ෌ ᐃࡋ࡞ࡅࢀ
㟁Ꮚ࡟ࡼࡿㄗᕪࢆᅇ㑊ࡍࡿࡓࡵࠊdmax ࡛ṇつ໬
ࡤ࡞ࡽ࡞࠸ࠋ
ࡋ࡞࠸࡞࡝㸧ࠋ
(14) ࡍ࡭࡚ࡢ ᐃࢹ࣮ࢱ࡟ࠊ⡆₩࡞࣏࣮ࣞࢺࢆ᭩ࡃࠋ
VII. ࡲ࡜ࡵ࡜່࿌
(15) ࣏࣮ࣞࢺ࡜ ᐃࢹ࣮ࢱࢆ෌☜ㄆࡍࡿࠋ༑ศ࡞⤒
VII.A. ່࿌
㦂ࢆ᭷ࡍࡿㄆᐃ་Ꮫ≀⌮ኈࡀ ᐃࢹ࣮ࢱࡢ⊂
௚ࡢ࣏࣮ࣞࢺ࡜ྠᵝࠊࡇࡢᩥ❶ࡶᇳ➹᫬ࡢ᭱᪂≧
❧᳨ドࢆ⾜࠸ࠊ࣏࣮ࣞࢺࢆసᡂࡍࡿࠋ
ἣࢆ཯ᫎࡋࡓࡶࡢ࡛࠶ࡿࠋ௒ᚋࡢ἞⒪⿦⨨ࠊ἞⒪ィ
⏬ࠊ ᐃᢏ⾡ࡢⓎᒎ࡟ࡼࡾࠊࡇࡢ࣏࣮ࣞࢺ࡛ࡢ᥎ዡ
(16) ࡍ࡭࡚ࡢ㟁Ꮚࢹ࣮ࢱࠊゎᯒࢹ࣮ࢱ࠾ࡼࡧࢫࣉࣞ
ࢵࢻࢩ࣮ࢺࡢࣂࢵࢡ࢔ࢵࣉࢆྲྀࡿࠋ
ࡀ≧ἣ࡜ྜࢃ࡞ࡃ࡞ࡿࡇ࡜ࡶ⪃࠼ࡽࢀࡿࡓࡵࠊㄞ⪅
(17) ࣋ࣥࢲ࣮࠿ࡽᥦ౪ࡉࢀࡓࢹ࣮ࢱࡣࠊཧ↷⏝࡜ࡋ
ࡣᖖ࡟᭱᪂ࡢᢏ⾡ࢆᢕᥱࡋࠊࡇࡢ࣏࣮ࣞࢺࡣ୍⯡ⓗ
࡚ࡢࡳ฼⏝ࡍ࡭ࡁ࡛࠶ࡿࠋࢥ࣑ࢵࢩࣙࢽࣥࢢࢹ
࡞ᡭ㡰᭩࡜ࡋ࡚ά⏝ࡍ࡭ࡁ࡛࠶ࡿࠋ
࣮ࢱࡢ௦⏝࡜ࡋ࡚ࡣ࡞ࡽ࡞࠸ࠋ
49
医学物理 第 33 巻 第 1 号
VII. まとめと勧告
(10) ௵ពࡢ῝ࡉ࡟࠾ࡅࡿࠊ᭱኱↷ᑕ㔝࡛ࡢࢯࣇࢺ࢘
VII.B. ὀព
(1) 〇㐀ᴗ⪅ࡀᥦ౪ࡋࡓࢹ࣮ࢱ࡟౫Ꮡࡋ࡚ࡣ࠸ࡅ
࢙ࢵࢪ↷ᑕ㔝ࡢ㍈እ⥺㔞ࡢ⾲
(11) 㟁Ꮚ⥺ࢥ࣮ࣥࡢฟຊ⥺㔞ẚ࡜ᐇຠ⥺※㊥㞳
࡞࠸ࠋࣅ࣮࣒ࢹ࣮ࢱࡣྠࡌ〇㐀ᴗ⪅ࡢྠࡌࣔࢹ
㸦effective SSD㸧
ࣝࡢ⿦⨨㛫࡛ࡶ␗࡞ࡿࡓࡵࠊᖖ࡟⢭ᗘࢆ☜ㄆࡋ
(12) 㟁Ꮚ⥺ࡢ PDD ⾲
࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋ
(13) 㟁Ꮚ⥺࡜ගᏊ⥺ࡢ PDD ࡜ࣉࣟࣇ࢓࢖ࣝ࠿ࡽ⟬
(2) ཷࡅධࢀヨ㦂ࡢࢹ࣮ࢱࡣࠊࢥ࣑ࢵࢩࣙࢽࣥࢢࢹ
ฟࡋࡓࠊᇶ‽↷ᑕ㔝࡛ࡢ➼⥺㔞᭤⥺ࠋ
࣮ࢱࡢ௦⏝࡜ࡣ࡞ࡽ࡞࠸ࠋཷࡅධࢀヨ㦂ࡢࢹ࣮
(14) ࡍ࡭࡚ࡢࢫ࢟ࣕࣥࢹ࣮ࢱࡢ༳ๅ≀
ࢱࡣཧ↷ࡢࡳࢆ┠ⓗ࡜ࡋ࡚࠾ࡾࠊ㝈ᐃⓗ࡞ᩓ஘
(15) ᪋タෆࡸ␗࡞ࡿ᪋タ࡛ࡢ㢮ఝ⿦⨨ࡢࢹ࣮ࢱ࡜
᮲௳ୗ࡛ ᐃࡉࢀ࡚࠸ࡿྍ⬟ᛶࡀ࠶ࡿࠋ
ࡢẚ㍑ࠋࡴࡸࡳ࡟ࢹ࣮ࢱࢆ౑⏝ࡋ࡚ࡣ࡞ࡽ࡞࠸
(3) ᳨ฟჾࡢ㍈᪉ྥ㸦ࢫ࢟ࣕࣥ᪉ྥ࡜᳨ฟჾࡢ㛗㍈
ࡀࠊ࣋ࣥࢲ࣮ࡀᥦ౪ࡋࡓ͆golden͇ࢹ࣮ࢱ࡜ẚ
࡜ࢆ୍⮴ࡉࡏࡿࡼ࠺࡞タ⨨㸧࡛ࢫ࢟ࣕࣥࡋ࡚ࡣ
࠸ࡅ࡞࠸ࠋ
㍑ࡍࡿࡇ࡜ࡣၥ㢟࡞࠸ࠋ
(16) ࣋ࣥࢲ࣮ࡀᥦ౪ࡋࡓࢹ࣮ࢱ࡜ࡢẚ㍑⤖ᯝࠋࡓࡔ
(4) ࢫ࣒࣮ࢪࣥࢢࡲࡓࡣᩘᏛⓗࣇ࢕ࣝࢱࢆከ⏝ࡋ
ࡋᥦ౪ࡉࢀࡓࢹ࣮ࢱࡣࠊཧ↷⏝࡜ࡋ࡚ࡢࡳ౑⏝
࡚ࠊࢹ࣮ࢱࢆ㐣ᗘ࡟ຍᕤࡋ࡞࠸ࠋ
ࡋࠊࢥ࣑ࢵࢩࣙࢽࣥࢢࢹ࣮ࢱࡢ௦⏝࡜ࡣ࡞ࡽ࡞
(5) ᐃࢹ࣮ࢱ࡟ࡣ༑ศ࡟ὀពࢆᡶ࠺ࠋ௨㝆ࡢࢫ࢟
ࣕࣥࢆᐇ᪋ࡍࡿ๓ࡲ࡛࡟ࠊࡍ࡭࡚ࡢ୙ලྜࡢၥ
࠸ࠋ
(17) ࡍ࡭࡚ࡢ㟁Ꮚࢹ࣮ࢱࠊゎᯒࡉࢀࡓࢹ࣮ࢱ࡜ࢫࣉ
㢟Ⅼࢆㄪᰝࡋ࡚ᢕᥱࡍࡿᚲせࡀ࠶ࡿࠋ
(6) ᑡ࡞ࡃ࡜ࡶ୍᪥࡟୍ᗘࡣࠊỈࣇ࢓ࣥࢺ࣒ࡢỈᖹ
ࣞࢵࢻࢩ࣮ࢺࡢࣂࢵࢡ࢔ࢵࣉࢆྲྀࡿࠋ
(18) ࣅ࣮࣒ࢹ࣮ࢱࡢྲྀᚓ᪉ἲ࡜ࡑࡢ᮲௳ࡢヲ⣽ࢆࠊ
ࢆ☜ㄆࡍࡿࠋ
VII.C. ࢥ࣑ࢵࢩࣙࢽࣥࢢ࣏࣮ࣞࢺ
ሗ࿌᭩࡜ࡋ࡚ṧࡍࠋ
ㅰ㎡
࣏࣮ࣞࢺࡢ⦅㞟࡜ᣦ᥹ࢆᇳࡗ࡚㡬࠸ࡓ Sun
ࢥ࣑ࢵࢩࣙࢽࣥࢢ⤖ᯝࡢ࣏࣮ࣞࢺࡣࠊᑗ᮶ⓗ࡟᳨
ドࡍࡿࡇ࡜ࡀ࡛ࡁࠊッゴࡢ㝿࡟ㄝ᫂㈐௵ࢆᯝࡓࡏࡿ
Nuclear ♫ࡢ James Pinkerton Ặ࡟ࠊཌࡃឤㅰࢆ⏦ࡋ
ࡼ࠺࡟ࠊ᫂☜࠿ࡘලయⓗ࡟グ㏙ࡋࠊࡉࡽ࡟⨫ྡ࡜᪥
ୖࡆࡲࡍࠋࡇࡢ࣏࣮ࣞࢺࢆᰯ㜀ࡋࡓ Ying Xiao Ặࠊ
௜ࡶグ㍕ࡍࡿࡇ࡜ࢆ᥎ዡࡍࡿࠋ
David Followill Ặࠊ Per Halvorsen Ặࠊ Douglas Frye
௨ୗࡣࠊࢥ࣑ࢵࢩࣙࢽࣥࢢ࣏࣮ࣞࢺ࡟グ㍕ࡋ࡞ࡅࢀ
Ặࠊ࠾ࡼࡧ἞⒪≀⌮ጤဨ఍㸦TPC㸧ࡢ௚ࡢከࡃࡢጤ
ࡤ࡞ࡽ࡞࠸㡯┠ࡢ౛࡛࠶ࡿࠋ
ဨ࡟ឤㅰ⮴ࡋࡲࡍࠋ
(1) ṇᘧ࡞ࢥ࣑ࢵࢩࣙࢽࣥࢢ࣏࣮ࣞࢺࡣࠊ௨ୗࡢ㡯
┠ࢆ᫂☜࡟ᴫㄝࡍࡿࠋ
㸦 ᐃィ⏬ࡢ⠊ᅖ㸦┠ⓗ㸧ࠊ
ᐃ㡯┠ࠊ᪉ἲࠊ౑⏝ࡋࡓ⿦⨨ࠊ⤖ᯝ࠾ࡼࡧ㐺
ษ࡞ὀពࡀ᪋ࡉࢀࡓṇつ໬ᡭ㡰㸧
(2) ࣮࢜ࣉࣥ↷ᑕ㔝ࡢගᏊ⥺ PDD ࡜ TMR ࡢ⾲
(3) ࢙࢘ࢵࢪ↷ᑕ㔝ࡢගᏊ⥺ PDD ࡜ TMR ࡢ⾲
(4) ගᏊ⥺ࡢฟຊಀᩘ㸦ScpࠊScࠊSp㸧ࡢ⾲
(5) ↷ᑕ㔝࡜῝ࡉ࡟౫Ꮡࡍࡿ࢙࢘ࢵࢪಀᩘࡢ⾲
(6) ࢯࣇࢺ࢙࢘ࢵࢪಀᩘࡢ⾲
(7) ㏱㐣ಀᩘࡢ⾲
(8) ௵ពࡢ῝ࡉ࡟࠾ࡅࡿࠊ᭱኱↷ᑕ㔝࡛ࡢ࣮࢜ࣉࣥ
↷ᑕ㔝ࡢ㍈እ⥺㔞ࡢ⾲
(9) ௵ពࡢ῝ࡉ࡟࠾ࡅࡿࠊ᭱኱↷ᑕ㔝࡛ࡢ࢙࢘ࢵࢪ
↷ᑕ㔝ࡢ㍈እ⥺㔞ࡢ⾲
50
ཧ⪃ᩥ⊩
1
TG-40, “Comprehensive QA for radiation oncology: Report of AAPM
Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581–
618 (1994).
2
TG-53, “American Association of Physicists in Medicine Radiation
Therapy Committee Task Group 53: Quality assurance for clinical
radiotherapy treatment planning,” Med. Phys. 25, 1773–1829 (1998).
3
P. D. LaRiviere, “The quality of high-energy x-ray beams,” Br. J.
Radiol. 62, 473–481 (1989).
4
A. Kosunen and D. W. O. Rogers, “Beam quality specification for
photon beam dosimetry,” Med. Phys. 20, 1181–1188 (1993).
5
N. I. Kalach and D. W. O. Rogers, “Which accelerator photon beams
are clinic-like for reference dosimetry purposes?,” Med. Phys. 30,
1546–1555 (2003).
6
D. S. Followill, R. C. Tailor, V. M. Tello, and W. F. Hanson, “An
empirical relationship for determining photon beam quality in TG-21
from a ratio of percent depth doses,” Med. Phys. 25, 1202–1205
