気象研究所技術報告 第 ᳇⽎⎇ⓥᚲᛛⴚႎ๔ ╙63 63号ภ2011 2011 &QWDNG&KHHGTGPEG6QOQITCRJ[ᴺߦࠃࠆධᣣᧄߩ ᰴర㔡ᵄㅦᐲ᭴ㅧ߅ࠃ߮ࡈࠖࡇࡦᶏࡊ ࠻ߩᒻ⁁ߩផቯ ᧄ▵ߩ⺰ᢥߪ㧘ᣣᧄ㔡ቇળ߆ࠄߩォタ⸵นࠍฃߌߡឝタߒߡࠆޕ 㧔ᒄἑ౻᮸ਛፉᷕ৻㐳⼱Ꮉ ᤘ, 2007: Double-Difference Tomography ᴺߦࠃࠆධᣣᧄߩ 3 ᰴర㔡ᵄㅦᐲ᭴ㅧ߅ ࠃ߮ࡈࠖࡇࡦᶏࡊ࠻ߩᒻ⁁ߩផቯ, 㔡 2, 60, 1-20.㧕 -- 67 67 -- 気象研究所技術報告 気象研究所技術報告 第第63号 63 号 2011 2011 ῑ ῐ 2 60 (2007) 1ῌ20 Double-Di#erence Tomography 3 !"#$%&' ()*+,-.*+/῍ 456767897*+:;<-=>*+?@AB"῍῍ 0123 C D E F;GHI J Three-Dimensional Velocity Structure in Southwestern Japan and Configuration of the Philippine Sea Slab Estimated by Double-Di#erence Tomography Fuyuki H>GDH: Seismology and Volcanology Research Department, Meteorological Research Institute, Nagamine 1ῌ1, Tsukuba 305ῌ0052, Japan Junichi N6@6?>B6 and Akira H6H:<6L6 Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University, Aramaki-aza-Aoba, Aoba-ku, Sendai 980ῌ8578, Japan (Received December 14, 2006; Accepted February 21, 2007) We estimated three-dimensional seismic velocity structure in and around the Philippine Sea plate subducting beneath southwestern Japan by applying the double-di#erence tomography method to arrival time data of earthquakes obtained by the dense nationwide seismic network (Kiban-network). A low S-wave velocity and high Vp/Vs layer shallowly dipping toward the subduction direction of the slab and several km thick has been clearly imaged at locations immediately above the top of intraslab seismicity in a wide area from Tokai to Kyushu. Comparison with the location of the upper surface of the Philippine Sea slab estimated from seismic refraction surveys at four survey lines shows that this low S-wave velocity and high Vp/Vs layer corresponds to the crust of the Philippine Sea slab. This indicates that many of intraslab earthquakes are occurring in the slab mantle, suggesting that the location of the upper plate interface previously estimated only from spatial distribution of intraslab seismicity is not correct. Based on the presently obtained location of the low S-wave velocity and high Vp/Vs layer and hypocenter distribution of relocated intraslab earthquakes, we estimated the configuration of the upper surface of the Philippine Sea slab in the whole area of southwestern Japan. Key words : Double-di#erence tomography, Philippine Sea slab, Plate boundary, Southwestern Japan ῌ 1. ῎ ῌ ῏ ῍ and Miyazaki (2001), Miyazaki and Heki (2001)lm S KLM !"#NO !"# PQRST 2U6 cm VK K] 5 WXYZ[\ ^Seno et al. (1993), Wei and Seno (1998), Heki no] !"#YZ[Zp]M 4 WqrstuKLGvwxy"xz {|# ^Hirose et al. (1999), Ozawa et al. (2001, 2002), Miyazaki et al. (2006)lM 4}~ /~RL ῍ _305ῌ0052 `abcGd 1ῌ1 ῍῍ _980ῌ8578 efcghijkgh vwxy"xz {|# ^Obara et al. (2004)l q -. /; ^Obara (2002)l N - 68 - - 68 - 気象研究所技術報告 気象研究所技術報告 第第63号 63 号 2011 2011 ¼R ,R¡¢£ ¤ 2 f\d:i hk l Tk^ !" # $%& (2001)' ()* + *,- \ bI ;"Zlm f\kl!; kZ]eI 7J g? ./012345678 9 :; <=> * ?@ A Ij u6} n |x o p,k} qTGW iK 1997 . 10 1 r 456BCD EF 2005 . 