第1期 (2006∼2008 年) 最終報告書 風力発電が大量に導入された 電力系統の設計と運用 日本語版 独立行政法人 産業技術総合研究所 一般社団法人 日本電機工業会 25 (IEA Wind Task25) IEA Wind Task 25 Design and Operation of Power Systems with Large Amounts of Wind Power 1 (2006 2008 ) 2009 Phase One (2006-2008) Final Report 2009 Hannele Holttinen, VTT, Finland Peter Meibom, Risø-DTU; Antje Orths, Energinet.dk, Denmark Frans van Hulle, EWEA Bernhard Lange, ISET, Germany Mark O’Malley, UCD, Ireland Jan Pierik, ECN; Bart Ummels, TU Delft, Netherlands John Olav Tande, SINTEF, Norway Ana Estanqueiro, INETI; Manuel Matos INESC, Portugal Emilio Gomez, University Castilla La Mancha, Spain Lennart Söder, KTH, Sweden Goran Strbac, Anser Shakoor, Joño Ricardo, DG&SEE, UK J. Charles Smith, UWIG, USA Michael Milligan & Erik Ela, NREL, USA The IEA WIND Task 25, also known as the Design and Operation of Power Systems with Large Amounts of Wind Power, Task 25 of IEA Implementing Agreement on Wind Energy, functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of IEA WIND Task 25 do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries. IEA 25 (IEA) (Wind Task25) IEAWind Task25 i IEA 25 2012 ( (IEA Wind Task25) 11 ) ( ) ( ) International Energy Agency, Wind Implementing Agreement, Task 26: “Design and operation of power systems with large amounts of wind power” (June 2009) http://www.ieawind.org/AnnexXXV/PDF/Final%20Report%20Task%2025%202008/T2493.pdf (NEDO) IEA ii 1 20 1 4 /MWh 10 0 /kW 40 5 (i) (ii) (iii) (iv) (v) iii /kW 270 IEA http://www.ieawind.org 2006 1 2 3 Riso-DTU, Energinet. Dk EWEA VTT Technical Research Centre of Finland ISET, RWE, E.ON Netz SEI, UCD, ECAR Eirgrid SEI SINTEF, Statkraft ECN, TUDelft INETI, REN, INECO-Porto, IST University Castilla La Mancha KTH, Royal Institute of Technology Centre for Distributed Degeneration & Suitable Electrical Energy NREL, UWIG 2007 VTT iv 3 VTT TKK Liisa Haarla Lemström VTT Bettina Sanna Uski-Joutsenvuo 5.5.1 5.5.2 REN IST (Instituto Superior Tecnico: ) Centro de Energia 5.5.1 Electrica Rui de Castro Fernando Batista (IST) 5.5.2 Rodrigues (REN) J.P. Sucena Paiva J. Medeiros Pinto, António Pitarma, Tiago (IST) João Ricardo (REN) J. Ferreira de Jesus, Rui G. Castro, Pedro A. Flores Correia Luís G. Vaz de Carvalho Moreira, Bruno Nunes Rui M. de Matos Pires (IST) REN Reis Rodrigues, João 5.5.3 Red Elecrica de Espana REN, SA Luis Õmaz Monforte, Juan Manuel R. Garcia, Fernando Soto Martos, Francisco J. Rodríguez-Bobada, Sergio M. Villanueva (REE) Rodrigues, João Moreira, Bruno Nunes João Ricardo, Reis 2-b REN 6 ENERSIS IEAWind Task25 António Sá da Costa 5.6 Rui Maia Mattos Parreira RESERVAS INESC Porto REN MIBEL REE INESC Porto Itajubá REN (REE/REN 2006) Nacional (REN) Red Electria de Espana (REE) Comision Nacional de la Energia REE Red Electrica Spanish Wind Energy Association REE (Luis Õmaz Monforte, Juan Manuel R. Garcia, Fernando Soto Martos, Francisco J. Rodríguez-Bobada, Sergio M. Villanueva) Moreira, Bruno Nunes) REN (João Ricardo, Reis Rodrigues, João Luis Coronado (REE) Ángeles Mora Alberto Ceña, Venancio Rubio (Iberdrola S.A.) KTH (M. Amelin, J. Matevosyan, L. Söder, M. Olsson) Vattenfall Research and Development (U. Axelsson, R. Murray, V. Neimane, M. Brandberg, N. Broman, F. Carlsson) Svenska Krafnatt (A. Danell, F. Norlund) (Enernex, WindLogics) (Enermex, Windlogics) (GE, AWS/Truewind) (NREL, California Wind Energy Collaborative, Oak Ridge National Laboratory, Dynamic Design Engineering, CAISO) PacifiCorp Transmission Cost Survey (Lowrence Berkley National Laboratory) v (GE AWS/Truewind ERCOT) ..................................................................................................................................................................... iii ......................................................................................................................................................................................... iv .......................................................................................................................................................................................... v ......................................................................................................................................................................................... vi ............................................................................................................................................................................. ix .......................................................................................................................................................................................... x 1 ........................................................................................................................................ 1 2 .......................................................................................... 2 2.1 ............................................................................................................................................ 2 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 ........................................................................................................................... 11 2.2 .................................................................................................. 11 2.3 ......................................................................................................... 13 3 ............................................................................................................. 14 3.1 ........................................................................................... 14 3.2 ............................................................................................................................................. 14 3.3 ................................................................................................................................... 17 3.4 ................................................................................................................................... 19 3.4.1 3.4.2 3.4.3 3.5 ................................................................................................................................................. 22 3.5.1 3.5.2 Energinet.dk 50 3.5.3 3.6 ............................................................................................................................................. 26 3.6.1 (Elforsk 2005) 3.6.2 (SvK2008) 3.6.3 3.6.4 3.6.5 3.7 .......................................................................................................................................................... 30 3.7.1 DENA 3.7.2 DENA 3.8 3.8.1 ............................................................................................................................................................ 32 Ilex/Strbac 2002 vi 3.8.2 Strbac et al., 2007 3.9 ............................................................................................................................................. 35 3.9.1 SEI 3.9.2 3.10 ................................................................................................................................................... 36 3.11 ............................................................................................................................................................ 39 3.11.1 2004 3.11.2 2006 3.11.3 3.11.4 3.11.5 3.11.6 PacifiCorp 3.11.7 4 .................................................................................................................... 43 4.1 ........................................................................................................................................................ 44 4.1.1 DENA 4.1.2 DENA 4.2 .............................................................................................................................................................. 47 4.1 4.2 FRT 4.3 ...................................................................................................................................................... 48 4.3.1 6,000MW 4.3.2 4.4 I 6,000 MW II .................................................................................................................................................... 