( 1998).
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
7
R. C. Tailor, V. M. Tello, C. B. Schroy, M. Vossler, and W. F. Hanson, “A
generic off-axis energy correction for linac photon beam dosimetry,”
Med. Phys. 25, 662–667 (1998).
8
R. C. Tailor, D. S. Followill, and W. F. Hanson, “A first order
approximation of field-size and depth dependence of wedge
transmission,” Med. Phys. 25, 241–244 ( 1998).
9
A. Tzedakis, J. Damilakis, M. Mazonakis, J. Stratakis, H. Varveris, and
N. Gourtsoyiannis, “Influence of initial electron beam parameters on
Monte Carlo calculated absorbed dose distributions for radiotherapy
photon beams,” Med. Phys. 31, 907–913 ( 2004).
10
G. X. Ding, “An investigation of accelerator head scatter and output
factor in air,” Med. Phys. 31, 2527–2533 ( 2004).
11
G. X. Ding, “Using Monte Carlo simulations to commission photon
beam output factors – a feasibility study,” Phys. Med. Biol. 48, 3865–
3874 (2003).
12
P. J. Keall, J. V. Siebers, R. Jeraj, and R. Mohan, “The effect of dose
calculation uncertainty on the evaluation of radiotherapy plans,”
Med. Phys. 27, 478–484 ( 2000).
13
G. X. Ding, D. M. Duggan, and C. W. Coffey, “Commissioning
stereotactic radiosurgery beams using both experimental and
theoretical methods,” Phys. Med. Biol. 51, 2549–2566 ( 2006).
14
TG-10, “Code of practice for x-ray therapy linear accelerators,” Med.
Phys. 2, 110–121 ( 1975).
15
R. Nath, P. J. Biggs, F. J. Bova, C. C. Ling, J. A. Purdy, J. Van de Geijn,
and M. S. Weinhous, “AAPM code of practice for radiotherapy
accelerators: Report of AAPM Radiation Therapy Task Group No.
45,” Med. Phys. 21, 1093–1121 ( 1994).
16
IPEM Report No. 94, “Acceptance testing and commissioning of
linear accelerators,” Institute of Physics and Engineering in Medicine,
2007.
17
AAPM Report No. 54, Stereotactic Radiosurgery: Report of the Task
Group 42, Radiation Therapy Committee, AAPM Report No. 54
(American Institute of Physics, Woodbury, NY, 1995).
18
G. Ezzell, J. Galvin, D. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia,
Y. Xiao, L. Xing, and C. Yu, “Guidance document on delivery,
treatment planning, and clinical implementation of IMRT: Report of
the IMRT Subcommittee of the AAPM Radiation Therapy Committee,”
Med. Phys. 30, 2089–2115 ( 2003).
19
TG-120, “Dosimetry tools and techniques for IMRT,” Med. Phys. 38,
1313–1338 (2011).
20
TG-74, “Report of AAPM Therapy Physics Committee Task Group
74: In-air output ratio, Sc, for megavoltage photon beams,” Med. Phys.
36, 5261–5291 (2009).
21
S. Pai, I. J. Das, J. F. Dempsey, K. L. Lam, T. J. LoSasso, A. J. Olch, J.
R. Palta, L. E. Reinstein, D. Ritt, and E. E. Wilcox, “TG-69:
Radiographic film for megavoltage beam dosimetry,” Med. Phys. 34,
2228–2258 ( 2007).