12 31 rs 8 ./ iK+Z( !G 4560123456BC =X) *9 t!;q1 !HI -.J8KL us= 5 8+Z Fig. 1 ae lYt Tb>W ` 20 `vg"ql W P (1996), $QR%S (2004)' 0123? C 20 km 98 +Z a !; d @ A&T456BCU V' M 1.0 *<+Z M 1.5 W C I9 AMN #"LO Ishida (1992), # = ( =X) *=Y+Z TG 20 km C8|{ ¡6 456BCD EF !G ¢ TGW (Fig. 2) ! Zkli ?@ A&T[\456BCU C*wH iKG £ I,- / +ZGW ]. T/^ W ` `~= _01` 2 ( ]a 34b< 5W[\]u6} f\]u6}T Table 1 !" *I5W456BCT6c78 6 ~ ?@ AZ&= km 9*d: 1¥¢ #Kodaira et al. (2000, 2002), ;eR< (2002), ¦ 1015 km §y 510 km Kodaira et al. (2004), f=R< (2005)' II > ¨z: W {I 7 JMA2001 ##R< G )?@ A& 456BC (2002)' TGW qr m456BC>WI g?@ hIT6 |}~ K 8 ©ª}56n«3 AMN 01234567BiTC jITDE Double-Di#erence Tomography F ¤x 10 km W | ] 3040 km *y Tb RMS ]_£+Z) Table 1 6; ¬ W #Zhang and Thurber (2003)' TG ( = X) *=Y HI 7TJ ! kTl W * W456BC _01` 2=5 #Kodaira et al. (2000, 2002, 3.1 2004), f=R< (2005)' m5n6o6piK=5 W?@qr #Yamauchi et al. (2003), Shiomi et ῌ 3. S Vp/Vs Fig. 3 Fig. 2 a 128 !Y DD q| 06=5W S HI 7§y ®T al. (2004)' Ls MW456BCtNqu 6 G ) klm= 0123 vTOw PQxR;"0123456 ?@ e F L ?@ tNmS@ iT O I Z yz{ AEFhI !" I z?TBiUV8W< *y¯ km <W>lm ! a ῍ 4 J W456BCT ῌ 2. 6 X) p iK Double-Di#erence Tomography F #Zhang T± a 1825 °t ῍ 4 Fig. 10 V' and Thurber (2003)' TGW IXF YZ ª3o6²«35Wi@ Checker- Hq|06FG[\]u6}< board Resolution Test #Grand (1987) Zhao et al. ]^ ~[\]_)u6 (1992), e CRT' ³H II £|1¥ } L ¢¦´I TL iKGW ~= `=HaE ! bcdTYKL `^<µTkῌ ~] `B']T _TI;" k]eI 7f\E t *B']vg"_f3 kd:Y_g"h= *Wj ¶·¸ª¹TL y?Gu6}º¥Tj kZ]eI 7 ;"PQJ ! *TG \iK! »ª - 69 - - 69 - 気象研究所技術報告 気象研究所技術報告 DD Tomography 3 第第63号 63 号 2011 2011 ! "# Fig. 1. Map of southwestern Japan. Rectangles a through e show the study areas. Red triangles denote active volcanoes. Red crosses denote non-volcanic deep low-frequency earthquakes [Obara (2002)], and pink circles denote long-term slow slip events [Hirose et al. (1999), Ozawa et al. (2001, 2002), Miyazaki et al. (2006)]. Seismic refraction survey lines [Kodaira et al. (2000, 2002, 2004), Ito et al. (2005)] are shown by black lines. Depth contours of the slab Moho imaged by receiver function analyses [Yamauchi et al. (2003) and Shiomi et al. (2004)] are shown by green lines and purple lines with an interval of 10 km, respectively. The Japan Median Tectonic Line is shown by golden line. Areas enclosed by blue lines represent the expected source region of the Tokai earthquake [the Central Disaster Management Council (2001)], the Tonankai earthquake and the Nankai earthquake [the Headquarters for Earthquake Research Promotion (2001)]. Areas enclosed by orange lines denote the estimated asperities or locked zone [Wald and Somerville (1995), Matsumura (1996), Yagi et al. (1998)]. Arrow shows direction of plate motion of the Philippine Sea plate relative to the land plate [Wei and Seno (1998), Heki and Miyazaki (2001)]. - 70 - - 70 - 3 気象研究所技術報告 気象研究所技術報告 4 第第63号 63 号 2011 2011 Fig. 2. Epicenter distribution of earthquakes (color dots) and seismograph stations (solid inverted triangles) used for double-di#erence tomography. Colors indicate the depth of hypocenters according to the color scale on the top left. Blue broken lines show