風力発電が大量に導入された 電力系統の設計と運用

第1期
(2006∼2008 年)
最終報告書
風力発電が大量に導入された
電力系統の設計と運用
日本語版
独立行政法人 産業技術総合研究所
一般社団法人 日本電機工業会
25
(IEA Wind Task25)
IEA Wind Task 25
Design and Operation of Power Systems with Large Amounts of Wind Power
1
(2006
2008
)
2009
Phase One (2006-2008) Final Report
2009
Hannele Holttinen, VTT, Finland
Peter Meibom, Risø-DTU; Antje Orths, Energinet.dk, Denmark
Frans van Hulle, EWEA
Bernhard Lange, ISET, Germany
Mark O’Malley, UCD, Ireland
Jan Pierik, ECN; Bart Ummels, TU Delft, Netherlands
John Olav Tande, SINTEF, Norway
Ana Estanqueiro, INETI; Manuel Matos INESC, Portugal
Emilio Gomez, University Castilla La Mancha, Spain
Lennart Söder, KTH, Sweden
Goran Strbac, Anser Shakoor, Joño Ricardo, DG&SEE, UK
J. Charles Smith, UWIG, USA Michael Milligan & Erik Ela, NREL, USA
The IEA WIND Task 25, also known as the Design and Operation of Power Systems with Large Amounts of Wind Power,
Task 25 of IEA Implementing Agreement on Wind Energy, functions within a framework created by the International Energy
Agency (IEA). Views, findings and publications of IEA WIND Task 25 do not necessarily represent the views or policies of
the IEA Secretariat or of all its individual member countries.
IEA
25
(IEA)
(Wind Task25)
IEAWind Task25
i
IEA
25
2012
(
(IEA Wind Task25)
11
)
(
)
(
)
International Energy Agency, Wind Implementing Agreement, Task 26: “Design and operation of power systems with
large amounts of wind power” (June 2009)
http://www.ieawind.org/AnnexXXV/PDF/Final%20Report%20Task%2025%202008/T2493.pdf
(NEDO)
IEA
ii
1
20
1
4
/MWh
10
0
/kW
40
5
(i)
(ii)
(iii)
(iv)
(v)
iii
/kW
270
IEA
http://www.ieawind.org
2006
1
2
3
Riso-DTU,
Energinet. Dk
EWEA
VTT Technical Research Centre of Finland
ISET,
RWE, E.ON Netz
SEI, UCD, ECAR
Eirgrid SEI
SINTEF, Statkraft
ECN, TUDelft
INETI,
REN, INECO-Porto, IST
University Castilla La Mancha
KTH, Royal Institute of Technology
Centre for Distributed Degeneration & Suitable Electrical Energy
NREL, UWIG
2007
VTT
iv
3
VTT
TKK
Liisa Haarla
Lemström
VTT
Bettina
Sanna Uski-Joutsenvuo
5.5.1
5.5.2
REN
IST (Instituto Superior Tecnico:
)
Centro de Energia
5.5.1
Electrica
Rui de Castro
Fernando Batista (IST)
5.5.2
Rodrigues (REN)
J.P. Sucena Paiva
J. Medeiros Pinto, António Pitarma, Tiago
(IST)
João Ricardo (REN)
J. Ferreira de Jesus, Rui G. Castro, Pedro A. Flores Correia
Luís G. Vaz de Carvalho
Moreira, Bruno Nunes
Rui M. de Matos Pires (IST)
REN
Reis Rodrigues, João
5.5.3
Red Elecrica de Espana
REN, SA
Luis Õmaz Monforte, Juan Manuel R. Garcia,
Fernando Soto Martos, Francisco J. Rodríguez-Bobada, Sergio M. Villanueva (REE)
Rodrigues, João Moreira, Bruno Nunes
João Ricardo, Reis
2-b
REN
6
ENERSIS
IEAWind Task25
António Sá da Costa
5.6
Rui Maia
Mattos Parreira
RESERVAS
INESC Porto
REN
MIBEL
REE
INESC Porto
Itajubá
REN
(REE/REN 2006)
Nacional (REN)
Red Electria de Espana (REE)
Comision Nacional de la Energia
REE
Red Electrica
Spanish Wind Energy Association
REE (Luis Õmaz Monforte, Juan Manuel R. Garcia,
Fernando Soto Martos, Francisco J. Rodríguez-Bobada, Sergio M. Villanueva)
Moreira, Bruno Nunes)
REN (João Ricardo, Reis Rodrigues, João
Luis Coronado (REE)
Ángeles Mora
Alberto Ceña,
Venancio Rubio (Iberdrola S.A.)
KTH
(M. Amelin, J. Matevosyan, L. Söder, M. Olsson)
Vattenfall Research and Development (U. Axelsson, R. Murray, V. Neimane, M. Brandberg, N. Broman, F. Carlsson)
Svenska Krafnatt (A. Danell, F. Norlund)
(Enernex, WindLogics)
(Enermex, Windlogics)
(GE, AWS/Truewind)
(NREL, California Wind Energy Collaborative, Oak Ridge
National Laboratory, Dynamic Design Engineering, CAISO)
PacifiCorp
Transmission Cost Survey (Lowrence Berkley National Laboratory)
v
(GE
AWS/Truewind
ERCOT)
..................................................................................................................................................................... iii
......................................................................................................................................................................................... iv
.......................................................................................................................................................................................... v
......................................................................................................................................................................................... vi
............................................................................................................................................................................. ix
.......................................................................................................................................................................................... x
1
........................................................................................................................................ 1
2
.......................................................................................... 2
2.1
............................................................................................................................................ 2
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
........................................................................................................................... 11
2.2
.................................................................................................. 11
2.3
......................................................................................................... 13
3
............................................................................................................. 14
3.1
........................................................................................... 14
3.2
............................................................................................................................................. 14
3.3
................................................................................................................................... 17
3.4
................................................................................................................................... 19
3.4.1
3.4.2
3.4.3
3.5
................................................................................................................................................. 22
3.5.1
3.5.2
Energinet.dk
50
3.5.3
3.6
............................................................................................................................................. 26
3.6.1
(Elforsk 2005)
3.6.2
(SvK2008)
3.6.3
3.6.4
3.6.5
3.7
.......................................................................................................................................................... 30
3.7.1
DENA
3.7.2
DENA
3.8
3.8.1
............................................................................................................................................................ 32
Ilex/Strbac 2002
vi
3.8.2
Strbac et al., 2007
3.9
............................................................................................................................................. 35
3.9.1
SEI
3.9.2
3.10
................................................................................................................................................... 36
3.11
............................................................................................................................................................ 39
3.11.1
2004
3.11.2
2006
3.11.3
3.11.4
3.11.5
3.11.6
PacifiCorp
3.11.7
4
.................................................................................................................... 43
4.1
........................................................................................................................................................ 44
4.1.1
DENA
4.1.2
DENA
4.2
.............................................................................................................................................................. 47
4.1
4.2
FRT
4.3
...................................................................................................................................................... 48
4.3.1
6,000MW
4.3.2
4.4
I
6,000 MW
II
.................................................................................................................................................... 49
4.4.1
4.4.2
4.5
................................................................................................................ 50
4.6
..................................................................................................................................................... 51
4.6.1
4.6.2
4.7
................................................................................................................................................. 51
4.8
................................................................................................................................................. 52
4.9
............................................................................................................................................. 54
4.10
........................................................................................................................................... 55
4.11
.............................................................................................................................................. 56
4.12
.......................................................................................................................................................... 56
4.12.1
4.12.2
4.12.3
4.13
EU
4.14
TradeWind
.............................................................................................................. 59
(EWIS)
1
2006
............................................................................... 60
5
........................................................... 62
5.1
......................................................................... 62
5.1.1
5.1.2
5.1.3
vii
5.1.4
5.2
IEEE