49 4.4.1 4.4.2 4.5 ................................................................................................................ 50 4.6 ..................................................................................................................................................... 51 4.6.1 4.6.2 4.7 ................................................................................................................................................. 51 4.8 ................................................................................................................................................. 52 4.9 ............................................................................................................................................. 54 4.10 ........................................................................................................................................... 55 4.11 .............................................................................................................................................. 56 4.12 .......................................................................................................................................................... 56 4.12.1 4.12.2 4.12.3 4.13 EU 4.14 TradeWind .............................................................................................................. 59 (EWIS) 1 2006 ............................................................................... 60 5 ........................................................... 62 5.1 ......................................................................... 62 5.1.1 5.1.2 5.1.3 vii 5.1.4 5.2 IEEE ........................................................................................................................................................ 67 5.3 (ESBNG)............................................................................................................................. 69 5.4 ................................................................................................................................................. 70 5.5 ............................................................................................................................................................ 71 5.5.1 Ilex/Strbac, 2002 5.5.2 Strbac et al., 2007 5.6 ............................................................................................................................... 73 5.7 ............................................................................................................................................................ 76 5.8 TradeWind .............................................................................................................................. 77 6 .............................................................. 79 6.1 .......................................................................................................................................... 79 6.2 ................................................................................................................................................. 79 6.3 ............................................................................................................................................. 80 6.4 ..................................................................................................................................................... 80 6.5 Gotland ............................................................................................................................. 81 7 ........................................................................................................................ 82 7.1 ........................................................................................................................ 83 7.2 .................................................................................................................... 87 7.3 .................................................................................................. 89 7.4 ......................................................................... 91 8 ................................................................................................................. 94 ............................................................................................................................................................. 96 1 ................................................................................................................................... 101 2 ............................................................................................... 106 viii AGC (Automatic Generation Control) CAES (Compressed Air Energy Storage) CCGT (Combined Cycle Gas Turbine) CHP (Combined Heat and Power) ELCC (Effective Load Carrying Capability) FACTS (Flexible AC Transmission System) FACTS FRT (Fault-Ride-Through) FRT LOEE (Loss of Energy Expectation) LOLE (Loss of Load Expectation) LOLP (Loss of Load Probability) LVRT (Low-voltage ride-through) LVRT MAE (Mean Absolute Error) MAPE (Mean Absolute Power Error) NMAE (Normalised Mean Absolute Error) NRMS (Normalised Root-Mean-Square error) RMS (Root-Mean-Square error) SCADA (Supervision Control And Data Acquisition) STATCOM (Static Compensator) SVC (Static Var Compensator) TSO (Transmission System Operator) WT (Wind Turbine) ix Task25 1 1 10 20 (TSO) 1 x 6 1 10 (AFC) 10 4 18 1 15 20 1 20 1MWh 1 4 10 (LVRT) SCADA 0 270 /kW 40 5 (LOLP) (OCGT) xi (i) (ii) (iii) (iv) (v) 10 Task25 xii 20 50 1 Galicia (DeMeo et al., 2005; Axelsson et al., 2005; UKERC, 2006) (Holttinen et al., 2007) 2007 2008 1 2 3 4 5 3 6 7 8 9 1 2 2.1 2.1.1 FRT 1 Ernst, 1999; Focken et al., 2001; Holttinen, 2004; Wan, 2005; EWEA, 2005; IEA 2005; Giebel, 2007 1,000 1 128 139 2005 1 1 8 3 23 2,400MW http://www.energinet.dk 2 1 1 0.1 1 14 0.6 10 250 2.1 1 1 1 2 ±10 ±35 3 ±5 15 84 70% 4 ±1 2 5 1 1 2004 12 21 4 km 4 2005 • 0.5 8 15 12 6 6 12 24 16 MW/min • 12 2,000 MW 83 1 12 MW (Eriksen et al., 2005) 2004 • 1 31 2006 • 11 GW 4,000 MW 63 MW 338 MW • 10 58 0.2 12 68 6 1 1 144 MW 29 Eirgrid 8 700 MW 60 45 3 800MW 7 1,067 MW/h –570 MW/h 0.2 TSO 24 2 ) 1 45 1,000MW 9 REE 25 8,375 MW 72 2007 • MW 9 5 2 30 600 MW/h 1,550 (ERCOT, 2007) 1 (Wan, 2005) 14 kW 41 56 130 225 329 548 736 1124 1 1 10 1 61 % 0.4 0.5 1.2 2.1 3.1 5.2 7.0 10.7 kW 172 203 612 1038 1658 2750 3732 5932 138 % 0.2 0.3 0.8 1.3 2.1 3.5 4.7 7.5 kW 148 203 494 849 2243 3810 6582 10032 250 kW 189 257 730 1468 3713 6418 12755 19213 % 0.1 0.2 0.5 0.8 2.2 3.7 6.4 9.7 % 0.1 0.1 0.3 0.6 1.5 2.7 5.3 7.9 2 2000 2004 56 2005 ISET 2005 (Axelsson et al., 2005) 10 300×300 km2 200×200 km2 200×200 km2 280×480 km2 300×800 km2 400×400 km2 400×900 km2 400×900 km2 200×200 km2 490×490 km2 200×1,2 00km2 2002 http://www.energinet.dk 2005 2007 (Holmgren, 2008) NREL 2003 2005 INETI 15 1 4 1992 Eirgrid 2001 12 >100 –23 % +20 % –62 % +53 % –74 % +79 % >100 –26 % +20 % –70 % +57 % –74 % +84 % >100 –25 % +36 % –65 % +72 % –74 % +72 % 11 –12% +12 % –30 % +30 % –50 % +50 % –70 % +70 % 29 –12% +12 % –16 % +13 % –34 % +23 % –52 % +43 % >100 –6 % +6 % –17 % +12 % –40 % +27 % 30 –16 % +16 % –41 % +40 % –66 % +59 % 56 –17 % +19 % –40 % +40 % 3 –34 % +30 % –39 % +35 % –58 % +60 % –78 % +81 % 3 –39 % +39 % –38 % +36 % –59 % +55 % –74 % +76 % 4 –26 % +27 % –31 % +28 % –48 % +52 % –73 % +75 % 4 3 1 4 15 1 4 2004 1 12 1 12 31 4 (ISET, 2005) 5 1 2004 1 1 1 12 31 15 5 (ISET, 2005) 6 (Ernst, 1999) 6 7 7 20 3 1 7 4,000 MW 56 (Holttinen, 2004; ISET; Estanqueiro, 2006; Wan, 2005; Axelsson et al., 2005; Ilex et al., 2004; Martin et al., 2009) 2.1.2 (Giebel et al., 2003; Kariniotakis et al., 2006) 8 20 1 1 6 10 10 3 MAE 6.0 (1) RMSE 8.9 6.0 (2) 24 13 ( 3) 1,512 MW 37 5.1 3.9 4.2 (Focken, 2007) 9 10 3 8 40 energy & meteo systems 3 NRMSE NRMSE [%] 4 2 Rohrig, 2005 4 1,000 km 5.7 3.6 2.6 7 1 350 km 6.8 4.7 3.5 9 (Krauss et al., 2006) 10 2 Cosmo-DE 2 Cosmo-EU (Wessel et al., 2008) 11 11 Lange et al., 2006 8 2.1.3 Cardinal 2006, Gjengedal 2004, Burges et al., 2003 SCADA 12 FRT (Erlich et al., 2006; Gómez-Lazaro et al., 2006; Gómez-Lazaro et al., 2007a) 12 (Cardinal & Miller, 2006) (Energinet, 2004) Energinet.dk Horns Rev 6 13 6 4 14 Horns Rev (Kristoffersen, 2005) 9 13 14 Horns Rev (Kristoffersen, 2005) (SVC) STATCOM 15 2.1.4 LVRT FRT : 3 15 0.95 SCADA (Smith et al., 2007) 10 15 