the locations of vertical cross sections 1 through 28 shown in Figs. 3, 4 and 5. Red broken lines denote the locations of seismic refraction survey lines A through D. Other symbols are the same as those in Fig. 1. Table 1. Data sets used in this study and the reduction of root-mean-square (RMS) residuals of travel times. Area Number of Events Number of Stations Number of absolute travel times Number of di#erential travel times RMS residuals of travel times (s) P S P S P S a b c d e 16,573 198 352,918 344,848 3,624,536 3,580,950 0.120.09 0.230.13 15,619 151 325,147 327,204 3,267,728 3,229,343 0.100.07 0.210.11 13,960 98 270,216 262,814 3,011,370 2,836,181 0.100.06 0.210.11 12,598 74 203,553 210,394 2,195,998 2,329,858 0.120.10 0.230.15 15,323 116 317,328 308,111 2,948,660 2,996,051 0.140.11 0.280.18 - 71 - - 71 - 気象研究所技術報告 気象研究所技術報告 DD Tomography 3 第第63号 63 号 2011 2011 !" #$ Fig. 3. Vertical cross sections of S-wave velocities (Vs) along the lines 128 in Fig. 2. Presently estimated location of the plate boundary is shown by red lines. Black crosses denote earthquakes relocated by the double-di#erence tomography. Red crosses denote non-volcanic deep low-frequency earthquakes [Obara (2002)]. Gray line denotes land area. Brown and pink lines denote the surface locations of the estimated locked zone or asperities [Matsumura (1996), Yagi et al. (1998)] and long-term slow slip events [Ozawa et al. (2002)], respectively. Blue lines denote the expected source region of the Tonankai earthquake and the Nankai earthquake [the Headquarters for Earthquake Research Promotion (2001)]. Red triangles denote active volcanoes. Open triangles denote the Japan Median Tectonic Line. Black thin lines represent DWS [Thurber and Eberhart-Phillips (1999)] is equal to 500. Rectangles on the panels from 18 to 25 show the area magnified in fig. 10. - 72 - - 72 - 5 気象研究所技術報告 気象研究所技術報告 6 Fig. 3. 第第63号 63 号 2011 2011 Continued - 73 - - 73 - 気象研究所技術報告 気象研究所技術報告 DD Tomography 3 第第63号 63 号 2011 2011 ! "# Fig. 4. Vertical cross sections of CRTs for Vs along the lines from 1 to 28 in Fig. 2. Other symbols are the same as those in Fig. 3. - 74 - - 74 - 7 気象研究所技術報告 気象研究所技術報告 8 Fig. 4. 第第63号 63 号 2011 2011 Continued - 75 - - 75 - 気象研究所技術報告 気象研究所技術報告 DD Tomography 3 第第63号 63 号 2011 2011 ! "# Fig. 5. Vertical cross sections of Vp/Vs along the lines from 1 to 28 in Fig. 2. Other symbols are the same as those in Fig. 3. - 76 - - 76 - 9 気象研究所技術報告 気象研究所技術報告 10 Fig. 5. 第第63号 63 号 2011 2011 Continued - 77 - - 77 - 気象研究所技術報告 気象研究所技術報告 DD Tomography k E*gl 3 º»-.=BE±jk)¼Wuvc R ?N H5 Vso Vp/Vs , K 45 km 0 12%34 v 0It?N [6\i&4 7r-.8s E K 40 km LItO P 5 0 4 0.05 S P & VFig. 7 5 0 4 0.1 6789:;,< (2005)O Vp/Vs , = 11 L 7r-.8sIt?N uvcwx ! " #"$ %&' 2 ()*+, - .3/ , 第第63号 63 号 2011 2011 S @ Z $ Q B % N H o I /;BBCD>~E @A BBCD% ' $ G --.p6It$uvcR EF GHI JB K SGHI % B ,C% 8, 9 L (Fig. 3, Fig. 5) $ )T % 8 *T % 9 ed >?, Fig. 4 CRT MJ Derivative WeightNThurber Summation (1999)O 500 Q CRT and P,@ G L! %EF "#R$ GHI & V $ -BA%,2^ .8s Euvcwxv 0 E[6 % 1S28 T' Vp/Vs # # V)WSXY*+Z Vp/Vs ,[6\!