........................................................................................................................................................ 67
5.3
(ESBNG)............................................................................................................................. 69
5.4
................................................................................................................................................. 70
5.5
............................................................................................................................................................ 71
5.5.1
Ilex/Strbac, 2002
5.5.2
Strbac et al., 2007
5.6
............................................................................................................................... 73
5.7
............................................................................................................................................................ 76
5.8
TradeWind
.............................................................................................................................. 77
6
.............................................................. 79
6.1
.......................................................................................................................................... 79
6.2
................................................................................................................................................. 79
6.3
............................................................................................................................................. 80
6.4
..................................................................................................................................................... 80
6.5
Gotland ............................................................................................................................. 81
7
........................................................................................................................ 82
7.1
........................................................................................................................ 83
7.2
.................................................................................................................... 87
7.3
.................................................................................................. 89
7.4
......................................................................... 91
8
................................................................................................................. 94
............................................................................................................................................................. 96
1
................................................................................................................................... 101
2
............................................................................................... 106
viii
AGC (Automatic Generation Control)
CAES (Compressed Air Energy Storage)
CCGT (Combined Cycle Gas Turbine)
CHP (Combined Heat and Power)
ELCC (Effective Load Carrying Capability)
FACTS (Flexible AC Transmission System)
FACTS
FRT (Fault-Ride-Through)
FRT
LOEE (Loss of Energy Expectation)
LOLE (Loss of Load Expectation)
LOLP (Loss of Load Probability)
LVRT (Low-voltage ride-through)
LVRT
MAE (Mean Absolute Error)
MAPE (Mean Absolute Power Error)
NMAE (Normalised Mean Absolute Error)
NRMS (Normalised Root-Mean-Square error)
RMS (Root-Mean-Square error)
SCADA (Supervision Control And Data Acquisition)
STATCOM (Static Compensator)
SVC (Static Var Compensator)
TSO (Transmission System Operator)
WT (Wind Turbine)
ix
Task25
1
1
10
20
(TSO)
1
x
6
1
10
(AFC)
10
4
18
1
15
20
1
20
1MWh
1
4
10
(LVRT)
SCADA
0
270
/kW
40
5
(LOLP)
(OCGT)
xi
(i)
(ii)
(iii)
(iv)
(v)
10
Task25
xii
20
50
1
Galicia
(DeMeo et al., 2005; Axelsson et al., 2005; UKERC, 2006)
(Holttinen et al., 2007)
2007
2008
1
2
3
4
5
3
6
7
8
9
1
2
2.1
2.1.1
FRT
1
Ernst, 1999; Focken et al., 2001; Holttinen, 2004; Wan, 2005; EWEA, 2005; IEA 2005; Giebel,
2007
1,000
1
128
139
2005
1
1
8
3
23
2,400MW
http://www.energinet.dk
2
1
1
0.1
1
14
0.6
10
250
2.1
1
1
1
2
±10
±35
3
±5
15
84
70%
4
±1
2
5
1
1
2004
12
21
4
km
4
2005
•
0.5
8
15
12
6
6
12
24
16 MW/min
•
12
2,000 MW
83
1
12 MW
(Eriksen et al., 2005)
2004
•
1
31
2006
•
11 GW
4,000 MW
63 MW
338 MW
•
10
58
0.2
12
68
6
1
1
144 MW
29
Eirgrid
8
700 MW
60
45
3
800MW
7
1,067 MW/h
–570 MW/h
0.2
TSO
24
2
)
1
45
1,000MW
9
REE
25
8,375 MW
72
2007
•
MW
9
5
2
30
600 MW/h
1,550
(ERCOT, 2007)
1
(Wan, 2005)
14
kW
41
56
130
225
329
548
736
1124
1
1
10
1
61
%
0.4
0.5
1.2
2.1
3.1
5.2
7.0
10.7
kW
172
203
612
1038
1658
2750
3732
5932
138
%
0.2
0.3
0.8
1.3
2.1
3.5
4.7
7.5
kW
148
203
494
849
2243
3810
6582
10032
250
kW
189
257
730
1468
3713
6418
12755
19213
%
0.1
0.2
0.5
0.8
2.2
3.7
6.4
9.7
%
0.1
0.1
0.3
0.6
1.5
2.7
5.3
7.9
2
2000
2004
56
2005
ISET 2005
(Axelsson et al., 2005)
10
300×300
km2
200×200
km2
200×200
km2
280×480
km2
300×800
km2
400×400
km2
400×900
km2
400×900
km2
200×200
km2
490×490
km2
200×1,2
00km2
2002
http://www.energinet.dk
2005 2007
(Holmgren, 2008)
NREL 2003 2005
INETI
15
1
4
1992
Eirgrid
2001
12
>100
–23 %
+20 %
–62 %
+53 %
–74 %
+79 %
>100
–26 %
+20 %
–70 %
+57 %
–74 %
+84 %
>100
–25 %
+36 %
–65 %
+72 %
–74 %
+72 %
11
–12%
+12 %
–30 %
+30 %
–50 %
+50 %
–70 %
+70 %
29
–12%
+12 %
–16 %
+13 %
–34 %
+23 %
–52 %
+43 %
>100
–6 %
+6 %
–17 %
+12 %
–40 %
+27 %
30
–16 %
+16 %
–41 %
+40 %
–66 %
+59 %
56
–17 %
+19 %
–40 %
+40 %
3
–34 %
+30 %
–39 %
+35 %
–58 %
+60 %
–78 %
+81 %
3
–39 %
+39 %
–38 %
+36 %
–59 %
+55 %
–74 %
+76 %
4
–26 %
+27 %
–31 %
+28 %
–48 %
+52 %
–73 %
+75 %
4
3
1
4
15
1
4
2004
1
12
1
12
31
4
(ISET, 2005)
5
1
2004
1
1
1
12
31
15
5
(ISET, 2005)
6
(Ernst, 1999)
6
7
7
20
3
1
7
4,000 MW
56
(Holttinen, 2004; ISET; Estanqueiro, 2006; Wan, 2005; Axelsson et al., 2005; Ilex et al., 2004; Martin et al., 2009)
2.1.2
(Giebel et al., 2003; Kariniotakis et al., 2006)
8
20
1
1
6
10
10
3
MAE
6.0
(1)
RMSE
8.9
6.0
(2)
24
13
(
3)
1,512 MW
37
5.1
3.9
4.2
(Focken, 2007)
9
10
3
8
40
energy & meteo systems
3
NRMSE
NRMSE [%]
4
2
Rohrig, 2005
4
1,000 km
5.7
3.6
2.6
7
1
350 km
6.8
4.7
3.5
9
(Krauss et al., 2006)
10
2
Cosmo-DE
2
Cosmo-EU
(Wessel et al., 2008)
11
11
Lange et al., 2006
8
2.1.3
Cardinal 2006, Gjengedal 2004, Burges et al., 2003
SCADA
12
FRT
(Erlich et al., 2006; Gómez-Lazaro et al., 2006; Gómez-Lazaro et al., 2007a)
12
(Cardinal & Miller, 2006)
(Energinet, 2004)
Energinet.dk
Horns Rev
6
13
6
4
14
Horns Rev
(Kristoffersen, 2005)
9
13
14
Horns Rev
(Kristoffersen, 2005)
(SVC)
STATCOM
15
2.1.4
LVRT
FRT
:
3
15
0.95
SCADA
(Smith et al., 2007)
10
15
FRT
Elektrizitätszwirtschaft, 2006
2.1.5
GWEC, 2005; Bird et al., 2003
MW
2.1.1
INEGI, 2002
2.2
16
30
11
16
(Task25)
5
(LOLE)
(LOLP)
(LOEE)
FACTS
FRT
FACT
12
15
2.3
4
4
4
2008
/
MW
TWh/
a
MW
MW
MW
TWh/a
3,700
1,300
21
2,830*
2,380
2,380
5
7,200
2,600
38
5,190*
3,150
6,500
7,200
2,600
38
6,790*
3,180
67,000
24,000
385
3,000*
155,500
65,600
977
14,000
5,900
77,955
MW
2008
2025
a
2025
b
VTT
VTT
2015
ESBNG
SEI
2020
64%
24
58
20.2
90
53
83
6,500
20.2
90
53
69
4,772
18,000
46
27
12
67
6,600*
28,675
57,500
115
37
12
80
90
2,280*
143
7,300
16
52
18
89
41,000
552.3
10,000*
23,903
36,000
77.2
46
14
71
6,500
2,500
38.5
0
1,002
3,500
10.5
54
27
140
6,900
2,455
39.7
900*
1,002
1,950
501
28
13
58
9,600
3,500
54
1,000
1,002
6,000
19
63
35
178
25,200
9,000
127
7,350
2,225
10,000
35
40
28
61
1,062
3.2
28
15
3,780
2011
2004
2006
21
8,800
53,400
26,000
76,000
4,560
21,500
13,000
24,000
49.2
246.2
140
427
1,000
2,400
9,730*
2,000*
2,862
16,754
1,021
3,241
5,100
17,500
8,000
38,000
12.8
46
20
115
58
33
31
50
26
19
14
27
92
73
35
146
9,933
3,400
48.1
1,500*
1,752
1,500
5.8
15
12
31
20,000
8,800
85
1,752
6,000
21
30
25
68
33,000
12,000
170
882
3,300
9.9
10
6
17
36.3
1,068
1,400
3.6
20
10
11
7,000
7,000*
64,300
25,000
304
2,517
12,500
34
19
65,200
16,000
317
7,116
15,000
54
23
17
2004
5
12
13
3
4
6
3.1
3σ
(Milligan, 2003)
3
Holttinen et al., 2008
3
2
7
24
3.2
3
1
(Söder et al., 2006)
10
15
5
10
15
3
ENTSO-E (former UCTE): “Operational Handbook: Appendix 1, Load-frequency control and performance”, 2004.
https://www.entsoe.eu/fileadmin/user_upload/_library/publications/entsoe/Operation_Handbook/Policy_1_Appendix%20_final.pdf
14
Pkn(t)
Pkn(t)
k
17
t
1
18
17
1
2005
1
10
16
http://www.energinet.dk
18
Pkf(t)
2
P0n(1)
k
1
k
P0f(2) 0
P0n(3)
t
18
4
P0f(4) 3
Pkr(t)
k
0.5
3
0
P3f(0.5)
t
Pkr(t) = Pkn(t) – Pkf(t)
18
0
2
P0r(2)
30
P3r(0.5)
Pkn(t)
0.5
Pkr(t)
Pkn(t)
Pkr(t)
t
Pkn(t)
k+t
Pkn(t)
Pkr(t)
Pkn(t)
18
= Pkr (
1
)
= Pkr (
15
10
)
18
18
Pkn(t)
Pkf(t)
Pkr(t)
Pk1(t)
A
Pk2(t)
B
A
B
A
B
Pk1
Pk1(t)
Pk 2 (t)
Pk1(t)
Pk1(t
Pk2
Pk2(t)
Pk2(t)
N 1
Pk1(t)
Pk2(t)
Pk1(4
Pk1(1
)
Pk1(1
)
)
Pk1(4
)
Pk1(t)
Pk1(t)
Pk(t) < Pk1(t)
Pk(t)
Pk1(t)– Pk(t)
16
Pk2(t)
Pk2(t)
P3(t)
Pk1(t) = P3(t)
Pk2(t)
Pk1(t) = P3(t)
Pk2(t)
24
24
24
24
24
4
6
24
3.3
Söder & Holttinen, 2008
5
5
(MW)
MW
A
M
(MW)
TWh/
—
MW
MW
(MW)
MW
(MW)
MW
MW
1.
2.
3.
1.
GWh
GW
17
TWh/
MW
MW
2.
3.
4.
5.
S
1.
2.
3.
4.
5.
R
1.
2.
3.
P
1.
2.
3.
GWh
a)
b)
1
4.
D
1.
2.
3.
4.
5.
6.
I
1.
2.
3.
4.
1.
2.
3.
4.
1.
2.
3.
B
U
a)
b)
c)
d)
4.
5.
6.
1
G
1.
2.
MW
3.
4. N-1
5.
6.
H
1.
18
2
2.
3.
4.
5.
6.
7.
8.
1.
2.
3.
4.
5.
1.
T
W
a)
b)
c)
d)
2.
a)
b)
c)
d)
]
1
3.
4.
…
5.
3.4
3.4.1
Holttinen, 2005 and Holtitinen, 2004
6
10
2
20
4
10
0.7
/MWh
20
1.3
10
5
20
0.2
0.5
/MWh
0.33 TWh
15
/MWh
20
10
1.15 TWh
0.1
0.2
/MWh
MW
310 420
1,200 1,400
€/MWh
0.5 0.7
1.0 1.3
/MWh
6
10
20
TWh/
0.33
1.15
10
0.28
20
0.81
€/MWh
0.1 0.2
0.2 0.5
0.2 0.5
0.3
0.8
19
%
1.6
3.1
2.2
4.2
3.9
160
7.2
570
2000
2002
5
21
6
6
12
2
4σ
Nordel
10
10
15
15
Nordel
1
2
3.4.2
Holttinen et al., 2001 and Holttinen, 2004
46TWh
0.5
12
0.6 TWh
1961
1
1990
2 MW
2
EMPS
A.3
Nordel
3.4.3
2004
Holttinen et al., 2006; Holttinen & Koreneff,
2007
Helander et
al., 2009
4,000 MW
10
12
4
2004
1
15
13
1.05
37
/MWh
680 km
20
12
0.62
/MWh
1
2
Elbas
2004
2008
19
MW
19
–0.015 × Q
0.011 × Q
0.7
/MWh
1
2004
12
3
5.3
13
37
5.3
21
4,000 MW
2004
10
500 MW 1,000 MW 2,000 MW
4,000 MW
2004
(–0.015 × Q
Q)
2004
2004
2004
/MWh
21
0.011 ×
3.5
3.5.1
WILMAR
wilmar.risoe.dk )
EU
Greennet-EU27
(http://www.