FRT Elektrizitätszwirtschaft, 2006 2.1.5 GWEC, 2005; Bird et al., 2003 MW 2.1.1 INEGI, 2002 2.2 16 30 11 16 (Task25) 5 (LOLE) (LOLP) (LOEE) FACTS FRT FACT 12 15 2.3 4 4 4 2008 / MW TWh/ a MW MW MW TWh/a 3,700 1,300 21 2,830* 2,380 2,380 5 7,200 2,600 38 5,190* 3,150 6,500 7,200 2,600 38 6,790* 3,180 67,000 24,000 385 3,000* 155,500 65,600 977 14,000 5,900 77,955 MW 2008 2025 a 2025 b VTT VTT 2015 ESBNG SEI 2020 64% 24 58 20.2 90 53 83 6,500 20.2 90 53 69 4,772 18,000 46 27 12 67 6,600* 28,675 57,500 115 37 12 80 90 2,280* 143 7,300 16 52 18 89 41,000 552.3 10,000* 23,903 36,000 77.2 46 14 71 6,500 2,500 38.5 0 1,002 3,500 10.5 54 27 140 6,900 2,455 39.7 900* 1,002 1,950 501 28 13 58 9,600 3,500 54 1,000 1,002 6,000 19 63 35 178 25,200 9,000 127 7,350 2,225 10,000 35 40 28 61 1,062 3.2 28 15 3,780 2011 2004 2006 21 8,800 53,400 26,000 76,000 4,560 21,500 13,000 24,000 49.2 246.2 140 427 1,000 2,400 9,730* 2,000* 2,862 16,754 1,021 3,241 5,100 17,500 8,000 38,000 12.8 46 20 115 58 33 31 50 26 19 14 27 92 73 35 146 9,933 3,400 48.1 1,500* 1,752 1,500 5.8 15 12 31 20,000 8,800 85 1,752 6,000 21 30 25 68 33,000 12,000 170 882 3,300 9.9 10 6 17 36.3 1,068 1,400 3.6 20 10 11 7,000 7,000* 64,300 25,000 304 2,517 12,500 34 19 65,200 16,000 317 7,116 15,000 54 23 17 2004 5 12 13 3 4 6 3.1 3σ (Milligan, 2003) 3 Holttinen et al., 2008 3 2 7 24 3.2 3 1 (Söder et al., 2006) 10 15 5 10 15 3 ENTSO-E (former UCTE): “Operational Handbook: Appendix 1, Load-frequency control and performance”, 2004. https://www.entsoe.eu/fileadmin/user_upload/_library/publications/entsoe/Operation_Handbook/Policy_1_Appendix%20_final.pdf 14 Pkn(t) Pkn(t) k 17 t 1 18 17 1 2005 1 10 16 http://www.energinet.dk 18 Pkf(t) 2 P0n(1) k 1 k P0f(2) 0 P0n(3) t 18 4 P0f(4) 3 Pkr(t) k 0.5 3 0 P3f(0.5) t Pkr(t) = Pkn(t) – Pkf(t) 18 0 2 P0r(2) 30 P3r(0.5) Pkn(t) 0.5 Pkr(t) Pkn(t) Pkr(t) t Pkn(t) k+t Pkn(t) Pkr(t) Pkn(t) 18 = Pkr ( 1 ) = Pkr ( 15 10 ) 18 18 Pkn(t) Pkf(t) Pkr(t) Pk1(t) A Pk2(t) B A B A B Pk1 Pk1(t) Pk 2 (t) Pk1(t) Pk1(t Pk2 Pk2(t) Pk2(t) N 1 Pk1(t) Pk2(t) Pk1(4 Pk1(1 ) Pk1(1 ) ) Pk1(4 ) Pk1(t) Pk1(t) Pk(t) < Pk1(t) Pk(t) Pk1(t)– Pk(t) 16 Pk2(t) Pk2(t) P3(t) Pk1(t) = P3(t) Pk2(t) Pk1(t) = P3(t) Pk2(t) 24 24 24 24 24 4 6 24 3.3 Söder & Holttinen, 2008 5 5 (MW) MW A M (MW) TWh/ — MW MW (MW) MW (MW) MW MW 1. 2. 3. 1. GWh GW 17 TWh/ MW MW 2. 3. 4. 5. S 1. 2. 3. 4. 5. R 1. 2. 3. P 1. 2. 3. GWh a) b) 1 4. D 1. 2. 3. 4. 5. 6. I 1. 2. 3. 4. 1. 2. 3. 4. 1. 2. 3. B U a) b) c) d) 4. 5. 6. 1 G 1. 2. MW 3. 4. N-1 5. 6. H 1. 18 2 2. 3. 4. 5. 6. 7. 8. 1. 2. 3. 4. 5. 1. T W a) b) c) d) 2. a) b) c) d) ] 1 3. 4. … 5. 3.4 3.4.1 Holttinen, 2005 and Holtitinen, 2004 6 10 2 20 4 10 0.7 /MWh 20 1.3 10 5 20 0.2 0.5 /MWh 0.33 TWh 15 /MWh 20 10 1.15 TWh 0.1 0.2 /MWh MW 310 420 1,200 1,400 €/MWh 0.5 0.7 1.0 1.3 /MWh 6 10 20 TWh/ 0.33 1.15 10 0.28 20 0.81 €/MWh 0.1 0.2 0.2 0.5 0.2 0.5 0.3 0.8 19 % 1.6 3.1 2.2 4.2 3.9 160 7.2 570 2000 2002 5 21 6 6 12 2 4σ Nordel 10 10 15 15 Nordel 1 2 3.4.2 Holttinen et al., 2001 and Holttinen, 2004 46TWh 0.5 12 0.6 TWh 1961 1 1990 2 MW 2 EMPS A.3 Nordel 3.4.3 2004 Holttinen et al., 2006; Holttinen & Koreneff, 2007 Helander et al., 2009 4,000 MW 10 12 4 2004 1 15 13 1.05 37 /MWh 680 km 20 12 0.62 /MWh 1 2 Elbas 2004 2008 19 MW 19 –0.015 × Q 0.011 × Q 0.7 /MWh 1 2004 12 3 5.3 13 37 5.3 21 4,000 MW 2004 10 500 MW 1,000 MW 2,000 MW 4,000 MW 2004 (–0.015 × Q Q) 2004 2004 2004 /MWh 21 0.011 × 3.5 3.5.1 WILMAR wilmar.risoe.dk ) EU Greennet-EU27 (http://www. (Meibom et al., 2009) WILMAR 2010 3 2010 10 20 10 20 2015 29 11 10 20 20 Meibom et al., 2009 20 3 10 20 MW 10 20 1.1 TWh 10 10 3.4 TWh 2.3TWh 20 10 20 22 10 20 10 2000 20 2002 21 10 6 12 6 2 WILMAR 3.5.2 Energinet.dk 50 2025 (Danish Energy Authority, 2007) Energinet.dk 3,000 MW (Energinet.dk, 2007; Eriksen & Orths, 2008) 20 2025 2,000 MW 50 50 2015 7 2 1 Jutland 0 Great Belt 7 7 Great Belt ― ― A.4 2 0 600MW 950MW 1500MW 1000MW 23 1 I 200 MW 2500MW 1600MW 6,000 MW 21 1 21 Jutland NordPool EEX CASE 2025 3,000 MW R D 22 1 (Energinet.dk, 2007) 2025 35 TWh 2005 6,400 MW 23 1 24 38 TWh 2025 6,500 MW 22 0 1 1 23 “Sivael” “PowerFactory” 2025 24 2 (Sivale) IEA “World Energy Outlook” 3.5.3 (Lund & Münster, 2006) (CHP) “EnergyPLAN” 20 25 24 3.6 3.6.1 (Elforsk 2005) 4,000MW (Axelsson et al., 2005) 8 8 1 MW 4000 6000 8000 6.6 9.9 13.2 4 MW (%) MW (%) 20 (0.5) 40 (0.75) 80 (1.0) 195 (5.0) ––– ––– MW(%) 690 (17.2) 1350 (22.5) 1570 (19.6) 1996 2002 1.5 1 MW (%) 2004 590 (14.8) 1030 (17.2) 1220 (15.2) 2001 1 24 5 80 1.8% 1 1.4% 4 2.5 1 3.4.1 4 7 (Holttinen, 2004) 3.7.1 (Axelsson et al., 2005) (Dena, 2005) Dena 26 4 σ 3.6.2 (SvK2008) Large scale expansion of wind power Consequences for the transmission grid and need of regulation power (Svenska kraftnät, 2008) (Axelsson et al., 2005) 9 9 4,000 12,000 MW 200 4,000 MW 250 MW 500 600 MW 1,500 1,900 MW 700 900 MW 2,200 2,700 MW 1,800 MW 4,300 5,300 MW 1,400 12,000 MW 750 MW 600 (Axelsson et al., 2005) (Axelsson et al., 2005) (MW) 1 6,000 MW MW 2,383 MW 199 MW –1,331 MW –1,883 MW 2,582 552 MW (199 + 552) / 2 = 375.5 MW 6,000 MW 90 5,400 MW 90 7 7 0.07 × 4,000 × 0.09 = 250 0.07 × 12,000 × 0.09 = 750 (Axelsson et al., 2005) 4,000 MW 590 MW 640 MW 4,000 MW 16 4,000 MW 0.90 × 0.16 × 4,000 = 576 MW 500 12,000 MW MW 1,500 690 MW 90 600 MW 90 12,000 MW 0.90 × 0.16 × 12,000 = 1,728 1,900 MW 90 25 0.25 × 0.09 × 4,000 = 900 MW 0.25 × 0.90 × 12,000 = 2,700 MW (Axelsson et al., 2005) 4,000 MW MW (Axelsson et al., 2005) (Svenska kraftnät, 2008) 250 20 MW (Svenska kraftnät, 2008) + 2,383 MW 235 MW 4,000 MW + 199 MW 199 / 2383 = 8.35 MW 8.35 21MW 250 MW 27 (Axelsson et al., 2005) 24 3 1 24 MW 24 (Axelsson et al., 2005) 25m/s (Svenska kraftnät, 2008) 25 25 (SMHI, 2004) 6 (Axelsson et al., 2005) 50 2 25 3 1 4 (Svenska kraftnät, 2008) 2 3 24 3 2 3 24 3.2 (Svenska kraftnät, 2008) MW 3.6.3 “A massive introduction of wind power. Changed market conditions?” (Neimane & Carlsson, 2008) 8 25 2006 Elbas 1 4,000 MW 0.95 TWh TWh 28 1.7 25 a) 2006 b) 1 c) Elbas 0.1 2006 9 11 2007 3 31 Hornz Rev 160MW 2006 Risø Klaus Skytte 2006 3.6.4 Future trading with regulating power, (Brandberg & Broman, 2007) 4,000MW 2 [GWh] [GWh] Elbas 4,000MW 1 3.566 4,010 2,279 2,490 2,400MW 24 4,000MW 2 2,680 ––– 2003 4 2 1. 4,000 MW Elbas 24 4 2. 4,000 MW 3.6.5 Integration study of small amounts of wind power in the power system (Söder, 1994). 2 4 2.5 TWh 5 TWh 1 29 6.5 7.5 TWh 1.2 (MW) 2 1994 100 3.7 DENA 2007 2010 2015 2020 DENA 2020 20 2020 20 20 7.5 5 7.5 2015 DENA 3.7.1 DENA 2015 7,064 MW 9 3,229 MW 2003 30 2,077 MW 1,178 MW 5,480 MW 8 2,822 MW 2003 1,871 MW 753 MW 1992 220 10 km2 2003 10 m 30 m 50 m 7 10 Hz 5 1 2010 90 m 2003 100 m 2007 2015 100m 2010 2015 110m 10 4 0.1 0.01 52 0.0025 8.76 13 2003 10 2003 2015 2015 4 % 4 2003 –0.28% 7.29% 2015 –0.32% 5.91% 3.7.2 –27.5% –23.5% 41.5% 1.26% 4.92% –17.0% 33.0% 29.5% 0.97% 3.89% –14.0% 24.3% DENA DENA DENA 2009 2009 1 1 (EEG) EEG DENA (BMU) 0.3 0.47 Bömer and Burges, 2008 /kWh BMU (FGE/FGH/ISET, 2007) DENA 82,000 2020 /MW 26,000 /MW 45 0 /MWh 31 /MWh 4 20 (DSM) DMS 3 MW 7 GW 70 0.2 CAES 250 MW 400 MW 2.5 3 1. 2. 1,000 3. 