Title 酵母Saccharomyces cerevisiaeにおける圧力感受性機構の解明

Title
酵母Saccharomyces cerevisiaeにおける圧力感受性機構の解明
( 本文(Fulltext) )
Author(s)
野村, 一樹
Report No.(Doctoral
Degree)
博士(農学) 甲第645号
Issue Date
2015-03-31
Type
博士論文
Version
ETD
URL
http://repository.lib.gifu-u.ac.jp/handle/123456789/51019
※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。
㓝ẕ Saccharomyces cerevisiae ࡟࠾ࡅࡿᅽຊឤཷᛶᶵᵓࡢゎ᫂
2014 ᖺ
ᒱ㜧኱Ꮫ኱Ꮫ㝔㐃ྜ㎰Ꮫ◊✲⛉
⏕≀㈨※⛉Ꮫ
㸦ᒱ㜧኱Ꮫ㸧
㔝 ᮧ ୍ ᶞ
㓝ẕ Saccharomyces cerevisiae ࡟࠾ࡅࡿᅽຊឤཷᛶᶵᵓࡢゎ᫂
㔝 ᮧ ୍ ᶞ
┠ḟ
➨ 1 ❶ ᗎㄽ...................................................................................................... 1
➨ 1 ⠇ 㟼Ỉᅽ ............................................................................................... 1
➨ 1 㡯 ᅽຊࡢ≉ᛶ .................................................................................... 2
➨ 2 㡯 㧗ᅽ࡟ࡼࡿᚤ⏕≀ࡢ୙άᛶ໬ ........................................................ 3
➨ 3 㡯 㧗ᅽ◊✲ࡢṔྐ㸫኱ẼᅽࡢⓎぢ࠿ࡽ㧗ᅽ◊✲ࡢⓎᒎ㸫 ................ 5
➨ 4 㡯 㧗ᅽ◊✲ࡢṔྐ㸫㣗ရ࡬ࡢ㧗ᅽຍᕤࡢᛂ⏝㸫 ............................... 8
➨ 2 ⠇ 㓝ẕ ................................................................................................ 12
➨ 1 㡯 ࣔࢹࣝ⏕≀࡜ࡋ࡚ࡢ㓝ẕ ............................................................. 13
➨ 2 㡯 Ⓨ㓝㣗ရ࡜ࡋ࡚ࡢ㓝ẕ ................................................................ 15
➨ 3 ⠇ 㧗ᅽ㣗ရຍᕤᢏ⾡ ........................................................................... 16
➨ 1 㡯 㧗ᅽຍᕤ㣗ရࡢ㛤Ⓨ࡜ၥ㢟Ⅼ ...................................................... 16
➨ 2 㡯 Pressure Regulated Fermentation ............................................ 17
➨ 3 㡯 ᅽຊឤཷᛶ㓝ẕࡢసฟ ................................................................ 18
➨ 4 ⠇ ◊✲┠ⓗ ......................................................................................... 19
➨ 2 ❶ DNA ࣐࢖ࢡࣟ࢔ࣞ࢖࡟ࡼࡿ⥙⨶ⓗ㑇ఏᏊⓎ⌧ゎᯒ .......................... 20
➨ 1 ⠇ ⥴ゝ ................................................................................................ 20
➨ 1 㡯 DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒ ........................................................... 20
➨ 2 㡯 DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒࡢᛂ⏝౛............................................. 21
➨ 3 㡯 DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒ࡟࠾ࡅࡿࢡࣟࢫࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩࣙࣥ ... 22
➨ 4 㡯 ᐇ㦂┠ⓗ ...................................................................................... 23
➨ 2 ⠇ ᐇ㦂ᮦᩱ࠾ࡼࡧᐇ㦂᪉ἲ ................................................................ 24
➨ 1 㡯 ౑⏝⳦ᰴ ...................................................................................... 24
➨ 2 㡯 ᇵ㣴᮲௳ ...................................................................................... 24
➨ 3 㡯 RNA ᢳฟ᪉ἲ ............................................................................. 24