22
TG-70, “Recommendations for clinical electron beam dosimetry:
Supplement to the recommendations of Task Group 25,” Med. Phys.
36, 3239–3279 (2009).
23
AAPM Report No. 23, Total Skin Electron Therapy: Technique and
Dosimetry, AAPM Report No. 23, (American Institute of Physics,
Woodbury, NY, 1988).
24
AAPM Report No. 17, “The physical aspects of total and half body
photon irradiation,” American Association of Physicists in Medicine,
1986.
25
M. G. Marshall, “Matching the 6-MV photon beam characteristics of
two dissimilar linear accelerators,” Med. Phys. 20, 1743–1746 (1992).
26
J. Hrbacek, T. Depuydt, A. Nulens, A. Swinnen, and F. Van den
Heuvel, “Quantitative evaluation of a beam-matching procedure using
one-dimensional gamma analysis,” Med. Phys. 34, 2917–2927
( 2007).
27
I. J. Das and T. C. Zhu, “Thermal and temporal response of
ionization chambers in radiation dosimetry,” Med. Phys. 31, 573–578
( 2004).
28
A. Ho and B. R. Paliwal, “Stopping-power and mass
energy-absorption coefficient ratios for solid water,” Med. Phys. 13,
403–404 ( 1986).
29
V. M. Tello, R. C. Tailor, and W. F. Hanson, “How water equivalent are
water-equivalent solid materials for output calibration of photon and
electron beams?,” Med. Phys. 22, 1177–1189 ( 1995).
30
R. C. Tailor, C. Chu, D. S. Followill, and W. F. Hanson, “Equilibration
of air temperature inside the thimble of a Farmer-type ion chamber,”
Med. Phys. 25, 496–502 ( 1998).
31
L. Weber, P. Nilsson, and A. Ahnesjö, “Build-up cap materials for
measurement of photon head-scatter factors,” Phys. Med. Biol. 42,
1875–1886 ( 1997).
32
J. Li and T. C. Zhu, “Measurement of in-air output ratios using
different miniphantom materials,” Phys. Med. Biol. 51, 3819–3834
( 2006).
33
L. J. Humphries and J. A. Purdy, in Advances in Radiation
Oncology Physics Dosimetry, Treatment Planning, and Brachytherapy:
Medical Physics Monograph No. 19, edited by J. A. Purdy ( American
Institute of Physics, New York, 1992), pp. 111–147.
34
G. Rickner, “Silicon diodes as detectors in relative dosimetry of
photon, electron and proton radiation fields,” Uppsala Universsitet,
1983.
35
G. Rickner and E. Grusell, “Effect of radiation damage on p-type
silicon detectors,” Phys. Med. Biol. 28, 1261–1267 (1983).
36
G. Rickner and E. Grusell, “General specifications for silicon
semiconductors for use in radiation dosimetry,” Phys. Med. Biol. 32,
1109–1117 (1987).
37
A. S. Saini and T. C. Zhu, “Temperature dependence of commercially
available diode detectors,” Med. Phys. 29, 622–630 ( 2002).
38
A. S. Saini and T. C. Zhu, “Dose rate and SDD dependence of
commercially available diode detectors,” Med. Phys. 31, 914–924
( 2004).
39
TG-62, Diode in vivo dosimetry for patients receiving external beam
radiation therapy, Report of the AAPM radiation therapy committee
Task Group No. 62 (Medical Physics, Madison, WI, 2005).
40
I. Griessbach, M. Lapp, J. Bohsung, G. Gademann, and D. Harder,
“Dosimetric characteristics of a new unshielded silicon diode and its
application in clinical photon and electron beams,” Med. Phys. 32,
3750–3754 (2005).
41
J. Shi, W. E. Simon, and T. C. Zhu, “Modeling the instantaneous dose
rate dependence of radiation diode detectors,” Med. Phys. 30, 2509–
2519 (2003).
42
H. Song, M. Ahmad, J. Deng, Z. Chen, N. J. Yue, and R. Nath,
“Limitations of silicon diodes for clinical electron dosimetry,” Radiat.
Prot. Dosim. 120, 56–59 ( 2006).
43
L. L. Wang and D. W. Rogers, “Monte Carlo study of Si diode
response in electron beams,” Med. Phys. 34, 1734–1742 ( 2007).
44
N. P. Sidhu, “Interfacing a linear diode array to a conventional water
scanner for the measurement of dynamic dose distributions and
comparison with a linear ion chamber array,” Med. Dosim. 24, 57–60
( 1999).
45
T. C. Zhu, L. Ding, C. R. Liu, J. R. Palta, W. E. Simon, and J. Shi,
“Performance evaluation of a diode array for enhanced dynamic
wedge dosimetry,” Med. Phys. 24, 1173–1180 ( 1997).
46
M. Heydarian, P. W. Hoban, W. A. Beckham, I. A. Borchardt, and A. H.
Beddoe, “Evaluation of a PTW diamond detector for electron beam
measurements,” Phys. Med. Biol. 38, 1035–1042 ( 1993).
47
P. W. Hoban, M. Heydarian, W. A. Beckham, and A. H. Beddoe,
“Dose rate dependence of a PTW diamond detector in the dosimetry
of a 6 MV photon beam,” Phys. Med. Biol. 39, 1219–1229 ( 1994).
48
V. S. Khrunov, S. S. Martynov, S. M. Vatnisky, I. A. Ermakov, A. M.
Chervjakov, D. L. Karlin, V. I. Fominych, and Y. V. Tarbeyev,
“Diamond detectors in relative dosimetry of photon, electron and
proton radiation fields,” Radiat. Prot. Dosim. 33, 155–157 (1990).
49
W. U. Laub, T. W. Kaulich, and F. Nusslin, “Energy and dose rate
dependence of a diamond detector in the dosimetry of 4 – 25 MV
photon beams,” Med. Phys. 24, 535–536 (1997).
50
S. Vatnitsky and H. Järvinen, “Application of natural diamond
detector for the measurement of relative dose distributions in
radiotherapy,” Phys. Med. Biol. 38, 173–184 (1993).
51
Y. S. Horowitz, “The theoretical and microdosimetric basis of
thermoluminescence and applications to dosimetry,” Phys. Med. Biol.
26, 765–824 (1981).
52
P. N. Mobit, P. Mayles, and A. E. Nahum, “The quality dependence of
LiF TLD in megavoltage photon beams: Monte Carlo simulation
and experiments,” Phys. Med. Biol. 41, 387–398 (1996).
53
P. N. Mobit, A. E. Nahum, and P. Mayles, “The energy correction
factor of LiF thermoluminescent dosemeters in megavoltage electron
beams: Monte Carlo simulations and experiments,” Phys. Med. Biol. 41,
51
医学物理 第 33 巻 第 1 号
979–993 (1996).
L. Duggan, C. Hood, H. Warren-Forward, M. Haque, and T. Kron,
“Variations in dose response with x-ray energy of LiF:Mg, Cu, P
thermoluminescence dosimeters: Implications for clinical dosimetry,”
Phys. Med. Biol. 49, 3831–3845 (2004).
55
A. Niroomand-Rad, C. R. Blackwell, B. M. Coursey, K. P. Gall, J. M.
Galvin, W. L. McLaughlin, A. S. Meigooni, R. Nath, J. E. Rodgers,
and C. G. Soares, “Radiographic film dosimetry: Recommendations of
AAPM Radiation Therapy Committee Task Group 55,” Med. Phys.
25, 2093–2115 ( 1998).
56
TG-25, “Clinical electron beam dosimetry: Report of AAPM
Radiation Therapy Committee Task Group No. 25,” Med. Phys. 18,
73–109 (1991).
57
R. Ramani, A. W. Lightstone, D. L. Mason, and P. F. O’Brien, “The
use of radiochromic film in treatment verification of dynamic
stereotactic radiosurgery,” Med. Phys. 21, 389–392 (1994).
58
J. L. Robar and B. G. Clark, “The use of radiographic film for
linear accelerator stereotactic radiosurgical dosimetry,” Med. Phys. 26,
2144–2150 ( 1999).
59
D. D. Leavitt and E. Klein, “Dosimetry measurement tools for
commissioning enhanced dynamic wedge,” Med. Dosim. 22, 171–176
( 1997).