(Meibom et al., 2009)
WILMAR
2010
3
2010
10
20
10
20
2015
29
11
10
20
20
Meibom
et al., 2009
20
3
10
20
MW
10
20
1.1 TWh
10
10
3.4 TWh
2.3TWh
20
10
20
22
10
20
10
2000
20
2002
21
10
6
12
6
2
WILMAR
3.5.2
Energinet.dk
50
2025
(Danish Energy Authority, 2007)
Energinet.dk
3,000 MW
(Energinet.dk, 2007; Eriksen & Orths, 2008)
20
2025
2,000 MW
50
50
2015
7
2
1
Jutland
0
Great Belt
7
7
Great Belt
―
―
A.4
2
0
600MW
950MW
1500MW
1000MW
23
1
I 200 MW
2500MW
1600MW
6,000 MW
21
1
21
Jutland
NordPool
EEX
CASE
2025
3,000 MW
R
D
22
1
(Energinet.dk, 2007)
2025
35 TWh 2005
6,400 MW
23
1
24
38 TWh 2025
6,500 MW
22
0
1
1
23
“Sivael”
“PowerFactory”
2025
24
2
(Sivale)
IEA
“World Energy Outlook”
3.5.3
(Lund & Münster, 2006)
(CHP)
“EnergyPLAN”
20
25
24
3.6
3.6.1
(Elforsk 2005)
4,000MW
(Axelsson et al., 2005)
8
8
1
MW
4000
6000
8000
6.6
9.9
13.2
4
MW (%)
MW (%)
20 (0.5)
40 (0.75)
80 (1.0)
195 (5.0)
–––
–––
MW(%)
690 (17.2)
1350 (22.5)
1570 (19.6)
1996
2002
1.5
1
MW (%)
2004
590 (14.8)
1030 (17.2)
1220 (15.2)
2001
1
24
5
80
1.8%
1
1.4%
4
2.5
1
3.4.1
4
7
(Holttinen, 2004)
3.7.1
(Axelsson et al., 2005)
(Dena, 2005)
Dena
26
4 σ
3.6.2
(SvK2008)
Large scale expansion of wind power
Consequences for the transmission grid and need of regulation power
(Svenska kraftnät, 2008)
(Axelsson et al., 2005)
9
9
4,000
12,000 MW
200
4,000 MW
250 MW
500
600 MW
1,500
1,900 MW
700
900 MW
2,200
2,700 MW
1,800 MW
4,300
5,300 MW
1,400
12,000 MW
750 MW
600
(Axelsson et al., 2005)
(Axelsson et al., 2005)
(MW)
1
6,000 MW
MW
2,383 MW
199 MW
–1,331 MW
–1,883 MW
2,582
552 MW
(199 + 552) / 2 = 375.5 MW
6,000 MW
90
5,400 MW
90
7
7
0.07 × 4,000 × 0.09 = 250
0.07 × 12,000 × 0.09 = 750
(Axelsson et al., 2005)
4,000 MW
590 MW
640 MW
4,000 MW
16
4,000 MW
0.90 × 0.16 × 4,000 = 576 MW
500
12,000 MW
MW
1,500
690 MW
90
600 MW
90
12,000 MW
0.90 × 0.16 × 12,000 = 1,728
1,900 MW
90
25
0.25 × 0.09 × 4,000 = 900 MW 0.25 × 0.90 × 12,000 = 2,700 MW
(Axelsson et al., 2005)
4,000 MW
MW
(Axelsson et al., 2005)
(Svenska kraftnät, 2008)
250
20 MW
(Svenska kraftnät, 2008)
+ 2,383 MW
235 MW
4,000 MW
+ 199 MW
199 / 2383 = 8.35 MW
8.35
21MW
250 MW
27
(Axelsson et al., 2005)
24
3
1
24
MW
24
(Axelsson et al., 2005)
25m/s
(Svenska kraftnät,
2008)
25
25
(SMHI, 2004)
6
(Axelsson et al., 2005)
50
2
25
3
1
4
(Svenska kraftnät, 2008)
2
3
24
3
2
3
24
3.2
(Svenska kraftnät, 2008)
MW
3.6.3
“A massive introduction of wind power. Changed market conditions?” (Neimane & Carlsson, 2008)
8
25
2006
Elbas
1
4,000 MW
0.95 TWh
TWh
28
1.7
25
a) 2006
b)
1
c) Elbas
0.1
2006
9
11
2007
3
31
Hornz Rev
160MW
2006
Risø
Klaus Skytte
2006
3.6.4
Future trading with regulating power, (Brandberg & Broman, 2007)
4,000MW
2
[GWh]
[GWh]
Elbas
4,000MW
1
3.566
4,010
2,279
2,490
2,400MW
24
4,000MW
2
2,680
–––
2003
4
2
1.
4,000 MW
Elbas
24
4
2.
4,000 MW
3.6.5
Integration study of small amounts of wind power in the power system (Söder, 1994).
2
4
2.5 TWh
5 TWh
1
29
6.5
7.5 TWh
1.2
(MW)
2
1994
100
3.7
DENA
2007 2010 2015
2020
DENA
2020
20
2020
20
20
7.5
5
7.5
2015
DENA
3.7.1
DENA
2015
7,064 MW
9
3,229 MW
2003
30
2,077 MW
1,178
MW
5,480 MW
8
2,822 MW
2003
1,871 MW
753
MW
1992
220
10 km2
2003
10 m 30 m 50 m
7
10 Hz
5
1
2010
90 m
2003
100 m
2007
2015
100m
2010
2015
110m
10
4
0.1
0.01
52
0.0025
8.76
13
2003
10
2003
2015
2015
4
%
4
2003
–0.28%
7.29%
2015
–0.32%
5.91%
3.7.2
–27.5%
–23.5%
41.5%
1.26%
4.92%
–17.0%
33.0%
29.5%
0.97%
3.89%
–14.0%
24.3%
DENA
DENA
DENA
2009
2009
1
1
(EEG)
EEG
DENA
(BMU)
0.3
0.47
Bömer and Burges, 2008
/kWh
BMU
(FGE/FGH/ISET, 2007)
DENA
82,000
2020
/MW
26,000
/MW
45
0
/MWh
31
/MWh
4
20
(DSM)
DMS
3 MW
7 GW
70
0.2
CAES
250 MW
400 MW
2.5
3
1.
2.
1,000
3.
1,700
3.8
2015
15
(Dale et al, 2003; MacDonald,
2003; UKERC, 2006)
(Ilex/Strbac, 2002)
(Strbac et al., 2007)
3.8.1
Ilex/Strbac, 2002
2020
20
30
95
32
26
26
10
2.65
/MWh
20
2.85
MWh
2.38
15
/MWh
10
39
1
30
30
39
30
4
27
27
30
4
33
30
99
2
6
10
10
20
CCGT
OCGT
(Strbac et
al.)
3.8.2
Strbac et al., 2007
(Strbac et al.)
600 MW
3
2,400MW
4
11
25
Wash
Thames
11
970
/kW
252
34
/kW
4
11
MW
2
1
(GW)
5
10
15
20
25
54
192
382
596
827
0.1
0.3
0.4
0.5
0.5
( /MWh)
(MW)
0.3
0.6
0.8
0.9
1.0
4
/MWh
/MW
(Strbac et al.)
( /MWh)
(MW)
34
126
257
413
585
1.3
340
1172
2241
3414
4640
526
1716
3163
4706
6300
0.7
1.4
1.7
1.9
2.0
( /MWh)
1.7
2.5
3.1
3.5
3.7
0.8
1.6
2.1
2.3
2.6
2.0
3.1
3.8
4.4
4.7
(Ilex, 2002)
3σ
2
10
/MW
20
/MW
20
2
/MWh
4
/MWh
20
OCGT
3.9
1990
3.9.1
SEI
Sustainable Energy Ireland (SEI)
(Ilex et al., 2004)
1,500 MW
1
4
12
/MWh
1,300 MW
1,950 MW
0.5
/MWh
35
0.2
12
(MW)
845
1300
1950
10
1
(MW)
15
25
50
6.1
9.5
14.3
50
4
(MW)
30
60
150
40
2
3.9.2
2005
(All Island Grid Study, 2008)
2020
6
2
42
2GW
16
6 GW
7
500 MW
1
5
42
2
1
6
Wilmar
2
1
3.10
PowrSym3
2014
36
0
12 GW
12 GW
33
(PAC)
(UPAC)
(CAES)
(Ummels, 2009)
28
28
CCGT
SO2
450 kV
NorNed
700 MW
NOx
580 km
2008
37
HVDC
29
0
12 GW
29
CCGT
30
30
CCGT
CCGT
TWh/
38
CCGT
CCGT
DG
CCGT
CCGT
CCGT
CCGT
PowrWym3TM
1980
Operation Simulation Associates, Inc.
SEP
Tennessee Valley Authority
PowrSym3
15
PowrSym3
UC-ED
1
3.11
3.11.1
2004
Enernex
2004
2010
(EnerNex/WindLogics, 2004)
10 GW
8 MW
1,500 MW
3σ
1
2 MW
4.60
0.23
/MWh
4.37
10
3
2
A5
39
3.11.2
2006
2004
EnerNex/WindLogics
2006
(MISO)
25
25
1 MW
4.40
MISO
2004
1
MISO
5
750 km
6,000 MW
2
MISO
MISO
14
21 GW
116 GW
MISO
3.11.3
ISO
2008
33 GW
3,300 MW
NYISO
2
(DFIG)
36 MW
5
1
2MW
858
910MW
10
36
4
2008
MW
6.50
6.80
3
3,500
5,500
σ
700
800 MW
859
3
950 MW
3,500
10.70
4
3,000
1 MW
2,500
3.11.4
2006
Xcel Colorado/Enernex
(Zavadil, 2006)
10
7 GW
15
20
0.20
2.20
3.30
/MWh
/MWh
50
10
15
3.70
1.25
5.00
1.45
/MWh
/MWh
40
3.11.5
CA RPS
4
0.46
/MW
(Shiu
et al., 2006)
2007
IAP
(Porter et al., July 2007)
20
CEC
2010
(RPS)
2020
33
15
1
7
8
1
5
1
387 MW 42 MW 10 MW
3σ
10
1,041 MW
3σ
5
60 MW
CAISO
12,7000 MW
CEC
1
66,700 MW
6,000 MW
CAISO
CEC IAP
(Loutan et al., November 2007)
CAISO
170MW
MW
500MW
400 MW
GE
3.11.6
250MW
100
5
CEC
10
PacifiCorp
PacifiCorp
2004
9,000 MW
PacifiCorp
PacifiCorp
PacifiCorp
2
3
IRP
PacifiCorp
6
PacifiCorp
41
6
IRP
PacifiCorp
2003
IRP
30
(Dragoon & Milligan, 2003) 1,000 MW
2003
3.00
IRP
2.72
/MWh
1,000 MW
/MW
5.50
/MWh
2002
3.00
/MWh
1,000 MW
2004
20
4.64
/MWh
(PacifiCorp, 2005)
3.11.7
(ERCOT)
ERCOT
65 GW
15,000 MW
98.8
54 MW 48 MW
MWh
10,000 MW
0.27
0.18
/MWh
/MWh
/MW
MWh
MW
55
42
15,000 MW
4
IEC 61400-21 (IEC, 2001)
IEA
21
(Task21)
(Tande et al, 2004)
A.
(SVC)
STATCOM
B.
(SVC
STATCOM)
C.
FRT
(GE Energy,
2005)
D.
43
(AGC)
(DSM)
2
DSM
E.
4.1
4.1.1
DENA
DENA
1
2015
2020
20
2007
13
2015
380 kV
5
850 km
390 km
380 kV
2015
7,350 MVar
13
2015
2015
11
36GW
DENA, 2005
36,000 MW
850 km
400 km
3
7350 MVar
380 kV
1,400 MW
DENA
3
20
2004
3,000 MW
(UCTC)
44
2004
80
2004
2004
SVC
DENA
FRT
E.On Netz
(http://www.eon-netz.com)
2006
4
1
(Erlich et al., 2006)
2007
14
2010
2015
6
14
MW
0.9
2003
4950
4240
1590
70
1620
193
12663
DENA, 2005
2007
7970
4980
2020
200
4052
368
19590
2010
8843
5250
2160
280
4946
436
21915
* 2015
**) 2015
2015
31
60
Forwschungsgemeinschaft fir Elektrische Anlagen und Stromwirtschaft e.V. (FGe.V.)