-. / ]0 km 0 G - [6\! X:-.& I !A YZ-.[6\!-. 0I t O -.& NMizoue et al. (1983) H ^ _ % 15 `a bcdef* Vp/Vs 1 G g ῌ 4 23 3.2 Q ' >?,@A UJ'( % 1S14 Jt^ ` , -. ¡O QB% [1¢:& ,\ JB £¤o*¥ (1997) ¢¦o]§ (2004) [6\ X:-.&^_L[6\ ` )T [6\*T [6\ / :J^ 3.2.1 B h DD c i ( 6 $ ¨ _ ¢¦o]§ (2004) >?,@A P (Fig. 6(a)) S abA[6\ X:-.&Q©c"$ª Fig. 2 Fig. 6 jk 7r- \i&4AJ WJ>?J^ Fig. 2 Fig. 5 5 Vso Vp/Vs , lUtI J^ Eberhart-Phillips (Fig. 6(b)) % A l"mD4n 5 Vso Vp/Vs , (Fig. 6(c)) [6\! -.p6 / ]0 km H ^ G % T^qH 7 dJ eZ !«N .¬ VFig. 3 ' X:-.& & - E^-.p 6 ®Q$ ^_It¯fg+0 r-.8s9t uvcwx& NKodaira et al. Q12 ^ X:-.& [6\ (2004)O ,yL :D /z 5 Vso Vp/ `:J%&^ 1tIh $ Vs , /;{|_<A G GIt5 V s o Vp/Vs ,W="-} >~A?% JB JF [6\ ab ° t y@A i& NKodaira et al. (2004)O ,@B 3.2.3 % Kodaira et al. (2004) Fig. 8 BE± Fig. 9 Vp7.0 km/s {|4n-B,C Fig. 6(a) E9t A D@ P,@A Vp7.0 km/s Kodaira et al. (2004) P = >?F& GHI Fig. 2 [6\ # &,@A GG $% A (Fig. 6) % B (Fig. 7) 4G [6\! -.p6 / ]0 km 5 Vso Vp/Vs ,1 t9t uvcwxBE±[6\i& NyL² % B T' Vp, Vs, Vp/Vs &,@A GG$% A 4G % C BE± D t Gt % T^qH 7r-.8sI 3.2.2 Fig. 7 T' Vp, Vs, Vp/Vs Fig. 2 -.p6 # Kodaira et al. (2000, 2002)O v 0EIt T'# & (Fig. 6) 9t [6\i& NJL² Yamauchi et al. (2003), / Vso Vp/Vs ,1t G ]0 km % 5 ³L² Shiomi et al. (2004)O ,:D@A GG$ T^qH GtM 0E' [6\-} >~A 7r-.8sIt9t uvcwx& NHoI H5 Vso Vp/Vs , (2005)O ,yL v 0EIt9t G -$ hi4G , -.Q [6\i& NYamauchi et al. (2003)O ,JL Gt -. ´µ¶;8 g O · :D@ K 30S40 km L G ¸ j¹ tM 0E' [6\-} >~A - 78 - - 78 - JB XY*+ g Shelly et al. (2006) 気象研究所技術報告 気象研究所技術報告 12 第第63号 63 号 2011 2011 Fig. 7. Vertical cross sections of (a) P-wave and (b) S-wave velocities, (c) Vp/Vs ratio, and (d) CRTs for S-wave velocity, along the line B in Fig. 2. Solid black lines denote the plate boundary and broken lines denote another reflection plane estimated by the seismic refraction survey [Ito et al. (2005)]. The slab Moho imaged by receiver function analysis [Yamauchi et al. (2003)] is shown by green lines. Other symbols are the same as those in Fig. 3. Fig. 6. Vertical cross sections of (a) P-wave and (b) S-wave velocities, (c) Vp/Vs ratio, and (d) CRTs for S-wave velocity, along the line A in Fig. 2. The color or black and white scale is shown at the bottom right in each figure. Solid black lines denote the plate boundary estimated by the seismic refraction survey [Kodaira et al. (2004)]. Red line in (c) shows presently estimated location of the plate boundary. Broken lines denote the island arc Moho [Kodaira et al. (2004)]. Red broken line in (a) denotes velocity contour of 7.0 km/s estimated in this study. Blue crosses in (d) denote grid points adopted in the inversion. Other symbols are the same as those in Fig. 3. - 79 - - 79 - 気象研究所技術報告 気象研究所技術報告 DD Tomography 3 第第63号 63 号 2011 2011 ! "# 13 Fig. 9. Vertical cross sections of (a) P-wave and (b) S-wave velocities, (c) Vp/Vs ratio, and (d) CRTs for S-wave velocity, along the line D in Fig. 2. Solid black lines denote the plate