60
F. F. Yin, “Physical penumbra change of beam profile due to film
digitization,” Med. Phys. 22, 803–805 (1995).
61
R. Ramani, S. Russell, and P. F. O’Brien, “Clinical dosimetry using
MOSFETs,” Int. J. Radiat. Oncol., Biol., Phys. 37, 959–964 (1997).
62
C. F. Chuang, L. Verhey, and P. Xia, “Investigation of the use of
MOSFET for clinical IMRT dosimetric verification,” Med. Phys. 29,
1109–1115 ( 2002).
63
G. S. Ibbott, M. J. Maryanski, P. Eastman, S. D. Holcomb, Y. Zhang, R.
G. Avison, M. Sanders, and J. C. Gore, “Three-dimensional
visualization and measurement of conformal dose distributions using
magnetic resonance imaging of BANG polymer gel dosimeters,” Int. J.
Radiat. Oncol., Biol., Phys. 38, 1097–1103 (1997).
64
R. K. Rice, J. L. Hansen, G. K. Svensson, and R. L. Siddon,
“Measurements of dose distributions in small beams of 6 MV x-rays,”
Phys. Med. Biol. 32, 1087–1099 (1987).
65
P. Francescon, S. Cora, and P. Chiovati, “Dose verification of an
IMRT treatment planning system with BEAM, EGS-based Monte Carlo
code,” Med. Phys. 30, 144–157 (2003).
66
W. U. Laub and T. Wong, “The volume effect of detectors in the
dosimetry of small fields used in IMRT,” Med. Phys. 30, 341–347
(2003).
67
F. Sanchez-Doblado, R. Capote, A. Leal, J. V. Rosello, J. I. Lagares, R.
Arrans, and G. H. Hartmann, “Micro ionization chamber for
reference dosimetry in IMRT verification: Clinical implications on
OAR dosimetric errors,” Phys. Med. Biol. 50, 959–970 ( 2005).
68
F. Araki, “Monte Carlo study of a Cyberknife stereotactic
radiosurgery system,” Med. Phys. 33, 2955–2963 (2006).
69
G. Bednarz, S. Huq, and U. F. Rosenow, “Deconvolution of detector
size effect for output factor measurement for narrow Gamma Knife
radiosurgery beams,” Phys. Med. Biol. 47, 3643–3649 (2002).
70
P. D. Higgins, C. H. Sibata, L. Siskind, and J. W. Sohn,
“Deconvolution of detector size effect for small field measurement,”
Med. Phys. 22, 1663–1666 (1995).
71
F. Garcia-Vicente, J. M. Delgado, and C. Peraza, “Experimental
determination of the convolution kernel for the study of the spatial
response of a detector,” Med. Phys. 25, 202–207 (1998).
72
P. Charland, E. el-Khatib, and J. Wolters, “The use of deconvolution
and total least squares in recovering a radiation detector line spread
function,” Med. Phys. 25, 152–160 (1998).
73
D. Herrup, J. Chu, H. Cheung, and M. Pankuch, “Determination of
penumbral widths from ion chamber measurements,” Med. Phys. 32,
3636–3640 (2005).
74
K. S. Chang, F. F. Yin, and K. W. Nie, “The effect of detector size to
the broadening of the penumbra—A computer simulated study,” Med.
Phys. 23, 1407–1411 (1996).
75
C. H. Sibata, H. C. Mota, A. S. Beddar, P. D. Higgins, and K. H. Shin,
“Influence of detector size in photon beam profile measurements,”
Phys. Med. Biol. 36, 621–631 (1991).
76
D. J. Dawson, J. M. Harper, and A. C. Akinradewo, “Analysis of
physical parameters associated with the measurement of high-energy
54
52
x-ray penumbra,” Med. Phys. 11, 491–497 ( 1984).
P. Metcalfe, T. Kron, A. Elliott, T. Wong, and P. Hoban, “Dosimetry of
6-MV x-ray beam penumbra,” Med. Phys. 20, 1439–1445 (1993).
78
T. Kron, A. Elliott, and P. Metcalfe, “The penumbra of a 6-MV
x-ray beam as measured by thermoluminescent dosimetry and
evaluated using an inverse square root function,” Med. Phys. 20,
1429–1438 ( 1993).
79
D. E. Mellenberg, R. A. Dahl, and C. R. Blackwell, “Acceptance
testing of an automated scanning water phantom,” Med. Phys. 17,
311–314 (1990).
80
M. G. Schmid and R. L. Morris, “A water phantom controller for
automated acquisition of linac beam parameters,” Med. Phys. 16,
126–129 (1989).
81
Y. K. Kim, S. H. Park, H. S. Kim, S. M. Kang, J. H. Ha, C. E. Chung,
S. Y. Cho, and J. K. Kim, “Polarity effect of the thimble-type
ionization chamber at a low dose rate,” Phys. Med. Biol. 50, 4995–
5003 ( 2005).
82
TG-51, “AAPM’s TG-51 protocol for clinical reference dosimetry of
high-energy photon and electron beams,” Med. Phys. 26, 1847–1870
(1999).
83
B. Gross, “The Compton current,” Z. Phys. 155, 479–487 (1959).
84
J. F. Fowler and F. T. Farmer, “Conductivity induced in insulating
materials by x-rays,” Nature ( London) 173, 317–318 ( 1954).
85
J. J. Spokas and R. D. Meeker, “Investigation of cables for
ionization chambers,” Med. Phys. 7, 135–140 ( 1980).
86
I. J. Das, J. F. Copeland, and H. S. Bushe, “Spatial distribution of
bremsstrahlung in a dual electron beam used in total skin electron
treatments: Errors due to ionization chamber cable irradiation,” Med.
Phys. 21, 1733–1738 ( 1994).
87
I. J. Das, S. W. McNeeley, and C.-W. Cheng, “Ionization chamber shift
correction and surface dose measurements in electron beams,” Phys.
Med. Biol. 43, 3419–3424 (1998).
88
F. M. Khan, The Physics of Radiation Therapy, 3rd ed. (Lippincott
Williams & Wilkins, Philadelphia, PA, 2003).
89
G. S. Ibbott, J. E. Barne, G. R. Hall, and W. R. Hendee, “Stem
corrections for ionization chambers,” Med. Phys. 2, 328–330 (1975).
77
90
B. J. Gerbi and F. M. Khan, “Measurement of dose in the buildup
region using fixed-separation plane-parallel ion chambers,” Med.
Phys. 17, 17–26 (1990).
91
R. L. Stern and H. D. Kubo, “Considerations for superficial photon
dosimetry,” Med. Phys. 22, 1469–1470 (1995).
92
B. Nilsson and A. Brahme, “Electron contamination from photon
beam collimators,” Radiother. Oncol. 5, 235–244 (1986).
93
R. Sjögren and M. Karlsson, “Electron contamination in clinical high
energy photon beams,” Med. Phys. 23, 1873–1881 (1996).
94
B. Nilsson, “Electron contamination from different materials in high
energy photon beams,” Phys. Med. Biol. 30, 139–151 ( 1985).
95
F. M. Khan, V. C. Moore, and S. H. Levitt, “Effect of various atomic
number absorbers on skin dose for 10-MeV x rays,” Radiology 109,
209–212 (1973).
96
P. J. Biggs and M. D. Russell, “An investigation into the presence of
secondary electrons in megavoltage photon beams,” Phys. Med. Biol.
28, 1033–1043 (1983).
97
T. C. Zhu and J. R. Palta, “Electron contamination in 8 and 18 MV
photon beams,” Med. Phys. 25, 12–19 (1998).
98
P. J. Biggs and C. C. Ling, “Electrons as the cause of the observed
dmax shift with field size in high energy photon beams,” Med. Phys. 6,
291–295 (1979).
99
E. D. Yorke, C. C. Ling, and S. Rustgi, “Air-generated electron
contamination of 4 and 10 MV photon beams: A comparison of
theory and experiment,” Phys. Med. Biol. 30, 1305–1314 (1985).
100
B. E. Bjärngard, P. Vadash, and T. Zhu, “Doses near the surface in
high-energy x-ray beams,” Med. Phys. 22, 465–468 ( 1995).
101
A. Lopez Medina, A. Teijeiro, J. Garcia, J. Esperon, J. A. Terron, D. P.
Ruiz, and M. C. Carrion, “Characterization of electron contamination
in megavoltage photon beams,” Med. Phys. 32, 1281–1292 ( 2005).