➨ 4 㡯 DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒ᪉ἲ .................................................... 25
➨ 5 㡯 㑇ఏᏊⓎ⌧ࡢศ㢮ゎᯒ᪉ἲ ......................................................... 26
➨ 6 㡯 quantitative PCR ᪉ἲ ............................................................... 26
➨ 3 ⠇ ⤖ᯝ ................................................................................................ 28
➨ 1 㡯 㑇ఏᏊⓎࣉࣟࣇ࢓࢖ࣝࡢᴫせ ...................................................... 28
➨ 2 㡯 ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊⓎ⌧ࡢゎᯒ ....................................... 28
➨ 3 㡯 ࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊⓎ⌧ࡢゎᯒ ....................................... 30
➨ 4 㡯 quantitative PCR ࡟ࡼࡿ㑇ఏᏊⓎ⌧ゎᯒࡢホ౯ ........................ 31
➨ 4 ⠇ ⪃ᐹ ................................................................................................ 32
➨ 3 ❶ ࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟ࡢゎᯒ ................................................................ 35
➨ 1 ⠇ ⥴ゝ ................................................................................................ 35
➨ 1 㡯 㓝ẕ࡜࣑ࢺࢥࣥࢻࣜ࢔ ................................................................ 35
➨ 2 㡯 ᐇ㦂┠ⓗ ...................................................................................... 36
➨ 2 ⠇ ᐇ㦂ᮦᩱ࠾ࡼࡧᐇ㦂᪉ἲ ................................................................ 37
➨ 1 㡯 ౑⏝⳦ᰴ ...................................................................................... 37
➨ 2 㡯 ᇵ㣴᮲௳ ...................................................................................... 37
➨ 3 㡯 ஧ಸయᰴࡢసฟ ........................................................................... 37
➨ 4 㡯 ࿧྾ᶵ⬟ࡢゎᯒ᪉ἲ .................................................................... 38
➨ 5 㡯 ࣑ࢺࢥࣥࢻࣜ࢔ DNA Ḟኻࡢゎᯒ᪉ἲ ........................................ 38
➨ 6 㡯 㧗ᅽฎ⌮᪉ἲ ............................................................................... 39
➨ 3 ⠇ ⤖ᯝ ................................................................................................ 40
➨ 1 㡯 ࿧྾ᶵ⬟ࡢゎᯒ ........................................................................... 40
➨ 2 㡯 ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡢḞኻ ...................................................... 40
➨ 3 㡯 ஧ಸయᰴࡢసฟ ........................................................................... 41
➨ 4 㡯 ᅽຊ୙άᛶ໬ᣲືࡢゎᯒ ............................................................. 42
➨ 5 㡯 㔝⏕ᆺ࣑ࢺࢥࣥࢻࣜ࢔࡟ࡼࡿḞኻ㑇ఏᏊࡢ⿵᏶ ......................... 42
➨ 4 ⠇ ⪃ᐹ ................................................................................................ 44
➨ 4 ❶ ࣓ࢱ࣑࣎ࣟࢡࢫ࡟ࡼࡿᅽຊឤཷᛶᶵᵓࡢゎᯒ ................................... 47