boundary and the slab Moho estimated by the seismic refraction survey [Kodaira et al. (2000)]. Broken lines denote the island arc Moho [Ikami et al. (1982), Kodaira et al. (2000)]. Other symbols are the same as those in Fig. 8. Fig. 8. Vertical cross sections of (a) P-wave and (b) S-wave velocities, (c) Vp/Vs ratio, and (d) CRTs for S-wave velocity, along the line C in Fig. 2. Solid black lines denote the plate boundary and the slab Moho estimated by the seismic refraction survey [Kodaira et al. (2002)]. Broken lines denote the island arc Moho [Kodaira et al. (2002)]. The slab Moho imaged by receiver function analysis [Yamauchi et al. (2003) and Shiomi et al. (2004)] are shown by green lines and purple lines, respectively. Other symbols are the same as those in Fig. 3. - 80 - - 80 - 気象研究所技術報告 気象研究所技術報告 14 第第63号 63 号 2011 2011 Fig. 10. Vertical cross sections of S-wave velocities, distribution of P-axis (red or orange) and T-axis (blue or light blue) of focal mechanisms derived from the first motion data, for the rectangles on the panels from 18 to 25 in Fig. 3. P and T axes of focal mechanisms newly determined in this study are shown by orange and light blue lines, respectively, while those determined by the JMA are shown by red and blue lines, respectively. Other symbols are the same as those in Fig. 3. - 81 - - 81 - 気象研究所技術報告 気象研究所技術報告 第第63号 63 号 2011 2011 DD Tomography "vwx 3 º»RSTUu"¼yz{|CD <+l 15 Fig. 11. Depth contour map of the upper boundary of the Philippine Sea slab with intervals of 10ῌ20 km. Note that the iso-depth contour of 10 km is taken from Baba et al. (2002), in which the upper boundary of the Philippine Sea slab is estimated from o#-shore reflection and refraction surveys, and iso-depth contours of 60ῌ200 km are taken from Nakajima and Hasegawa (2007), in which the upper boundary of the Philippine Sea slab is estimated from seismic tomography. Blue crosses denote non-volcanic deep low-frequency earthquakes [Obara (2002)]. Other symbols are the same as those in Fig. 1. DD Figs. 3, 5 mQ nm"o p#gqrOd ! "# $%&' efs@ABt6 .-/ km V s 0 $ ()*#+,-!.-/ km Vs0$ Vp/Vs 1 Vp/Vs 12=>:uZ vwxyz{|@ 234 5-! A }~# G12@Ai * 67 2 89:; < =>: ?7 @AB2=>: #_: @A6EF +l:; u : 2=>*CD EF#: 'mQw m, 1528 OJ GHIJ KLHI#MN: {5 $ V p /V s r2: @A i$ Vp/Vs rJZ OJ ῌ 4. DD OPQ!;RSTU# VW J GO V s @Ai#: Vp/Vs bJ #o O 4 ¡¢£_ XY "ZPQ!;CD EF[D\ ] ^/_ ¤¥ :CD EF+l:; u ¦§¨2 ` "ZPQ!;@Aa#bc*G# "Z ©ª«¬e®Z¯o° J Vs0$ Vp/Vs 1Jdefgh@ABi jk u" :#+l-! ³´2µ*CD EF¶·O¸¹: - 82 - - 82 - rOJ M 3.2 ±6 |rOJ M 4.0 ±6#²uZ 気象研究所技術報告 気象研究所技術報告 第第63号 63 号 2011 2011 ¸¹XºVY»Z[\ ¼ 16 !" #$ ! (Fig. 10) %&'()* +,-. /0123 4!5 DE 6 7Wang et al. (2004)8 22 , 24 9: $ !;<=>?@AB!C$ D 25 25 km E FGHI JKL' M,NOP)(Q R$ P)(Q ,$MST U V=>?@AB! WX Vs F,$Y Vp/VsI =>?@A B CL Z[$C$=>?@AB ! Fig. 11 \]Q?^_ `$ abZU CL=>?@AB c$deZfg !S eZD 20h50 km "i#j ZX$%5 Baba et al. (2002) kl mno]&pqr!\]stu$C$=>?