INTEGRAL
NETOMAC
90
380 kV
45
2015
9410*
5600**
2178
298
5647
450
23583
1,540 MW
7,281 MW
31
2015
(Dena Grid Study, 2005)
4.1.2
DENA
EEG2009
DENA
(BMU)
(Bömer & Burges, 2008)
BMU
(FGE/FGH/ISET, 2007)
DENA
2020
FRT
(HVDC)
GIL
380 kV
3
1.1
0.6
1.4
GIL
HVDC
AC
20
46
10
5.3
110 kV
E.ON
50
Lange and Focken (2008)
5
75
40
90
99
15
5
4.2
(Strbac et al., 2007)
26 GW
kW
65
125
8 GW
35
77
/kWh
100
/kW
26 GW
26
(Ilex & Strbac, 2002)
17
33
Western Isles
40
50
70
/kW
/kW
60
6
10
4.1
(FSIG)
FSIG
(DFIG)
4.2
FRT
DG
SEE
47
FSIG
(Strbac & Bopp, 2007) FRT
i
ii
FRT
FRT
4.3
4.3.1
6,000 MW
2003
1
6,000 MW
2005
15.2 GW
2
6,000 MW
150/380 kV
(Jansen & de Groot, 2003)
32
3.1
30
9.7
32
150/380 kV
6,000 MW
48
Beverwijk
Maasvlakte
4.3.2
6,000 MW
2005
2
II
6,000 MW
II
(Eleveld et al., 2005)
6,000 MW
3
AC150 kV
AC380 kV
HVDC
AC150 kV
380 kV
15
2
7
HVDC
4
15
1
10
7
10
6,000 MW
2020
2
2030
1
AC150 kVAC
AC380 kVAC
AC380 kVAC
HVDC
2
0.96
1.01
1.55
1.80
0.77
0.80
1.19
1.43
4.4
4.4.1
2
2001
2010
REN
2001
de Energia Electrica
2
IST (Instituto Superior Tecnico)
Centro
REN
220 kV
150 kV
400 kV
2
220 kV
150 kV
4,000 MW
2005
2010
2
4
/PTI
3
80
PSS/E
30
10
(1)
(2)
49
(3)
(4)
FACTS
1
REN
REN
2
4.4.2
2010
2004
IST (Instituto Superior Tecnico)
REN
Centro de Energia Electrica
FRT
PSS/E
3
2
3
26,000 MW
4.5
Red Electrica de Espana
Produccion Eolica Tecnicamente Admissible en el Sistema
Electrico Peninsular Iberico-Horizonte 2011
REN (Rede ElectricaNacional)
2006
FRT
75
20 GW
5 GW
FRT
100
UCTE
PSS/E
3
(REE, 1995)
3
2
3
400 kV
1.5 GW
FRT
4 GW
12
50
GW
4.6
4.6.1
REE
REN
(REE/REN 2005, Rodrí!guez-Bobada et
al., 2006)
400 kV
22
REE
2006
4.6.2
2010
LVRT
REE
(Gómez-Lazaro et al., 2007a)
REE
12.3
12.3
12.3
FACTS
FACTS
3
2
(Gómez-Lazaro et al.
2007b)
4.7
2025
50
Authority, 2007)
Energinanalyse A/S, 2007
2008
EA
Electricity Infrastructure Committee, 2008
4
Energinet.dk
(Electricity Infrastructure Committee, 2008)
2030
(Danish Energy
2
6
3.5 GW
51
6.5 GW
6
3.5 GW
107
2008
3.5 GW
675
1,920
/kW
11
C
/kW
40
2030
270
/kW
(EA Energinanalyse A/S, 2007)
2025
3,500 MW
2008
700 MW
2,250 MW
AC/DC
9.25
MW
41
(EA Energinanalyse A/S, 2007)
1.425
MW
18
63,000
1
(Skagerrak 4)
(EA Energinanalyse A/S, 2007)
2.634
2025
19
MW
Skagerrak 4
117,000
2007
700 MW
4.8
(Korpås et al., 2006.)
(AGC)
1
420 MW
380 MW
33
75 MW
115 MW
33
132 kV
420 kV
420 MW
52
MATLAB
1
30
3
1
30
30
10.5 m/s
1
8,760
30
3
EMPS
SINTEF Energy Research
EMPS
EMPS
EMPS
1
EMPS
EMPS
1
600 MW
34
37
1
53
5
34
4.9
Julija Matevosyan
“Wind power integration in power system with transmission bottlenecks”, 2006
(Matevosyan, J.
2006.)
16
16
(MW)
%
1,000
2,000
3,000
4,000
94
453
750
1019
35
1.9
5
10.1
16.7
2
54
0.8
3.4
7.4
12.4
4,000 MW
15.4
35
5.4
0.4
3,200 MW
800 MW
5.4
800 MW
/kWh
3
3
4
10
7,000 MW
4.10
5
(EirGrid Grid Code, 2008)
(Distribution Grid Code,
2007)
(Coughlan et al., 2008)
EirGrid
2,000 km
1,000 km
(All
Island Grid Study, 2008)
2.25 GW
2 GW
1
17
6.6 GW
6 GW
10
kW
154
1
kW
5
4.3 GW
212
1
2
17
2,254 MW
6,560 MW
kW
212
kW
kW
MW
2254
4254
6560
0.92
6.68
10.07
41
157
154
–––
5,76
3.39
–––
288
147
EirGrid
55
4.11
Jarno Lamponen
(2008)
2
2008
EWEC
7,320 MW
(Lamponen et al., 2008)
5
2,000 MW
20
36
MW
7,320MW
2,000MW
3
1
7,320MW
2,000MW
9,400
4,900
2
54,000
74,000
MW
35,000
4,000
5,300
800
36
2,000 MW
7,320 MW
Fingrid
N-1
PSS/E
110 kV
PSS/E
400 kV
DFIG
Fingrid
4.12
20 MW
2005
FERC
661-A
LVRT
LVRT
9
12
SCADA
3
2008
15 p.u.
2008
0.0 p.u.
±0.95
SCADA
56
4.12.1
37
345 kV
(GE Energy, 2005)
3
33,000 MW
10%
3,300 MW
GE PSLF
37
2007
11
CAISO
(Loutan et al., November 2007)
Tehachapi
±0.95
WECC
4.12.2
CEC
(Porter et al., 2007)
57
4,200 MW
CREZ
10
(RPS)
Panhandle,
CREZ
CREZ
(PUCT)
38
PUTC
(ERCOT)
12,000
4
PUCT
2
345
kV
24,000 MW
18,000 MW
1,400
2
345 kV
2008
1,000
50
2
38
PUCT
2008
2008
ERCOT
4.12.3
Lawrence Berkeley
40
58
CREZ
9
PUCT
2001
2008
kW
(Mills et al., 2009)
63 MW
236 GW
0
/kW
500
/kW
300
/kW
/kW
1,500
2,000
25
/kW
15
3
3
2
300
/kW
20
AEP Interstate Transmission Vision
2
NREL Wind Deployment System (WinDS)
150
300
/kW
2
207
/kW
20
Joint Coordinated System Plan (JCSP)
195
/kW
Energy Information Administration (EIA)
National Energy Modeling
System (NEMS)
2030
40 GW
450
/kW
50
4.13 EU
TradeWind
EWEA
IEE
TradeWind
(2006
2009)
2008)
2010
200 GW 2030
(Van Hulle et al.
2015
2020
2030
300 GW
TEN-E
2020
2015
59
2030
2020
TradeWind
22
15
2030
6
220
1
(opf)
EU
UCTE
UCTE
Nordel
UCTE2008
UCTE
(NTC)
N-1
4.14 2006
(EWIS)
1
2006
1
2
2008
2015
(EWIS, 2007)
1
7
3
2008
2008
EWIS
(EWIS, 2007)
UCTE
15
UCTE
UCTE
UCTE
60
2008
2008
2008
2
UCTE
UCTE
UCTE
UCTE
2008
2009
Neuenhagen – Bertikow
380 kV
Nordel
N-1
UCTE
N-1
61
5
4
5.1
(LOLE)
(LOEE)
(LOLP)
LOLP
LOLP
LOLP
LOLP
MW
LOLE
1
LOEE
MWh
(UCTE, 2005)
(RC)
39
62
1
(UCTE,
2
VDN)
MW
39
VDN2005
(Ensslin, 2006)
10
99
(Dena, 2005)
1
(LOLE)
91
(Ilex & Strbac, 2002, UK)
1
10
(Dena, 2005)
(ELCC)
2
1
ELCC
ELCC
1
LOLE
2
10
UCTE
1
http://www.ucte.org/statistics/terms_power_balance/e_default_definitions.asp
63
1
LOLE
(Amelin, 2008)
3
2
LOLP
LOLE
LOEE
3
2
3
ELCC
2
2
3
ELCC
10
1
0.027
1
10
30
2,000~3,000
6,000~7,000
2
(OCGT)
(DSM)
MW
2
4
(Söder & Amelin, 2008)
5.1.1
15
15
“National Grid model”
(Giebel, 2000)
64
1.
2.
3.
4.
10
1
5.1.2
10
DENA
ELCC
DENA
34
DENA
LOLP
DENA
ELCC
(Amelin, 2008)
(Dena, 2005, Ilex & Strbac, 2002)
1
LOLP
2
40
c
d
e
65
30
40
DENA
a.
, b.
[DENA, 2005]
, c.
d.
e.
, f.
1.
2.
3.
4.
5.1.3
1
2
LOLP
LOLE
LOEE
LOLP
LOLP
66
(Doherty & O’Malley 2005)
5.1.4
IEEE
2007
IEEE
Power and Energy Society (PES)
Wind Power Coordinating Committee
2008
7
2009
(ELCC)
(Söder & Amelin, 2008; Amelin, 2008.)
(Söder & Amelin, 2008.)