➨ 1 ⠇ ⥴ゝ ................................................................................................ 47
➨ 1 㡯 ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒ .................................................................... 47
➨ 2 㡯 ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒࡢᛂ⏝౛ ...................................................... 48
➨ 3 㡯 ࢔ࣝࢠࢽࣥ .................................................................................. 48
➨ 4 㡯 ᐇ㦂┠ⓗ ...................................................................................... 49
➨ 2 ⠇ ᐇ㦂ᮦᩱ࠾ࡼࡧᐇ㦂᪉ἲ ................................................................ 50
➨ 1 㡯 ౑⏝⳦ᰴ ...................................................................................... 50
➨ 2 㡯 ᇵ㣴᮲௳ ...................................................................................... 50
➨ 3 㡯 ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒ᪉ἲ ............................................................. 50
➨ 4 㡯 ௦ㅰ⤒㊰ࡢゎᯒ᪉ἲ .................................................................... 51
➨ 5 㡯 㧗ᅽฎ⌮᪉ἲ ............................................................................... 52
➨ 3 ⠇ ⤖ᯝ ................................................................................................ 53
➨ 1 㡯 ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒ .................................................................... 53
➨ 2 㡯 ࢔ࣝࢠࢽࣥ௦ㅰゎᯒ⤒㊰࡟㛵ࡍࡿ㑇ఏᏊࡢゎᯒ ......................... 53
➨ 3 㡯 ࢔ࣝࢠࢽࣥࡢᅽຊ୙άᛶ໬࡬ࡢᐤ୚ ........................................... 54
➨ 4 ⠇ ⪃ᐹ ................................................................................................ 55
➨ 5 ❶ ⤖ㄽ.................................................................................................... 58
➨ 6 ❶ ㅰ㎡.................................................................................................... 64
➨ 7 ❶ ཧ⪃ᩥ⊩ ............................................................................................ 66
➨ 8 ❶ ᅗ⾲.................................................................................................... 80
➨ 1 ❶ ᗎㄽ
➨ 1 ⠇ 㟼Ỉᅽ
ᅽຊ (pressure) ࡜ࡣࠊ༢఩㠃✚࠶ࡓࡾ࡟స⏝ࡍࡿຊ࡜ᐃ⩏ࡉࢀࡿ⇕ຊᏛⓗࣃ
࣓࣮ࣛࢱࡢ୍✀࡛࠶ࡿࠋᮏ◊✲࡛⏝࠸ࡿ㟼Ỉᅽ (hydrostatic pressure) ࡜ࡣࠊỈ➼
ࡢᾮయࢆ፹య࡜ࡋࡓᅽຊࡢࡇ࡜࡛࠶ࡿࠋ௨ୗࠊ㟼Ỉᅽࡣᅽຊ࡜グ㍕ࡍࡿࠋ᭱ࡶ㌟
㏆࡟Ꮡᅾࡍࡿᅽຊࡢ౛࡜ࡋ࡚኱Ẽᅽࡀ࠶ࡿࠋᆅ⾲ࡢ኱Ẽᅽࡣ࠾ࡼࡑ 1 Ẽᅽ࡛࠶
ࡾࠊྂࡃࡣ኱Ẽࢆព࿡ࡍࡿ atmosphere ࠿ࡽ 1 atm ࡜ࡶ⾲ࡉࢀࡓࠋ⌧ᅾ࡛ࡣᅜ㝿༢
఩⣔࡟ࡼࡾ 1 Ẽᅽ=1,013 hPaҸ0.1 MPa ࡜⾲♧ࡍࡿࠋ1 Pa (ࣃࢫ࢝ࣝ)ࡣࠊ1 N/m2 ࡜
ᐃ⩏ࡉࢀ࡚࠸ࡿࠋ኱Ẽᅽࡣ኱Ẽࡢ㔜ࡉ࡜ࡶ⪃࠼ࡽࢀࠊ㧗ᗘࡀ㧗ࡃ࡞ࡿ࡯࡝ࠊ኱Ẽ
ᅽࡣపࡃ࡞ࡿࠋࡲࡓࠊỈ୰࡛ࡣỈ῝ࡀ 10 m ῝ࡃ࡞ࡿẖ࡟ 1 ẼᅽҸ0.1 MPa ࡎࡘ
Ỉᅽࡀ㧗ࡃ࡞ࡾࠊᆅ⌫ୖ࡛ 1 ␒῝࠸࣐ࣜ࢔ࢼᾏ⁁ࡣỈ῝ 10,911 mࠊ࠾ࡼࡑ 1,100
ẼᅽҸ110 MPa ࡢ㧗ᅽࡢୡ⏺࡛࠶ࡿࠋ
➨ 1 㡯 ᅽຊࡢ≉ᛶ
ᅽຊࡣࠊ ᗘ࡜ྠᵝ࡟ࢠࣈࢬ࢚ࢿࣝࢠ࣮ࢆኚ໬ࡉࡏࡿࣃ࣓࣮ࣛࢱ࡛࠶ࡾࠊ࠶ࡿ
⣔ࡢ≧ែࢆኚ໬ࡉࡏࡿࡓࡵ࡟⾜౑࡛ࡁࡿ࢚ࢿࣝࢠ࣮࡛࠶ࡿࠋ౛࠼ࡿ࡞ࡽࡤࠊ㣗ရ
ࡢຍᕤࡀࢃ࠿ࡾ᫆࠸ࠋ㣗ရࡣຍ⇕ࡍࡿࡇ࡜࡟ࡼࡾࠊ㣗ရ୰ࡢᵝࠎ࡞ศᏊ㐠ືࡀά
Ⓨ࡟࡞ࡾࠊỈ➼ࡢ᥹ⓎᡂศࡀẼ໬ࡋ࡚ᾘኻࡋࠊศᏊྠኈࡢ⾪✺ᅇᩘࡀቑ࠼࡚ศᏊ
㛫ࡢ໬Ꮫ཯ᛂࡀಁ㐍ࡉࢀࡿ(ᒣᮏ, ᑠ㛵, 2009)ࠋࡑࡢ⤖ᯝࠊศᏊ୰ࡢᐁ⬟ᇶࡀ௚ࡢ