1,700 3.8 2015 15 (Dale et al, 2003; MacDonald, 2003; UKERC, 2006) (Ilex/Strbac, 2002) (Strbac et al., 2007) 3.8.1 Ilex/Strbac, 2002 2020 20 30 95 32 26 26 10 2.65 /MWh 20 2.85 MWh 2.38 15 /MWh 10 39 1 30 30 39 30 4 27 27 30 4 33 30 99 2 6 10 10 20 CCGT OCGT (Strbac et al.) 3.8.2 Strbac et al., 2007 (Strbac et al.) 600 MW 3 2,400MW 4 11 25 Wash Thames 11 970 /kW 252 34 /kW 4 11 MW 2 1 (GW) 5 10 15 20 25 54 192 382 596 827 0.1 0.3 0.4 0.5 0.5 ( /MWh) (MW) 0.3 0.6 0.8 0.9 1.0 4 /MWh /MW (Strbac et al.) ( /MWh) (MW) 34 126 257 413 585 1.3 340 1172 2241 3414 4640 526 1716 3163 4706 6300 0.7 1.4 1.7 1.9 2.0 ( /MWh) 1.7 2.5 3.1 3.5 3.7 0.8 1.6 2.1 2.3 2.6 2.0 3.1 3.8 4.4 4.7 (Ilex, 2002) 3σ 2 10 /MW 20 /MW 20 2 /MWh 4 /MWh 20 OCGT 3.9 1990 3.9.1 SEI Sustainable Energy Ireland (SEI) (Ilex et al., 2004) 1,500 MW 1 4 12 /MWh 1,300 MW 1,950 MW 0.5 /MWh 35 0.2 12 (MW) 845 1300 1950 10 1 (MW) 15 25 50 6.1 9.5 14.3 50 4 (MW) 30 60 150 40 2 3.9.2 2005 (All Island Grid Study, 2008) 2020 6 2 42 2GW 16 6 GW 7 500 MW 1 5 42 2 1 6 Wilmar 2 1 3.10 PowrSym3 2014 36 0 12 GW 12 GW 33 (PAC) (UPAC) (CAES) (Ummels, 2009) 28 28 CCGT SO2 450 kV NorNed 700 MW NOx 580 km 2008 37 HVDC 29 0 12 GW 29 CCGT 30 30 CCGT CCGT TWh/ 38 CCGT CCGT DG CCGT CCGT CCGT CCGT PowrWym3TM 1980 Operation Simulation Associates, Inc. SEP Tennessee Valley Authority PowrSym3 15 PowrSym3 UC-ED 1 3.11 3.11.1 2004 Enernex 2004 2010 (EnerNex/WindLogics, 2004) 10 GW 8 MW 1,500 MW 3σ 1 2 MW 4.60 0.23 /MWh 4.37 10 3 2 A5 39 3.11.2 2006 2004 EnerNex/WindLogics 2006 (MISO) 25 25 1 MW 4.40 MISO 2004 1 MISO 5 750 km 6,000 MW 2 MISO MISO 14 21 GW 116 GW MISO 3.11.3 ISO 2008 33 GW 3,300 MW NYISO 2 (DFIG) 36 MW 5 1 2MW 858 910MW 10 36 4 2008 MW 6.50 6.80 3 3,500 5,500 σ 700 800 MW 859 3 950 MW 3,500 10.70 4 3,000 1 MW 2,500 3.11.4 2006 Xcel Colorado/Enernex (Zavadil, 2006) 10 7 GW 15 20 0.20 2.20 3.30 /MWh /MWh 50 10 15 3.70 1.25 5.00 1.45 /MWh /MWh 40 3.11.5 CA RPS 4 0.46 /MW (Shiu et al., 2006) 2007 IAP (Porter et al., July 2007) 20 CEC 2010 (RPS) 2020 33 15 1 7 8 1 5 1 387 MW 42 MW 10 MW 3σ 10 1,041 MW 3σ 5 60 MW CAISO 12,7000 MW CEC 1 66,700 MW 6,000 MW CAISO CEC IAP (Loutan et al., November 2007) CAISO 170MW MW 500MW 400 MW GE 3.11.6 250MW 100 5 CEC 10 PacifiCorp PacifiCorp 2004 9,000 MW PacifiCorp PacifiCorp PacifiCorp 2 3 IRP PacifiCorp 6 PacifiCorp 41 6 IRP PacifiCorp 2003 IRP 30 (Dragoon & Milligan, 2003) 1,000 MW 2003 3.00 IRP 2.72 /MWh 1,000 MW /MW 5.50 /MWh 2002 3.00 /MWh 1,000 MW 2004 20 4.64 /MWh (PacifiCorp, 2005) 3.11.7 (ERCOT) ERCOT 65 GW 15,000 MW 98.8 54 MW 48 MW MWh 10,000 MW 0.27 0.18 /MWh /MWh /MW MWh MW 55 42 15,000 MW 4 IEC 61400-21 (IEC, 2001) IEA 21 (Task21) (Tande et al, 2004) A. (SVC) STATCOM B. (SVC STATCOM) C. FRT (GE Energy, 2005) D. 43 (AGC) (DSM) 2 DSM E. 4.1 4.1.1 DENA DENA 1 2015 2020 20 2007 13 2015 380 kV 5 850 km 390 km 380 kV 2015 7,350 MVar 13 2015 2015 11 36GW DENA, 2005 36,000 MW 850 km 400 km 3 7350 MVar 380 kV 1,400 MW DENA 3 20 2004 3,000 MW (UCTC) 44 2004 80 2004 2004 SVC DENA FRT E.On Netz (http://www.eon-netz.com) 2006 4 1 (Erlich et al., 2006) 2007 14 2010 2015 6 14 MW 0.9 2003 4950 4240 1590 70 1620 193 12663 DENA, 2005 2007 7970 4980 2020 200 4052 368 19590 2010 8843 5250 2160 280 4946 436 21915 * 2015 **) 2015 2015 31 60 Forwschungsgemeinschaft fir Elektrische Anlagen und Stromwirtschaft e.V. (FGe.V.) INTEGRAL NETOMAC 90 380 kV 45 2015 9410* 5600** 2178 298 5647 450 23583 1,540 MW 7,281 MW 31 2015 (Dena Grid Study, 2005) 4.1.2 DENA EEG2009 DENA (BMU) (Bömer & Burges, 2008) BMU (FGE/FGH/ISET, 2007) DENA 2020 FRT (HVDC) GIL 380 kV 3 1.1 0.6 1.4 GIL HVDC AC 20 46 10 5.3 110 kV E.ON 50 Lange and Focken (2008) 5 75 40 90 99 15 5 4.2 (Strbac et al., 2007) 26 GW kW 65 125 8 GW 35 77 /kWh 100 /kW 26 GW 26 (Ilex & Strbac, 2002) 17 33 Western Isles 40 50 70 /kW /kW 60 6 10 4.1 (FSIG) FSIG (DFIG) 4.2 FRT DG SEE 47 FSIG (Strbac & Bopp, 2007) FRT i ii FRT FRT 4.3 4.3.1 6,000 MW 2003 1 6,000 MW 2005 15.2 GW 2 6,000 MW 150/380 kV (Jansen & de Groot, 2003) 32 3.1 30 9.7 32 150/380 kV 6,000 MW 48 Beverwijk Maasvlakte 4.3.2 6,000 MW 2005 2 II 6,000 MW II (Eleveld et al., 2005) 6,000 MW 3 AC150 kV AC380 kV HVDC AC150 kV 380 kV 15 2 7 HVDC 4 15 1 10 7 10 6,000 MW 2020 2 2030 1 AC150 kVAC AC380 kVAC AC380 kVAC HVDC 2 0.96 1.01 1.55 1.80 0.77 0.80 1.19 1.43 4.4 4.4.1 2 2001 2010 REN 2001 de Energia Electrica 2 IST (Instituto Superior Tecnico) Centro REN 220 kV 150 kV 400 kV 2 220 kV 150 kV 4,000 MW 2005 2010 2 4 /PTI 3 80 PSS/E 30 10 (1) (2) 49 (3) (4) FACTS 1 REN REN 2 4.4.2 2010 2004 IST (Instituto Superior Tecnico) REN Centro de Energia Electrica FRT PSS/E 3 2 3 26,000 MW 4.5 Red Electrica de Espana Produccion Eolica Tecnicamente Admissible en el Sistema Electrico Peninsular Iberico-Horizonte 2011 REN (Rede ElectricaNacional) 2006 FRT 75 20 GW 5 GW FRT 100 UCTE PSS/E 3 (REE, 1995) 3 2 3 400 kV 1.5 GW FRT 4 GW 12 50 GW 4.6 4.6.1 REE REN (REE/REN 2005, Rodrí!guez-Bobada et al., 2006) 400 kV 22 REE 2006 4.6.2 2010 LVRT REE (Gómez-Lazaro et al., 2007a) REE 12.3 12.3 12.3 FACTS FACTS 3 2 (Gómez-Lazaro et al. 2007b) 4.7 2025 50 Authority, 2007) Energinanalyse A/S, 2007 2008 EA Electricity Infrastructure Committee, 2008 4 Energinet.dk (Electricity Infrastructure Committee, 2008) 2030 (Danish Energy 2 6 3.5 GW 51 6.5 GW 6 3.5 GW 107 2008 3.5 GW 675 1,920 /kW 11 C /kW 40 2030 270 /kW (EA Energinanalyse A/S, 2007) 2025 3,500 MW 2008 700 MW 2,250 MW AC/DC 9.25 MW 41 (EA Energinanalyse A/S, 2007) 1.425 MW 18 63,000 1 (Skagerrak 4) (EA Energinanalyse A/S, 2007) 2.634 2025 19 MW Skagerrak 4 117,000 2007 700 MW 4.8 (Korpås et al., 2006.) (AGC) 1 420 MW 380 MW 33 75 MW 115 MW 33 132 kV 420 kV 420 MW 52 MATLAB 1 30 3 1 30 30 10.5 m/s 1 8,760 30 3 EMPS SINTEF Energy Research EMPS EMPS EMPS 1 EMPS EMPS 1 600 MW 34 37 1 53 5 34 4.9 Julija Matevosyan “Wind power integration in power system with transmission bottlenecks”, 2006 (Matevosyan, J. 2006.) 16 16 (MW) % 1,000 2,000 3,000 4,000 94 453 750 1019 35 1.9 5 10.1 16.7 2 54 0.8 3.4 7.4 12.4 4,000 MW 15.4 35 5.4 0.4 3,200 MW 800 MW 5.4 800 MW /kWh 3 3 4 10 7,000 MW 4.10 5 (EirGrid Grid Code, 2008) (Distribution Grid Code, 2007) (Coughlan et al., 2008) EirGrid 2,000 km 1,000 km (All Island Grid Study, 2008) 2.25 GW 2 GW 1 17 6.6 GW 6 GW 10 kW 154 1 kW 5 4.3 GW 212 1 2 17 2,254 MW 6,560 MW kW 212 kW kW MW 2254 4254 6560 0.92 6.68 10.07 41 157 154 ––– 5,76 3.39 ––– 288 147 EirGrid 55 4.11 Jarno Lamponen (2008) 2 2008 EWEC 7,320 MW (Lamponen et al., 2008) 5 2,000 MW 20 36 MW 7,320MW 2,000MW 3 1 7,320MW 2,000MW 9,400 4,900 2 54,000 74,000 MW 35,000 4,000 5,300 800 36 2,000 MW 7,320 MW Fingrid N-1 PSS/E 110 kV PSS/E 400 kV DFIG Fingrid 4.12 20 MW 2005 FERC 661-A LVRT LVRT 9 12 SCADA 3 2008 15 p.u. 2008 0.0 p.u. ±0.95 SCADA 56 4.12.1 37 345 kV (GE Energy, 2005) 3 33,000 MW 10% 3,300 MW GE PSLF 37 2007 11 CAISO (Loutan et al., November 2007) Tehachapi ±0.95 WECC 4.12.2 CEC (Porter et al., 2007) 57 4,200 MW CREZ 10 (RPS) Panhandle, CREZ CREZ (PUCT) 38 PUTC (ERCOT) 12,000 4 PUCT 2 345 kV 24,000 MW 18,000 MW 1,400 2 345 kV 2008 1,000 50 2 38 PUCT 2008 2008 ERCOT 4.12.3 Lawrence Berkeley 40 58 CREZ 9 PUCT 2001 2008 kW (Mills et al., 2009) 63 MW 236 GW 0 /kW 500 /kW 300 /kW /kW 1,500 2,000 25 /kW 15 3 3 2 300 /kW 20 AEP Interstate Transmission Vision 2 NREL Wind Deployment System (WinDS) 150 300 /kW 2 207 /kW 20 Joint Coordinated System Plan (JCSP) 195 /kW Energy Information Administration (EIA) National Energy Modeling System (NEMS) 2030 40 GW 450 /kW 50 4.13 EU TradeWind EWEA IEE TradeWind (2006 2009) 2008) 2010 200 GW 2030 (Van Hulle et al. 2015 2020 2030 300 GW TEN-E 2020 2015 59 2030 2020 TradeWind 22 15 2030 6 220 1 (opf) EU UCTE UCTE Nordel UCTE2008 UCTE (NTC) N-1 4.14 2006 (EWIS) 1 2006 1 2 2008 2015 (EWIS, 2007) 1 7 3 2008 2008 EWIS (EWIS, 2007) UCTE 15 UCTE UCTE UCTE 60 2008 2008 2008 2 UCTE UCTE UCTE UCTE 2008 2009 Neuenhagen – Bertikow 380 kV Nordel N-1 UCTE N-1 61 5 4 5.1 (LOLE) (LOEE) (LOLP) LOLP LOLP LOLP LOLP MW LOLE 1 LOEE MWh (UCTE, 2005) (RC) 39 62 1 (UCTE, 2 VDN) MW 39 VDN2005 (Ensslin, 2006) 10 99 (Dena, 2005) 1 (LOLE) 91 (Ilex & Strbac, 2002, UK) 1 10 (Dena, 2005) (ELCC) 2 1 ELCC ELCC 1 LOLE 2 10 UCTE 1 http://www.ucte.org/statistics/terms_power_balance/e_default_definitions.asp 63 1 LOLE (Amelin, 2008) 3 2 LOLP LOLE LOEE 3 2 3 ELCC 2 2 3 ELCC 10 1 0.027 1 10 30 2,000~3,000 6,000~7,000 2 (OCGT) (DSM) MW 2 4 (Söder & Amelin, 2008) 5.1.1 15 15 “National Grid model” (Giebel, 2000) 64 1. 2. 3. 4. 10 1 5.1.2 10 DENA ELCC DENA 34 DENA LOLP DENA ELCC (Amelin, 2008) (Dena, 2005, Ilex & Strbac, 2002) 1 LOLP 2 40 c d e 65 30 40 DENA a. , b. [DENA, 2005] , c. d. e. , f. 1. 2. 3. 4. 5.1.3 1 2 LOLP LOLE LOEE LOLP LOLP 66 (Doherty & O’Malley 2005) 5.1.4 IEEE 2007 IEEE Power and Energy Society (PES) Wind Power Coordinating Committee 2008 7 2009 (ELCC) (Söder & Amelin, 2008; Amelin, 2008.) (Söder & Amelin, 2008.) 