@ Fig. 12. (a) P-wave velocity structure used in hypocenter relocations (solid line) and that used by JMA (broken line). A simplified model of P-wave velocity structure by Kodaira et al. (2004) is used for the relocation. Vertical cross sections of (b) JMA’s hypocenter locations and (c) relocated hypocenters along the line A in Fig. 2. Other symbols are the same as those in Fig. 3. AB! D%5 Nakajima and Hasegawa (2007) '()=>?@vwxyz]k=>?@D ,{lg ! @|})wx? *Y+,T~SC$=>?@AB! - $ Fig. 11 ^ _ e Nakajima and Hasegawa (2007) Y+,T~S=>?@AB! C$ ()*./_ VsY Vp/Vs S=>?@AB!C$eX 0 qr S 5 Fig. 11 1$ Z[/ $S$ Nakajima and Hasegawa (2007) 2 km !L+. , 2* qr ¤¥¦()*d §¨$ U VsY Vp/Vs ()* 3 =>?@ABF,()*M©Gª /0/4UYY'!5$ Z H ,«$¬ , S XY6,Y+,7J,.8_,, ®I (1996) Jk¯Kl!()* 2 S Nakajima and Hasegawa (2007) 2 L MeZf P 4 !SC$ ©M,'M ZU*Y+,T~S5 ,9 VNl / 'MO()* : \]Q? M M Nl 0=>?@¯ 60 km 10 km V D 20 Kl./$ ©MS¨°ZU 'MO D ,NO =>?@ABD M km V,$ MU ,±$ Nl P²Q ῌ 5. ῌ Fig. 13 a, b 7®I (1996) Rl g, h eZf i, j ./8 £[³S F ῍ &pSC =>?@AB, Vp, Vs, Vp/Vs P 4T 4!^_ ®I ;d,!<_ = >? (1996) ¯KlD´$ d _+,@ZUA eX ©F eZ=>?@AB, OU e abC$=>?@ABE FD S .¡<LZ[ VsY Vp/Vs !$ 20h Kodaira et al. (2004) * P +,@!; 25 km, µ4¶40h¶15 km EI M 3.0 TU ,$(B@!$ P CDE¢/! VV,$F· !$ VV =>?@AB$ SWS A £[d!¤¥$ (Fig. 12) - 83 - - 83 - 気象研究所技術報告 気象研究所技術報告 DD Tomography 3 第第63号 63 号 2011 2011 ! "# 17 Fig. 13. Vertical cross sections of P-wave and S-wave velocities, and Vp/Vs ratio, distribution of P-axis (red or orange) and T-axis (blue or light blue) of focal mechanisms derived from the first motion data, along (a) the line a and (b) the line b in the inset map. Solid black lines on the top denote the estimated locked zone [Matsumura (1996)]. Red lines show presently estimated location of the plate boundary. Blue crosses denote non-volcanic deep low-frequency earthquakes [Obara (2002)]. - 84 - - 84 - 気象研究所技術報告 気象研究所技術報告 第第63号 63 号 2011 2011 ¼NCNW 18 a, b M 1.0 ! "#$%&'( )* +,-*. /012! 2002 11 2. m n:/:D/ $%&' !>FADpk! V s GHI l km VsN^ Vp/ JQU06/=8 VsN^ Vp/Vs oY$%&'()/ 3 1 M 1.5, 2002 11 3 24 M 1.5, 2002 / 11 3 25 M 2.1 3 4 5 _!20 y}tGHIOY= 0678!9 5 4 Z2! ()<06/=8 Fig. 11 > '() :; $%&' ?@ VSt _ 3. GHI; ?@!$%& 30 km / ej6[ 6g [_ " #!$%&'()AapOD Y> ABC D E!>FAGHI JK" L# M$NO%&P'20()QDR*+ ῏ ",-D SHacker et al. (2003)T ."/U ' H & q Wisconsin * H. VWX !"< V 23D/=8 ῎ N01Y Zhang rs C. H. Thurber rs$xH tomoDD 06 SObara (2002)T Z [4 d1! . & t¡u ¢g5C 5/\["6 [457D 5 S {| 8$]9 (Fig. 3) V p /V s : (Fig. 5) >/ GHI; VsN^ Vp/Vs n vg&d61! R£wxy/zU Y2306Z6 < _:`0=>Z6 ! ."/U?@YAab206Z6cB I¤Z¥}'6!fk1! 1 ! }¦~ P. Wessel rs/ W. H. F. Smith rs GMT d1! 0§1 D CYd CD \["67D 11 _/EFGHI; < VsN^ Vp/Vs Y => G@<YHe / IJKG@<fZg L Mhi j6/=8 Y2 3Z6 _&INk $%&'OY \["6$%&'(Qo1 lmPn Dp/YRq/Z206 $%&'O PnY 23rs06 i Z6 St _TUu/Vv"623!WwXG x&Gyz${|}' SHirose et al. (1999), Ozawa et al. (2001, 2002), Miyazaki et al. (2006)T 20 ~30 km Y06 1$YZ^6[_\]^06 ῌ 6. ῌ ῑ ?@ _`!>FAy}t$ %&']9/ 'Ga / bX Double-di#erence Tomography cd60 St D e` 0 JN}' 3 f 8$]9 Eg ! 1. St _ GHI; !hZ:iD e`j/j _ 1< $%&'!