ᐁ⬟ᇶ࡜཯ᛂࡋ࡚᪂ࡓ࡞ຍ⇕⏕ᡂ≀ࢆ⏕ࡌࡓࡾࠊඹ᭷⤖ྜࡀ㛤⿣ࡋ࡚᭷⏝ᡂศ
ࡀኻࢃࢀࡓࡾࡍࡿࠋ୍᪉ࠊ㧗ᅽ࡟ࡼࡿຍᕤᢏ⾡ࡣࠊ✚ᴟⓗ࡞ຍ⇕ࢆకࢃ࡞࠸ᗈ⩏
ࡢ㠀⇕ⓗฎ⌮࡛࠶ࡿࡓࡵ࡟ࠊୖグࡢ⇕ฎ⌮࡛ಁ㐍ࡉࢀࡿ໬Ꮫ཯ᛂࡣཎ๎ⓗ࡟㉳
ࡇࡽ࡞࠸ࠋࡍ࡞ࢃࡕࠊ㧗ᅽୗ࡟࠾࠸࡚ࡣඹ᭷⤖ྜࡢ᪂ࡓ࡞⏕ᡂࡸ㛤⿣ࡣ㉳ࡇࡽࡎࠊ
㠀ඹ᭷⤖ྜࡢࡳࡀᙳ㡪ࢆཷࡅࡿ(ᯘ, 1991)ࠋ౛࠼ࡤࠊࢱࣥࣃࢡ㉁➼ࡢᕧ኱ศᏊ࡛
ࡣࠊࡑࡢ❧యᵓ㐀ෆࡢ✵㝽ࢆᇙࡵࡿࡼ࠺࡟ࠊࡑࢀࡲ࡛ศᏊࢆᏳᐃ໬ࡋ࡚࠸ࡓศᏊ
ෆࡢỈ⣲⤖ྜ➼ࡢ㠀ඹ᭷⤖ྜࡀ㛤⿣ࡍࡿࠋࡑࡋ࡚ศᏊ⮬యࡢయ✚ࢆᑠࡉࡃࡍࡿ
ࡼ࠺࡟ࠊศᏊෆࡢ✵㝽ࡀᇙࡵࡽࢀ࡚ඖࡢ❧యᵓ㐀ࡀᔂࢀࠊኚᛶࡀᘬࡁ㉳ࡇࡉࢀࡿ
(ᒣᮏ, ᑠ㛵, 2009)ࠋ 㧗ᅽࡣ⇕࡜ྠࡌࡼ࠺࡟ࢱࣥࣃࢡ㉁ࢆኚᛶࡉࡏࡿࡀࠊୖグࡢ
ࡼ࠺࡟ࡑࡢኚᛶ࣓࢝ࢽࢬ࣒ࡣ␗࡞ࡿࠋࡇࡢࡇ࡜ࡣຍ⇕࡛ࡣᘬࡁ㉳ࡇࡏ࡞࠸⌧㇟
ࢆຍᅽ࡟ࡼࡾᘬࡁ㉳ࡇࡍࡇ࡜ࢆྍ⬟࡟ࡋࠊࡲࡓࡑࡢ㏫ࡶ㉳ࡇࡾᚓࡿࡇ࡜ࢆ♧ࡋ
࡚࠸ࡿࠋ
2
➨ 2 㡯 㧗ᅽ࡟ࡼࡿᚤ⏕≀ࡢ୙άᛶ໬
ᅽຊࡣࠊ㠀ඹ᭷⤖ྜ࡟స⏝ࡋ࡚㠀⇕ⓗ࡟ࢱࣥࣃࢡ㉁ࢆኚᛶࡉࡏࡿࠋࡑࡢࡓࡵ࡟
㧗ᅽࡣ⏕≀࡟ᑐࡍࡿ≀⌮ⓗࢫࢺࣞࢫ࡛࠶ࡿ࡜ゝ࠼ࡿࠋࡇࢀࡲ࡛࡟㧗ᅽ࡟ࡼࡿᚤ
⏕≀ࡢቑṪ㜼ᐖࡸ୙άᛶ໬࡟㛵ࡋ࡚ከࡃࡢሗ࿌ࡀ࠶ࡿ(ZoBell and Cobet, 1964;
Iwahashi et al., 1991; Tamura et al., 1992; Abe and Kato, 1999; Vogel et al., 2005;
Kawarai et al., 2006)ࠋ౛࠼ࡤࠊ࠸ࡃࡘࡶࡢⓎ㓝㣗ရࡢ⏕⏘࡟฼⏝ࡉࢀࡿฟⱆ㓝ẕ
Saccharomyces cervisiae ࡣࠊ ᗘ᮲௳࡟ࡼࡿࡀ 150 MPa ௨ୖࡢ㧗ᅽࡣ⮴Ṛⓗ࡞ᦆ
യࢆ୚࠼ࡿࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ(Nomura et al., 2014)ࠋࡲࡓࠊ40 MPa ⛬ᗘࡢ㧗
ᅽ᮲௳࡛ࡣࠊ4°C ࡛ࡣ⮴Ṛⓗ࡞ᦆയࢆཷࡅࡿࡀࠊ25°C ࡛ࡣቑṪࡍࡿࡇ࡜ࡀྍ⬟
࡛࠶ࡿ(Iwahashi et al., 2003)ࠋHashizume ࡽ(1995)ࡣ 120~300 MPaࠊ-20~50°Cࠊ2~40
min ࡢ㧗ᅽຊ᮲௳࡛㓝ẕࡢ୙άᛶ໬ࢆ㏿ᗘㄽⓗ࡟ゎᯒࡋࡓࠋࡑࡢ⤖ᯝࠊ180 MPa
௨ୗࡢ㧗ᅽຊ⠊ᅖ࡟࠾࠸࡚ࠊ0~40°C ࡢ ᗘ⠊ᅖ࡛ࡣ࡯࡜ࢇ࡝୙άᛶ໬ࡀㄆࡵࡽ
ࢀ࡞࠿ࡗࡓࡀࠊ-10°C ௨ୗ࠾ࡼࡧ 50°C ௨ୖࡢ ᗘᇦ࡛ࡣྠᅽຊ࡛኱ࡁ࡞୙άᛶ
໬ࡀㄆࡵࡽࢀࡓࠋ≉࡟-20°C ࡟࠾ࡅࡿ୙άᛶ໬ຠᯝࡀ㢧ⴭ࡛࠶ࡾࠊప ᇦ࡛ࡢ㧗
ᅽຊຠᯝࡢ᭷ຠᛶࡀ♧ࡉࢀࡓࠋ㧗ᅽ᮲௳ୗ࡛ࡣỈࡣịⅬୗ࡛࠶ࡗ࡚ࡶᾮయࡢ≧
ែ࡛Ꮡᅾࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࠋ㧗ᅽ࠾ࡼࡧప ࡢ᮲௳ࡣ࡝ࡕࡽࡶศᏊ㐠ືࢆ
పୗࡉࡏࠊ⣽⬊⭷ࡢὶືᛶࢆపୗࡉࡏࡿࡼ࠺࡟ᶵ⬟ࡍࡿࠋ⣽⬊⭷ࡢὶືᛶࡢపୗ
ࡣࠊࣜࣥ⬡㉁➼ࡢ⭷ࢱࣥࣃࢡ㉁ࡢ┦㌿⛣࡟ࡼࡾᘬࡁ㉳ࡇࡉࢀࡿ(Chong et al., 1985)ࠋ
3
ࡑࡢ⤖ᯝࠊ⭷ᵓ㐀ࡀ◚ቯࡉࢀࠊ⣽⬊ࡀ୙άᛶ໬ࡍࡿ࡜⪃࠼ࡽࢀ࡚࠸ࡿ(Freitas et
al., 2012)ࠋ
Escherichia coli ⣽⬊࡟㧗ᅽฎ⌮ࢆ᪋ࡋ࡚୙άᛶ໬ࢆ☜ㄆࡋࡓᚋ࡟ࠊࣜࣥ㓟ࣂࢵ
ࣇ࢓࣮(PBS)୰࡛ 25°Cࠊ1 week ᇵ㣴ࡍࡿ࡜ࠊࡑࢀࡽࡢ⣽⬊ࡀᅇ᚟ࡍࡿ࡜࠸࠺⌧㇟
ࡀሗ࿌ࡉࢀࡓ(Koseki and Yamamoto, 2006)ࠋ୙άᛶ໬ࡋࡓ⣽⬊ࡀⅣ⣲※ࡸ❅⣲※
࡜࡞ࡿᰤ㣴ࡢ࡞࠸ PBS ୰࡛ᅇ᚟ࡍࡿࡇ࡜ࡣ⪃࠼㞴࠸ࠋOhshima ࡽ(2013)ࡣࠊ㧗ᅽ
࡟ࡼࡾ୙άᛶ໬ࡋࡓ⣽⬊ࡀ PBS ୰࡛ᅇ᚟ࡍࡿ࣓࢝ࢽࢬ࣒ࢆゎᯒࡋࡓࠋᙼࡽࡣࠊ
㧗ᅽ࡟ࡼࡾぢ࠿ࡅୖ୙άᛶ໬ࡉࢀࡓ⣽⬊⩌࡟࠾࠸࡚ࠊ㧗ᅽ࡟ࡼࡿᦆയࢆཷࡅ࡚
࠸ࡿࡀ୙άᛶ໬ࡋ࡚࠸࡞࠸⣽⬊ࡀഹ࠿࡟Ꮡᅾࡍࡿࡇ࡜ࢆ᫂ࡽ࠿࡟ࡋࡓࠋ㧗ᅽᦆ
യ⣽⬊ࡣࠊ4°C ࡛ಖᏑࡋ࡚࠸ࡿሙྜ࡟࠾࠸࡚ࡣᅇ᚟ࡍࡿࡇ࡜ࡣ࡞࠸ࠋࡋ࠿ࡋࠊ
25°C ࡢ ᗘ᮲௳࡛ࡣࠊ㧗ᅽᦆയ࠿ࡽᅇ᚟ࡋࠊࡑࡢᚋࠊ࿘ᅖࡢ୙άᛶ໬ࡋࡓ⣽⬊
ࢆᰤ㣴※࡜ࡋ࡚㧗ᅽฎ⌮ࡍࡿ๓ࡢ⣽⬊ᩘࡢ 50%⛬ᗘࡲ࡛ቑṪࡍࡿࡇ࡜ࡀ᫂ࡽ࠿
࡜࡞ࡗࡓࠋࡇࢀࡽࡢሗ࿌ࡣࠊ୙άᛶ໬ࡋࡓ⣽⬊࡛࠶ࡗ࡚ࡶ ᗘ᮲௳࡟ࡼࡗ࡚ࡣᅇ
᚟ࡋࠊቑṪࡍࡿࡇ࡜ࢆ♧ࡋ࡚࠾ࡾࠊ㣗ရຍᕤ࡟㧗ᅽฎ⌮ࢆᛂ⏝ࡍࡿሙྜࠊฎ⌮ᚋ
ࡢ ᗘ⟶⌮ࡀ㔜せ࡛࠶ࡿࡇ࡜ࢆ♧ࡋ࡚࠸ࡿࠋ
4
➨ 3 㡯 㧗ᅽ◊✲ࡢṔྐ㸫኱ẼᅽࡢⓎぢ࠿ࡽ㧗ᅽ◊✲ࡢⓎᒎ㸫
ᅽຊ࡜࠸࠺ᴫᛕࡀㄆ▱ࡉࢀࡓࡢࡣ 17 ୡ⣖࡛࠶ࡿࠋኳᩥᏛࡢ∗࡜ࡋ࡚ྡ㧗࠸
Galilei ࡜ࡑࡢᘵᏊ Torricelli ࡟ࡼࡗ࡚┿✵ࡢᴫᛕࡀⓎぢࡉࢀࡓࡢࡀ 1644 ᖺ࡛࠶
ࡿࠋTorricelli ࡣࠊỈ㖟࡛‶ࡓࡋࡓ࢞ࣛࢫ⟶ࢆỈ㖟ᾎᵴ୰࡟ಽ❧ࡉࡏࡿ࡜ࠊ࠾ࡼࡑ
76 cm ࡢ㧗ࡉࡲ࡛ࡀỈ㖟࡛ࡑࢀࡼࡾୖࡢ㒊ศࡀ┿✵࡜࡞ࡿࡇ࡜ࢆ᫂ࡽ࠿࡟ࡋࡓࠋ
ࡇࡢཎ⌮ࢆᛂ⏝ࡋࡓỈ㖟ẼᅽィࢆⓎ᫂ࡋࡓຌ⦼࠿ࡽࠊᅽຊࡢ༢఩ࠕࢺࣝ; Torrࠖ
ࡣ Torriceli ࡢྡ࡟ࡕ࡞ࢇ࡛࠸ࡿࠋࡑࡋ࡚ࡑࡢ 4 ᖺᚋࡢ 1648 ᖺࠊPascal ࡟ࡼࡿ኱
Ẽᅽࡢㄆ㆑࡟ࡼࡗ࡚ᅽຊ࡜࠸࠺ᴫᛕࡀึࡵ࡚⛉Ꮫྐ࡟グࡉࢀࡓ(Pascal, 1653)ࠋ
Pascal ࡣࠊỈ㖟Ẽᅽィࢆ⏝࠸࡚ࠊᆅ⾲࡜ᩍ఍ࡢᒇ᰿ࠊᆅ⾲࡜ࣆࣗ࢖࣭ࢻ࣭ࢻ࣮࣒
ᒣࡢ㡬ୖ࡟࠾࠸࡚Ỉ㖟ᰕࡢ㧗ࡉࡀኚ໬ࡍࡿࡇ࡜ࢆぢฟࡋࠊ኱ẼᅽࡢᏑᅾࢆド᫂
ࡋࡓࠋࡲࡓᙼࡣࠊᅽຊ(pressure)ࡀᅽ㏕(press)࡜␗࡞ࡿῶᑡ࡛࠶ࡿࡇ࡜ࢆ ͆⼚ࡣ
ᣦ࡟ᣳࢇ࡛ࡕࡻࡗ࡜ᢲࡏࡤࡘࡪࢀࡿࡀ㧗࠸ᅽຊࡢୡ⏺࡛ࡣࡘࡪࢀ࡞࠸͇࡜ㄝ᫂
ࡋ࡚࠸ࡿ(ᯘ, 2008)ࠋ኱Ẽᅽࢆㄆ㆑ࡋࡓຌ⦼࠿ࡽࠊ௒᪥࡛ࡣᅽຊ༢఩ࡢࡇ࡜ࢆࠕࣃ
ࢫ࢝ࣝ; Paࠖ࡜࿧ࡪࠋ
1905 ᖺ࡟ࡣࠊ㧗ᅽ◊✲ࡢṔྐ࡟ṧࡿ❅⣲࡜Ỉ⣲࠿ࡽ࢔ࣥࣔࢽ࢔ࡢ໬Ꮫྜᡂࡀ
ᡂຌࡋࡓࠋHaber ࡣᖖ ᖖᅽ࡛ࡣ㐍⾜ࡋ࡞࠸ࡇࡢ໬Ꮫ཯ᛂ࡟ᑐࡋ࡚ࠊ200-500°Cࠊ
20-100 MPa ࡜࠸࠺㧗 㧗ᅽ᮲௳࡜㕲ࢆ୺య࡜ࡋࡓゐ፹ࢆ⏝࠸ࡿࡇ࡜࡟ࡼࡗ࡚࢔
ࣥࣔࢽ࢔ྜᡂἲࢆ☜❧ࡋࡓ(㔜ᯇ, 2013)ࠋࡑࡢᚋࠊBosch ࡟ࡼࡾࣁ࣮ࣂ࣮࣭࣎ࢵࢩ
5
ࣗἲ࡜࿧ࡤࢀࡿ࢔ࣥࣔࢽ࢔໬Ꮫྜᡂࡀၟᴗ໬ࡉࢀࡓࠋᮏἲࡣ௒᪥࡟࠾࠸࡚ࡶ᭱
ࡶຠ⋡ࡢࡼ࠸࢔ࣥࣔࢽ࢔ࡢ໬Ꮫྜᡂ᪉ἲ࡛࠶ࡾࠊᖺ㛫 1 ൨ 8,700 ࢺࣥࡢ࢔ࣥࣔࢽ