102
E. E. El-Khatib, J. Scrimger, and B. Murray, “Reduction of the
bremsstrahlung component of clinical electron beams: implications
for electron arc therapy and total skin electron irradiation,” Phys. Med.
Biol. 36, 111–118 ( 1991).
103
H. Svensson, “Influence of scattering foils, transmission monitors
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
and collimating system on the absorbed dose distribution from 10 –
35 MeV electron irradiation,” Acta Radiol. Ther. Phys. Biol. 10, 443–
453 (1971).
104
BJR Supply 25, “Central axis depth dose data for use in
radiotherapy: 1996,” Br. J. Radiol. Supplement 25, British Institute of
Radiology, 1996.
105
N. Dogan and G. Glasgow, “Surface and build-up region dosimetry
for obliquely incident intensity modulated radiotherapy 6 MV x rays,”
Med. Phys. 30, 3091–3096 (2003).
106
A. R. Hounsell and J. M. Wilkinson, “Electron contamination and
build-up doses in conformal radiotherapy fields,” Phys. Med. Biol.
44, 43–55 ( 1999).
107
A. Lamb and S. Blake, “Investigation and modeling of the surface
dose from linear accelerator produced 6 and 10 MV photon beams,”
Phys. Med. Biol. 43, 1133–1146 (1998).
108
M. G. McKenna, X. G. Chen, M. D. Altschuler, and P. Block,
“Calculation of the dose in the build-up region for high energy
photon beam. Treatment planning when beam spoilers are employed,”
Radiother. Oncol. 34, 63–68 (1995).
109
D. P. Fontenla, J. J. Napoli, M. Hunt, D. Fass, B. McCormick, and G.
J. Kutcher, “Effects of beam modifiers and immobilization devices
on the dose in the build-up region,” Int. J. Radiat. Oncol., Biol., Phys.
30, 211–219 (1994) .
110
E. C. McCullough, “A measurement and analysis of buildup region
dose for open field photon beams Co-60 through 24 MV ,” Med.
Dosim. 19, 5–14 (1994).
111
F. Habibollahi, H. M. O. Mayles, P. J. Winter, D. Tong, I. S. Fentiman,
M. A. Chaudary, and J. L. Hayward, “Assessment of skin dose and its
relation to cosmesis in the conservative treatment of early breast
cancer,” Int. J. Radiat. Oncol., Biol., Phys. 14, 291–296 ( 1988).
112
D. E. Velkley, D. J. Manson, J. A. Purdy, and G. D. Oliver,
“Buildup region of megavoltage photon radiation sources,” Med.
Phys. 2, 14–19 (1975).
113
E. E. Klein, J. Esthappan, and Z. Li, “Surface and buildup dose
characteristics for 6, 10, and 18 MV photons from an Elekta
Precise linear accelerator,” J. Appl. Clin. Med. Phys. 4, 1–7 (2003).
114
K. Y. Quach, J. Morales, M. J. Butson, A. B. Rosenfeld, and P. E.
Metcalfe, “Measurement of radiotherapy x-ray skin dose on a chest
wall phantom,” Med. Phys. 27, 1676–1680 (2000).
115
S. Kim, C. R. Liu, T. C. Zhu, and J. R. Palta, “Photon beam skin
dose-analyses for different clinical setups,” Med. Phys. 25, 860–866
(1998).
116
D. J. Manson, D. Velkley, J. A. Purdy, and G. D. Oliver,
“Measurements of surface dose using build-up curves obtained with
an extrapolation chamber,” Radiology 115, 473–474 (1975).
117
S. Heukelom, J. H. Lanson, and B. J. Mijnheer, “Comparison of
entrance and exit dose measurements using ionization chambers and
silicon diodes,” Phys. Med. Biol. 36, 47–59 (1991).
118
D. Georg, B. De Ost, M. T. Hoornaert, P. Pilette, J. Van Dam, M.
Van Dyke, and D. Huyskens, “Build-up modification of commercial
diodes for entrance dose measurements in ‘higher energy’ photon
beams,” Radiother. Oncol. 51, 249–256 (1999).
119
D. E. Mellenberg, “Determination of buildup-up region
over-response corrections for a Markus-type chamber,” Med. Phys.
17, 1041–1044 (1990).
120
M. Butson, A. Rozenfeld, J. N. Mathur, M. Carolan, T. P. Y. Wong, and
P. E. Metcalfe, “A new radiotherapy surface dose detector: The
MOSFET,” Med. Phys. 23, 655–658 (1996).
121
M. J. Butson, J. N. Mathur, and P. E. Metcalfe, “Radiochromic film as
a radiotherapy surface-dose detector,” Phys. Med. Biol. 41, 1073–
1078 (1996).
122
A. Ahnesjö, L. Weber, A. Murman, M. Saxner, I. Thorslund, and E.
Traneus, “Beam modeling and verification of a photon beam
multisource model,” Med. Phys. 32, 1722–1737 ( 2005).
123
P. Keall, S. Zavgorodni, L. Schidt, and D. Haskard, “Improving
wedged field dose distributions,” Phys. Med. Biol. 42, 2183–2192
(1997).
124
U. Myler and J. J. Szabo, “Dose calculation along the nonwedged
direction for externally wedged beams: Improvement of dosimetric
accuracy with comparatively moderate effort,” Med. Phys. 29, 748–
754 ( 2002).
125
I. J. Das, G. E. Desobry, S. W. McNeeley, E. C. Cheng, and T. S.
Schul- theiss, “Beam characteristics of a retrofitted double-focused
multileaf collimator,” Med. Phys. 25, 1676–1684 ( 1998).
126
J. M. Galvin, K. Han, and R. Cohen, “A comparison of multileaf
collimator and alloy-block field shaping,” Int. J. Radiat. Oncol., Biol.,
Phys. 40, 721–731 (1998).
127
P. Xia, P. Geis, L. Xing, C. Ma, D. Findley, K. Forster, and A.
Boyer, “Physical characteristics of a miniature multileaf collimator,”
Med. Phys. 26, 65–70 (1999).
128
J. R. Sykes and P. C. Williams, “An experimental investigation of
the tongue and groove effect for the Philips multileaf collimator,”
Phys. Med. Biol. 43, 3157–3165 ( 1998).
129
S. Webb, T. Bortfeld, J. Stein, and D. Convery, “The effect of
stair-step leaf transmission on the ‘tongue-and-groove problem’ in
dynamic radiotherapy with a multileaf collimator,” Phys. Med. Biol.
42, 595–602 (1997).
130
A. S. Shiu, H. M. Kooy, J. R. Ewton, S. S. Tung, J. Wong, K. Antes,
and M. H. Maor, “Comparison of miniature multileaf collimation
(MMLC) with circular collimation for stereotactic treatment,” Int. J.
Radiat. Oncol., Biol., Phys. 37, 679–688 1997 .
131
D. A. Low, J. W. Sohn, E. E. Klein, J. Markman, S. Mutic, and J.
F. Dempsey, “Characterization of a commercial multileaf collimator
used for intensity modulated radiation therapy,” Med. Phys. 28, 752–
756 (2001).
132
AAPM Report No. 72, Basic Applications of Multileaf Collimators:
Re- port of the AAPM Radiation Therapy Committee Task Group
No. 50, AAPM Report No. 50 (American Institute of Physics by
Medical Physics Publishing, Madison, WI, 2001).
133
T. LoSasso, C. Chui, and C. Ling, “Comprehensive quality assurance
for the delivery of intensity modulated radiotherapy with a multileaf
collimator used in the dynamic mode,” Med. Phys. 28, 2209–2219
( 2001).
134
M. Woo, P. Charland, B. Kim, and A. Nico, “Commissioning,
evaluation, quality assurance and clinical application of a virtual
micro MLC technique,” Med. Phys. 30, 138–143 (2003).
135
J. E. Bayouth and S. M. Morrill, “MLC dosimetric characteristics
for small field and IMRT applications,” Med. Phys. 30, 2545–2552
(2003).
136
J. M. Galvin, A. R. Smith, and B. Lilly, “Characterization of a
multi-leaf collimator system,” Int. J. Radiat. Oncol., Biol., Phys. 25,
181–192 (1993).
137
T. J. Jordan and P. C. Williams, “The design and performance
characteristics of a multileaf collimator,” Phys. Med. Biol. 39, 231–
251 (1994).
