k - IPhT

Accurate Modeling
of the Redshift-Space Distortions
of Biased Tracers
+α
Takahiro Nishimichi (IPMU, the Univ. of Tokyo)
PRD, 84(2011), 043526
with
Atsushi Taruya (RESCEU, the Univ. of tokyo)
PTchat @ IPhT CEA Saclay, Sep. 21 2011
2011年9月21日水曜日
Dark Energy? Modified Gravity?
observations → acceleration of cosmic expansion
✓type-1a supernova
✓BAOs
✓CMB
✓...
8πG
Gµν =
f(R), DGP, ...
modified gravity?
c4
Tµν
SNLS3, Conley+’11
dark energy?
expansion history in a DE model may be mimicked by a MG model
geometrical + growth tests are essential!
2011年9月21日水曜日
Anisotropies in galaxy clustering
distance measurements in z-space
BAOs + Alcock & Paczynski test
power spectrum (normalized)
→ H(z) & DA(z)
© A. Taruya
f σ8
z-space distiontions
→
d ln D(z)
γ
f (z) ≡
" [Ωm (z)]
d ln a
Blake+‘11a
Blake+‘11b
redshift
z space
WiggleZ Dark Energy Survey
wavenumber k [h/Mpc]
2011年9月21日水曜日
© A. Taruya
real space
peculiar velocity
Redshift-space distortions
z-space
Kaiser Effect
r-space
r-space
peculiar velocity
large-scale coherent motion
→ enhancement of clustering
k||
μ=1
Finger-of-God Effect
small-scale random motion
→ suppression of clustering
μ=0
e.g., Scoccimarro’04
streaming model
vel. divergence:
2011年9月21日水曜日
k⊥
vel. dispersion: σv
Redshift-space distortions
z-space
Kaiser Effect
r-space
r-space
peculiar velocity
large-scale coherent motion
→ enhancement of clustering
k||
μ=1
Finger-of-God Effect
small-scale random motion
→ suppression of clustering
μ=0
e.g., Scoccimarro’04
streaming model
vel. divergence:
2011年9月21日水曜日
k⊥
vel. dispersion: σv
Redshift-space distortions
z-space
Kaiser Effect
r-space
z-space
r-space
peculiar velocity
large-scale coherent motion
→ enhancement of clustering
k||
μ=1
Finger-of-God Effect
small-scale random motion
→ suppression of clustering
μ=0
e.g., Scoccimarro’04
streaming model
vel. divergence:
2011年9月21日水曜日
k⊥
vel. dispersion: σv
Redshift-space distortions
z-space
Kaiser Effect
r-space
r-space
peculiar velocity
large-scale coherent motion
→ enhancement of clustering
k||
μ=1
Finger-of-God Effect
small-scale random motion
→ suppression of clustering
μ=0
e.g., Scoccimarro’04
streaming model
vel. divergence:
2011年9月21日水曜日
k⊥
vel. dispersion: σv
Redshift-space distortions
z-space
Kaiser Effect
r-space
r-space
peculiar velocity
large-scale coherent motion
→ enhancement of clustering
k||
μ=1
Finger-of-God Effect
small-scale random motion
→ suppression of clustering
μ=0
e.g., Scoccimarro’04
streaming model
vel. divergence:
2011年9月21日水曜日
k⊥
vel. dispersion: σv
Redshift-space distortions
z-space
Kaiser Effect
r-space
z-space
r-space
peculiar velocity
large-scale coherent motion
→ enhancement of clustering
k||
μ=1
Finger-of-God Effect
small-scale random motion
→ suppression of clustering
μ=0
e.g., Scoccimarro’04
streaming model
vel. divergence:
2011年9月21日水曜日
k⊥
vel. dispersion: σv
Redshift-space distortions
(contd.): TNS model
Exact formula for the z-space P(k)
with a help of cumulant expansion theorem
∝ cross-bispectrum of δ & θ new terms!
B term ∝ sum of convolutions of Pδθ & Pθθ
A term
2011年9月21日水曜日
quadrupole monopole
A
notice !eA BC" =
# !e "!BC"
Taruya, Nishimichi, Saito (‘10)
w/o correction
Redshift-space distortions
(contd.): TNS model
Exact formula for the z-space P(k)
with a help of cumulant expansion theorem
∝ cross-bispectrum of δ & θ new terms!
B term ∝ sum of convolutions of Pδθ & Pθθ
A term
2011年9月21日水曜日
quadrupole monopole
A
notice !eA BC" =
# !e "!BC"
Taruya, Nishimichi, Saito (‘10)
w/o
w/ correction
RSDs for biased tracers?
Okumura & Jing’11
Many people are working hard on this!
e.g., Okumura & Jing’11
Tang, Kayo & Takada’11
Reid & White’11
Sato & Matsubara ’11
biased tracer?
k [h/Mpc]
k [h/Mpc]
assume δg = bδ
β=f/b
∝ cross-bispectrum of δ & θ
B term ∝ sum of convolutions of Pδθ & Pθθ
A term
2011年9月21日水曜日
Are correction terms enhanced by bias?