࢔ែ❅⣲ࡀᮏἲ࡛⏕⏘ࡉࢀ࡚࠸ࡿ(Galloway et al., 2008)ࠋ⏕⏘ຠ⋡ࡢⰋ࠸ᑠ㯏ࡢ
᱂ᇵ࡟ࡣ❅⣲ศࢆྵࡴ኱㔞ࡢ⫧ᩱࡢ౪⤥ࡀ୙ྍḞ࡛࠶ࡿࡀࠊᙜ᫬ࡢ୺せ࡞❅⣲
⫧ᩱࡣ༡⡿➼࡛᥇᥀ࡉࢀࡿ◪▼࡟㢗ࡗ࡚࠾ࡾࠊᑠ㯏ࡢ኱㔞⏕⏘ࡣ㞴ࡋ࠿ࡗࡓࠋࣁ
࣮ࣂ࣮࣭࣎ࢵࢩࣗἲ࡟ࡼࡾྜᡂࡉࢀࡓ࢔ࣥࣔࢽ࢔ࢆ⫧ᩱ࡜ࡋ࡚⏝࠸ࡿࡇ࡜࡛ࠊࡑ
ࡢࡲࡲ࡛ࡣ⪔స࡟㐺ࡉ࡞࠸⑭ࡏࡓᅵᆅ࡟࠾࠸࡚ࡶᑠ㯏➼ࡢ✐≀ࡢ⏕⏘ࡀྍ⬟࡜
࡞ࡾࠊୡ⏺ࡢᛴ⃭࡞ேཱྀቑຍ࡜♫఍ࡢⓎᒎ࡟㈉⊩ࡋࡓࠋࡇࡢຌ⦼࡟ࡼࡾࠊHaber
ࡣ✵Ẽ࡜Ỉ࠿ࡽࣃࣥࢆసࡗࡓ⏨࡜ࡋ࡚ࡶ▱ࡽࢀ࡚࠾ࡾࠊ1918 ᖺ࡟ࣀ࣮࣋ࣝ໬Ꮫ
㈹ࢆཷ㈹ࡋ࡚࠸ࡿࠋ1931 ᖺ࡟ࡣ Bosch ࡶࠕ㧗ᅽ໬Ꮫ཯ᛂࡢ◊✲ࠖ࡟ࡼࡾࣀ࣮࣋
ࣝ໬Ꮫ㈹ࢆཷ㈹ࡋ࡚࠸ࡿࠋᮏἲࡣ㧗ᅽࢆ฼⏝ࡋࡓ໬Ꮫࣉࣟࢭࢫ࡜ࡋ࡚Ṕྐⓗ࡟
᭱ࡶ᭷ྡ࡛࠶ࡾࠊ࠿ࡘே㢮࡟ࡶࡓࡽࡋࡓ㈉⊩ࡶ኱ࡁ࠸ࡶࡢ࡛࠶ࡿ(㔜ᯇ, 2013)ࠋ
19 ୡ⣖ᚋ༙࡟࡞ࡿ࡜ᚤ⏕≀࡬ࡢ㧗ᅽຠᯝ࡟ࡘ࠸࡚◊✲ࡀ㐍ࢇࡔࠋRegnard ࡣ
⣙ 300 MPa ࡢ㧗ᅽࢆⓎ⏕ࡉࡏࡿᅽຊ⿦⨨ࡢ㛤Ⓨ࡟ᡂຌࡋࡓࠋ1884 ᖺࠊᙼࡣࡇࡢ
㧗ᅽ⿦⨨ࢆ⏝࠸࡚ 6,000 m ࡢ῝ᾏ࡜ྠ⛬ᗘࡢᅽຊ᮲௳(⣙ 60 MPa)࡟࠾࠸࡚ୡ⏺
࡛ึࡵ࡚ࣅ࣮ࣝ㓝ẕࡢᇵ㣴ࢆヨࡳࡓ(Regnard, 1884)ࠋࡑࡢ⤖ᯝࠊ㧗ᅽ᮲௳ୗ࡟࠾
࠸࡚ࡶ㓝ẕࡢ࢚ࢱࣀ࣮ࣝⓎ㓝ࡀᘬࡁ㉳ࡇࡉࢀࡿࡇ࡜ࢆⓎぢࡋࡓࠋᙼࡢ◊✲ࡣ
Buchner ࡟ࡼࡿ↓⣽⬊࡛ࡢⓎ㓝ࡢⓎぢ࡟㛫᥋ⓗ࡟ࡘ࡞ࡀࡿࠋBuchner ࡣࠊ1897 ᖺ
6
࡟ 40-50 MPa ࡢᅽຊ᮲௳࡛㓝ẕࢆᅽᦢࡋ࡚ᚓࡓ㓝ẕᢳฟᾮࡀⅣỈ໬≀ࢆⓎ㓝ࡍ
ࡿࡇ࡜ࢆሗ࿌ࡋࡓࠋᙼࡣࠊⓎ㓝ᕤ⛬࡟࠾࠸࡚⏕Ꮡࡋ࡚࠸ࡿᚤ⏕≀ࡀᚲࡎࡋࡶᚲせ
࡛ࡣ࡞ࡃࠊ㓝ẕࡢ⏕⏘ࡍࡿࢳ࣐࣮ࢮ(㓝⣲)ࡀⓎ㓝࡟㔜せ࡛࠶ࡿࡇ࡜ࢆⓎぢࡋࡓࠋ
1907 ᖺ࡟ࠕ↓⣽⬊࡛ࡢⓎ㓝ࡢⓎぢ࡜⏕໬Ꮫ࡟ࡼࡿ◊✲ࠖࡢᡂᯝ࡟ࡼࡾࠊࣀ࣮࣋
ࣝ໬Ꮫ㈹ࢆཷ㈹ࡋࡓࠋᙼࡣ㧗ᅽ᮲௳ୗ࡟࠾ࡅࡿ㓝⣲Ꮫࡢඛ㥑⪅࡜ࡋ࡚▱ࡽࢀ࡚
࠸ࡿ(Jaenicke, 2007)ࠋ
Roger ࡣࠊ1892 ᖺ࡟㧗ᅽ᮲௳࡟࠾ࡅࡿ⣽⳦ࡢ୙άᛶ໬࡟ࡘ࠸࡚ࡢ 2 ಶࡢ㔜せ
࡞ሗ࿌ࢆࡋࡓ(Roger, 1892; Roger, 1895)ࠋ1 ಶ┠ࡣࠊ㧗ᅽ᮲௳ୗࡢ୙άᛶ໬ᣲືࡀ
ᚤ⏕≀ࡢᒓ✀࡟ࡼࡗ࡚␗࡞ࡿ࡜࠸࠺ሗ࿌࡛࠶ࡿࠋ౛࠼ࡤࠊStaphylococcus aureus
ࡣ 300 MPa ⛬ᗘ࡛ࡣ኱ࡁ࡞ᙳ㡪ࢆཷࡅ࡞࠸ࡀࠊStreptococcus ᒓࡢ⣽⳦ࡣྠᅽຊ
᮲௳࡛ 30%⛬ᗘࡢ⏕⳦ᩘࡢపୗࡀㄆࡵࡽࢀࡿࠋ2 ಶ┠ࡣࠊᰤ㣴⣽⬊࡜ⱆ⬊ࡢᅽຊ
⪏ᛶࡢ㐪࠸࡛࠶ࡿࠋBacillus anthracis ࡢⱆ⬊ࡣᰤ㣴⣽⬊ࡢሙྜࡼࡾࡶᅽຊ⪏ᛶࡀ
㧗࠸ࡇ࡜ࢆሗ࿌ࡋࡓࠋࡇࢀࡽࡢሗ࿌ࡣࠊ㧗ᅽ࡟ࡼࡗ࡚ᚤ⏕≀ࡀ୙άᛶ໬ࡍࡿࡇ࡜
ࢆึࡵ࡚♧ࡋࡓሗ࿌࡛࠶ࡾࠊᙼࡢⓎぢ௨᮶ࠊᵝࠎ࡞ᚤ⏕≀✀ࡢᅽຊ⪏ᛶࡀ◊✲ࡉ
ࢀࠊ㔜せ࡞▱ぢࡀ⵳✚ࡉࢀ࡚࠸ࡿࠋ
7
➨ 4 㡯 㧗ᅽ◊✲ࡢṔྐ㸫㣗ရ࡬ࡢ㧗ᅽຍᕤࡢᛂ⏝㸫
ୡ⏺࡛ึࡵ࡚㣗ရ࡬ࡢ㧗ᅽฎ⌮ࢆሗ࿌ࡋࡓࡢࡣ Hite (1899 ᖺ)࡛࠶ࡿࠋᙼࡣࠊ
࣑ࣝࢡࡢ㛗ᮇಖᏑࡢࡓࡵ࡟⇕ẅ⳦௨እࡢ࢔ࣉ࣮ࣟࢳࢆ⪃᱌ࡋࡓ᭱ึࡢே≀࡛࠶
ࡿࠋ463 MPaࠊ1 h ࡢ᮲௳࡛㧗ᅽฎ⌮ࡉࢀࡓ࣑ࣝࢡࡣࠊᑡ࡞ࡃ࡜ࡶ 24 h ࡣ㓟ᛶ໬
ࡀᢚไࡉࢀ࡚⏑࿡ࡀಖᣢࡉࢀࡿࡇ࡜ࢆⓎぢࡋࡓࠋࡲࡓࠊᙼࡣ㧗ᅽฎ⌮୰ࡢ ᗘ
(50~80°C)ࡢᙳ㡪ࡶホ౯ࡋ࡚࠸ࡿ(Hite et al., 1914)ࠋ
Bridgman ࡣࠊࡇࢀࡲ࡛ࡼࡾࡶ 10 ಸ௨ୖ㧗࠸㧗ᅽࢆⓎ⏕ࡉࡏࡿ㧗ᅽ⿦⨨ࢆ㛤Ⓨ
ࡋࡓࠋࡑࢀ࡟ࡼࡾ 1912 ᖺ࡟㧗ᅽୗ࡟࠾ࡅࡿỈࡢ≧ែኚ໬ࡢ┦㛵ᅗࢆሗ࿌ࡋࡓ
(Bridgman, 1912)ࠋ1914 ᖺ࡟ࡣࠊ㭜༸࡟ 500~700 MPaࠊ30~60 min ࡢ᮲௳࡛㧗ᅽฎ
⌮ࡍࡿࡇ࡜࡟ࡼࡾࠊ༸Ẇࢆ๭ࡿࡇ࡜࡞ࡃࠊ༸㯤࣭༸ⓑࡀจᅛࡍࡿࡇ࡜ࢆⓎぢࡋࡓ
(Bridgman, 1914)ࠋᙼࡢሗ࿌ࡣ㧗 ࡛ほᐹࡉࢀࡿࢱࣥࣃࢡ㉁ࡢኚᛶࡀ㠀⇕ⓗ᮲௳
ࡢ㧗ᅽ࡛ࡶྠᵝ࡟ᘬࡁ㉳ࡇࡉࢀࡿࡇ࡜ࢆึࡵ࡚᫂ࡽ࠿࡜ࡋࡓ⏬ᮇⓗ࡞Ⓨぢ࡛࠶
ࡾࠊࡑࡢᚋࡢࢱࣥࣃࢡ㉁ࡢ㧗ᅽኚᛶ࣓࢝ࢽࢬ࣒࡟㛵ࡍࡿ◊✲ࡢඛ㥑ࡅ࡜࡞ࡗࡓࠋ
Bridgman ࡣࠊ
ࠕ㉸㧗ᅽ⿦⨨ࡢ㛤Ⓨ࡜ࡑࢀ࡟ࡼࡿ㧗ᅽ≀⌮Ꮫ࡟㛵ࡍࡿⓎぢࠖ࡟ࡼࡾ
1946 ᖺ࡟ࣀ࣮࣋ࣝ≀⌮Ꮫ㈹ࢆཷ㈹ࡋࠊ㧗ᅽ≀⌮Ꮫࡢ∗࡜࿧ࡤࢀ࡚࠸ࡿࠋ
ࡋ࠿ࡋࠊHite ࡸ Bridgman ࡢ㧗ᅽฎ⌮࡟ࡼࡗ࡚㣗ရࡢ㢼࿡ࡸᰤ㣴౯ࢆ⇕ኚᛶ࡛
ᦆ࡞ࢃࡎ࡟㣗ရࡢಖᏑᛶࢆྥୖࡉࡏࡿ⏬ᮇⓗ࡞Ⓨぢࡣࠊᐙᗞ⏝෭ⶶᗜࡢᬑཬࡸ
ịࡢᕤᴗⓗ⏕⏘➼ࡢ᪂つ෭ⶶᢏ⾡ࡢ㛤Ⓨ࡟ࡼࡾ㣗ရ⏘ᴗ⏺࡟㢳ࡳࡽࢀࡿࡇ࡜ࡣ
8
࡞࠿ࡗࡓ(㕥ᮌ, 2013)ࠋ
㣗ရ࡬ࡢ㧗ᅽ฼⏝ࡢ㌿ᶵ࡜࡞ࡗࡓࡇ࡜ࡀ 1968 ᖺ࡟㉳ࡇࡗࡓ◊✲⏝₯ỈⰄ
Alvin ྕࡢỿἐ஦௳࡛࠶ࡿ(Pope, 1973)ࠋAlvin ྕࡣ Woods Hole Oceanographic
Institution (WHOI)࡟ᡤᒓࡍࡿ₯ỈⰄ࡛࠶ࡿࠋ1968 ᖺࡢ෤ࠊAlvin ྕࡣᅇ⯟㏵୰࡟
஦ᨾ࡟㐼㐝ࡋࡓࠋᖾ࠸࡟ࡶ஌ဨࡣ඲ဨ⬺ฟ࡛ࡁࡓࡀ⯪యࡣ 1,543 m ࡢ῝ᾏ࡬ỿࢇ
ࡔࠋAlvin ྕࡀ῝ᾏ࠿ࡽᘬࡁᥭࡆࡽࢀࡓࡢࡣࠊࡑࡢ஦ᨾ࠿ࡽ 10 ࠿᭶ᚋ࡛࠶ࡿࠋࡑ
ࡢᚋࡢ⯪యࡢㄪᰝ࡟࠾࠸࡚ࠊ㦫ࡃ࡭ࡁࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋ⯪య࡜ඹ࡟῝ᾏ࡬
ỿࢇ࡛࠸ࡓࣜࣥࢦࡸࢧࣥࢻ࢘࢕ࢵࢳ➼ࡢእぢࠊ࿡ࠊ㤶ࡾࡀỿἐࡍࡿ๓࡜࡯࡜ࢇ࡝
ኚ໬ࡋ࡚࠸࡞࠿ࡗࡓࡢ࡛࠶ࡿࠋࡑࢀࡔࡅ࡛ࡣ࡞ࡃࠊᚤ⏕≀Ꮫⓗ࣭⏕໬Ꮫⓗ࡟ࡶ㣗
ရࡢရ㉁ࡀⰋࡃಖᣢࡉࢀ࡚࠸ࡓࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋ୍⯡ⓗ࡟ࡣࠊ4°C ⛬ᗘࡢ
෭ⶶ᮲௳࡟࠾࠸࡚ࡣࠊࢹࣥࣉࣥࡸࢱࣥࣃࢡ㉁➼ࡣᩘ㐌㛫࡛ຎ໬ࡋ࡚⭉ᩋࡍࡿࠋ
Alvin ྕࡢ⯪య࡛ಖᏑࡉࢀ࡚࠸ࡓ㣗ရࡢရ㉁ࡣࠊ῝ᾏ≉᭷ࡢప ࠊ㈋ᰤ㣴᮲௳ࡢ
௚࡟ᆅ⾲ࡢ኱Ẽᅽ(⣙ 0.1 MPa)࡜ẚ㍑ࡋ࡚ 100 ಸ௨ୖ㧗࠸ 15 MPa ⛬ᗘࡢᅽຊ࡟
ࡼࡗ࡚⥔ᣢࡉࢀ࡚࠸ࡓྍ⬟ᛶࡀ⪃࠼ࡽࢀࡓࠋࡇࡢ▱ぢࡣࠊ㧗ᅽ᮲௳ࡀ⭉ᩋࢆᘬࡁ
㉳ࡇࡍᚤ⏕≀ࡢ௦ㅰάᛶࢆᢚไࡍࡿ࡟ࡶ㛵ࢃࡽࡎࠊ㣗ရࡢရ㉁ࢆຎ໬ࡉࡏ࡞࠸
ࡇ࡜ࢆ♧ࡋ࡚࠾ࡾࠊ㣗ရࡢప ẅ⳦࡬ࡢ㧗ᅽࡀ฼⏝࡛ࡁࡿࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿࠋ
Alvin ྕࡢỿἐ஦ᨾ௨᮶ࠊ㧗ᅽᢏ⾡ࡢ㣗ရຍᕤ࡬ࡢᛂ⏝ࡢྍ⬟ᛶࡀ◊✲ࡉࢀࠊ
1987 ᖺ࡟ᯘ ຊ୸࡟ࡼࡾ㣗ရຍᕤ࡬ࡢ㧗ᅽ฼⏝ࡀᥦၐࡉࢀࡓ(Hayashi et al., 1987)ࠋ
9
㧗ᅽࡣࠊ⏕యศᏊࡢ㠀ඹ᭷⤖ྜࡢࡳ࡟స⏝ࡍࡿࡓࡵ࡟ࠊձ㣗ရ⣲ᮦࡀᣢࡘ᪂㩭࡞
㢼࿡ࠊⰍࠊ࿡ࢃ࠸ࢆಖᣢ࡛ࡁࡿࠊղຍ⇕࡟ࡼࡾ◚ቯࡉࢀࡿࣅࢱ࣑ࣥ C ➼ࡢ᭷⏝
ᡂศࡢຎ໬ࡀᑡ࡞࠸ࠊճຍ⇕࡟ࡼࡿ࢔ࢡࣜࣝ࢔࣑ࢻ➼ࡢ␗ᖖ≀㉁ࡸ␗⮯ࡀⓎ⏕
ࡋ࡞࠸ࠊմຍ⇕ຍᕤ࡜ࡣ␗࡞ࡿ⊂≉࡞≀ᛶࡀ⏕ࡌࡿࠊյຍ⇕ฎ⌮࡟ẚ࡭࡚┬࢚ࢿ
ࣝࢠ࣮࡛࠶ࡿ➼ࡢ฼Ⅼࡀ࠶ࡿ(ᯘ, 1991)ࠋࠕ㣗ရຍᕤ࡬ࡢ㧗ᅽ฼⏝ࠖࡢᥦၐ௨㝆ࠊ
ከࡃࡢ◊✲⪅࡟ࡼࡗ࡚㧗ᅽᢏ⾡ࢆᛂ⏝ࡋࡓప ẅ⳦ᢏ⾡ࠊ㣗ရຍᕤ࣭〇㐀ᢏ⾡ࠊ
㓝⣲άᛶࡸࡑࢀ࡟ࡼࡿ᭷⏝ᡂศࡢቑᙉ➼ࡢ◊✲ࡀ᥎㐍ࡉࢀࡓࠋ
᪥ᮏᅜෆ࡛ࡣ㎰ᯘỈ⏘┬࡟ࡼࡾࠕ㣗ရ⏘ᴗ㉸㧗ᅽ฼⏝ᢏ⾡◊✲⤌ྜࠖࡀ⤌⧊ࡉ
ࢀࠊ
ࠕ㣗ရ⏘ᴗࡢᮍ᮶ࢆᣅࡃ㸫㧗ᅽᢏ⾡࡜㧗ᐦᗘᇵ㣴ࠖ࡜࠸࠺ㄢ㢟࡛ࣉࣟࢪ࢙ࢡ
ࢺ(ᮌᮧ, 1993)ࡀጞࡲࡾࠊ⏘Ꮫᐁࡀ୍య࡜࡞ࡗࡓ㧗ᅽᢏ⾡࡟ᇶ࡙ࡃ᪂ࡓ࡞㣗ရຍ
ᕤᢏ⾡ࡢ◊✲࣭㛤Ⓨࢆ㐍ࡵࡓ(Kasuga, 1998)ࠋ᪥ᮏᅜෆ࡛᭱ࡶ㧗ᅽ◊✲ࡀάⓎ࡟
⾜ࢃࢀࡓ㒔㐨ᗓ┴ࡢ 1 ࡘࡣ᪂₲┴࡛࠶ࡿࠋ1989 ᖺ࡟㧗ᅽ㣗ရຍᕤࡢᐇ⏝໬ࢆ┠
ᣦࡋࡓࠕ㉸㧗ᅽᢏ⾡ࡢ㣗ရ➼࡬ࡢᛂ⏝࡟㛵ࡍࡿ◊✲఍ (᪂₲┴㧗ᅽᛂ⏝㣗ရ◊✲
఍)ࠖࡀⓎ㊊ࡋࠊࡑࡢ◊✲ᡂᯝࡣࠕ㧗ᅽ฼⏝࡟㛵ࡍࡿ◊✲ᡂᯝሗ࿌᭩ࠖ࡜ࡋ࡚Ⓨ
หࡉࢀࡓ(1991)ࠋ㎰ᯘỈ⏘┬ࡢ㧗ᅽ㛵㐃ࣉࣟࢪ࢙ࢡࢺࡢ⤊஢ᚋࡶࠊ᪂₲┴࡛ࡣ
2003 ᖺ࡟⤒῭⏘ᴗ┬ࡢබເᆺጤク◊✲஦ᴗࠕᆅᇦ᪂⏕ࢥࣥࢯ࣮ࢩ࢔࣒㸫㧗ᅽฎ
⌮ࢆ฼⏝ࡋࡓ᪂つᶵ⬟ᛶ㣗ᮦࡢ㛤Ⓨ࡜⏘ᴗ໬ࠖࡀ᥇ᢥࡉࢀࠊ2007 ᖺ࡟ࡣ㧗ᅽᢏ
⾡࡟㛵ࡍࡿᡓ␎ⓗ࡞ᶆ‽໬ࢆ᥎㐍ࡍࡿࡓࡵࡢࠕ㧗ᅽᇶ┙ᢏ⾡ᶆ‽໬ᶵᵓࠖࢆ❧ࡕ
10
ୖࡆ࡚࠸ࡿࠋ2008 ᖺ࡟ࡣࠊ᪥ᮏ⛉Ꮫᢏ⾡᣺⯆ᶵᵓ (JST) 2007 ᖺᗘࠕ᪂₲┴ᆅᇦ
⤖㞟ᆺ◊✲ࣉࣟࢢ࣒ࣛ㸫㣗ࡢ㧗௜ຍ౯್໬࡟㈨ࡍࡿᇶ┙ᢏ⾡ࡢ㛤Ⓨࠖࢆ㛤ጞࡋࠊ
ࡑࡢᡂᯝࡣࡑࡢᡂᯝࢆࠕ㐍໬ࡍࡿ㧗ᅽ㣗ရຍᕤᢏ⾡ࠖ࡜㢟ࡋ࡚Ⓨหࡋࡓࠋ᪂₲┴
࡟࠾ࡅࡿ㧗ᅽຍᕤ㣗ရ㛤ⓎࡢṔྐࡣࠊ㕥ᮌ(2011)࡟ࡼࡗ࡚ࡲ࡜ࡵࡽࢀ࡚࠸ࡿࠋ
㧗ᅽ◊✲ࡢᡂᯝࢆⓎ⾲ࡋ࡚㆟ㄽࡋྜ࠺ሙ࡜ࡋ࡚ࠊ⏕≀㛵㐃㧗ᅽ◊✲఍ࡀ 1988
ᖺ࡟タ❧ࡉࢀࡓࠋྠᖺ࡟➨ 1 ᅇࢩ࣏ࣥࢪ࣒࢘ࡀி㒔࡛ࠊ2013 ᖺ࡟ࡣ➨ 18 ᅇࢩࣥ
࣏ࢪ࣒࢘ࢆᒱ㜧኱Ꮫ࡛㛤ദࡍࡿࡇ࡜ࡀ࡛ࡁࡓࠋ2015 ᖺ࡟ࡣᗈᓥ࡛➨ 20 ᅇࢩ࣏ࣥ
ࢪ࣒࢘ࡀ㛤ദࡉࢀࡿணᐃ࡛࠶ࡿࠋᅜእ࡟┠ࢆྥࡅࡿ࡜ International Conference on
High Pressure Bioscience and Biotechnology (HPBB)ࡀ 2000 ᖺ࡟タ❧ࡉࢀࠊ௨㝆 2
ᖺẖ࡟ୡ⏺ྛᆅ࡛㛤ദࡉࢀ࡚࠸ࡿ(Nomura and Iwahashi, 2014)ࠋ2014 ᖺ࡟➨ 8 ᅇ
኱఍ࡀࣇࣛࣥࢫ࡛㛤ദࡉࢀࡓࠋ2016 ᖺ࡟ࡣ➨ 9 ᅇ኱఍ࡀ࢝ࢼࢲ࡛㛤ദࡉࢀࡿண
ᐃ࡛࠶ࡿࠋ
11
➨ 2 ⠇ 㓝ẕ
㓝ẕ(Yeast)ࡣࠊ┤ᚄ 5~10 ȣm ⛬ᗘࡢ༸ᆺ࡛ࠊฟⱆࡸศ⿣࡟ࡼࡗ࡚ቑṪࡍࡿ┿
᰾༢⣽⬊⏕≀࡛࠶ࡿࠋ㓝ẕ࡟ࡣࣄࢺ࡜ྠࡌࡼ࠺࡟ᑑ࿨ࡶᏑᅾࡍࡿࠋ㟁Ꮚ㢧ᚤ㙾࡛
ฟⱆ㓝ẕࢆほᐹࡍࡿ࡜ࠊ⣽⬊ࡢ⾲㠃࡟ፉ㓝ẕࡀฟⱆࡍࡿ᫬࡟⏕ࡌࡓฟⱆ⑞ࠊ⮬㌟
ࡀฟⱆࡋࡓ᫬࡟⏕ࡌࡓฟ⏕⑞࡜࿧ࡤࢀࡿ」ᩘࡢพฝࡀ☜ㄆ࡛ࡁࡿ(㔝ᮧ, ᒾᶫ,
2013)ࠋࡇࡢฟⱆ⑞ࡀ⣽⬊ࡢ⾲㠃࡟ṧࡿࡓࡵࠊࡑࡢᩘࡀฟⱆᅇᩘࠊ༶ࡕ㓝ẕࡢᑑ
࿨࡟┦ᙜࡍࡿࠋ⣙ 20 ᅇฟⱆࡍࡿ࡜ࠊࡑࢀ௨ୖࡣฟⱆࡍࡿࡇ࡜ࡀ࡛ࡁ࡞ࡃ࡞ࡿࡇ
࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ(Egilmez and Jazwinski, 1989)ࠋฟⱆᅇᩘࡣ⏕⌮ⓗ࡞せᅉ࡛ᙳ
㡪ࢆཷࡅࡿࡇ࡜ࡶ࠶ࡾࠊ⎔ቃࢫࢺࣞࢫ➼࡛ᐜ᫆࡟ኚ໬ࡍࡿࠋࡲࡓࠊ㓝ẕࡣ〇ࣃࣥ
ࡸ㔊㐀➼ࡢ㣗ရ⏘ᴗศ㔝࡟ᗈࡃ⏝࠸ࡽࢀ࡚࠸ࡿࡔࡅ࡛࡞ࡃࠊࣂ࢖࢜ࢸࢡࣀࣟࢪ
࣮ศ㔝࡟࠾࠸࡚ࡶࣂ࢖࢚࢜ࢱࣀ࣮ࣝࡢ⏕⏘➼࡟㔜せ࡞ᙺ๭ࢆᯝࡓࡋ࡚࠸ࡿ
(Bravim, 2012)ࠋ
12
➨ 1 㡯 ࣔࢹࣝ⏕≀࡜ࡋ࡚ࡢ㓝ẕ
᭱ࡶ୍⯡ⓗ࡞㓝ẕ࡛࠶ࡿ Saccharomyces cerevisiae ࡣࠊࣄࢺ࡜ྠࡌ┿᰾⏕≀࡛
࠶ࡿୖ࡟ࢤࣀ࣒ᵓ㐀ࡀẚ㍑ⓗ༢⣧࡛࠶ࡿࡢ࡛ࠊ኱⭠⳦➼ࡢཎ᰾⏕≀࡛ᚓࡓ▱ぢ
࡜ẚ㍑ࡋ࡚ࠊ㓝ẕࡢศᏊ⏕≀Ꮫⓗ▱ぢࢆࣄࢺ࡬ᛂ⏝ࡋ᫆࠸࡜࠸࠺฼Ⅼࡀ࠶ࡿࠋࡲ
ࡓࠊୡ௦᫬㛫ࡀ▷ࡃࠊᏳ౯࡞ᇵᆅ࡛ቑṪ࡛ࡁࠊẘᛶࡶ↓ࡃࠊ⏕⌮≧ែࡢ㧗࠸෌⌧
ᛶࡀᮇᚅ࡛ࡁࡿࡓࡵ࡟኱Ꮫ➼ࡢᐇ㦂ᐊࡢタഛ࡛ẚ㍑ⓗ⡆༢࡟◊✲࡛ࡁࡿࠋࡇࢀ
ࡽࡢ฼Ⅼ࠿ࡽ㓝ẕࡣศᏊ⏕≀Ꮫࢆጞࡵᵝࠎ࡞ศ㔝ࡢࣂ࢖࢜࢔ࢵࢭ࢖ࡢࣔࢹࣝ⏕
≀࡜ࡋ࡚฼⏝ࡉࢀ࡚࠸ࡿ(Haney et al., 2001; Matsuoka et al., 2005; Iwahashi et al.,
2007; Yasokawa and Iwahahsi, 2010)ࠋ
1996 ᖺ࡟ࡣࠊ┿᰾⏕≀࡜ࡋ࡚ึࡵ࡚ S. cerevisiae ࡢ඲ࢤࣀ࣒ࡢሷᇶ㓄ิ᝟ሗࡀ
ゎㄞࡉࢀࡓ(Goffeau et al.,1996)ࠋ㓝ẕࡢ⣙ 6000 ✀㢮ࡢ㑇ఏᏊ࡟ࢥ࣮ࢻࡉࢀ࡚࠸
ࡿࢱࣥࣃࢡ㉁ࡢ࠺ࡕࠊ࠾ࡼࡑ 80%ࡀ⏕Ꮡ࡟ᚲ㡲࡛࡞࠸ࡇ࡜ࡶ᫂ࡽ࠿࡜࡞ࡗ࡚࠸
ࡿࠋࡲࡓࠊ㓝ẕࢤࣀ࣒࡟ࡼࡗ࡚ࢥ࣮ࢻࡉࢀ࡚࠸ࡿࢱࣥࣃࢡ㉁ࡢᑡ࡞ࡃ࡜ࡶ 31%
ࡣࣄࢺ࡜࣍ࣔࣟࢢࢆᣢࡗ࡚࠾ࡾࠊ㏫࡟㑇ఏ⑓࡟㛵㐃ࡍࡿࣄࢺࢤࣀ࣒ࡢ⣙ 50%ࡢ
㑇ఏᏊࢆࠊ㓝ẕࡣ࣍ࣔࣟࢢ࡜ࡋ࡚ᣢࡗ࡚࠸ࡿࡇ࡜ࡶሗ࿌ࡉࢀ࡚࠸ࡿ(Hartwell,
2004)ࠋࡍ࡞ࢃࡕࠊ㓝ẕ࡜ࣄࢺࡢࢱࣥࣃࢡ㉁ࡢከࡃࡣྠᵝ࡟ᶵ⬟ࡋ࡚࠾ࡾࠊࢫࢺ
ࣞࢫᛂ⟅࣓࢝ࢽࢬ࣒ゎ᫂ࡢࡓࡵࡢࣔࢹࣝ⏕≀࡜ࡋ࡚ࡶ◊✲࡟฼⏝ࡉࢀ࡚࠸ࡿ
(Haney et al., 2001; Hohmann, 2002, Iwahashi et al., 2003; Iwahashi et al., 2005)ࠋࡲ
13
ࡓࠊ㓝ẕࡢ඲ࢤࣀ࣒ゎᯒᚋࠊ඲㑇ఏᏊࢆᦚ㍕ࡋࡓ DNA ࢳࢵࣉࡀ᪩ᛴ࡟౪⤥ࡉࢀ
ࡓ(ᒾᶫ, 2002)ࠋࡑࢀᨾ࡟ࢤࣀ࣑ࢡࢫゎᯒ⤖ᯝࡢ⵳✚ࡀ㇏ᐩ࡟࠶ࡾࠊゎᯒࢆᐜ᫆
࡟ࡋ࡚࠸ࡿࠋ㓝ẕࢤࣀ࣑ࢡࢫࡢ୍␒኱ࡁ࡞฼Ⅼࡣࠊྛ㑇ఏᏊࡢᶵ⬟᝟ሗࡢ㇏ᐩࡉ
࡛࠶ࡾࠊࡉࡽ࡟ゎᯒࢆᐜ᫆࡟ࡋ࡚࠸ࡿࠋ