5.2 99 14.5 GW 2003 6 8 36 GW 2015 5 6 1994 2002 11 12 1 11 2 12 2003 +1 –1.5 2015 +0.5 –0.7 41 (DENA, 2005) 97 98 99 67 41 42 42 18 18 2003 8.3% 8.6% 6.1% 7.2% 1.199 1.245 889 1.040 2007 6.9% 7.2% 5.3% 6.1% MW 1.542 1.605 1.187 1.352 (DENA, 2005) 2010 2015 6.5% 6.9% 5.4% 5.9% 6.0% 6.4% 5.1% 5.5% 1.941 2.057 1.599 1.750 2.163 2.289 1.824 1.970 1 2 2003 15 11 20 11 12 12 1.8 19 0 99 97 99 800 68 2007 2 4 2010 2015 19 DENA, 2005 3.0% 3.2% 3.8% 1.8% 1.8% 3.0% 1.8% 0.0% 0.0% 5.3 (ESBNG) ESB National Grid EirGrid 2004 (ESBNG, 2004) 120 43 /t 43 (ESBNG, 2004) 2 5,000 MW 6,500 MW 4 2 33 69 5.4 (Tande and Korpås, 2006) 44 44 LOLP = Pr (Pm < 0) Pm Pc Pn 2 100 2 45 a (MW) b (%) c 70 LOLP 3 TWh 3 TWh 95 30 15 14 5.5 5.5.1 Ilex/Strbac, 2002 100 9 9 35 20 GW 4 GW 20 46 30 1 1 LOLP 71 5.5.2 Strbac etal., 2007 (DSM) (FDM) 2 47 70 TWh 400 TWh 35 9 47 FDM 48 48 (LOLP) 72 FDM 5.6 INESC Porto (REN) RESERVAS (REE) MIBEL INESC Porto Universidade de Itajubá REN REE 2025 2 1 2 2 EH / EM / FH, FM DH, DM 2 2 3 49 t 1 2 1 3 73 2 49 7 18 (H-) (HWM) (H+) 16 1990 LOLP 2005 LOLE (EENS) LOLP LOLE 50 51 52 LOLP LOLE ELCC 53 61.8 3 10 74 6 1.5 50 LOLE 51 LOLE 52 75 53 2015 5.7 (ELCC) ELCC 5 40 20 (Milligan & Porter, 2008) 3.11.1 Enernex 2010 10 GW 1,500 MW ELCC 26 34 25 MISO 3.11.2 5 20 2 & Porter, 2008) (Milligan ERCOT ELCC Xcel Colorado 10 PJM 6 PJM 7 3 8 3 7 3 ELCC Mid-Continent Area Power Pool (MAPP) 4 10 Southwest Area Power Pool (SPP) MAPP 85 50 Milligan & Porter (2005) SPP 23 76 25 PacifiCorp 2005 IRP 21 PacifiCorp 2003 20 IRP 0 20 CA CEC (Milligan & Porter, 2008) ELCC CPUC PJM RPS 20 PUC CA ISO 5 9 6 8 3 CA 6 HE 3 7 3 13 MN20 ERCOT ELCC ELCC ELCC4 15 25 ELCC 8.7 MN/DOC/Xcel CO PU/Xcel ELCC ELCC PacifiCorp MAPP Idaho Power Nebraska Public Power District Northwes Resource Adequacy Forum Tri-State ELCC SPP PNM ISO New England 26 10 34 ELCC 12.5 26 34 4 7 17 4 8 4 5 5 15 2 12 10 7 85 6 9 2 6 ISO CA/CEC: California/California Energy Commission CPUC: California Public Utilities Commission MN 20 % Study was sponsored by the Minnesota Public Utilities Commission RPS: ELCC: PJM: Pennsylvania-Jersey-Maryland, an RTO (regional transmission organization) in the US HE: ERCOT: Electric Reliability Council of Texas MN/DOC: Minnesota Department of Commerce, the sponsor of the Xcel Wind Integration Study GE/NYSERDA: General Electric Energy Consulting, New York State Energy Research Development Authority CO PUC: Colorado Public Utilities Commission MAPP: Mid-Continent Area Power Pool RMATS: Rocky Mountain Area Transmission Study PGE: Portland General Electric PSE: Puget Sound Energy CF: SPP: Southwest Area Power Pool PNM: Public Service Company of New Mexico 5.8 TradeWind TradeWind (Van Hulle et al., 2009) 1.2 77 10 5 6 7 Tradewind 2020 30 100 40 DENA 2020 200 GW 8 2 14 27 GW 54 (Van Hulle et al., 2009) 78 16 GW 6 20 (33 (24 ) ) (Navarra 44 %, Castilla-La Mancha 40 %, Aragón 37 %, Galicia 34 % and Castilla y León 32 %) Gotland (20 21 ) 21 / TWh/ MW MW MW MW TWh/ 2,350 5 24 % 59 % 12.6 29 230 2,570/ 3,070 5,200 500 1,800-2,800 2,275 745 11,615 4.2 1.6 23.4 33 % 6% 10% 38 % 32 % 68% 0.93 180 90 0.18 19% 40% 3,700 1,400 21 2,000 5,000 38,200 750 1,800 15,300 160 45 6.1 (HVDC) Nordpool Nordel 1.2 2.6 /MW 2005 1 6 1,600MW 66 2003 10 15 (AGC) 140 MW 6.2 79 140 Schleswig-Holstein Niedersachsen 2003 2005 E.ON Netz 10 15 (Eriksen et al., 2005) 3,000 MW Netz 2006 4 E.ON 1 (http://www.econ-netz.com) FRT 6.3 EirGrid 1 GW 6 GW 1 GW SCADA 6.4 2008 16 GW 264 TWh Canary 11 17 31.5 TWh 2008 95 GW 142 MW 2015 1,025 MW 1 4 18 2008 213 GW 28.2 2008 11 27 1.15 80 11 24 43 10 15 (Eriksen et al., 2005) 2009 3 19 500 MW 400 MW 1,000 MW 6 FRT 2004 (Eriksen et al., 2005) 2008 11 2 2,800 MW 2007 Iberdrola (CORE) CECRE CORE (CECOEL) CECOEL CECOEL 10 MW 2008 2 21 12,154 MW GEMAS REE CECRE 6.5 GEMAS Gotland Gotland HVDC 10 0 MW 0 MW Gotland (Söder et al., 2007) 81 7 (MW) (km) /MWh MWh MWh (%) 2.3 4 55 1 82 (kV) /MWh 55 7.1 3 56 56 Greennet Nordic (Holttinen, 2004) (Axelsson et al., 2005) (Ilex et al., 2004) (Strbac et al., 2007) (Dena, 2005) (EnerNex/WindLogics, 2006) (Porter et al., 2007) 83 57 56 DENA 4 4 10 4 4 5 10 56 4 5 4 10 15 20 18 (Strbac et al., 2007) 2.1.2 10 15 20 (Dena, 2005) 35 48 3.6.2 1 GE CEC 100 500 MW 10 57 (Holttinen, 2004) (Ilex/Strbac, 2002; Strbac et al., 2007) (Ilex et al., 2004) (Zavadil et al., 2006) (EnerNex/WindLogics, 2004 and 2006) (Shiu et al., 2006) PacifiCorp (PacifiCorp, 2005) Greennet (Meibom et al., 2009) 84 1 5 57 1 0.7 20 1 2.6 1.3 4.7 2007 /MWh Nordic 24 1.4 2.6 57 20 1 4 /MWh 10 2002 4 Greennet 3 Greennet 2004 SEI 2004 Greennet PacifiCorp 2006 2004 DENA 2 Greennet 2004 Greennet 20 4 85 /MWh (MW) Nordic 0.3 1.4 /MWh (Holttinen et al., 2006; Neimane & Carlsson, 2008) Nordic 4,000 MW 8 18 1 4 15 56 8 (Brandberg & Broman, 2007) Nordic 1 MWh 0.2 1 10 (Helander et al., 2009) (FGE/FGH/ISET, 2007) (Holttinen & Koreneff, 2007) (Neimane & Carlsson, 2008) Nordic 100% 50% 3 4 5 TWh 1 (Söder, 1994) 12 1 (Holttinen, 2004) 20 50 (Energinet.dk, 2007) CCGT (Ummels, 2009) 2 GW 13 6 GW /MWh (All Island Grid Study, 2008) 10 36 MW 1 5 1 2 MW 1 858 MW 910 MW 2008 6.50 6.80 /MMBTU 3.35 4.55 σ 859 950 MW 700 MWh 3.35 86 4.30 800 MW 10.70 2,500 (GE Energy, 2005) 54MW 48MW MWh 10,000 MW 0.27 15,000 MW MWh 0.18 55 /MWh /MWh (GE Energy, 2007) 252 (Strbac et al., 2007) 2.5 400 MW CAES 970 /kW 2,700 (FGE/FGH/ISET, 2007) (Ummels, 2009) (All Island Grid Study, 2008) 10 20 7.2 2 22 (Söder & Holttinen, 2007) 22 2 , Söder 1994 1. 1. x GWh A 1. M 1. x GWh 1. (4a + . Meiborn 2009 , Holttinen, 2001 x GWh 1. , Enermex 2004 1. x GWh 1. (4b , Enernex 2006 1. 1. x GWh 1. (6 , ESBNG 2004 1. x GWh 2. (6 (5, 6) 87 , , SEI 2004 2009 1. x GWh 1. x GWh 1. 3. 2. 4. 2. 2. 2. 2. 5. 30 S (14) (9) R 5. (10a) 30 30 1 1. 1. 3x 3x 1 1. 1. 1. 15 1 1. (15) 1. / P 1. 6. 3. 3. 1. 4. 1. 4. 5. (10b) 1. 4. 3. 1. 1. (11a) D 5. (11b) 1. 4. CCGT OCGT 5. 6. 2. 1. 4. 3. 3. 4. 3. 3. 1. 4. (12) 3. 2. 3. 2. 2. 3. 2. 3d. 3d. 1 3d. 3d. 1 I B 3d. 2. 1~2 U 1. 4 3. 3. 3 36 5. 6. 3d. (13e) 6. 5. 6. 6. 6. (13f) 5. 6. 1. 1. 2. 8. 8. 7. 13b 1. 2. 1. 2. 1. 2. 3. 3. MW 2. MW 1. 2. 6. 6. 7. 7. MW G 3. 4. H 5. 4. 4. 5. 5. 88 MW T 1a. 1. 2. 3. 4. 1. 1. 1. 1. 1. 2. 3. 2. 3. 2. 3. 2. 3. 2. 3. 4. 1a&1b. 1c. 50 1. 1a&1b. 1a. 8 : 1c. 50 : 38 30 2d. 3. 30 W 2b. 2b. 3. 3. 4. (13f) (13g) (14) (15) 1d. 4. 4. 4. (1) (2) (3) (4a) (4b) (5) (6) (7) (8) (9) 4 (10a) (10b) (11a) 5,000 MW 6,500 MW (11b) (12) (13a) (13b) 8 36 (13c) (13d) (13e) 2d. 3. 4. GWh a) 1 (MWh) CCGT CCGT OCGT 15 18% 2.5% 20% 24 14 18% 1 40MW 4 60MW 7.3 (LVRT) SCADA FRT FRT 10% FRT FRT (Loutan et al., 2007) 89 75% 40 15% 90% 99% 5% (Lange and Focken, 2008) 1 (Korpås et al., 2006) (Matevosyan, 2006, Tande & Uhlen, 2004) Electric Reliability Council of Texas (ERCOT) (CREZ) ERCOT 18,456 MW 2,376 49.3 345 kV 24 Tradewind EWIS 26 GW 8 GW 35 2015 20% 77 65 125 /kW 85 6,000 MW 60~11 53 /kW 100 36,000 MW 100 /kW /kW 2.25 GW 2 GW 6 GW 10 6.6 GW 2.25 GW kW 4.3 GW 212 1 40% 270 2% 3 GW /kW (Electricity Infrastructure Committee, 2008) 2025 2,250 MW 63 2007 /kW /kW (Jansen & deGroot, 2003) 5,100 MW DENA 162 /kW (Strbac et al., 2002) 117 2025 /kW 700 MW (EA Energianalyse, 2007) 2001 2008 40 0 90 /kW 1,500 /kW 500 /kW 300 58 20 50 0% 2.25 GW 6.6 GW 7.4 40% 5% 91 59 /kW 1 59 (Dena, 2005) (ESBNG, 2004) (Tande & Korpås, 2006) (Ilex & Strbac, 2002) (EnerNex/WindLogics, 2004;EnerNex/WindLogics, 2006) (GE Energy, 2005) (Shiu et al., 2006) 59 8 5 GW 6.5 GW 2 59 59 40% 5.6 92 3 (OCGT) (DSM) (Söder & Amelin, 2008) 93 8 1 94 (LOLP) 95 All Island Grid Study. 2008. Available at: http://www.dcenr.gov.ie/Energy/North-South+Co-operation+in+the+Energy+Sector/All+Island+Electricity+Grid+Study.ht m, 2008. Amelin, M. 2008. Comparison of Capacity Credit Calculation Methods for Conventional Power Plants and Wind Power, accepted in December 2008 for publication in IEEE Transactions on Power Systems. Axelsson, U., Murray, R. & Neimane, V. 2005. 4000 MW wind power in Sweden – Impact on regulation and reserve requirements. Elforsk Report 05:19, Stockholm. Available at: http://www.elforsk.se. Bird, L., Parsons, B., Gagliano, T., Brown, M., Wiser, R. & Bolinger, M. 2003. Policies and Market Factors Driving Wind Power Development in the United States. NREL/TP-620-34599, National Renewable Energy Laboratory, Colorado, US. Brandberg & Broman. 2007. Future trading with regulating power, Magnus Brandberg and Niclas Broman, Masterís Thesis, Uppsala Universitet, performed at Vattenfall Utveckling AB. An updated version is published, together with Nilsson, in Minerals & Energy - Raw Materials Report, Volume http://www.informaworld.com/ smpp/title%7Econtent=t713789630%7Edb=all%7Etab=issueslist%7Ebranches=2 3 v2323, Issue 1 March 2008, pp. 1–11. Burges, K., De Broe, A. M. & Feijoo, A. Advanced wind farm control according to Transmission System Operator requirements. European Wind Energy Conference, EWECí03 Madrid, Spain, 16.–20.6.2003. Bömer, J. & K. Burges: Verbesserte Integration von Windenergieanlagen im EEG 2009. 