Analysis
T.N. & Taruya ’11
Large N-body simulations (L=1.14Gpc/h, N=1,2803)
starting with 2LPT initial conditions x 15 realizations
✓ 9 halo catalogs over a wide mass range @ z=0.35
✓ volume & number density ≒ SDSS DR7 LRGs
✓ b(k) is directly measured from r-space clustering
✓ σv is treated as a free fitting parameter
mass: h-1Msun, density: h3Mpc-3
2011年9月21日水曜日
k [h/Mpc]
Result
T.N. & Taruya ’11
N-body simulations
dark matter
2011年9月21日水曜日
light halos
heavy halos
dark matter
light halos
Result
TNS model
dark matter
2011年9月21日水曜日
heavy halos
T.N. & Taruya ’11
light halos
heavy halos
dark matter
light halos
Result
streaming
TNS modelmodel
dark matter
2011年9月21日水曜日
heavy halos
T.N. & Taruya ’11
light halos
heavy halos
dark matter
light halos
Result
streaming
TNS modelmodel
dark matter
2011年9月21日水曜日
heavy halos
T.N. & Taruya ’11
light halos
heavy halos
Goodness of fits
best-fit values of σv:
• smaller for streaming model
• consistent with 0 for massive halos
• consistent with the linear theory for TNS
• does not depend the halo mass
goodness of fit:
• worse for streaming model
• especially for massive halos
• reduced χ2 are close to 1 for TNS
• independent of the halo mass
2011年9月21日水曜日
T.N. & Taruya ’11
FoG function: Lorentzian (L), Gaussian (G)
Recovery of f(z)
2 parameter fit to N-body data: f and σv
✓ streaming model
• seams OK only at kmax<0.1h/Mpc
• typically ~5% underestimate of f
✓ TNS model
• gives unbiased estimate of f
• up to kmax ~ 0.2 h/Mpc
2011年9月21日水曜日
T.N. & Taruya ’11
Recovery of f(z)
2 parameter fit to N-body data: f and σv
✓ streaming model
• seams OK only at kmax<0.1h/Mpc
• typically ~5% underestimate of f
✓ TNS model
• gives unbiased estimate of f
• up to kmax ~ 0.2 h/Mpc
2011年9月21日水曜日
T.N. & Taruya ’11
Recovery of f(z)
2 parameter fit to N-body data: f and σv
✓ streaming model
• seams OK only at kmax<0.1h/Mpc
• typically ~5% underestimate of f
✓ TNS model
• gives unbiased estimate of f
• up to kmax ~ 0.2 h/Mpc
2011年9月21日水曜日
T.N. & Taruya ’11
Recovery of f(z)
2 parameter fit to N-body data: f and σv
✓ streaming model
• seams OK only at kmax<0.1h/Mpc
• typically ~5% underestimate of f
✓ TNS model
• gives unbiased estimate of f
• up to kmax ~ 0.2 h/Mpc
2011年9月21日水曜日
T.N. & Taruya ’11
Recovery of f(z)
2 parameter fit to N-body data: f and σv
✓ streaming model
• seams OK only at kmax<0.1h/Mpc
• typically ~5% underestimate of f
✓ TNS model
• gives unbiased estimate of f
• up to kmax ~ 0.2 h/Mpc
2011年9月21日水曜日
T.N. & Taruya ’11
Recovery of f(z)
2 parameter fit to N-body data: f and σv
✓ streaming model
• seams OK only at kmax<0.1h/Mpc
• typically ~5% underestimate of f
✓ TNS model
• gives unbiased estimate of f
• up to kmax ~ 0.2 h/Mpc
2011年9月21日水曜日
T.N. & Taruya ’11
Future/on-going surveys
T.N. & Taruya ’11
Fisher matrix analysis with 5 parameters
(b, σv, H, DA, f)
Assumption TNS model is true, but
adopt streaming model
h-3Gpc3
h3Mpc-3
h Mpc-1
γ
f (z) = [Ωm (z)]
γ = 0.77 ± 0.04
2011年9月21日水曜日
(short) summary
・tested the clustering of halos in z-space by N-body simulations ...
・frequently used phenomenological model is not sufficient
~5% systematic bias in f(z)
・correction terms in TNS model
more prominent for more massive halos or more biased objects
・codes for our model are publicly available!!
visit CPT library: http://www-utap.phys.s.u-tokyo.ac.jp/~ataruya/cpt_pack.html
2011年9月21日水曜日
Beyond TNS model...
Lesson from the success of RPT ...
Crocce & Scoccimarro 06, 08
✓decay of BAO bump by propagator
✓shift of peak position by MC term
propagator
tree level
2011年9月21日水曜日
mode coupling
Beyond TNS model...
T.N. in prep.
A simple extension of the idea of the propagator to halos in z-space:
!δh (k; z)δ0 (k! )"
Gh (k, µ; z) =
!δ0 (k)δ0 (k! )"
Ph (k, µ; z) =
2011年9月21日水曜日
2
Gh (k, µ; z)P0 (k)
+ PMC (k; z)
z-space propagator of halos
T.N. in prep.
preliminary
Mh > 1.8x1012 Msun/h
2011年9月21日水曜日
z-space propagator of halos
T.N. in prep.
ξh (s⊥ , s|| )
tree-level in RPT
preliminary
2011年9月21日水曜日
z-space propagator of halos
T.N. in prep.
ξh (s⊥ , s|| )
mode-coupling term
preliminary
2011年9月21日水曜日
Appendix
2011年9月21日水曜日
signal-noise decomposition
2011年9月21日水曜日