㓝ẕ࡜ࣄࢺࡢ࿧྾ᶵ⬟࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡣẚ㍑ⓗࡼ
ࡃಖᏑࡉࢀ࡚࠾ࡾࠊ࢚ࢿࣝࢠ࣮⏕⏘ࡢࡓࡵࡢ㓟໬ⓗࣜࣥ㓟໬ࡶྠᵝࡢᶵ⬟ࢆ᭷
ࡍࡿࠋຍ࠼࡚ࠊ㓝ẕࡣ࢚ࢱࣀ࣮ࣝⓎ㓝࡟ࡼࡾቑṪࡍࡿࡇ࡜ࡀ࡛ࡁࡿࡢ࡛ࠊ࣑ࢺࢥ
ࣥࢻࣜ࢔ࡀኚ␗ࡋ࡚࿧྾ᶵ⬟ࡀḞኻࡋ࡚ࡶ⏕Ꮡࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࠋࡑࡢࡓ
ࡵ࡟࣑ࢺࢥࣥࢻࣜ࢔ࡀ㛵㐃ࡍࡿ㑇ఏ⑓ࡸ⒴ࢆጞࡵ࡜ࡋࡓከࡃࡢ⑓Ẽࡸ࿧྾㜼ᐖ
๣➼࡟ᑐࡍࡿᇶ♏◊✲ࡢࣔࢹࣝ⏕≀࡟ࡶ࡞ࡗ࡚࠸ࡿ (⚟ཎ, 1986)ࠋ
㏆ᖺࠊ㓝ẕࡀ⎔ቃ୰࡟ᬑ㐢ⓗ࡟Ꮡᅾࡍࡿ⏕≀ࡢ 1 ࡘ࡛࠶ࡿࡇ࡜ࡀ᫂ࡽ࠿࡟ࡉ
ࢀࠊ㓝ẕࡢࢺࢥࢩࢥࢤࣀ࣑ࢡࢫࡀ⏕ែẘᛶホ౯࡟ᛂ⏝࡛ࡁࡿࡇ࡜ࡀሗ࿌ࡉࢀࡓ
(Liti et al., 2009)ࠋࡇࢀ࡟ࡼࡾࠊ⎔ቃ୰ࡢṧ␃㎰⸆ࡸ㔠ᒓࢼࣀ⢏Ꮚ➼ࡢ⏕య࡬ࡢẘ
ᛶホ౯࡟㓝ẕࢆ฼⏝ࡍࡿࡇ࡜ࡀྍ⬟࡜࡞ࡗࡓࠋ
14
➨ 2 㡯 Ⓨ㓝㣗ရ࡜ࡋ࡚ࡢ㓝ẕ
ᡃࠎே㢮ࡣࠊᚤ⏕≀࡜Ⓨ㓝࡜࠸࠺ᴫᛕࢆ⌮ゎࡋ࡚࠸࡞࠸ྂ௦࠿ࡽఏ⤫ⓗ࡟Ⓨ
㓝㣗ရࢆ⏕⏘ࡋ࡚ࡁࡓࠋ࢔ࢪ࢔࡛ࡣࠊᑠ㯏(Okada et al., 1992)ࠊ࡜࠺ࡶࢁࡇࡋ
(Adegoke and Babalola, 1988)ࠊ࢟ࣕࢵࢧࣂ(Oyewole and Odunfa, 1988)ࠊࢯ࣒ࣝ࢞
(Mohammed et al., 1991)➼ࡢᑠ㯏⢊Ⓨ㓝㣗ရࡀᵝࠎ࡞ᚤ⏕≀࡟ࡼࡗ࡚⏕⏘ࡉࢀ࡚
࠸ࡿࠋ࣮ࣚࢢࣝࢺࡸࢳ࣮ࢬ(Mitsuoka et al., 2002)ࠊ㤿ங㓇(Ishii, 2002)➼ࡢⓎ㓝ங
〇ရࡣ୺࡟ங㓟⳦࡟ࡼࡗ࡚⏕⏘ࡉࢀࡿࠋᮏ◊✲࡛⏝࠸ࡿ S. cerevisiae ࡣࠊ࢔ࣝࢥ
࣮ࣝⓎ㓝࡟ࡼࡾ࣡࢖ࣥࠊࣅ࣮ࣝࠊΎ㓇➼ࡢ㓇㢮ࠊ࿡ჯࠊ㓺Ἔ➼ࡢㄪ࿡ᩱࠊࣃࣥࠊ
ₕ≀➼ࡢᵝࠎ࡞Ⓨ㓝㣗ရࢆ⏕⏘ࡍࡿ᭷⏝ᚤ⏕≀࡜ࡋ࡚ᗈࡃ▱ࡽࢀ࡚࠸ࡿ
(Nomura and Iwahashi, 2014)ࠋࡇࢀࡽࡢఏ⤫ⓗ࡞Ⓨ㓝㣗ရࡣ୺㣗࡜ࡋ࡚ࡔࡅ࡛ࡣ
࡞ࡃࠊᢠ㓟໬άᛶࡸᢠ࢔ࣞࣝࢠ࣮ࠊච␿㈿ά➼ࡢ᭷┈࡞ຠᯝࡀᮇᚅ࡛ࡁࡿ೺ᗣ㣗
ရࡸࢥ࣑ࣗࢽࢣ࣮ࢩࣙࣥࢆ෇⁥࡟ࡍࡿႴዲရ࡜ࡋ࡚ࡶ㣗ࡉࢀ࡚࠸ࡿ(Yang et al.,
2010) ࠋ㓝ẕࡣⓎ㓝㣗ရࡢ⏕⏘࡟ᙺ❧ࡘ୍᪉ࠊࣇ࣮ࣝࢶࢪ࣮ࣗࢫࡢࡼ࠺࡞㣗ရࡢ
⭉ᩋࡸ࣒࢟ࢳ➼ࡢ㐣Ⓨ㓝ࢆᘬࡁ㉳ࡇࡋࠊ㣗ရࡢရ㉁ࢆຎ໬ࡉࡏ࡚㔜኱࡞⤒῭ⓗ
ᦆ ኻ ࢆ ᘬ ࡁ ㉳ ࡇ ࡍ ࡇ ࡜ ࡶ ▱ ࡽ ࢀ ࡚ ࠸ ࡿ (Basak et al., 2002; Lee et al., 2003;
Patrignani et al., 2009)ࠋ
15
➨ 3 ⠇ 㧗ᅽ㣗ရຍᕤᢏ⾡
㧗ᅽ㣗ရຍᕤᢏ⾡࡜ࡣࠊᩘⓒ MPa ࡢ㧗ᅽ᮲௳࡟ࡼࡾ㣗ရࡢẅ⳦ࡸᶵ⬟ᛶᡂศ
ࡢᐩ໬ࠊ㓝⣲άᛶࡢྥୖࠊ௜ຍ౯್ࡢ௜୚➼ࢆ┠ⓗ࡟㠀⇕ⓗ࠶ࡿ࠸ࡣຍ⇕࡜⤌ࡳ
ྜࢃࡏࡿࡇ࡜࡟ࡼࡾࠊ㣗ရࢆຍᕤࡍࡿᢏ⾡ࡢ⥲⛠࡛࠶ࡿࠋ1987 ᖺ࡟ி㒔኱Ꮫᯘ
ຊ୸ ຓᩍᤵ(ᙜ᫬)࡟ࡼࡾ㧗ᅽᢏ⾡ࢆ㣗ရຍᕤ࡟ᛂ⏝ࡍࡿࡇ࡜ࢆᥦၐࡉࢀࠊᮏᢏ
⾡ࡢ◊✲ࡀጞࡲࡗࡓࠋ
➨ 1 㡯 㧗ᅽຍᕤ㣗ရࡢ㛤Ⓨ࡜ၥ㢟Ⅼ
㧗ᅽᢏ⾡࡟ࡣࣅࢱ࣑ࣥ C ➼ࡢ㣗ရ୰ࡢ᭷⏝ᡂศࡸ᪂㩭࡞㢼࿡➼ࢆ⇕ኚᛶ࡛◚
ቯࡍࡿࡇ࡜࡞ࡃࠊ㣗ရࡢຍᕤ࡟ᛂ⏝࡛ࡁࡿ࡜࠸࠺฼Ⅼࡀ࠶ࡿࠋࡑࡢࡓࡵ࡟㧗ᅽ㣗
ရຍᕤࡣࠊ㠀⇕ⓗ࡟࠶ࡿ࠸ࡣᚑ᮶ࡢຍ⇕ຍᕤࡼࡾࡶప࠸ ᗘ࡛㣗ရࢆຍᕤࡋࠊᚤ
⏕≀ࢆ୙άᛶ໬ࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࠋ㧗ᅽ㣗ရຍᕤࡣࠊࡇࢀࡲ࡛࡟ຍ⇕ࡢ௦᭰
࡟㧗ᅽຍᕤࢆ฼⏝ࡋࡓ㧗ᅽຍᕤ⏕ࢪ࣒ࣕ (ᇼỤࡽ, 1991)ࡸ✐㢮ࡢ྾Ỉ࡟㧗ᅽຍ
ᕤࢆ฼⏝ࡋࡓ㞧✐ࡈࡣࢇࡸࣃࢵࢡࡈࡣࢇ(ᒣᓮ, ➲ᕝ, 2000)ࠊ㣗ရῧຍ≀ࡢ௦᭰
࡜ࡋ࡚㧗ᅽẅ⳦ࡋࡓࣁ࣒ࡸࢯ࣮ࢭ࣮ࢪ(኱᳃, 㔜ஂ, 1990; ㎷⏣, 㕥ᮌ, 1990)ࠊ㧗
ᅽ࡟ࡼࡿ∻⾃ࡢẆࡴࡁ(Murokoshi, 2004)➼࡟ᛂ⏝ࡉࢀ࡚࠸ࡿࠋࡋ࠿ࡋ࡞ࡀࡽࠊ㧗
ᅽᢏ⾡࡟ࡼࡿᵝࠎ࡞㣗ရຍᕤࡸᚤ⏕≀ࡢ୙άᛶ໬࡟ࡣࠊ300 MPa ௨ୖࡢ㧗ᅽࡀ
16
ᚲせ࡛࠶ࡿࠋࡑࡢࡓࡵ࡟ࡣ㧗ᅽ࡟⪏࠼ࡿࡇ࡜ࡀ࡛ࡁࡿ㧗ࢥࢫࢺ࡞⪏ᅽᐜჾࢆ᭷
ࡍࡿ㧗ᅽ⿦⨨ࡀᚲ㡲࡛࠶ࡾࠊ㣗ရ࡬ࡢ㧗ᅽຍᕤࡣ㧗௜ຍ౯್ࢆ᭷ࡍࡿ㣗ရ࡟㝈
ࡽࢀ࡚࠾ࡾࠊ㧗ᅽᢏ⾡ࡢᬑཬࡀጉࡆࡽࢀ࡚࠸ࡿࡢࡀ⌧≧࡛࠶ࡿࠋ
➨ 2 㡯 Pressure Regulated Fermentation
㏆ᖺࠊ㣗ရ࡬ࡢ㧗ᅽຍᕤࢆࡼࡾᬑཬࡉࡏࡿࡓࡵ࡟ࠊࡼࡾప࠸ᅽຊ࡟ࡼࡾ㣗ရࡢ
Ⓨ㓝ࢆไᚚࡍࡿᢏ⾡(Pressure Regulated Fermentation; PReF)ࡢ㛤Ⓨࡀᥦ᱌ࡉࢀ࡚
࠸ࡿ(Nomura and Iwahashi, 2014)ࠋⓎ㓝㣗ရࢆ⏕⏘ࡍࡿ㓝ẕࡢⓎ㓝ࡀไᚚ࡛ࡁ࡞
࠸ሙྜࠊㄪ࿡ᾮࡢⓑ⃮ࡸᐜჾࡢ⭾ᙇ➼ࡢ㐣Ⓨ㓝ࢆᘬࡁ㉳ࡇࡋࠊ㔜኱࡞⤒῭ⓗᦆኻ
ࢆ⏕ࡌࡿ༴㝤ᛶࡀ࠶ࡿࠋᚑ᮶ࡢⓎ㓝㣗ရࡢⓎ㓝ࢆไᚚࡍࡿ᪉ἲࡣࠊ୍⯡ⓗ࡟ຍ⇕
ࡸ෭ⶶࠊሷࡸ㓟ࡢῧຍ࡛࠶ࡿࠋ≉࡟ࠊங㓟⳦ࡢ⏘⏕ࡍࡿங㓟ࡣዃ㞧ᚤ⏕≀ࡢቑṪ
ࢆᢚไࡍࡿࡓࡵ࡟ࠊྂࡃ࠿ࡽ㓝ẕ࡜ඹ࡟Ⓨ㓝㣗ရࡢ⏕⏘࡟฼⏝ࡉࢀ࡚ࡁࡓࠋPReF
ᢏ⾡ࡣࠊ㧗ᅽᢏ⾡ࡢ฼Ⅼࢆά࠿ࡋࠊⓎ㓝㣗ရ୰࡟Ꮡᅾࡍࡿࣅࢱ࣑ࣥ C ➼ࡢ᭷⏝
ᡂศࢆ⥔ᣢࡋࡘࡘࠊᚤ⏕≀ࡢⓎ㓝ࢆไᚚࡍࡿࡇ࡜ࢆ┠ᣦࡋ࡚࠸ࡿࠋࡲࡓࠊPReF
ᢏ⾡ࢆᛂ⏝ࡍࡿࡇ࡜ࡣࠊຍ⇕࡟ࡼࡿ᭷⏝≀㉁ࡢຎ໬ࡔࡅ࡛ࡣ࡞ࡃࠊሷࡸ㓟ࡢ㐣๫
ῧຍ࡟ࡼࡿ೺ᗣ⿕ᐖࡢⓎ⏕ࡶᢚไࡍࡿࡇ࡜ࡀᮇᚅ࡛ࡁࡿࠋేࡏ࡚ࠊPReF ᢏ⾡࡛
ࡣࠊ㧗ᅽ⿦⨨ࡢࢥࢫࢺࢆ๐ῶࡍࡿࡓࡵ࡟ࠊ100~200 MPa ⛬ᗘࡢ✜ࡸ࠿࡞୰㧗ᅽ㡿
ᇦࢆ⏝࠸ࡿࠋPReF ᢏ⾡ࡣࠊᩘⓒ MPa ௨ୖࡢ㧗ᅽࡀᚲせ࡞஺㞧ᚤ⏕≀ࡢ⁛⳦
17
(sterilization)ࢆࢱ࣮ࢤࢵࢺࡍࡿࡢ࡛ࡣ࡞ࡃࠊ୺せ࡞Ⓨ㓝ᚤ⏕≀࡛࠶ࡿ㓝ẕࡢẅ⳦
(pasteurization)࣭୙άᛶ໬ࢆࡍࡿࡇ࡜࡟ࡼࡾࠊ㐣Ⓨ㓝ࢆไᚚࡍࡿࡇ࡜ࢆ┠ⓗ࡜ࡍ
ࡿ࢔ࣉ࣮ࣟࢳ࡛࠶ࡿࠋங㓟⳦ࡣ⮬㌟ࡢ⏕⏘ࡍࡿங㓟࡟ࡼࡿ pH ࡢపୗ࡟ࡼࡾ୙ά
ᛶ໬ࡍࡿࡓࡵࠊPReF ᢏ⾡࡟࠾࠸࡚ࡣࢱ࣮ࢤࢵࢺ࡜ࡋ࡞࠸ࠋࡇࢀࡽࡢࡇ࡜࠿ࡽ
PReF ᢏ⾡ࡢ☜❧ࡓࡵ࡟ࡣࠊ୰㧗ᅽ᮲௳࡛୙άᛶ໬ࡍࡿᅽຊ࡟ᙅ࠸㓝ẕᰴࡢసฟ
ࡀᚲせ࡛࠶ࡿࠋ
➨ 3 㡯 ᅽຊឤཷᛶ㓝ẕࡢసฟ
ࡇࢀࡲ࡛࡟ᐇ㦂ᐊࣔࢹࣝ㓝ẕᰴ S. cerevisiae KA31a ᰴࢆぶᰴ࡜ࡋ࡚ࠊࡑࢀࡼࡾ