2008. Available at: http://www.erneuerbare-energien.de/inhalt/42327/4591/ Cardinal, M. E. & Miller, N. W., 2006. Grid Friendly Wind Plant Controls: WindCONTROL – Field Test Results. WindPower 2006, Pittsburgh, PA, US. Coughlan, Y., Smith, P., Mullane, A. and O’Malley, M.J. 2007. Wind turbine modelling for power system stability analysis – a system operator perspective. IEEE Transactions on Power Systems, Vol. 22, pp. 929–936. Dale, L., Milborrow, D., Slark, R. & Strbac, G. 2003. A shift to wind is not unfeasible (Total Cost Estimates for Large-scale Wind Scenarios in UK). Power UK Journal Issue 109, pp. 17–25. Danish Energy Authority, 2007. A visionary Danish Energy Policy 2025. Available at: http://www.ens.dk/sw45978.asp (27.1.2009). DeMeo, E. A., Grant, W., Milligan, M. & Schuerger, M. J. Wind plant integration: costs, status and issues. IEEE Power & Energy Magazine, Nov/Dec 2005. Dena, 2005. Planning of the grid integration of wind energy in Germany onshore and offshore up to the year 2020 (Dena Grid study). Deutsche Energie-Agentur Dena, March 2005. English summary and full German version available at: http://www.dena.de/themen/thema-reg/projektarchiv/. Distribution Grid Code. 2007. Available at: http://www.esb.ie. Doherty, R. & OíMalley, M. J. 2005. New approach to quantify reserve demand in systems with significant installed wind capacity. IEEE Transactions on Power Systems, Vol. 20, pp. 587–595. Dragoon, K. & Milligan, M. Assessing Wind Integration Costs with Dispatch Models: A Case Study. Windpower 2003, Austin, TX. EA Energianalyse A/S: 50 percent wind in 2025 (In Danish), June 2007. Available at: http://www.ea-energianalyse.dk/publications.html. EirGrid Grid Code. 2008. Available at: http://www.eirgrid.com. Electricity Infrastructure Committee. 2008. Technical Report on the future expansion and undergrounding of the electricity transmission grid; published by the Electricity Infrastructure Committee, April 2008. Available at: http://www.energinet.dk. Elektrizitätszwirtschaft. 2006. Elektrizitätszwirtschaft Jg. 105, Nr. 25, p. 42. Eleveld, H.F., Enslin, J.H.R., Groeman, J.F., van Oeveren, K.J. & van Schaik, M.A.W. 2005. Connect 6000 MW-II: Elektrische infrastructuur op zee. Kema 40510025- TDC 05-485000, September 2005. Energinet.dk. 2004. Regulation TF3.2.5, Wind turbines connected to grids with voltages above 100kV, Dec 2004. Energinet.dk, Recent Energinet.dk Papers (3 & 4 quarter 2005) on: System Analysis and Model Tools, December 2005. Available at: http://www.el-vest.energinet.dk/ media(16713,1030)/System_Analyses_2006.pdf. Energinet.dk, 2007. System Plan 2007. Available at: http://www.energinet.dk. 96 EnerNex/WindLogics, 2004. Xcel North study (Minnesota Department of Commerce). Available at: http://www.state.mn.us/cgi-bin/portal/mn/jsp/content.do?contentid=536904447&contenttype=EDITORIAL&hpage=true& agency=Commerce. EnerNex/WindLogics 2006. Minnesota Wind Integration Study Final Report. Vol I, prepared for Minnesota Public Utilities Commission, Nov. 2006. http://www.puc.state.mn.us/portal/groups/public/documents/pdf_files/000664.pdf Ensslin, C. 2006. The Influence of Modelling Accuracy on the Determination of Wind Power Capacity Effects and Balancing Needs. PhD Thesis, Kassel University Press. Available at: http://www.uni-kassel.de/upress/publi/schriftenreihe.php?ern euerbare_energien.html. ERCOT, 2007. ERCOT Operations Report on the EECP event on February 8, 2007. Available on the ERCOT web site at: http://www.ercot.com/meetings/ros/key docs/2007/0315/07._ERCOT_OPERATIONS_REPORT_EECP020807_rev3.doc. Eriksen, P. B., Ackermann, T., Abildgaard, H., Smith, P., Winter, W. & Garcia, J. R. 2005. System operation with high wind penetration. The transmission challenges of Denmark, Germany, Spain and Ireland. IEEE Power & Energy Magazine, Nov/Dec 2005. Eriksen, P. B. & Orths, A. 2008. Challenges and Solutions of Increasing from 20 to 50 Percent of Wind Energy Coverage in the Danish Power System until 2025; In- vited Keynote Paper; Proceedings of the 7th international Workshop on Large Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms; 26–28 May 2008, Madrid, Spain. Erlich, I., Winter, W. & Dittrich, A. 2006. Advanced Grid Requirements for the Integration of Wind Turbines into the German Transmission System. IEEE PES, Montreal. Ernst, B. 1999. Analysis of wind power ancillary services characteristics with German 250 MW wind data. NREL Report No. TP-500-26969. 38 p. Available at :http://www.nrel.gov/publications/. ESBI, 2004. Renewable Energy Resources for Ireland 2010 & 2020. Sustainable Energy Ireland. ESBNG, ESB National Grid. 2004. Impact of wind power generation in Ireland on the operation of conventional plant and the economic implications. February 2004. Estanqueiro, A. 2006. Study on the Portuguese spatial correlation and smoothing effect of fast wind power fluctuations. INETI, Private communication, December, 2006. EWEA, 2005. Large scale integration of wind energy in the European power supply: analysis, issues and recommendations (December 2005). Available at: http://www.ewea.org/. EWIS, 2007. European Wind Integration Study final report phase one. Available at: http://www.etso.org, http://www.ucte.org. FGE/FGH/ISET: Bewertung der Optimierungspotenziale zur Integration der Stromerzeugung aus Windenergie in das ‹bertragungsnetz. 2007. Available at: http://www.erneuerbare-energien.de/inhalt/42024/4591/. Focken, U., Lange, M., Waldl & H.-P. 2001. Previento – A Wind Power Prediction System with an Innovative Upscaling Algorithm. In: Proceedings of EWECí01, 2nd–6th July, 2001, Copenhagen, pp. 826–829. Focken, U. 2007. Optimal Combination of European Weather Models for Improved Wind Power Predictions. In: Proceedings of EWECí07, 7th–10th May, 2007, Milan, Italy. GE Energy, 2005. The Effects of Integrating Wind Power on Transmission System Planning, Reliability, and Operations. Report on Phase 2, Prepared for The New York State Energy Research and Development Authority, City, State, Mar. 2005. Available at: http://www.nyiso.com/public/services/planning/special_studies.jsp. Giebel, G., 2000. On the Benefits of Distributed Generation of Wind Energy in Europe. PhD Thesis, Carl von Ossietzky Universität, Oldenburg. Giebel, G., Brownsword, R. & Kariniotakis, G. 2003. The State-of-the-art in Short-term prediction of wind power. A literature overview. EU project ANEMOS (ENK5-CT- 2002-00665). Available at: http://anemos.cma.fr. Giebel, G. 2007. A Variance Analysis of the Capacity Displaced by Wind Energy in Europe. Wind Energy, 10, pp. 69–79. Gjengedal, T. 2004. Large scale wind power farms as power plants. Nordic Wind Power Conference, 1–2.3.2004, Chalmers University of Technology, Sweden. Gómez-Lazaro, E., Fuentes, J. A., Molina, A., Ruz, F. & Jiménez, F. 2006. Results using Different Reactive Power Definitions for Wind Turbines Submitted to Voltage Dips. Application to the Spanish Grid Code, Power Systems Conference, October-November 2006, Atlanta, USA. Gómez-Lazaro, E., Fuentes, J. A., Molina-García, A., Ruz, F. & Jiménez, F. 2007a. Field Tests of Wind Turbines Submitted to Real Voltage Dips under the New Spanish Grid Code Requirements. Wind Energy. Gómez-Lazaro, E., Fuentes, J. A., Molina-García, A., Ruz, F. & Jiménez, F. 2007b. Wind Turbine Modeling: Comparison of Advanced Tools for Transient Analysis. PES General Meeting, June 2007, Tampa, USA. GWEC, 2005. WIND FORCE 12. A blueprint to achieve 12 % of the worldís electricity from wind power by 2020. Available at: http://www.ewea.org. Helander, A., Holttinen, H. & Paatero, J. 2009. Impact of wind power on the power system imbalances in Finland. Revised version submitted to IET Renewable Power Generation journal Jan 2009. 97 Holmgren, M. 2008. Power regulation resources required by wind power in Finland and regulation characteristics of power plants. Masterís Thesis, Helsinki University of Technology, 78 p. (In Finnish; submitted as a CIGRE 2009 paper.) Holttinen, H., Vogstad, K.-O., Botterud, A. & Hirvonen, R. 2001. Effects of Large-Scale Wind Production on the Nordic Electricity Market. Proceedings of European Wind Energy Conference, EWECí01. Copenhagen, DK, 2–6 July 2001. CDROM. European Wind Energy Association. Holttinen, H. 2004. The impact of large scale wind power production on the Nordic electricity system. VTT Publications 554. Espoo, VTT Processes. 