138
M. S. Huq, I. J. Das, T. Steinberg, and J. M. Galvin, “A dosimetric
comparison of various multileaf collimators,” Phys. Med. Biol. 47,
N159– N170 (2002).
139
G. H. Hartmann and F. Fohlisch, “Dosimetric characterization of a
new miniature multileaf collimator,” Phys. Med. Biol. 47, N171–
N177 (2002).
140
F. Crop, N. Reynaert, G. Pittomvils, L. Paelinck, W. De Gersem, C.
De Wagter, L. Vakaet, W. De Neve, and H. Thierens, “Monte Carlo
modeling of the ModuLeaf miniature MLC for small field dosimetry
and quality assurance of the clinical treatment planning system,” Phys.
Med. Biol. 52, 3275–3290 ( 2007).
141
A. L. Boyer, T. G. Ochran, C. E. Nyerick, T. J. Waldron, and C.
J. Huntzinger, “Clinical dosimetry for implementation of a multileaf
collimator,” Med. Phys. 19, 1255–1261 (1992).
142
E. E. Klein, W. B. Harms, D. A. Low, V. Willcut, and J. A. Purdy,
“Clinical implementation of a commercial multileaf collimator:
Dosimetry, networking, simulation, and quality assurance,” Int. J.
Radiat. Oncol., Biol., Phys. 33, 1195–1208 (1995).
143
V. P. Cosgrove, U. Jahn, M. Pfaender, S. Bauer, V. Budach, and R.
E. Wurm, “Commissioning of a micro multileaf collimator and
planning system for stereotactic radiosurgery,” Radiother. Oncol. 50,
325–336 (1999).
144
G. J. Budgell, J. H. Mott, P. C. Williams, and K. J. Brown,
“Requirements for leaf position accuracy for dynamic multileaf
collimation,” Phys. Med. Biol. 45, 1211–1227 (2000).
145
TG-50, American Association of Physicists in Medicine Radiation
Therapy Committee Report No. 72. Basic Application of Multileaf
Collimators (Medical Physics Publishing, Madison, WI, 2001).
146
C. D. Mubata, P. Childs, and A. M. Bidmead, “A quality assurance
53
医学物理 第 33 巻 第 1 号
procedure for the Varian multi-leaf collimator,” Phys. Med. Biol.
42, 423–431 (1997).
147
M. F. Clarke and G. J. Budgell, “Use of an amorphous silicon EPID
for measuring MLC calibration at various gantry angle,” Phys. Med.
Biol. 53, 473–485 ( 2008).
148
G. Mu, E. Ludlum, and P. Xia, “Impact of MLC leaf position errors
on simple and complex IMRT plans for head and neck cancer,” Phys.
Med. Biol. 53, 77–88 ( 2008).
149
H. V. James, S. Atherton, G. J. Budgell, M. C. Kirby, and P. C.
Williams, “Verification of dynamic multileaf collimation using an
electronic portal imaging device,” Phys. Med. Biol. 45, 495–509
(2000).
150
S. M. Huq, Y. Yu, Z.-P. Chen, and N. Suntharalingam, “Dosimetric
characteristics of a commercial multileaf collimator,” Med. Phys. 22,
241–247 (1995).
151
C. W. Cheng, S. H. Cho, M. Taylor, and I. J. Das, “Determination of
zero field size percent depth doses and tissue maximum ratios for
stereotactic radiosurgery and IMRT dosimetry: Comparison between
experimental measurements and Monte Carlo simulation,” Med. Phys.
34, 3149–3157 (2007).
152
I. J. Das, G. X. Ding, and A. Ahnesjö, “Small fields:
Non-equilibrium radiation dosimetry,” Med. Phys. 35, 206–215
(2008).
153
P. Francescon, S. Cora, and C. Cavedon, “Total scatter factors of
small beams: A multidetector and Monte Carlo study,” Med. Phys. 35,
504–513 (2008).
154
D. W. O. Rogers and A. F. Bielajew, in The Dosimetry of Ionizing
Radiation Volume III, edited by K. R. Kase, B. E. Bjarngard, and F. H.
Attix (Academic, New York, 1990), pp. 427–539.
155
T. R. Mackie, in The Dosimetry of Ionizing Radiation Volume III,
edited by K. R. Kase, B. E. Bjarngard, and F. H. Attix ( Academic,
New York, 1990), pp. 541–562.
156
P. Andreo, “Monte Carlo techniques in medical radiation physics,”
Phys. Med. Biol. 36, 861–920 (1991).
157
D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, and J.
We, “BEAM: A Monte Carlo code to simulate radiotherapy treatment
units,” Med. Phys. 22, 503–524 (1995).
158
D. Sheikh-Bagheri and D. W. Rogers, “Monte Carlo calculation of
nine megavoltage photon beam spectra using the BEAM code,” Med.
Phys. 29, 391–402 (2002).
159
I. J. Chetty, B. Curran, J. E. Cygler, J. J. DeMarco, G. Ezzell, B. A.
Faddegon, I. Kawrakow, P. J. Keall, H. Liu, C. M. Ma, D. W. Rogers,
J. Seuntjens, D. Sheikh-Bagheri, and J. V. Siebers, “Report of the
AAPM Task Group No. 105: Issues associated with clinical
implementation of Monte Carlo-based photon and electron external
beam treatment planning,” Med. Phys. 34, 4818–4853 (2007).
160
K. De Vlamynck, C. De Wagter, and W. De Neve, “Diamond
detector measurements near simulated air channels for narrow
photon beams,” Radiother. Oncol. 53, 155–159 (1999).
161
C. M. Ma, M. Ding, J. S. Li, M. C. Lee, T. Pawlicki, and J. Deng,
“A comparative dosimetric study on tangential photon beams,
intensity- modulated radiation therapy (IMRT) and modulated
electron radiotherapy (MERT) for breast cancer treatment,” Phys.
Med. Biol. 48, 909–924 (2003).
162
X. R. Zhu, M. T. Gillin, K. Ehlers, F. Lopez, D. F. Grimm, J. J.
Rownd, and T. H. Steinberg, “Dependence of virtual wedge factor on
dose calibration and monitor units,” Med. Phys. 28, 174–177 (2001).
163
F. Verhaegen, I. J. Das, and H. Palmans, “Monte Carlo dosimetry study
of 6 MV stereotactic radiosurgery unit,” Phys. Med. Biol. 43, 2755–
2768 (1998).
164
O. A. Sauer and J. Wilbert, “Measurement of output factors for
small photon beams,” Med. Phys. 34, 1983–1988 (2007).
165
S. Kim, J. R. Palta, and T. C. Zhu, “A generalized solution for the
calculation of in-air output factors in irregular fields,” Med. Phys. 25,
1692–1701 (1998).
166
K. R. Kase and G. K. Svensson, “Head scatter data for several
linear accelerators ( 4 – 18 MV),” Med. Phys. 13, 530–532 ( 1986).
167
M. Tatcher and B. Bjarngard, “Head-scatter factors and effective
x-ray source positions in a 25-MV linear accelerator,” Med. Phys. 19,
685–686 (1992).
168
R. D. Bar-Deroma and B. E. Bjärngard, “The relation between
wedge factors in air and water,” Med. Phys. 21, 1043–1047 ( 1994).
54
169
S. Heukelom, J. H. Lanson, and B. J. Mijnheer, “Wedge factor
constituents of high energy photon beams: Head and phantom
scatter components,” Radiother. Oncol. 32, 73–83 ( 1994).
170
E. C. McCullough, J. Gortney, and C. R. Blackwell, “A depth
dependence determination of the wedge transmission factor for 4 –
10 MV photon beams,” Med. Phys. 15, 621–623 ( 1988) .
171
J. R. Palta, I. Daftari, and N. Suntharlingam, “Field size dependence
of wedge factors,” Med. Phys. 15, 624–626 (1988).
172
R. C. Tailor, D. S. Followill, and W. F. Hanson, “A first order
approximation of field size and depth dependence of wedge
transmission,” Med. Phys. 25, 241–244 ( 1998).
173
S. J. Thomas, “The effect on wedge factors of scattered radiation from
the wedge,” Radiother. Oncol. 32, 271–273 (1994).
174
S. J. Thomas, “The variation of wedge factors with field size on a
linear accelerator,” Br. J. Radiol. 63, 355–356 (1990).
175
C. W. Cheng, W. L. Tang, and I. J. Das, “Beam characteristics of
upper and lower physical wedge systems of Varian accelerators,”
Phys. Med. Biol. 48, 3667–3683 (2003).