>FADp k! l km VsN^ Vp/Vs Y<D /Y= Z2! ῐ ῍ Baba, T., Y. Tanioka, P. R. Cummins, and K. Uhira, 2002, The slip distribution of the 1946 Nankai earthquake estimated from tsunami inversion using a new plate model, Phys. Earth Planet. Inter., 132, 59ῌ73. ¨©ª« 2001, ¬St Dª® ¯ °http://www.bousai.go.jp/jishin/chubou/ 20011218/siryou2-2.pdf± +² 2006-11-15. Grand, S. P., 1987, Tomographic inversion for shear velocity beneath the North American plate, J. Geophys. Res., 92, 14065ῌ14090. Hacker, B. R., S. M. Peacock, G. A. Abers, and S. D. Holloway, 2003, Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?, J. Geophys. Res., 108, 2030, doi: 10.1029/2001JB 001129. Heki, K. and S. Miyazaki, 2001, Plate convergence and long-term crustal deformation in Central Japan, Geophys. Res. Lett., 28, 2313ῌ2316. Hirose, H., K. Hirahara, F. Kimata, N. Fujii, and S. Miyazaki, 1999, A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan, Geophys. Res. Lett., 26, 3237ῌ3240. [ ῌ N [ ³ N ´ µ ¶· N \ · 1982, 1975 3 3¸-¹ 1¡ º» J 2 35, 367ῌ375. ]9 Ishida, M., 1992, Geometry and relative motion of the - 85 - - 85 - 気象研究所技術報告 気象研究所技術報告 DD Tomography 第第63号 63 号 2011 2011 +¹pfIºK 3 »¼%/0vw'(n¹r3456789:;<K|}KF Philippine Sea plate and Pacific plate beneath the Kanto-Tokai district, Japan, J. Geophys. Res., 97, 489῍513. 2005, ! "#$%&'()*+ ,-.%/0 123456789:;< %/= >?@AB B018. %/C*DEF %/C*GH> 2001, I8<J 3K%/KLMN+OPQ Rhttp://www.jishin. go. jp / main / chousa / 01 sep ῎ nankai / index. htmS TUV 2006-11-15WX Kodaira, S., N. Takahashi, J. Park, K. Mochizuki, M. Shinohara, and S. Kimura, 2000, Western Nankai Trough seismogenic zone: Results from a wideangle ocean bottom seismic survey, J. Geophys. Res., 105, 5887῍5905. Kodaira, S., E. Kurashimo, J. Park, N. Takahashi, A. Nakanishi, S. Miura, T. Iwasaki, N. Hirata, K. Ito, and Y. Kaneda, 2002, Structural factors controlling the rupture process of a megathrust earthquake at the Nankai trough seismogenic zone, Geophys. J. Int., 149, 815῍835. Kodaira, S., T. Iidake, A. Kato, J. Park, T. Iwasaki, and Y. Kaneda, 2004, High pore fluid pressure may cause silent slip in the Nankai Trough, Science, 304, 1295῍1298. YZ[\]^_` a b cde f ghi 2002, jkl %m+nop%&qrs t7 <uK%/0vw'(2xyz{3456789:; <K|} %/ 2 54, 489῍505. ~gi 1996, a%/Fl8%/K /m2K % 14 81῍ 92. Miyazaki, S. and K. Heki, 2001, Crustal velocity field of southwest Japan: Subduction and arc-arc collision, J. Geophys. Res., 106, 4305῍4326. Miyazaki, S., P. Segall, J. J. McGuire, T. Kato, and Y. Hatanaka, 2006, Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake, J. Geophys. Res., 111, B03409, doi: 10.1029/2004JB003426. i 2004, /y jkf +oQK345678JK|} % / 2 57, 139῍152. Mizoue, M., M. Nakamura, N. Seto, Y. Ishiketa, and T. Yokota, 1983, Three-layered distribution of microearthquakes in relation to focal mechanism variation in the Kii Peninsula, southwestern Honshu, Japan, Bull. Earthq. Res. Inst., 58, 287῍310. Nakajima, J. and A. Hasegawa, 2007, Subduction of the Philippine Sea plate beneath southwestern Japan: Slab geometry and its relationship to arc magmatism, J. Geophys. Res. (in press). 1996, l8%mK345678J|}2 < %/ 2 49, 295῍325. 