5.2
99
14.5 GW
2003
6
8
36 GW
2015
5
6
1994
2002
11
12
1
11
2
12
2003
+1
–1.5
2015
+0.5
–0.7
41
(DENA, 2005)
97
98
99
67
41
42
42
18
18
2003
8.3%
8.6%
6.1%
7.2%
1.199
1.245
889
1.040
2007
6.9%
7.2%
5.3%
6.1%
MW
1.542
1.605
1.187
1.352
(DENA, 2005)
2010
2015
6.5%
6.9%
5.4%
5.9%
6.0%
6.4%
5.1%
5.5%
1.941
2.057
1.599
1.750
2.163
2.289
1.824
1.970
1
2
2003
15
11
20
11
12
12
1.8
19
0
99
97
99
800
68
2007
2
4
2010
2015
19
DENA, 2005
3.0%
3.2%
3.8%
1.8%
1.8%
3.0%
1.8%
0.0%
0.0%
5.3
(ESBNG)
ESB National Grid
EirGrid
2004
(ESBNG,
2004)
120
43
/t
43
(ESBNG, 2004)
2
5,000 MW
6,500 MW
4
2
33
69
5.4
(Tande and Korpås, 2006)
44
44
LOLP = Pr (Pm < 0)
Pm
Pc
Pn
2
100
2
45
a
(MW)
b
(%)
c
70
LOLP
3 TWh
3 TWh
95
30
15
14
5.5
5.5.1
Ilex/Strbac, 2002
100
9
9
35
20 GW
4 GW
20
46
30
1
1
LOLP
71
5.5.2
Strbac etal., 2007
(DSM)
(FDM)
2
47
70 TWh
400 TWh
35
9
47
FDM
48
48
(LOLP)
72
FDM
5.6
INESC Porto
(REN)
RESERVAS
(REE)
MIBEL
INESC Porto
Universidade de Itajubá
REN
REE
2025
2
1
2
2
EH
/
EM
/
FH, FM
DH, DM
2
2
3
49
t
1
2
1
3
73
2
49
7
18
(H-)
(HWM)
(H+)
16
1990
LOLP
2005
LOLE
(EENS)
LOLP
LOLE
50
51
52
LOLP LOLE ELCC
53
61.8
3
10
74
6
1.5
50
LOLE
51
LOLE
52
75
53
2015
5.7
(ELCC)
ELCC
5
40
20 (Milligan & Porter, 2008)
3.11.1
Enernex
2010
10 GW
1,500 MW
ELCC
26
34
25
MISO
3.11.2
5
20
2
& Porter, 2008)
(Milligan
ERCOT
ELCC
Xcel Colorado
10
PJM
6
PJM
7
3
8
3
7
3
ELCC
Mid-Continent Area Power Pool
(MAPP)
4
10
Southwest Area Power Pool (SPP)
MAPP
85
50
Milligan & Porter (2005)
SPP
23
76
25
PacifiCorp
2005
IRP
21
PacifiCorp
2003
20
IRP
0
20
CA
CEC
(Milligan & Porter, 2008)
ELCC
CPUC
PJM
RPS 20
PUC
CA ISO
5
9
6
8
3
CA
6
HE
3
7
3
13
MN20
ERCOT
ELCC
ELCC
ELCC4
15
25
ELCC
8.7
MN/DOC/Xcel
CO PU/Xcel
ELCC
ELCC
PacifiCorp
MAPP
Idaho Power
Nebraska Public Power
District
Northwes Resource
Adequacy Forum
Tri-State
ELCC
SPP
PNM
ISO New England
26
10
34
ELCC
12.5
26
34
4
7
17
4
8
4
5
5
15
2
12
10
7
85
6
9
2
6
ISO
CA/CEC: California/California Energy Commission
CPUC: California Public Utilities Commission
MN 20 % Study was sponsored by the Minnesota Public Utilities Commission
RPS:
ELCC:
PJM: Pennsylvania-Jersey-Maryland, an RTO (regional transmission organization) in the US
HE:
ERCOT: Electric Reliability Council of Texas
MN/DOC: Minnesota Department of Commerce, the sponsor of the Xcel Wind Integration Study
GE/NYSERDA: General Electric Energy Consulting, New York State Energy Research Development Authority
CO PUC: Colorado Public Utilities Commission
MAPP: Mid-Continent Area Power Pool
RMATS: Rocky Mountain Area Transmission Study
PGE: Portland General Electric PSE: Puget Sound Energy
CF:
SPP: Southwest Area Power Pool
PNM: Public Service Company of New Mexico
5.8
TradeWind
TradeWind
(Van Hulle et al., 2009)
1.2
77
10
5
6
7
Tradewind
2020
30
100
40
DENA
2020
200 GW
8
2
14
27 GW
54
(Van Hulle et al., 2009)
78
16 GW
6
20
(33
(24
)
)
(Navarra 44 %, Castilla-La Mancha 40 %, Aragón 37 %, Galicia 34 % and Castilla
y León 32 %)
Gotland
(20
21
)
21
/
TWh/
MW
MW
MW
MW
TWh/
2,350
5
24 %
59 %
12.6
29
230
2,570/
3,070
5,200
500
1,800-2,800
2,275
745
11,615
4.2
1.6
23.4
33 %
6%
10%
38 %
32 %
68%
0.93
180
90
0.18
19%
40%
3,700
1,400
21
2,000
5,000
38,200
750
1,800
15,300
160
45
6.1
(HVDC)
Nordpool
Nordel
1.2
2.6
/MW
2005
1
6
1,600MW
66
2003
10
15
(AGC)
140 MW
6.2
79
140
Schleswig-Holstein
Niedersachsen
2003
2005
E.ON Netz
10
15
(Eriksen et al., 2005)
3,000 MW
Netz
2006
4
E.ON
1
(http://www.econ-netz.com)
FRT
6.3
EirGrid
1 GW
6 GW
1 GW
SCADA
6.4
2008
16 GW
264 TWh
Canary
11
17
31.5 TWh
2008
95 GW
142 MW
2015
1,025 MW
1
4
18
2008
213 GW
28.2
2008
11
27
1.15
80
11
24
43
10
15
(Eriksen et al.,
2005)
2009
3
19
500 MW 400 MW 1,000 MW
6
FRT
2004
(Eriksen et al., 2005)
2008
11
2
2,800 MW
2007
Iberdrola
(CORE)
CECRE
CORE
(CECOEL)
CECOEL
CECOEL
10 MW
2008
2
21
12,154 MW
GEMAS
REE
CECRE
6.5
GEMAS
Gotland
Gotland
HVDC
10
0 MW
0 MW
Gotland
(Söder et al.,
2007)
81
7
(MW)
(km)
/MWh
MWh
MWh
(%)
2.3
4
55
1
82
(kV)
/MWh
55
7.1
3
56
56
Greennet Nordic
(Holttinen, 2004)
(Axelsson et al., 2005)
(Ilex et al., 2004)
(Strbac et al., 2007)
(Dena, 2005)
(EnerNex/WindLogics, 2006)
(Porter et al., 2007)
83
57
56
DENA
4
4
10
4
4
5
10
56
4
5
4
10
15
20
18
(Strbac et al., 2007)
2.1.2
10
15
20
(Dena, 2005)
35
48
3.6.2
1
GE
CEC
100
500 MW
10
57
(Holttinen, 2004)
(Ilex/Strbac, 2002; Strbac et al., 2007)
(Ilex et al., 2004)
(Zavadil et al., 2006)
(EnerNex/WindLogics, 2004 and 2006)
(Shiu et al., 2006)
PacifiCorp
(PacifiCorp, 2005)
Greennet (Meibom et al., 2009)
84
1
5
57
1
0.7
20
1
2.6
1.3
4.7
2007
/MWh
Nordic
24
1.4
2.6
57
20
1
4
/MWh
10
2002
4
Greennet
3
Greennet
2004
SEI
2004
Greennet
PacifiCorp
2006
2004
DENA
2
Greennet
2004
Greennet
20
4
85
/MWh
(MW)
Nordic
0.3
1.4
/MWh
(Holttinen et al., 2006; Neimane & Carlsson, 2008)
Nordic
4,000 MW
8
18
1
4
15
56
8
(Brandberg & Broman, 2007)
Nordic
1
MWh
0.2
1
10
(Helander et al., 2009)
(FGE/FGH/ISET, 2007)
(Holttinen & Koreneff, 2007)
(Neimane & Carlsson, 2008)
Nordic
100%
50%
3
4
5 TWh
1
(Söder, 1994)
12
1
(Holttinen, 2004)
20
50
(Energinet.dk, 2007)
CCGT
(Ummels, 2009)
2 GW
13
6 GW
/MWh
(All Island Grid Study, 2008)
10
36 MW
1
5
1
2 MW
1
858 MW
910 MW
2008
6.50
6.80
/MMBTU
3.35
4.55
σ
859
950 MW
700
MWh
3.35
86
4.30
800 MW
10.70
2,500
(GE Energy, 2005)
54MW
48MW
MWh
10,000 MW
0.27
15,000 MW
MWh
0.18
55
/MWh
/MWh
(GE Energy, 2007)
252
(Strbac et al., 2007)
2.5
400 MW
CAES
970
/kW
2,700
(FGE/FGH/ISET, 2007)
(Ummels, 2009)
(All Island Grid Study, 2008)
10
20
7.2
2
22
(Söder & Holttinen, 2007)
22
2
,
Söder 1994
1.
1.
x GWh
A
1.
M
1.
x GWh
1.
(4a
+
. Meiborn
2009
,
Holttinen,
2001
x GWh
1.
,
Enermex
2004
1.
x GWh
1.
(4b
,
Enernex
2006
1.
1.
x GWh
1.
(6
,
ESBNG
2004
1.
x GWh
2.
(6
(5, 6)
87
,
,
SEI 2004
2009
1.
x GWh
1.
x GWh
1.
3.
2.
4.
2.
2.
2.
2.
5.
30
S
(14)
(9)
R
5.
(10a)
30
30
1
1.
1.
3x
3x
1
1.
1.
1.
15
1
1.
(15)
1.
/
P
1.
6.
3.
3.
1.
4.
1.
4.
5.
(10b)
1.
4.
3.
1.
1.
(11a)
D
5.
(11b)
1.
4.
CCGT
OCGT
5.
6.
2.
1.
4.
3.
3.
4.
3.
3.
1.
4.
(12)
3.
2.
3.
2.
2.
3.
2.
3d.
3d. 1
3d.
3d. 1
I
B
3d.
2.
1~2
U
1.
4
3.
3. 3
36
5.
6.
3d.
(13e)
6.
5.
6.
6.
6.
(13f)
5.
6.
1.
1.
2.
8.
8.
7.
13b
1.
2.
1.
2.
1.
2.
3.
3.
MW
2.
MW
1.
2.
6.
6.
7.
7.
MW
G
3.
4.
H
5.
4.
4.
5.
5.
88
MW
T
1a.
1.
2.
3.
4.
1.
1.
1.
1.
1.
2.
3.
2.
3.
2.
3.
2.
3.
2.
3.
4.
1a&1b.
1c.
50
1.
1a&1b.
1a.
8
:
1c.
50
:
38
30
2d.
3.
30
W
2b.
2b.
3.
3.
4.
(13f)
(13g)
(14)
(15)
1d.
4.
4.
4.
(1)
(2)
(3)
(4a)
(4b)
(5)
(6)
(7)
(8)
(9)
4
(10a)
(10b)
(11a) 5,000 MW
6,500 MW
(11b)
(12)
(13a)
(13b) 8 36
(13c)
(13d)
(13e)
2d.
3.
4.
GWh
a)
1
(MWh)
CCGT
CCGT
OCGT
15
18%
2.5%
20%
24
14 18%
1
40MW
4
60MW
7.3
(LVRT)
SCADA
FRT
FRT
10%
FRT
FRT
(Loutan et al., 2007)
89
75%
40
15%
90%
99%
5%
(Lange
and Focken, 2008)
1
(Korpås et al., 2006)
(Matevosyan, 2006,
Tande & Uhlen, 2004)
Electric
Reliability Council of Texas (ERCOT)
(CREZ)
ERCOT
18,456 MW
2,376
49.3
345 kV
24
Tradewind
EWIS
26 GW
8 GW
35
2015
20%
77
65
125
/kW 85
6,000 MW
60~11
53
/kW
100
36,000 MW
100
/kW
/kW
2.25 GW
2 GW
6 GW
10
6.6 GW
2.25 GW
kW
4.3 GW
212
1
40%
270
2%
3 GW
/kW
(Electricity Infrastructure Committee, 2008)
2025
2,250 MW
63
2007
/kW
/kW (Jansen & deGroot, 2003)
5,100 MW
DENA
162
/kW (Strbac et al., 2002)
117
2025
/kW
700 MW
(EA Energianalyse, 2007)
2001
2008
40
0
90
/kW
1,500
/kW
500
/kW
300
58
20
50
0%
2.25 GW
6.6 GW
7.4
40%
5%
91
59
/kW
1
59
(Dena, 2005)
(ESBNG, 2004)
(Tande & Korpås, 2006)
(Ilex & Strbac, 2002)
(EnerNex/WindLogics, 2004;EnerNex/WindLogics, 2006)
(GE Energy, 2005)
(Shiu et al., 2006)
59
8
5 GW
6.5 GW
2
59
59
40%
5.6
92
3
(OCGT)
(DSM)
(Söder &
Amelin, 2008)
93
8
1
94
(LOLP)
95
All Island Grid Study. 2008. Available at:
http://www.dcenr.gov.ie/Energy/North-South+Co-operation+in+the+Energy+Sector/All+Island+Electricity+Grid+Study.ht
m, 2008.