176
E. E. Klein, R. Gerber, X. R. Zhu, F. Oehmke, and J. A. Purdy,
“Multiple machine implementation of enhanced dynamic wedge,”
Instrum. Control Syst. 40, 977–985 (1998).
177
J. P. Gibbons, “Calculation of enhanced dynamic wedge factors for
symmetric and asymmetric photon fields,” Med. Phys. 25, 1411–1418
(1998).
178
G. E. Desobry, T. J. Waldron, and I. J. Das, “Validation of new
virtual wedge model,” Med. Phys. 25, 71–72 (1998).
179
M. J. Zelefsky, T. Hollister, A. Raben, S. Matthews, and K. E.
Wallner, “Five-year biochemical outcome and toxicity with
transperineal CT- planned permanent I-125 prostate implantation for
patients with localized prostate cancer,” Int. J. Radiat. Oncol., Biol.,
Phys. 47, 1261–1266 (2000).
180
E. E. Klein, D. A. Low, A. S. Meigooni, and J. A. Purdy, “Dosimetry
and clinical implementation of dynamic wedge,” Int. J. Radiat.
Oncol., Biol., Phys. 31, 583–592 (1995).
181
M. H. Phillips, H. Parsaei, and P. S. Cho, “Dynamic and omni
wedge implementation on an Elekta SL linac,” Med. Phys. 27, 1623–
1634 (2000).
182
H. Shackford, B. E. Bjarngard, and P. Vadash, “Dynamic universal
wedge,” Med. Phys. 22, 1735–1741 (1995).
183
B. D. Milliken, J. V. Turian, R. J. Hamilton, S. J. Rubin, F. T. Kuchnir,
C. X. Yu, and J. W. Wong, “Verification of the omni wedge technique,”
Med. Phys. 25, 1419–1423 ( 1998).
184
J. Dai, Y. Zhu, and X. Wu, “Verification of the super-omni wedge
concept,” Phys. Med. Biol. 46, 2447–2455 (2001).
185
S. C. Sharma and M. W. Johnson, “Recommendations for
measurement of tray and wedge factors for high energy photons,” Med.
Phys. 21, 573–575 (1994).
186
A. E. Nahum, “Perturbation effects in dosimetry: Part I. Kilovoltage
x-rays and electrons,” Phys. Med. Biol. 41, 1531–1580 (1996).
187
F. Sanchez-Doblado, P. Andreo, R. Capote, A. Leal, M. Perucha, R.
Arrans, L. Nunez, E. Mainegra, J. I. Lagares, and E. Carrasco,
“Ionization chamber dosimetry of small photon fields: a Monte Carlo
study on stopping-power ratios for radiosurgery and IMRT beams,”
Phys. Med. Biol. 48, 2081–2099 (2003).
188
R. Capote, F. Sanchez-Doblado, A. Leal, J. I. Lagares, R. Arrans, and
G. H. Hartmann, “An EGSnrc Monte Carlo study of the
microionization chamber for reference dosimetry of narrow irregular
IMRT beamlets,” Med. Phys. 31, 2416–2422 ( 2004).
189
P. Björk, T. Knöös, and P. Nilsson, “Measurements of output factors
with different detector types and Monte Carlo calculations of
stopping-power ratios for degraded electron beams,” Phys. Med.
Biol. 49, 4493–4506 (2004).
190
A. Wu, R. D. Zwicker, A. M. Kalend, and Z. Zheng, “Comments on
dose measurements for a narrow beam in radiosurgery,” Med. Phys.
20, 777–779 (1993).
191
J. Seuntjens and F. Verhaegen, “Comments on ‘ionization chamber
dosimetry of small photon fields: A Monte Carlo study on
stopping-power ratios for radiosurgery and IMRT beams,’” Phys. Med.
Biol. 48, L43–L45 (2003).
192
A. O. Jones and I. J. Das, “Comparison of inhomogeneity
correction algorithms in small photon fields,” Med. Phys. 32, 766–
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
776 ( 2005).
M. Roach, M. DeSilvio, C. Lawton, V. Uhl, M. Machtay, M. J. Seider,
M. Rotman, C. Jones, S. O. Asbell, R. K. Valicenti, S. Han, C. R.
Thomas, and W. S. Shipley, “Phase III trial comparing whole-pelvic
versus prostate-only radiotherapy and neoadjuvant versus adjuvant
combined androgen suppression: Radiation therapy oncology group
9413,” J. Clin. Oncol. 21, 1904–1911 (2003).
194
C. Martens, C. De Wagter, and W. De Neve, “The value of the
PinPoint ion chamber for characterization of small field segments used
in intensity- modulated radiotherapy,” Phys. Med. Biol. 45, 2519–
2530 ( 2000).
195
I. J. Das, M. B. Downes, A. Kassaee, and Z. Tochner, “Choice of
radiation detector in dosimetry of stereotactic radiosurgery
-radiotherapy,” J. Radiosurg. 3, 177–185 ( 2000).
196
L. B. Leybovich, A. Sethi, and N. Dogan, “Comparison of
ionization chambers of various volumes for IMRT absolute dose
verification,” Med. Phys. 30, 119–123 ( 2003).
197
J. W. Sohn, J. F. Dempsey, T. S. Suh, and D. A. Low, “Analysis of
various beamlet sizes for IMRT with 6 MV photons,” Med. Phys.
30, 2432–2439 (2003).
198
G. X. Ding, J. E. Cygler, and C. B. Kwok, “Clinical reference
dosimetry: Comparison between AAPM TG-21 and TG-51 protocols,”
Med. Phys. 27, 1217–1225 (2000).
199
G. Ding, “Dose discrepancies between Monte Carlo calculations and
measurements in the buildup region for a high-energy photon
beam,” Med. Phys. 29, 2459–2463 (2002).
200
F. Haryanto, M. Fippel, W. Laub, O. Dohm, and F. Nusslin,
“Investigation of photon beam output factors for conformal
radiation therapy-Monte Carlo simulations and measurements,” Phys.
Med. Biol. 47, N133–N143 (2002).
201
H. Bouchard and J. Seuntjens, “Ionization chamber-based reference
dosimetry of intensity modulated radiation beams,” Med. Phys. 31,
2454–2465 (2004).
202
F. F. Yin, J. Zhu, H. Yan, H. Gaun, R. Hammoud, S. Ryu, and J. H.
Kim, “Dosimetric characteristics of Novalis shaped beam surgery
unit,” Med. Phys. 29, 1729–1738 (2002).
203
S. Li, A. Rashid, S. He, and D. Djajaputra, “A new approach in
dose measurement and error analysis for narrow photon beams
beamlets shaped by different multileaf collimators using a small
detector,” Med. Phys. 31, 2020–2032 (2004).
204
D. S. Followill, D. S. Davis, and G. S. Ibbott, “Comparison of
electron beam characteristics from multiple accelerators,” Int. J.
Radiat. Oncol., Biol., Phys. 59, 905–910 ( 2004).
205
ICRU 35, Radiation Dosimetry: Electron Beams with Energies
Between 1 to 50 MeV, ICRU Report 35 (International Commission
on Radiation Units and Measurements, Bethesda, MD, 1984).
206
T. C. Zhu, I. J. Das, and B. E. Bjärngard, “Characteristics of
breamsstrahlung in electron beams,” Med. Phys. 28, 1352–1358
(2001).
207
M. D. Mills, K. R. Hogstrom, and P. R. Almond, “Prediction of
electron beam output factors,” Med. Phys. 9, 60–68 (1982).
193
Phys. Eng. Sci. Med. 22, 99–102 (1999).
D. M. Roback, F. M. Khan, J. P. Gibbons, and A. Sethi, “Effective
SSD for electron beams as a function of energy and beam
collimation,” Med. Phys. 22, 2093–2095 (1995).
216
F. M. Khan, W. Sewchand, and S. H. Levitt, “Effect of air space on
depth dose in electron beam therapy,” Radiother. Oncol. 126, 249–
251 (1978).
217
L. J. van Battum and H. Huizenga, “Film dosimetry of clinical
electron beams,” Int. J. Radiat. Oncol., Biol., Phys., 18, 69–76
( 1990).
218
C. M. Ma and S. B. Jiang, “Monte Carlo modeling of electron
beams from medical accelerators,” Phys. Med. Biol. 44, R157–R189
( 1999).