19 Obara, K., 2002, Nonvolcanic deep tremor associated with subduction in southwest Japan, Science, 296, 1679῍1681, doi: 10.1126/science.1070378. Obara, K., H. Hirose, F. Yamamizu, and K. Kasahara, 2004, Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone, Geophys. Res. Lett., 31, L23602, doi: 10.1029/2004GL020848. Ozawa, S., M. Murakami, and T. Tada, 2001, Timedependent inversion study of the slow thrust event in the Nankai trough subduction zone, southwestern Japan, J. Geophys. Res., 106, 787῍802. Ozawa, S., M. Murakami, M. Kaidzu, T. Tada, T. Sagiya, Y. Hatanaka, H. Yarai, and T. Nishimura, 2002, Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan, Science, 298, 1009῍1012. Seno, T., S. Stein, and A. E. Gripp, 1993, A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17941῍17948. Shelly, D. R., G. C. Beroza, S. Ide, and S. Nakamura, 2006, Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip, Nature, 442, 188῍191, doi: 10.1038/nature 04931. Shiomi, K., H. Sato, K. Obara, and M. Ohtake, 2004, Configuration of subducting Philippine Sea plate beneath southwest Japan revealed from receiver function analysis based on the multivariate autoregressive model, J. Geophys. Res., 109, B04308, doi: 10.1029/2003JB002774. Thurber, C. and D. Eberhart-Phillips, 1999, Local earthquake tomography with flexible gridding, Comp. Geosci., 25, 809῍818. ¡ ¢ £ ¡ ¤ 2002, ¥¦§K/¨ K©ªῌ« vw' (2¬y®K©ῌ ¯/°! 65, 123῍134. Wald, D. J. and P. G. Somerville, 1995, Variable-slip rupture model of the great 1923 Kanto, Japan, earthquake: Geodetic and body-waveform analysis, Bull. Seism. Soc. Am., 85, 159῍177. Wang, K., I. Wada, and Y. Ishikawa, 2004, Stresses in the subducting slab beneath southwest Japan and relation with plate geometry, tectonic forces, slab dehydration, and damaging earthquakes, J. Geophys. Res., 109, B08304, doi: 10.1029/2003JB 002888. Wei, D. and T. Seno, 1998, Determination of the Amurian plate motion, in “Mantle dynamics and plate interactions in East Asia,” ed. by M. F. J. Flower, S.-L. Chung, C.-H. Lo, and T.-Y. Lee, Geodynamics Series, 27, AGU, Warhington D.C., 337῍346. Wessel, P. and W. H. F. Smith, 1991, Free software helps map and display data, EOS Trans. Am. Geophys. Union, 72, 441. "#±²³´µ¶· ¸` 1998, 1968 - 86 - - 86 - 気象研究所技術報告 気象研究所技術報告 20 第第63号 63 号 2011 2011 3456789:;< = 4 1 (MJMA7.5) 2 51, 139ῌ148. 1997, !"# $%&'()*+,-./0 12 ! 42, S131ῌ S138. Yamauchi, M., K. Hirahara, and T. Shibutani, 2003, High resolution receiver function imaging of the seismic velocity discontinuities in the crust and the uppermost mantle beneath southwest Japan, Earth Planets Space, 55, 59ῌ64. Zhang, H. and C. H. Thurber, 2003, Double-Di#erence Tomography: The method and its application to the Hayward Fault, California, Bull. Seism. Soc. Am., 93, 1875ῌ1889. Zhao, D., A. Hasegawa, and S. Horiuchi, 1992, Tomographic imaging of P and S wave velocity structure beneath northeastern Japan, J. Geophys. Res., 97, 19909ῌ19928. - 87 - - 87 -
© Copyright 2024 Paperzz