Amelin, M. 2008. Comparison of Capacity Credit Calculation Methods for Conventional Power Plants and Wind Power,
accepted in December 2008 for publication in IEEE Transactions on Power Systems.
Axelsson, U., Murray, R. & Neimane, V. 2005. 4000 MW wind power in Sweden – Impact on regulation and reserve
requirements. Elforsk Report 05:19, Stockholm. Available at: http://www.elforsk.se.
Bird, L., Parsons, B., Gagliano, T., Brown, M., Wiser, R. & Bolinger, M. 2003. Policies and Market Factors Driving Wind
Power Development in the United States. NREL/TP-620-34599, National Renewable Energy Laboratory, Colorado, US.
Brandberg & Broman. 2007. Future trading with regulating power, Magnus Brandberg and Niclas Broman, Masterís Thesis,
Uppsala Universitet, performed at Vattenfall Utveckling AB. An updated version is published, together with Nilsson, in
Minerals & Energy - Raw Materials Report, Volume
http://www.informaworld.com/ smpp/title%7Econtent=t713789630%7Edb=all%7Etab=issueslist%7Ebranches=2 3 v2323, Issue 1 March 2008, pp. 1–11.
Burges, K., De Broe, A. M. & Feijoo, A. Advanced wind farm control according to Transmission System Operator
requirements. European Wind Energy Conference, EWECí03 Madrid, Spain, 16.–20.6.2003.
Bömer, J. & K. Burges: Verbesserte Integration von Windenergieanlagen im EEG 2009. 2008. Available at:
http://www.erneuerbare-energien.de/inhalt/42327/4591/
Cardinal, M. E. & Miller, N. W., 2006. Grid Friendly Wind Plant Controls: WindCONTROL – Field Test Results.
WindPower 2006, Pittsburgh, PA, US.
Coughlan, Y., Smith, P., Mullane, A. and O’Malley, M.J. 2007. Wind turbine modelling for power system stability analysis –
a system operator perspective. IEEE Transactions on Power Systems, Vol. 22, pp. 929–936.
Dale, L., Milborrow, D., Slark, R. & Strbac, G. 2003. A shift to wind is not unfeasible (Total Cost Estimates for Large-scale
Wind Scenarios in UK). Power UK Journal Issue 109, pp. 17–25.
Danish Energy Authority, 2007. A visionary Danish Energy Policy 2025. Available at: http://www.ens.dk/sw45978.asp
(27.1.2009).
DeMeo, E. A., Grant, W., Milligan, M. & Schuerger, M. J. Wind plant integration: costs, status and issues. IEEE Power &
Energy Magazine, Nov/Dec 2005.
Dena, 2005. Planning of the grid integration of wind energy in Germany onshore and offshore up to the year 2020 (Dena
Grid study). Deutsche Energie-Agentur Dena, March 2005. English summary and full German version available at:
http://www.dena.de/themen/thema-reg/projektarchiv/.
Distribution Grid Code. 2007. Available at: http://www.esb.ie.
Doherty, R. & OíMalley, M. J. 2005. New approach to quantify reserve demand in systems with significant installed wind
capacity. IEEE Transactions on Power Systems, Vol. 20, pp. 587–595.
Dragoon, K. & Milligan, M. Assessing Wind Integration Costs with Dispatch Models: A Case Study. Windpower 2003,
Austin, TX.
EA Energianalyse A/S: 50 percent wind in 2025 (In Danish), June 2007.
Available at: http://www.ea-energianalyse.dk/publications.html.
EirGrid Grid Code. 2008. Available at: http://www.eirgrid.com.
Electricity Infrastructure Committee. 2008. Technical Report on the future expansion and undergrounding of the electricity
transmission grid; published by the Electricity Infrastructure Committee, April 2008.
Available at: http://www.energinet.dk.
Elektrizitätszwirtschaft. 2006. Elektrizitätszwirtschaft Jg. 105, Nr. 25, p. 42.
Eleveld, H.F., Enslin, J.H.R., Groeman, J.F., van Oeveren, K.J. & van Schaik, M.A.W. 2005. Connect 6000 MW-II:
Elektrische infrastructuur op zee. Kema 40510025- TDC 05-485000, September 2005.
Energinet.dk. 2004. Regulation TF3.2.5, Wind turbines connected to grids with voltages above 100kV, Dec 2004.
Energinet.dk, Recent Energinet.dk Papers (3 & 4 quarter 2005) on: System Analysis and Model Tools, December 2005.
Available at: http://www.el-vest.energinet.dk/ media(16713,1030)/System_Analyses_2006.pdf.
Energinet.dk, 2007. System Plan 2007. Available at: http://www.energinet.dk.
96
EnerNex/WindLogics, 2004. Xcel North study (Minnesota Department of Commerce). Available at:
http://www.state.mn.us/cgi-bin/portal/mn/jsp/content.do?contentid=536904447&contenttype=EDITORIAL&hpage=true&
agency=Commerce.
EnerNex/WindLogics 2006. Minnesota Wind Integration Study Final Report. Vol I, prepared for Minnesota Public Utilities
Commission, Nov. 2006. http://www.puc.state.mn.us/portal/groups/public/documents/pdf_files/000664.pdf
Ensslin, C. 2006. The Influence of Modelling Accuracy on the Determination of Wind Power Capacity Effects and Balancing
Needs. PhD Thesis, Kassel University Press. Available at: http://www.uni-kassel.de/upress/publi/schriftenreihe.php?ern
euerbare_energien.html.
ERCOT, 2007. ERCOT Operations Report on the EECP event on February 8, 2007. Available on the ERCOT web site at:
http://www.ercot.com/meetings/ros/key docs/2007/0315/07._ERCOT_OPERATIONS_REPORT_EECP020807_rev3.doc.
Eriksen, P. B., Ackermann, T., Abildgaard, H., Smith, P., Winter, W. & Garcia, J. R. 2005. System operation with high wind
penetration. The transmission challenges of Denmark, Germany, Spain and Ireland. IEEE Power & Energy Magazine,
Nov/Dec 2005.
Eriksen, P. B. & Orths, A. 2008. Challenges and Solutions of Increasing from 20 to 50 Percent of Wind Energy Coverage in
the Danish Power System until 2025; In- vited Keynote Paper; Proceedings of the 7th international Workshop on Large
Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms; 26–28 May 2008, Madrid,
Spain.
Erlich, I., Winter, W. & Dittrich, A. 2006. Advanced Grid Requirements for the Integration of Wind Turbines into the
German Transmission System. IEEE PES, Montreal.
Ernst, B. 1999. Analysis of wind power ancillary services characteristics with German 250 MW wind data. NREL Report No.
TP-500-26969. 38 p. Available at :http://www.nrel.gov/publications/.
ESBI, 2004. Renewable Energy Resources for Ireland 2010 & 2020. Sustainable Energy Ireland.
ESBNG, ESB National Grid. 2004. Impact of wind power generation in Ireland on the operation of conventional plant and
the economic implications. February 2004.
Estanqueiro, A. 2006. Study on the Portuguese spatial correlation and smoothing effect of fast wind power fluctuations.
INETI, Private communication, December, 2006.
EWEA, 2005. Large scale integration of wind energy in the European power supply: analysis, issues and recommendations
(December 2005). Available at: http://www.ewea.org/.
EWIS, 2007. European Wind Integration Study final report phase one. Available at: http://www.etso.org,
http://www.ucte.org.
FGE/FGH/ISET: Bewertung der Optimierungspotenziale zur Integration der Stromerzeugung aus Windenergie in das
‹bertragungsnetz. 2007. Available at: http://www.erneuerbare-energien.de/inhalt/42024/4591/.
Focken, U., Lange, M., Waldl & H.-P. 2001. Previento – A Wind Power Prediction System with an Innovative Upscaling
Algorithm. In: Proceedings of EWECí01, 2nd–6th July, 2001, Copenhagen, pp. 826–829.
Focken, U. 2007. Optimal Combination of European Weather Models for Improved Wind Power Predictions. In: Proceedings
of EWECí07, 7th–10th May, 2007, Milan, Italy.
GE Energy, 2005. The Effects of Integrating Wind Power on Transmission System Planning, Reliability, and Operations.
Report on Phase 2, Prepared for The New York State Energy Research and Development Authority, City, State, Mar. 2005.
Available at: http://www.nyiso.com/public/services/planning/special_studies.jsp.
Giebel, G., 2000. On the Benefits of Distributed Generation of Wind Energy in Europe. PhD Thesis, Carl von Ossietzky
Universität, Oldenburg.
Giebel, G., Brownsword, R. & Kariniotakis, G. 2003. The State-of-the-art in Short-term prediction of wind power. A
literature overview. EU project ANEMOS (ENK5-CT- 2002-00665). Available at: http://anemos.cma.fr.
Giebel, G. 2007. A Variance Analysis of the Capacity Displaced by Wind Energy in Europe. Wind Energy, 10, pp. 69–79.
Gjengedal, T. 2004. Large scale wind power farms as power plants. Nordic Wind Power Conference, 1–2.3.2004, Chalmers
University of Technology, Sweden.
Gómez-Lazaro, E., Fuentes, J. A., Molina, A., Ruz, F. & Jiménez, F. 2006. Results using Different Reactive Power
Definitions for Wind Turbines Submitted to Voltage Dips. Application to the Spanish Grid Code, Power Systems
Conference, October-November 2006, Atlanta, USA.
Gómez-Lazaro, E., Fuentes, J. A., Molina-García, A., Ruz, F. & Jiménez, F. 2007a. Field Tests of Wind Turbines Submitted
to Real Voltage Dips under the New Spanish Grid Code Requirements. Wind Energy.
Gómez-Lazaro, E., Fuentes, J. A., Molina-García, A., Ruz, F. & Jiménez, F. 2007b. Wind Turbine Modeling: Comparison of
Advanced Tools for Transient Analysis. PES General Meeting, June 2007, Tampa, USA.
GWEC, 2005. WIND FORCE 12. A blueprint to achieve 12 % of the worldís electricity from wind power by 2020. Available
at: http://www.ewea.org.
Helander, A., Holttinen, H. & Paatero, J. 2009. Impact of wind power on the power system imbalances in Finland. Revised
version submitted to IET Renewable Power Generation journal Jan 2009.
97
Holmgren, M. 2008. Power regulation resources required by wind power in Finland and regulation characteristics of power
plants. Masterís Thesis, Helsinki University of Technology, 78 p. (In Finnish; submitted as a CIGRE 2009 paper.)
Holttinen, H., Vogstad, K.-O., Botterud, A. & Hirvonen, R. 2001. Effects of Large-Scale Wind Production on the Nordic
Electricity Market. Proceedings of European Wind Energy Conference, EWECí01. Copenhagen, DK, 2–6 July 2001. CDROM. European Wind Energy Association.