82 p. + app. 111 p. Available at: http://www.vtt.fi/inf/pdf/publications/2004/P554.pdf. Holttinen, H. 2005. Impact of hourly wind power variations on the system operation in the Nordic countries. Wind Energy, Vol. 8, No. 2, pp. 197–218. Holttinen, H., Saarikivi, P., Repo, S., Ikäheimo, J. & Koreneff, G. 2006. Prediction Errors and Balancing Costs for Wind Power Production in Finland. Proceedings of 6th workshop on Offshore and Large Scale Integration of Wind Power, 25–26th October, 2006, Delft, Netherlands. Holttinen, H. & Koreneff, G. 2007. Imbalance costs of wind power for a hydro power producer in Finland. Proceedings. European Wind Energy Conference EWEC2007. Milan, Italy, 7–10 May, 2007. European Wind Energy Association, EWEA. Holttinen, H., Milligan, M., Kirby, B., Acker, T., Neimane, V. & Molinski, T. 2008. Using standard deviation as a measure of increased operational reserve requirement for wind power. Wind Engineering, Vol. 32, 4, pp. 355–377. IEA, 2005. Variability of wind power and other renewables. Management options and strategies. Available at: http://www.iea.org/Textbase/publications/free_new_Desc.asp? PUBS_ID=1572. IEC 61400-21, 2001. Wind turbine generator systems – Part 21. Measurement and assessment of power quality characteristics of grid connected wind turbines. Ed. 1.0, International Standard. Ilex, UMIST, UCD and QUB. 2004. Operating reserve requirements as wind power penetration increases in the Irish electricity system. Sustainable Energy Ireland. Ilex Energy, Strbac, G. 2002. Quantifying the system costs of additional renewables in 2020. DTI, 2002. Available at: http://www.dti.gov.uk/energy/developep/080scar_report_ v2_0.pdf. INEGI, 2002. Wind Resource Variability Patterns in Continental Portugal. INEGI – Instituto de Engenharia Mec‚nica e Gest„o Industrial – University of Oporto, commissioned by REN, Rede Eléctrica Nacional, SA. ISET, 2005. Wind Energy Report Germany 2005, ISET, Kassel. ISET, 2006. Private communication with Cornel Ensslin for the standard deviation of variations time series. Available at: http://www.renknow.net. (Search item ìtime seriesî.) Jansen, C. P. J. & de Groot R. A. C. T. 2003. Connect 6000 MW: Aansluiting van 6000 MW offshore windvermogen op het Nederlandse elektriciteitsnet. Deel 2: Net op land. Kema 40330050-TDC 03-37074B. Oktober 2003. Kariniotakis, G. et al. 2006. Next generation forecasting tools for the optimal management of wind generation. Proceedings PMAPS Conference, Probabilistic Methods Applied to Power Systems, KTH, Stockholm, Sweden, June 2006. Korpås, M., Tande J. O., Uhlen, K. & Gjengedal, T. 2006. Planning and operation of large wind farms in areas with limited power transfer capacity. European Wind Energy Conference (EWEC), Athens, Greece, 27 February – 2 March 2006. Krauss, C., Graeber, B. & Lange, M. 2006. Integration of 18 GW Wind Energy into the Energy Market – Practical Experiences in Germany. Workshop on Best Practice in the Use of Short-term Forecasting of Wind Power, Delft 2006. Kristoffersen, J. R. 2005. The Horns Rev Wind Farm and the Operational Experience with the Wind Farm Main Controller. Proceedings of Copenhagen Offshore Wind, October 2005, Copenhagen, Denmark. Lamponen, J., Haarla, L., Matilainen, J., Koskinen, M. & Lemström, B. 2008. Wind power, grid reinforcement needs and connection issues. European Wind Energy Conference & Exhibition, EWEC 2008 conference proceedings, Brussels Expo, Belgium, 31 March – 3 April 2008. Lange, B., Cali, ‹., Jursa, R., Mackensen, R., Rohrig, K. & Schlögl, F. 2006. Strategies for Balancing Wind Power in Germany. German Wind Energy Conference DEWEK 2006, Bremen, November 2006. Lange, M. & Focken, U. 2008. Studie zur Abschätzung der Netzkapazität in Mittel- deutschland in Wetterlagen mit hoher Windeinspeisung. 2008. Available at: http://www.erneuerbare-energien.de/inhalt/42006/20049/. Loutan et al., November 2007. Available at: http://www.uwig.org/CAISOIntRenewables Nov2007.pdf. Lund, H. & M ünster, E. 2006. Integrated energy systems and local energy markets. Energy Policy, Vol. 34, Iss. 10. Elsevier. Pp. 1152–1160. MacDonald, M. 2003. The Carbon Trust & DTI Renewables Network Impact Study Annex 4: Intermittency Literature Survey & Roadmap. The Carbon Trust & DTI. 2003. Martin, S., Vigueras-Rodríguez, A. & Gómez-L·zaro E. 2009. Comparison of power fluctuations from onshore and offshore, IEA Task 23 Workshop Offshore Wind Farms – Wake Effects and Power Fluctuations. Roskilde (Denmark), February 2009. Matevosyan, J. 2006. Wind power integration in power system with transmission bottlenecks. PhD study, KTH, Sweden. Available at: http://www.diva- portal.org/kth/theses/abstract.xsql?dbid=4108. 98 Meibom, P., Weber, C., Barth, R. & Brand, H. 2009. Operational costs induced by fluctuating wind power production in Germany and Scandinavia. IET Renewable Energy Generation, Volume 3, Issue 1, p. 75–83, March 2009. Milligan, M. 2003. Wind power plants and system operation in the hourly time domain. Proceedings of Windpower 2003 conference. May 18–21, 2003 Austin, Texas, USA. NREL/CP-500-33955. Available at: http://www.nrel.gov/publications/. Milligan, M. & Porter, K. 2005. The capacity value of wind in the United States: Methods and implementation. Electricity Journal, no. 2, pp. 9199–9204. Milligan, M. & Porter, K. 2008. Determining the Capacity Value of Wind: An Updated Survey of Methods and Implementation, presented at WindPower 2008, Houston, TX. Available at: http://www.nrel.gov/docs/fy08osti/43433.pdf. Mills, A., Wiser, R. & Porter, K. 2009. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies. LBNL-1471E. February 2009. Neimane, V. & Carlsson, F. 2008. A massive introduction of wind power. Changed market conditions? Elforsk report 08:41. Available at: http://www.vindenergi.org/ Vindforskrapporter/v_132.pdf. PacifiCorp, 2005. Integrated Resource Planning. Available at: http://www.pacificorp.com/ Navigation/Navigation23807.html. Porter et al., July 2007. Intermittency analysis Final report. July, 2007. Available at: http://www.uwig.org/CEC-500-2007-081.pdf. PUCT, 2008. Commission staff¥s petition for designation of competitive renewable-energy zones. Public Utility Commission of Texas. Available at: http://interchange. puc.state.tx.us/WebApp/Interchange/application/dbapps/filings/pgSearch_Result s.asp?TXT_CNTR_NO=33672&TXT_ITEM_NO=1423. REE, 1995. Criterios Generales de Protección del Sistema Eléctrico Peninsular Español, REE and Power Companies. REE/REN, 2005. Estudio de Estabilidad Eólica de la Península Ibérica Síntesis de Criterios y Metodologías, REE/REN. May, 2005. REE, 2006. Operating Procedure P. O.12.3 – Requisitos de respuesta frente a huecos de tensión de las instalaciones de producción de régimen especial. REE. October 2006. REE/REN, 2006. Producción eólica técnicamente admisible en el sistema eléctrico peninsular ibérico. Horizonte 2011, REE/REN. July 2006. Rodríguez-Bobada, F., Reis Rodriguez, A., Ceña, A. & Giraut, E. Study of wind energy penetration in the Iberian peninsula. European Wind Energy Conference (EWEC), 27 February – 2 March, 2006, Athens, Greece. Rohrig, K. (ed.) 2005. Entwicklung eines Rechenmodells zur Windleistungsprognose für das Gebiet des deutschen Verbundnetzes. Abschlussbericht Forschungsvorhaben Nr. 0329915A, gefördert durch Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU). Kassel, Germany. Shiu, H., Milligan, M., Kirby & B. Jackson, K. 2006. California Renewables Portfolio Standard Renewable Generation Integration Cost Analysis. California Energy Commission, PIER Public Interest Energy Research Programme. Available at: http://www.energy.ca.gov/pier/final_project_reports/CEC-500-2006-064.html. Smith, J. C., Milligan, M. R., DeMeo, E. A. & Parsons, B. 2007. Utility Wind Integration and Operating Impact State of the Art. IEEE Transactions on Power Systems, Vol. 22, No. 3, August 2007. Strbac, G. & Bopp, T. 2007. Value of fault ride through capability for wind farms. Report to Ofgem (http://www.sedg.ac.uk), July 2004. Strbac, G., Shakoor, A., Black, M., Pudjianto, D. & Bopp, T. 2007. Impact of wind generation on the operation and development of the UK electricity systems. Electrical Power Systems Research, Vol. 77, Issue 9. Elsevier. Pp. 1143–1238. Svenska Kraftnät. 