219
S. B. Jiang, A. Kapur, and C. M. Ma, “Electron beam modeling and
commissioning for Monte Carlo treatment planning,” Med. Phys.
27, 180–191 ( 2000).
220
A. Kapur, C. M. Ma, E. C. Mok, D. O. Findley, and A. L. Boyer,
“Monte Carlo calculations of electron beam output factors for a
medical linear accelerator,” Phys. Med. Biol. 43, 3479–3494 (1998).
221
J. A. Antolak, M. R. Bieda, and K. R. Hogstrom, “Using Monte
Carlo methods to commission electron beams: A feasibility study,”
Med. Phys. 29, 771–786 (2002).
222
J. E. Cygler, G. M. Daskalov, G. H. Chan, and G. X. Ding,
“Evaluation of the first commercial Monte Carlo dose calculation
engine for electron beam treatment planning,” Med. Phys. 31, 142–
153 ( 2004).
223
G. X. Ding, D. M. Duggan, C. W. Coffey, P. Shokrani, and J. E.
Cygler, “First macro Monte Carlo based commercial dose calculation
module for electron beam treatment planning—New issues for
clinical consider ation,” Phys. Med. Biol. 51, 2781–2799 ( 2006).
224
R. A. Popple, R. Weinber, J. A. Antolak, S. J. Ye, P. N. Pareek, J.
Duan, S. Shen, and I. A. Brezovich, “Comprehensive evaluation of a
commercial macro Monte Carlo electron dose calculation
implementation using a standard verification data set,” Med. Phys. 33,
1540–1551 (2006).
225
M. Udale Smith, “Monte Carlo calculations of electron beam
parameters for three Philips linear accelerators,” Phys. Med. Biol. 37,
85–105 (1992).
226
J. Sempau, A. Sánchez-Reyes, F. Salvat, H. Oulad ben Tahar, S. B.
Jiang, and J. M. Fernández-Varea, “Monte Carlo simulation of
electron beams from an accelerator head using PENELOPE,” Phys.
Med. Biol. 46, 1163–1186 ( 2001).
227
P. R. Bevington, Data Reduction and Error Analysis for the
Physical Sciences ( McGraw-Hill, New York, 1969).
228
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing
( Cambridge University Press, New York, 1992).
229
MATLAB documentation version 7.2.0.232 The Mathworks, Natick,
MA, 2006.
230
www.rpdinc.com.
215
208
P. A. Jursinic and T. R. Mackie, “Characteristics of secondary
electrons produced by 6, 10, and 24 MV x-ray beams,” Phys. Med.
Biol. 41, 1499–1509 ( 1996).
209
F. M. Khan, P. D. Higgins, B. J. Gerbi, F. C. Deibel, A. Sethi, and D.
N. Mihailidis, “Calculation of depth dose and dose per monitor unit
for irregularly shaped electron fields,” Phys. Med. Biol. 43, 2741–
2754 (1998).
210
C. M. Ma, B. A. Faddegon, D. W. Rogers, and T. R. Mackie,
“Accurate characterization of Monte Carlo calculated electron beams
for radiotherapy,” Med. Phys. 24, 401–416 ( 1997).
211
L. J. van Battum and H. Huizenga, “On the initial angular variances
of clinical electron beams,” Phys. Med. Biol. 44, 2803–2820 ( 1999).
212
E. R. Cecatti, J. F. Goncalves, S. G. P. Cecatti, and M. P. Silva, “Effect
of the accelerator design on the position of the effective electron
source,” Med. Phys. 10, 683–686 (1983).
213
A. Jamshidi, F. T. Kuchnir, and C. S. Reft, “Determination of the
source position for the electron beams from a high-energy linear
accelerator,” Med. Phys. 13, 942–948 (1986).
214
K. Y. Quach, M. J. Butson, and P. E. Metcalfe, “Comparison of
effective source-surface distances for electron beams derived from
measurements made under different scatter conditions,” Australas.
55
医学物理 第 33 巻 第 1 号
⩻ヂ⪅㸦⩻ヂ㡰㸧
⬥⏣ ᫂ᑦ㸦ᅜ❧ࡀࢇ◊✲ࢭࣥࢱ࣮୰ኸ⑓㝔 ᨺᑕ⥺἞⒪⛉㸧
ᶫᮏ ៅᖹ㸦ࡀࢇ࣭ឤᰁ⑕ࢭࣥࢱ࣮㒔❧㥖㎸⑓㝔 ᨺᑕ⥺≀⌮ᐊ㸧
Ἑෆ ᚭ 㸦༓ⴥ┴ࡀࢇࢭࣥࢱ࣮ ᨺᑕ⥺἞⒪㒊≀⌮ᐊ㸧
ᑠᓥ ᚭ 㸦༓ⴥ┴ࡀࢇࢭࣥࢱ࣮ ᨺᑕ⥺἞⒪㒊≀⌮ᐊ
⌧ ᇸ⋢┴❧ࡀࢇࢭࣥࢱ࣮ ᨺᑕ⥺἞⒪⛉㸧
⩻ヂ༠ຊ⪅㸦஬༑㡢㡰㸧
኱཭ ⤖Ꮚ㸦ࡀࢇ◊✲఍᭷᫂⑓㝔 ᨺᑕ⥺἞⒪㒊㸧
ᒸᮏ ⿱அ㸦ᅜ❧ࡀࢇ◊✲ࢭࣥࢱ࣮୰ኸ⑓㝔 ᨺᑕ⥺἞⒪⛉㸧
㯮Ἑ ༓ᜨ㸦㡰ኳᇽ኱Ꮫ኱Ꮫ㝔་Ꮫ◊✲⛉ ⮫ᗋ⭘⒆Ꮫ㸧
బࠎᮌᾈ஧㸦☬⏣ᕷ❧⥲ྜ⑓㝔 ་⒪ᢏ⾡㒊་Ꮫ≀⌮ᐊ㸧
㎮ᕫ ኱స㸦኱㜰ᕷ❧኱Ꮫ་Ꮫ㒊㝃ᒓ⑓㝔 ୰ኸᨺᑕ⥺㒊
⌧ 㒔ᓥᨺᑕ⥺⛉ࢡࣜࢽࢵࢡ㸧
⸨⏣ ᖾ⏨㸦ᮾ໭኱Ꮫ኱Ꮫ㝔་Ꮫ⣔◊✲⛉ ᨺᑕ⥺἞⒪⛉㸧
ᐑୗ ஂஅ㸦ྠឡグᛕ⑓㝔 ᨺᑕ⥺⛉
⌧ ᮾி㒔೺ᗣ㛗ᑑ་⒪ࢭࣥࢱ࣮ ᨺᑕ⥺デ⒪⛉㸧
ᐑ㒊 ⤖ᇛ㸦ி㒔኱Ꮫ኱Ꮫ㝔་Ꮫ◊✲⛉ ᨺᑕ⥺⭘⒆Ꮫ࣭⏬ീᛂ⏝἞⒪Ꮫ㸧
翻訳者代表
脇田 明尚(わきた.あきひさ)
国立がん研究センター中央病院 医学物理士。
現在の職場では主に治療装置の品質管理、高精度放射線治療計画の立案などを行っている。
E-mail: [email protected]
56
Jpn. J. Med. Phys. Vol. 33 No. 1 (2013)
American Association of Physicists in Medicine
One Physics Ellipse
College Park, MD 20740-3846
(301) 209-3350
Fax (301) 209-0862
http://www.aapm.org
Office of the Executive Director
Angela R. Keyser
Phone: 301-209-3385 Fax: 301-209-0862
E-mail: [email protected]
VIA E-MAIL
Akihisa Wakita
Medical Physicist
Division of Radiation Oncology
National Cancer Center Hospital
Tsukiji, Tokyo 104-0045
JAPAN
November 7, 2011
Dear Mr. Wakita
The American Association of Physicists in Medicine (AAPM) hereby grants permission to the
Japan Society of Medical Physics to translate the following AAPM publication into Japanese and
post on their website:
Das, I., et al. “Accelerator beam data commissioning equipment and procedures: Report
of the TG-106 of the Therapy Physics Committee of the AAPM”. Med. Phys. 35(9)
4186-4216 (2008).
Please let us know if you have any questions or require additional information.
Sincerely,
Angela R. Keyser
The Association’s Scientific Journal is MEDICAL PHYSICS
Member Society of the American Institute of Physics and the International Organization of Medical Physics
57