Holttinen, H. 2004. The impact of large scale wind power production on the Nordic electricity system. VTT Publications 554.
Espoo, VTT Processes. 82 p. + app. 111 p. Available at: http://www.vtt.fi/inf/pdf/publications/2004/P554.pdf.
Holttinen, H. 2005. Impact of hourly wind power variations on the system operation in the Nordic countries. Wind Energy,
Vol. 8, No. 2, pp. 197–218.
Holttinen, H., Saarikivi, P., Repo, S., Ikäheimo, J. & Koreneff, G. 2006. Prediction Errors and Balancing Costs for Wind
Power Production in Finland. Proceedings of 6th workshop on Offshore and Large Scale Integration of Wind Power,
25–26th October, 2006, Delft, Netherlands.
Holttinen, H. & Koreneff, G. 2007. Imbalance costs of wind power for a hydro power producer in Finland. Proceedings.
European Wind Energy Conference EWEC2007. Milan, Italy, 7–10 May, 2007. European Wind Energy Association,
EWEA.
Holttinen, H., Milligan, M., Kirby, B., Acker, T., Neimane, V. & Molinski, T. 2008. Using standard deviation as a measure
of increased operational reserve requirement for wind power. Wind Engineering, Vol. 32, 4, pp. 355–377.
IEA, 2005. Variability of wind power and other renewables. Management options and strategies. Available at:
http://www.iea.org/Textbase/publications/free_new_Desc.asp? PUBS_ID=1572.
IEC 61400-21, 2001. Wind turbine generator systems – Part 21. Measurement and assessment of power quality
characteristics of grid connected wind turbines. Ed. 1.0, International Standard.
Ilex, UMIST, UCD and QUB. 2004. Operating reserve requirements as wind power penetration increases in the Irish
electricity system. Sustainable Energy Ireland.
Ilex Energy, Strbac, G. 2002. Quantifying the system costs of additional renewables in 2020. DTI, 2002. Available at:
http://www.dti.gov.uk/energy/developep/080scar_report_ v2_0.pdf.
INEGI, 2002. Wind Resource Variability Patterns in Continental Portugal. INEGI – Instituto de Engenharia Mec‚nica e
Gest„o Industrial – University of Oporto, commissioned by REN, Rede Eléctrica Nacional, SA.
ISET, 2005. Wind Energy Report Germany 2005, ISET, Kassel.
ISET, 2006. Private communication with Cornel Ensslin for the standard deviation of variations time series. Available at:
http://www.renknow.net. (Search item ìtime seriesî.)
Jansen, C. P. J. & de Groot R. A. C. T. 2003. Connect 6000 MW: Aansluiting van 6000 MW offshore windvermogen op het
Nederlandse elektriciteitsnet. Deel 2: Net op land. Kema 40330050-TDC 03-37074B. Oktober 2003.
Kariniotakis, G. et al. 2006. Next generation forecasting tools for the optimal management of wind generation. Proceedings
PMAPS Conference, Probabilistic Methods Applied to Power Systems, KTH, Stockholm, Sweden, June 2006.
Korpås, M., Tande J. O., Uhlen, K. & Gjengedal, T. 2006. Planning and operation of large wind farms in areas with limited
power transfer capacity. European Wind Energy Conference (EWEC), Athens, Greece, 27 February – 2 March 2006.
Krauss, C., Graeber, B. & Lange, M. 2006. Integration of 18 GW Wind Energy into the Energy Market – Practical
Experiences in Germany. Workshop on Best Practice in the Use of Short-term Forecasting of Wind Power, Delft 2006.
Kristoffersen, J. R. 2005. The Horns Rev Wind Farm and the Operational Experience with the Wind Farm Main Controller.
Proceedings of Copenhagen Offshore Wind, October 2005, Copenhagen, Denmark.
Lamponen, J., Haarla, L., Matilainen, J., Koskinen, M. & Lemström, B. 2008. Wind power, grid reinforcement needs and
connection issues. European Wind Energy Conference & Exhibition, EWEC 2008 conference proceedings, Brussels Expo,
Belgium, 31 March – 3 April 2008.
Lange, B., Cali, ‹., Jursa, R., Mackensen, R., Rohrig, K. & Schlögl, F. 2006. Strategies for Balancing Wind Power in
Germany. German Wind Energy Conference DEWEK 2006, Bremen, November 2006.
Lange, M. & Focken, U. 2008. Studie zur Abschätzung der Netzkapazität in Mittel- deutschland in Wetterlagen mit hoher
Windeinspeisung. 2008. Available at: http://www.erneuerbare-energien.de/inhalt/42006/20049/.
Loutan et al., November 2007. Available at: http://www.uwig.org/CAISOIntRenewables Nov2007.pdf.
Lund, H. & M ünster, E. 2006. Integrated energy systems and local energy markets. Energy Policy, Vol. 34, Iss. 10. Elsevier.
Pp. 1152–1160.
MacDonald, M. 2003. The Carbon Trust & DTI Renewables Network Impact Study Annex 4: Intermittency Literature
Survey & Roadmap. The Carbon Trust & DTI. 2003.
Martin, S., Vigueras-Rodríguez, A. & Gómez-L·zaro E. 2009. Comparison of power fluctuations from onshore and offshore,
IEA Task 23 Workshop Offshore Wind Farms – Wake Effects and Power Fluctuations. Roskilde (Denmark), February
2009.
Matevosyan, J. 2006. Wind power integration in power system with transmission bottlenecks. PhD study, KTH, Sweden.
Available at: http://www.diva- portal.org/kth/theses/abstract.xsql?dbid=4108.
98
Meibom, P., Weber, C., Barth, R. & Brand, H. 2009. Operational costs induced by fluctuating wind power production in
Germany and Scandinavia. IET Renewable Energy Generation, Volume 3, Issue 1, p. 75–83, March 2009.
Milligan, M. 2003. Wind power plants and system operation in the hourly time domain. Proceedings of Windpower 2003
conference. May 18–21, 2003 Austin, Texas, USA. NREL/CP-500-33955. Available at: http://www.nrel.gov/publications/.
Milligan, M. & Porter, K. 2005. The capacity value of wind in the United States: Methods and implementation. Electricity
Journal, no. 2, pp. 9199–9204.
Milligan, M. & Porter, K. 2008. Determining the Capacity Value of Wind: An Updated Survey of Methods and
Implementation, presented at WindPower 2008, Houston, TX. Available at: http://www.nrel.gov/docs/fy08osti/43433.pdf.
Mills, A., Wiser, R. & Porter, K. 2009. The Cost of Transmission for Wind Energy: A Review of Transmission Planning
Studies. LBNL-1471E. February 2009.
Neimane, V. & Carlsson, F. 2008. A massive introduction of wind power. Changed market conditions? Elforsk report 08:41.
Available at: http://www.vindenergi.org/ Vindforskrapporter/v_132.pdf.
PacifiCorp, 2005. Integrated Resource Planning. Available at:
http://www.pacificorp.com/ Navigation/Navigation23807.html.
Porter et al., July 2007. Intermittency analysis Final report. July, 2007.
Available at: http://www.uwig.org/CEC-500-2007-081.pdf.
PUCT, 2008. Commission staff¥s petition for designation of competitive renewable-energy zones. Public Utility Commission
of Texas. Available at: http://interchange. puc.state.tx.us/WebApp/Interchange/application/dbapps/filings/pgSearch_Result
s.asp?TXT_CNTR_NO=33672&TXT_ITEM_NO=1423.
REE, 1995. Criterios Generales de Protección del Sistema Eléctrico Peninsular Español, REE and Power Companies.
REE/REN, 2005. Estudio de Estabilidad Eólica de la Península Ibérica Síntesis de Criterios y Metodologías, REE/REN. May,
2005.
REE, 2006. Operating Procedure P. O.12.3 – Requisitos de respuesta frente a huecos de tensión de las instalaciones de
producción de régimen especial. REE. October 2006.
REE/REN, 2006. Producción eólica técnicamente admisible en el sistema eléctrico peninsular ibérico. Horizonte 2011,
REE/REN. July 2006.
Rodríguez-Bobada, F., Reis Rodriguez, A., Ceña, A. & Giraut, E. Study of wind energy penetration in the Iberian peninsula.
European Wind Energy Conference (EWEC), 27 February – 2 March, 2006, Athens, Greece.
Rohrig, K. (ed.) 2005. Entwicklung eines Rechenmodells zur Windleistungsprognose für das Gebiet des deutschen
Verbundnetzes. Abschlussbericht Forschungsvorhaben Nr. 0329915A, gefördert durch Bundesministeriums für Umwelt,
Naturschutz und Reaktorsicherheit (BMU). Kassel, Germany.
Shiu, H., Milligan, M., Kirby & B. Jackson, K. 2006. California Renewables Portfolio Standard Renewable Generation
Integration Cost Analysis. California Energy Commission, PIER Public Interest Energy Research Programme. Available
at: http://www.energy.ca.gov/pier/final_project_reports/CEC-500-2006-064.html.
Smith, J. C., Milligan, M. R., DeMeo, E. A. & Parsons, B. 2007. Utility Wind Integration and Operating Impact State of the
Art. IEEE Transactions on Power Systems, Vol. 22, No. 3, August 2007.
Strbac, G. & Bopp, T. 2007. Value of fault ride through capability for wind farms. Report to Ofgem (http://www.sedg.ac.uk),
July 2004.
Strbac, G., Shakoor, A., Black, M., Pudjianto, D. & Bopp, T. 2007. Impact of wind generation on the operation and
development of the UK electricity systems. Electrical Power Systems Research, Vol. 77, Issue 9. Elsevier. Pp. 1143–1238.
Svenska Kraftnät. 2008. Large scale expansion of wind power – Consequences for the transmission grid and need of
regulation power. Available at: http://www.svk.se/Global/01_Om_oss/Pdf/Rapporter/080601_Bilaga_vindkraftra
pport_2008.pdf. (In Swedish.)
Söder, L. 1994. Integration study of small amounts of wind power in the power system. Royal Institute of Technology KTH
report TRITA-EES-9401. Available at: http://www.eps.ee.kth.se/personal/lennart/lennart_report_mars94.html.
Söder, L., Ekwue, A. & Douglas, J. 2006. Study on the technical security rules of the European electricity network. Royal
Institute of Technology (KTH) report TRITA- EE 2006:003.
Söder, L., Hofmann, L., Nielsen, C. S. & Holttinen, H. 2006. A comparison of wind integration experiences in some high
penetration areas. Nordic Wind Power Conference, 22–23 May, 2006, Espoo, Finland. VTT, Espoo, 2006.
Söder, L., Hofmann, L., Orths, A., Holttinen, H., Wan, Y.-H., Tuohy, A. 2007. Experience from wind integration in some
high penetration. IEEE Transactions on Energy Conversion, vol. 22, 2, pp. 4–12.
Söder, L. & Amelin M., 2008. A review of different methodologies used for calculation of wind power capacity credit Power
and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE
20–24 July 2008, pp. 1–5.
Söder, L. & Holttinen, H. 2008. On methodology for modelling power system impact on power systems. International
Journal of Global Energy Issues, Vol. 29, 1–2, pp. 181–198.
Tande, J. O., Muljadi, E., Carlson, O., Pierik, J., Estanqueiro, A., Sørensen, P., OíMalley, M., Mullane, A., Anaya-Lara, O. &
99
Lemstrom, B. 2004. Dynamic models of wind farms for power system studies – status by IEA Wind R&D Annex 21,
European Wind Energy Conference (EWEC), 22–25 November, London, UK.