2008. Large scale expansion of wind power – Consequences for the transmission grid and need of regulation power. Available at: http://www.svk.se/Global/01_Om_oss/Pdf/Rapporter/080601_Bilaga_vindkraftra pport_2008.pdf. (In Swedish.) Söder, L. 1994. Integration study of small amounts of wind power in the power system. Royal Institute of Technology KTH report TRITA-EES-9401. Available at: http://www.eps.ee.kth.se/personal/lennart/lennart_report_mars94.html. Söder, L., Ekwue, A. & Douglas, J. 2006. Study on the technical security rules of the European electricity network. Royal Institute of Technology (KTH) report TRITA- EE 2006:003. Söder, L., Hofmann, L., Nielsen, C. S. & Holttinen, H. 2006. A comparison of wind integration experiences in some high penetration areas. Nordic Wind Power Conference, 22–23 May, 2006, Espoo, Finland. VTT, Espoo, 2006. Söder, L., Hofmann, L., Orths, A., Holttinen, H., Wan, Y.-H., Tuohy, A. 2007. Experience from wind integration in some high penetration. IEEE Transactions on Energy Conversion, vol. 22, 2, pp. 4–12. Söder, L. & Amelin M., 2008. A review of different methodologies used for calculation of wind power capacity credit Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE 20–24 July 2008, pp. 1–5. Söder, L. & Holttinen, H. 2008. On methodology for modelling power system impact on power systems. International Journal of Global Energy Issues, Vol. 29, 1–2, pp. 181–198. Tande, J. O., Muljadi, E., Carlson, O., Pierik, J., Estanqueiro, A., Sørensen, P., OíMalley, M., Mullane, A., Anaya-Lara, O. & 99 Lemstrom, B. 2004. Dynamic models of wind farms for power system studies – status by IEA Wind R&D Annex 21, European Wind Energy Conference (EWEC), 22–25 November, London, UK. Tande, J. O. & Uhlen, K. 2004. Cost analysis case study of grid integration of larger wind farms. Wind engineering, Vol. 28, No. 3, pp. 265–273. Tande, J. O., Korpås, M., 2006. Impact of large scale wind power on system adequacy in a regional hydro-based power system with weak interconnections. Proceedings of Nordic Wind Power Conference NWPC 2006, 22–23 May, 2006, Espoo, Finland. UCTE, 2005. UCTE System Adequacy Forecast 2006– 2016, Dec. 2005. UKERC, 2006. The Costs and Impacts of Intermittency: An assessment of the evidence on the costs and impacts of intermittent generation on the British electricity network. UK Energy Research Centre, 2006. Ummels, B. C. 2009. Power System Operation with Large-Scale Wind Power in Liberalised Environments. Ph.D. thesis, Delft University of Technology, the Netherlands. 192 p. Van Hulle, F., Tande, J. O., Uhlen, K., Warland, L., Korpås, M., Meibom, P., Sørensen, P., Morthorst, P. E., Cutululis, N., Larsen, H., Woyte, A., Verheij, F., Kleinschmidt, C., Moldovan, N., Holttinen, H., Lemström, B., Uski-Joutsenvuo, S., Gardner, P., Purchala, K., Tiedemann, A. & Kreutzkamp, P. 2009. Final Report TradeWind. (Available at http://www.trade-wind.eu.) Wan, Y. 2005. Fluctuation and Ramping Characteristics of Large Wind Power Plants. Windpower 2005 (Windpower 05) Conference and Exhibition (CD-ROM), 15–18 May 2005, Denver, Colorado. Washington, DC: American Wind Energy Association; Content Management Corp. NREL Report No. CP-500-38057. 13 p. Wessel, A.J., Jiang, A., Conz, J., Dobschinski, B. & Lange, H. Werner: Improving short- term forecast with online wind measurements. Proceedings of the German Wind Energy Conference 2008, Bremen. Zavadil, R. 2006. Wind Integration Study for Public Service Company of Colorado. May 22, 2006. Available at http://www.xcelenergy.com/XLWEB/CDA/0,3080,1-1- 1_1875_15056_15473-13518-2_171_258-0,00.html. 100 1 3 2009 2011 Risø DTU Task25 Risø DTU EU SUPWIND Wilmar EU Anemos Plus Wilmar SUPWIND Phd EFP2007 VTT 2009 2011 VTT Helsinki Technical University 1 DENA DENA 30% II 2020 2025 3 101 2009 1 (EEG) FIT EEX 17 29 66 64 RAVE (Research at Alpha Ventus) RAVE R D Risø Task25 NREL TUD TUD 2 ECN SupraGrid Task25 ECN TUD SupraGrid 2 SupraGrid SupraGrid SupraGrid 102 SupraGrid 2009 2011 2020 (DGS) EU 2 (DSM) (VRPP) DGS UCLM-IER (Universidad de Castilla-La Mancha/Instituto de Investigación de Energías Renovables) 103 Royal Institute of Technology, Kungliga Tekniska Högskolan, KTH 10 TWh 2015 Nordal UK Centre for Sustainable Electricity and Distributed Generation (SEDG) NREL Eastern Interconnection Western Interconnection Footprint WestConnect Eastern Interconnection (JCSP) JCSP 20% RTO MISO 104 CIGRE JWG C1-C2-C6.18 2006 2 105 (EWIS) 2 A.1 Pedersen, J. & Eriksen, P.B. System and Market Changes in a Scenario of increased Wind Power Production 2005 (MW) (MW) (MW) 5,700 – x x TWh/a 26.3 – z MW 0 MW 0 MW — x, y, z A M 1. 1. 2. S 2. R P 2. 1. 3. 2. 4. 26.3 TWh 100% G H T W 1 3. 2. 1. 2. 5. 6. 2. 8. 1. 2. 3. 4. 1. 3. 4. b) MW b) 106 MW 0 7,200 1,500 + y MW 20 TWh a) I B U 0 5,700 – x MW 6 TWh D (MW) TWh/a 0 26.3 4,000 A.2 Lennart Söder, 1994 (MW) (MW) (MW) TWh/a 7 16,400MW (MW) MW 478 MW A 1. 2. M 1. 3. S 3. R P 2. 5. D 1. 6. I B 2. 1. 4. U 3. 0 GW (MWh) d) 3.21m/s 2 1.56 2.70m/s RMSE 1 5. 1 T W a) 8 107 30 1% 2% 1. 1. 2. 3. 4. 5. 5. 1. 90 MW x GWh 1.56 G H TWh/a 24 (RMSE) 24 A.3 (Holttinen et al., 2001) 2000 (MW) 67,000 (MW) 24,000 60 TWh/a TWh/a 385 2010 4 88 TWh/a 4 (MW) 90,000 191 TWh/a 5,500 MW (MW) MW TWh/a 300 18,000 46 92 TWh/a 2010 89 TWh/a 2010 7,700 MW 1,800 MW 1,200MW 11 TWh/a 7 TWh/a 14 TWh/a 1 2010 5 TWh/a 4 A 1. M S 1. 2. R 1. x GWh 30 4 1 30 P D I B U 1. 1. 4. 2. 3. 6. G H T W 2. 1. 2. 3. 4. 5. MW 1. 30 1~2 108 9 TWh/a A.4 Risø 4 2006 12 2010 (MW) 155,500 36,000 MW 3 (MW) 65,600 (MW) TWh/a 977 (MW) 196,000 138,500MW 3,120MW 12 11,500 MW Nord Pool 10 S 4. R P 2. 1. 3. D 1. 4. 5. I 1. B U 3. 2. 3. H 3. 4. 5. 2. 3. 4. T EEX y 2 GWh 1 d. 36 15 3 2. 46,000 MW 15 x 8 G 31,000 MW 28,000MW 5,500 MW 30,000MW 10% 11,500 MW 64,000 MW 1. 1. TWh/a 6,600 57,500 MW 32,000 MW A M MW 18% 36 MW 6,600 MW 31,000 MW 109 20% W 21 10 6 6 d) 3. 4. 110 12 A.5 EnerNex/WindLogics (MW) 9,933 (MW) 300 — 21% 2004 2004 2010 MW 11,426 TWh/a 48.1 2% MW 1,500 28% MW 1,500 25% 12% 13.5% 8% 1,000 km2 RPS 2 A M 1. 1. S 2. R P 2. 1. 2. D 1. I B U 3. 2. 1. 2. 3. 5. 6. 7. x y GWh a) 1 3. G H T W 1. 6. 7. 1. 2. 3. 1. 2. 3. 4. 1,000 km2 1 d) MAE c) 50 b) 1 111 TWh/a 5.8 4% 20% A.5 EnerNex/WindLogics (MW) 21,000 (MW) 8,800 — 55% 5% 2004 2006 2020 (MW) 23,500 TWh/a 85 MW 5,000 6% 3.5% 8% MISO 1 5,000 MW 2020 2020 MW 5,700 90.5% TWh/a 21 23.5% NERC Midwest Reliability Organization (MRO) 5,700 MW 3 4 z 750 km2 RPS 14 MISO GW MISO 116 133 GW 2020 A M 1. 1. S 2. R P D 2. 1. 4. 5. 6. 170 GW x y GWh a) I B U G H T W 1 CapX2020 3. 2. 3. 1. 2. 3. 5. 6. 2. 6. 7. 1. 2. 3. 1. 2. 3. 4. d) MAE 20% MW c) b) 1 750 km2 112 A.7 ESBNG ESB EirGrid 5,000MW (MW) (MW) MW 29/38.5 — 855 MW 6,500 MW 344 MW 67% A 650MW (MW) TWh/a 5,000/6,500 2004 2 MW MW 0/500/1,000/ 1,500/2,500/ 3,500 4,935 MW 5,732/7,354 5,000 MW 344 MW 544MW 544 MW 6,650MW 5,153MW TWh/a 5.2/10.5/15.7/ 19.6/27.4 3,769 855 MW 33% M 1. 3. 2. S 2. x y GWh a) 2 4 R P D 1. 1. 5. 1. 1 5,000 MW 6,500 MW (CC) I B U 4. 2. 3. (CT) 24 6. G H T W 1. 8. 1. 2. 1. b) 2. 3. 4. 18 b) 1 113 A.8 SEI Ilex, UMIST, UCD, QUB, 2004 2006 (MW) 6,127/6,900 345.6 MW (MW) (MW) TWh/a 2,192/2,455 35.5/39.7 217.5 MW 1,215 MW 500 MW 2010 (MW) 8,110/8,900 MW TWh/a 845/1,300/ 2.2/3.4/5.1 1,950 4,932 MW 500/900 292 MW 995.4 MW 7,488 MW 400 MW 10% 50% 2010 40% 4 A M 1. 3. 1. S 2. R 30 I B U 3. 2. 3. x y GWh 3 CCGT 1 8 14 5. 6. 7. W 1. 8. 1. 2. 3. 1. 18 1 1 G H T OCGT b) 40 MW 4 4 10 2. 3. 4. b) 1 114 60 MW A.9 Bart C. Ummels. Delft University of Technology, 2008 2014 (MW) 21,000 (MW) 10,500 — GW CCGT CHP CCGT CHP CCGT TWh/ (MW) 30,000 TWh/a 126 0.4 9.5 – 4.9 0.9 1.5 7.1 0.6 – – – – 6.3 30.4 10.0 21.0 126 GW 5.9 2.6 – – – – 5.0 1.5 – – 1.3 0.1 0.4 16.8 – 15.2 97 GW 64.9 6.0 – – – – 4.0 1.1 9.2 13.6 4.2 7.9 – 110.9 – – 518 (MW) 7,350 MW 0 12 GW 14.1 32.0 18.9 – – – 15.1 4.0 5.3 3.7 5.5 – 8.2 106.8 32.0 – 550 GW 11.9 30.4 – – – – 24.4 7.0 8.4 1.8 3.0 – – 86.9 – 65.5 357 TWh/a 0 43 GW – – – – – – – – – – 0.7 – – 0.7 – – – 2014 24 1 NODE 115 3 0 4 GW 0 8 GW 2014 UCTE National 4 24 A M 1. 2. 1. S 5. R P 1 43,000 GWh 12 GW 15 1. 3. D 1. 4. I B 3. 2. 3. 1. 3. U 3 a) b) 0 100% c) 6. 116 d) G H 2. 1. 4. 5. 6. 7. T 1. 2. 3. 4. 5. 1. W MW 38 d) 3. 4. 117
© Copyright 2024 Paperzz