Tande, J. O. & Uhlen, K. 2004. Cost analysis case study of grid integration of larger wind farms. Wind engineering, Vol. 28,
No. 3, pp. 265–273.
Tande, J. O., Korpås, M., 2006. Impact of large scale wind power on system adequacy in a regional hydro-based power
system with weak interconnections. Proceedings
of Nordic Wind Power Conference NWPC 2006, 22–23 May, 2006, Espoo, Finland.
UCTE, 2005. UCTE System Adequacy Forecast 2006– 2016, Dec. 2005.
UKERC, 2006. The Costs and Impacts of Intermittency: An assessment of the evidence on the costs and impacts of
intermittent generation on the British electricity network. UK Energy Research Centre, 2006.
Ummels, B. C. 2009. Power System Operation with Large-Scale Wind Power in Liberalised Environments. Ph.D. thesis,
Delft University of Technology, the Netherlands. 192 p.
Van Hulle, F., Tande, J. O., Uhlen, K., Warland, L., Korpås, M., Meibom, P., Sørensen, P., Morthorst, P. E., Cutululis, N.,
Larsen, H., Woyte, A., Verheij, F., Kleinschmidt, C., Moldovan, N., Holttinen, H., Lemström, B., Uski-Joutsenvuo, S.,
Gardner, P., Purchala, K., Tiedemann, A. & Kreutzkamp, P. 2009. Final Report TradeWind. (Available at
http://www.trade-wind.eu.)
Wan, Y. 2005. Fluctuation and Ramping Characteristics of Large Wind Power Plants. Windpower 2005 (Windpower 05)
Conference and Exhibition (CD-ROM), 15–18 May 2005, Denver, Colorado. Washington, DC: American Wind Energy
Association; Content Management Corp. NREL Report No. CP-500-38057. 13 p.
Wessel, A.J., Jiang, A., Conz, J., Dobschinski, B. & Lange, H. Werner: Improving short- term forecast with online wind
measurements. Proceedings of the German Wind Energy Conference 2008, Bremen.
Zavadil, R. 2006. Wind Integration Study for Public Service Company of Colorado. May 22, 2006. Available at
http://www.xcelenergy.com/XLWEB/CDA/0,3080,1-1- 1_1875_15056_15473-13518-2_171_258-0,00.html.
100
1
3
2009
2011
Risø DTU
Task25
Risø DTU
EU
SUPWIND
Wilmar
EU
Anemos Plus
Wilmar
SUPWIND
Phd
EFP2007
VTT
2009
2011
VTT
Helsinki Technical University
1
DENA
DENA
30%
II
2020
2025
3
101
2009
1
(EEG)
FIT
EEX
17
29
66
64
RAVE (Research at Alpha Ventus)
RAVE
R
D
Risø
Task25
NREL
TUD
TUD
2
ECN
SupraGrid
Task25
ECN
TUD
SupraGrid
2
SupraGrid
SupraGrid
SupraGrid
102
SupraGrid
2009
2011
2020
(DGS)
EU
2
(DSM)
(VRPP)
DGS
UCLM-IER (Universidad de Castilla-La Mancha/Instituto de Investigación de Energías Renovables)
103
Royal Institute of Technology, Kungliga Tekniska Högskolan, KTH
10 TWh
2015
Nordal
UK Centre for Sustainable Electricity and Distributed Generation (SEDG)
NREL
Eastern Interconnection
Western Interconnection
Footprint
WestConnect
Eastern Interconnection
(JCSP)
JCSP
20%
RTO
MISO
104
CIGRE JWG C1-C2-C6.18
2006
2
105
(EWIS)
2
A.1
Pedersen, J. & Eriksen, P.B. System and Market Changes in a Scenario of increased Wind Power Production
2005
(MW)
(MW)
(MW)
5,700 – x
x
TWh/a
26.3
– z MW
0 MW
0 MW
—
x, y, z
A
M
1.
1.
2.
S
2.
R
P
2.
1.
3.
2.
4.
26.3 TWh
100%
G
H
T
W
1
3.
2.
1.
2.
5.
6.
2.
8.
1.
2.
3.
4.
1.
3.
4.
b)
MW
b)
106
MW
0
7,200
1,500 + y MW
20 TWh
a)
I
B
U
0
5,700 – x MW
6 TWh
D
(MW)
TWh/a
0
26.3
4,000
A.2
Lennart Söder, 1994
(MW)
(MW)
(MW)
TWh/a
7
16,400MW
(MW)
MW
478 MW
A
1.
2.
M
1.
3.
S
3.
R
P
2.
5.
D
1.
6.
I
B
2.
1.
4.
U
3.
0
GW
(MWh)
d)
3.21m/s
2
1.56 2.70m/s
RMSE
1
5.
1
T
W
a)
8
107
30
1%
2%
1.
1.
2.
3.
4.
5.
5.
1.
90 MW
x GWh
1.56
G
H
TWh/a
24
(RMSE)
24
A.3
(Holttinen et al., 2001)
2000
(MW)
67,000
(MW)
24,000
60 TWh/a
TWh/a
385
2010
4
88 TWh/a
4
(MW)
90,000
191 TWh/a
5,500 MW
(MW)
MW
TWh/a
300
18,000
46
92 TWh/a 2010
89 TWh/a
2010
7,700 MW
1,800 MW
1,200MW
11 TWh/a
7 TWh/a
14 TWh/a
1
2010
5 TWh/a
4
A
1.
M
S
1.
2.
R
1.
x GWh
30
4
1
30
P
D
I
B
U
1.
1.
4.
2.
3.
6.
G
H
T
W
2.
1.
2.
3.
4.
5.
MW
1.
30
1~2
108
9 TWh/a
A.4
Risø
4
2006
12
2010
(MW)
155,500
36,000 MW
3
(MW)
65,600
(MW)
TWh/a
977
(MW)
196,000
138,500MW
3,120MW
12
11,500 MW
Nord Pool
10
S
4.
R
P
2.
1.
3.
D
1.
4.
5.
I
1.
B
U
3.
2.
3.
H
3.
4.
5.
2.
3.
4.
T
EEX
y
2
GWh
1
d.
36
15
3
2.
46,000 MW
15
x
8
G
31,000 MW
28,000MW
5,500 MW
30,000MW
10%
11,500 MW
64,000 MW
1.
1.
TWh/a
6,600
57,500 MW
32,000 MW
A
M
MW
18%
36
MW
6,600 MW
31,000 MW
109
20%
W
21
10
6
6
d)
3.
4.
110
12
A.5
EnerNex/WindLogics
(MW)
9,933
(MW)
300
—
21%
2004
2004
2010
MW
11,426
TWh/a
48.1
2%
MW
1,500
28%
MW
1,500
25%
12%
13.5%
8%
1,000 km2
RPS
2
A
M
1.
1.
S
2.
R
P
2.
1.
2.
D
1.
I
B
U
3.
2.
1.
2.
3.
5.
6.
7.
x
y
GWh
a)
1
3.
G
H
T
W
1.
6.
7.
1.
2.
3.
1.
2.
3.
4. 1,000 km2
1
d)
MAE
c)
50
b) 1
111
TWh/a
5.8
4%
20%
A.5
EnerNex/WindLogics
(MW)
21,000
(MW)
8,800
—
55%
5%
2004
2006
2020
(MW)
23,500
TWh/a
85
MW
5,000
6%
3.5%
8%
MISO
1
5,000 MW
2020
2020
MW
5,700
90.5%
TWh/a
21
23.5%
NERC Midwest Reliability Organization (MRO)
5,700 MW
3
4
z
750 km2
RPS
14
MISO
GW
MISO
116
133 GW
2020
A
M
1.
1.
S
2.
R
P
D
2.
1.
4.
5.
6.
170 GW
x
y
GWh
a)
I
B
U
G
H
T
W
1
CapX2020
3.
2.
3.
1.
2.
3.
5.
6.
2.
6.
7.
1.
2.
3.
1.
2.
3.
4.
d)
MAE
20%
MW
c)
b) 1
750 km2
112
A.7
ESBNG
ESB
EirGrid
5,000MW
(MW)
(MW)
MW
29/38.5
—
855 MW
6,500 MW
344 MW
67%
A
650MW
(MW)
TWh/a
5,000/6,500
2004
2
MW
MW
0/500/1,000/
1,500/2,500/
3,500
4,935 MW
5,732/7,354
5,000 MW
344 MW
544MW
544 MW
6,650MW
5,153MW
TWh/a
5.2/10.5/15.7/
19.6/27.4
3,769
855 MW
33%
M
1.
3.
2.
S
2.
x
y
GWh
a)
2
4
R
P
D
1.
1.
5.
1.
1
5,000 MW
6,500 MW
(CC)
I
B
U
4.
2.
3.
(CT)
24
6.
G
H
T
W
1.
8.
1.
2.
1.
b)
2.
3.
4.
18
b) 1
113
A.8
SEI
Ilex, UMIST, UCD, QUB, 2004
2006
(MW)
6,127/6,900
345.6 MW
(MW)
(MW)
TWh/a
2,192/2,455
35.5/39.7
217.5 MW
1,215 MW
500 MW
2010
(MW)
8,110/8,900
MW
TWh/a
845/1,300/
2.2/3.4/5.1
1,950
4,932 MW
500/900
292 MW
995.4 MW
7,488 MW
400 MW
10%
50%
2010
40%
4
A
M
1.
3.
1.
S
2.
R
30
I
B
U
3.
2.
3.
x
y
GWh
3
CCGT
1
8
14
5.
6.
7.
W
1.
8.
1.
2.
3.
1.
18
1
1
G
H
T
OCGT
b)
40 MW 4
4
10
2.
3.
4.
b) 1
114
60 MW
A.9
Bart C. Ummels. Delft University of Technology, 2008
2014
(MW)
21,000
(MW)
10,500
—
GW
CCGT CHP
CCGT CHP
CCGT
TWh/
(MW)
30,000
TWh/a
126
0.4
9.5
–
4.9
0.9
1.5
7.1
0.6
–
–
–
–
6.3
30.4
10.0
21.0
126
GW
5.9
2.6
–
–
–
–
5.0
1.5
–
–
1.3
0.1
0.4
16.8
–
15.2
97
GW
64.9
6.0
–
–
–
–
4.0
1.1
9.2
13.6
4.2
7.9
–
110.9
–
–
518
(MW)
7,350
MW
0 12
GW
14.1
32.0
18.9
–
–
–
15.1
4.0
5.3
3.7
5.5
–
8.2
106.8
32.0
–
550
GW
11.9
30.4
–
–
–
–
24.4
7.0
8.4
1.8
3.0
–
–
86.9
–
65.5
357
TWh/a
0 43
GW
–
–
–
–
–
–
–
–
–
–
0.7
–
–
0.7
–
–
–
2014
24
1
NODE
115
3
0
4 GW
0
8 GW
2014
UCTE
National
4
24
A
M
1.
2.
1.
S
5.
R
P
1
43,000 GWh
12 GW
15
1.
3.
D
1.
4.
I
B
3.
2.
3.
1.
3.
U
3
a)
b)
0
100%
c)
6.
116
d)
G
H
2.
1.
4.
5.
6.
7.
T
1.
2.
3.
4.
5.
1.
W
MW
38
d)
3.
4.
117