ࡶ㧗࠸ᅽຊឤཷᛶ⬟ࢆ♧ࡍᅽຊឤཷᛶኚ␗ᰴ a924E1 ᰴࢆ⣸እ⥺↷ᑕἲ࡟ࡼࡿࣛ
ࣥࢲ࣒✺↛ኚ␗ᑟධ࡟ࡼࡾྲྀᚓࡋࡓ(Shigematsu et al., 2010a)ࠋྲྀᚓࡋࡓ a924E1
ᰴࡣࠊKA31a ᰴ࡜ྠ➼ࡢ࢚ࢱࣀ࣮ࣝⓎ㓝⬟ࢆ᭷ࡋ࡚࠾ࡾࠊᅽຊࡔࡅ࡛࡞ࡃ ᗘ
࡟ᑐࡋ࡚ࡶឤཷᛶࢆ♧ࡍࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ(Shigematsu et al., 2010b)ࠋࡇࢀࡽ
ࡢ⾲⌧ᙧ㉁ࢆ᭷ࡍࡿ⏘ᴗ⏝㓝ẕᰴࢆసฟ࡛ࡁࢀࡤࠊPReF ᢏ⾡࡟࠾ࡅࡿ㧗ᅽ༢య
ࡢ࠶ࡿ࠸ࡣຍ⇕࡜⤌ࡳྜࢃࡏࡓ㧗ᅽฎ⌮࡬ࡢᛂ⏝࡟᭷┈࡛࠶ࡿࠋࡋ࠿ࡋ࡞ࡀࡽࠊ
a924E1 ᰴࡣࣛࣥࢲ࣒✺↛ኚ␗࡟ࡼࡾྲྀᚓࡉࢀࡓࡓࡵࠊᅽຊឤཷᛶኚ␗ࡀᑟධࡉ
ࢀࡓ㑇ఏᏊᗙ࠾ࡼࡧᅽຊឤཷᛶࡢᇶ♏࡜࡞ࡿ࣓࢝ࢽࢬ࣒ࡣࠊᮍࡔ᫂ࡽ࠿࡜࡞ࡗ
࡚࠸࡞࠸ࠋ
18
➨ 4 ⠇ ◊✲┠ⓗ
ᮏ◊✲ࡢ┠ⓗࡣࠊ㧗ᅽ⿦⨨ࡢタഛᢞ㈨ࢥࢫࢺࢆపῶࡍࡿࡓࡵ࡟ࠊ100㸫200 MPa
⛬ᗘࡢ୰㧗ᅽ࡟ࡼࡾ㓝ẕ S. cerevisiae ࢆ୙άᛶ໬ࡍࡿ PReF ᢏ⾡ࢆసฟࡍࡿࡇ࡜
࡛࠶ࡿࠋ
PReF ᢏ⾡࡟ࡼࡾⓎ㓝ᚤ⏕≀ࢆẅ⳦ࡋࡓᚋࡢⓎ㓝㣗ရࡣప ᮲௳࡛ಖᏑ࣭
ὶ㏻ࡉࢀࡿࠋᚑࡗ࡚ࠊPReF ᢏ⾡ࡢᐇ⏝໬࡟ࡣࠊ༑ศ࡞࢚ࢱࣀ࣮ࣝ⏕⏘⬟ࢆ᭷ࡋࠊ
ᑦୟࡘ㧗ᅽ࡟ឤཷᛶࢆ♧ࡍ⏘ᴗ㓝ẕᰴࡢసฟࡀᚲ㡲࡜࡞ࡿࠋ
ࡇࢀࡲ࡛࡟సฟࡋࡓᅽຊឤཷᛶኚ␗ᰴ a924E1 ᰴࡣࠊᮍࡔ᫂ࡽ࠿࡜࡞ࡗ࡚࠸࡞
࠸ᮍ▱ࡢせᅉ࡟ࡼࡾᅽຊឤཷᛶ⬟ࡀ௜୚ࡉࢀࡓྍ⬟ᛶࡀ࠶ࡿࠋᮏ◊✲࡛ࡣࠊᅽຊ
ឤཷᛶࡢ⾲⌧ᆺࢆᘬࡁ㉳ࡇࡍኚ␗㑇ఏᏊ࠾ࡼࡧࡑࡢ࣓࢝ࢽࢬ࣒ࢆ DNA ࣐࢖ࢡ
ࣟ࢔ࣞ࢖ゎᯒ࠾ࡼࡧ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒ࡟ࡼࡾゎᯒࡋࡓࠋ
19
➨ 2 ❶ DNA ࣐࢖ࢡࣟ࢔ࣞ࢖࡟ࡼࡿ⥙⨶ⓗ㑇ఏᏊⓎ⌧ゎᯒ
➨ 1 ⠇ ⥴ゝ
➨ 1 㡯 DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒ
DNA ࣐࢖ࢡࣟ࢔ࣞ࢖(DNA ࢳࢵࣉ)࡜ࡣࠊ1 ᯛᩘ cm2 ࡢࢫࣛ࢖ࢻࢢࣛࢫ(2.5
cm×8.5 cm)࠿ࡽ࡞ࡿᇶᯈୖ࡟ࠊᩘⓒ࠿ࡽᩘ༓✀㢮ࡢ DNA ࣉ࣮ࣟࣈࢆ㓄⨨ࡉࡏࡓ
ࡶࡢ࡛࠶ࡿ(ᒾᶫ, 2002)ࠋ┦ྠᛶࡢ㧗࠸㡿ᇦࢆ᭷ࡍࡿ DNA(㑇ఏᏊ)ࡣࠊ୍ᐃࡢ᮲
௳ୗ࡛ࠊ஫࠸࡟ゎ㞳࡜⤖ྜࢆ⧞ࡾ㏉ࡍࠋྠ୍ࡢ୍ḟᵓ㐀ࢆᣢࡘ DNA ࡸ┦ྠᛶࡢ
㧗࠸ DNA ࡣ஫࠸࡟⤖ྜࡀྍ⬟࡛࠶ࡿࡀࠊ୍ḟᵓ㐀ࡀ␗࡞ࡿ DNA ࡣ⤖ྜࡍࡿࡇ
࡜ࡣ࡞࠸ࠋᚑࡗ࡚ࠊࢧࣥࣉࣝ୰࡟Ꮡᅾࡍࡿ DNA ࢳࢵࣉୖࡢࣉ࣮ࣟࣈ࡜┦ྠᛶࡢ
㧗࠸ DNA ࡣࠊᩘ༓✀㢮ࡢ DNA ࡢ୰࡛ࡑࡢ┦ྠᛶࡢ㧗࠸ࣉ࣮ࣟࣈࢆ㑅ᢥࡋ࡚⤖
ྜࡍࡿࠋ
DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ࡣࠊ⣽⬊࠿ࡽᢳฟࡋࡓ mRNA ࢆ⏝࠸࡚ࠊᐇ㦂᮲௳࡟࠾ࡅ
ࡿ㑇ఏᏊࡢⓎ⌧㔞ࢆゎᯒࡍࡿࠋࡑࡢࡓࡵ࡟ DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒࡣࠊቑṪࣇ
࢙࢖ࢬࡸ⎔ቃࢫࢺࣞࢫࠊ໬Ꮫ≀㉁ࠊ✺↛ኚ␗➼ࡢせᅉ࡟ࡼࡗ࡚ᘬࡁ㉳ࡇࡉࢀࡿ㑇
ఏᏊⓎ⌧ࡢ⥙⨶ⓗ࡞ኚ໬ࢆ᫂ࡽ࠿࡟ࡍࡿࡇ࡜ࡀ࡛ࡁࡿࠋ
20
➨ 2 㡯 DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒࡢᛂ⏝౛
DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒࡣࠊྠ᫬࡟ᩘ༓✀㢮௨ୖࡢ㑇ఏᏊࡢⓎ⌧ኚ໬ࢆほᐹ
ࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࠋࡇࢀࡲ࡛࡟࢝ࢻ࣑࣒࢘(Momose and Iwahashi, 2001)ࠊ࢝
ࣉࢧ࢖ࢩࣥ(Kurita et al., 2002)ࠊ෾⤖(Odani et al., 2003)ࠊDMSO (Murata et al., 2003)ࠊ
ࣛ࢘ࣥࢻ࢔ࢵࣉ(Sirisattha et al., 2004)ࠊࢺ࢟ࢩࣥ(Iwahashi et al., 2008)ࠊ㖡(Yasokawa
et al., 2008)ࠊள㖄(Yasokawa et al., 2010)➼ࡢ㓝ẕࡢᵝࠎ࡞ࢫࢺࣞࢫᛂ⟅࡟㛵ࡍࡿ
ሗ࿌ࡀ࠶ࡿࠋFernandes ࡽ(2004)ࡣࠊ200 MPaࠊᐊ ࠊ30 min ࡢ㧗ᅽ᮲௳࡛ฎ⌮ࡋ
ࡓᚋࡢ mRNA ࣉࣟࣇ࢓࢖ࣝࢆሗ࿌ࡋࡓࠋࡋ࠿ࡋࠊࡇࡢࡼ࠺࡞㧗ᅽ᮲௳࡛ࡣ㌿෗
཯ᛂࡣ㐍⾜ࡋ࡞࠸ࡓࡵ(Yayanos and Pollard, 1969)ࠊᙼࡽࡢሗ࿌ࡣ㧗ᅽฎ⌮࡟ᑐࡋ
࡚Ᏻᐃ࡞ mRNA ࡢⓎ⌧ࢆ♧ࡋ࡚࠸ࡿ࡟㐣ࡂ࡞࠸ࠋࡲࡓࠊ200 MPa ⛬ᗘࡢ⮴Ṛⓗ
᮲௳࡟࠾࠸࡚ࡣࠊච␿㟁Ꮚ㢧ᚤ㙾➼ࡢほᐹ࡟㢗ࡽ࡞ࡅࢀࡤࠊࡑࡢᦆയࢆほᐹࡍࡿ
ࡇ࡜ࡣ㞴ࡋ࠸(Kobori et al., 1995)ࠋ㧗ᅽฎ⌮࡟ࡼࡿ⣽⬊࡬ࡢᙳ㡪ࢆ DNA ࣐࢖ࢡ
ࣟ࢔ࣞ࢖࡛ホ౯ࡍࡿࡓࡵ࡟ࡣࠊ㧗ᅽฎ⌮࡟ࡼࡾ⏕ࡌࡓᦆയࢆᅇ᚟ࡍࡿ᫬࡟ኚ໬
ࡍࡿ㑇ఏᏊⓎ⌧ࢆほᐹࡋ࡚ࡑࡢᙳ㡪ࢆ᥎ᐃࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࠋ౛࠼ࡤࠊ
Iwahashi ࡽ(2003)ࡣࠊ4rC ࡟࠾࠸࡚ 180 MPa ࡢ㧗ᅽ᮲௳୍࡛▐ࠊࡲࡓࡣ 40 MPa
࡛ 16 h 㓝ẕ⣽⬊ࢆฎ⌮ࡋࡓࠋࡑࡢᚋ 1 h ᅇ᚟ᇵ㣴ࡋࡓ⣽⬊࠿ࡽ RNA ࢆᢳฟࡋ࡚
㑇ఏᏊⓎ⌧ࣉࣟࣇ࢓࢖ࣝࢆゎᯒࡋࡓ࡜ࡇࢁࠊ࢜ࣝ࢞ࢿࣛࡸ⭷ᵓ㐀࡟㛵㐃ࡍࡿࢱ
ࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡢⓎ⌧ࡀ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡉࢀ࡚࠸ࡓࠋࡇࢀࡽ
21
ࡢ⤖ᯝ࠿ࡽࠊ⮴Ṛⓗ࡞㧗ᅽ᮲௳࡟᭚ࡉࢀࡓ⣽⬊ࡣࠊ࢜ࣝ࢞ࢿࣛࡸ⭷ᵓ㐀➼ࡢಟ᚟
ࢆάⓎ࡟⾜ࡗ࡚࠸ࡓྍ⬟ᛶࡀ⪃࠼ࡽࢀࠊ㧗ᅽฎ⌮ࡣ࢜ࣝ࢞ࢿࣛࡸ⭷ᵓ㐀➼࡟ᦆ
യࢆᘬࡁ㉳ࡇࡍࡇ࡜ࡀ♧၀ࡉࢀࡓࠋྠᵝ࡟㠀⮴Ṛⓗ࡞ᅽຊ࡬ࡢ㐺ᛂࢆゎᯒࡍࡿ
ࡓࡵ࡟ࠊ㓝ẕࡢᑐᩘቑṪᮇ⣽⬊࡟ᑐࡋ࡚ 30 MPaࠊ25°C ࡢᅽຊ᮲௳࡛ฎ⌮ࡋࡓ
(Iwahashi et al., 2005)ࠋࡑࡢ⤖ᯝࠊ㠀⮴Ṛⓗᅽຊ᮲௳࡟࠾࠸࡚ࡣࠊࢱࣥࣃࢡ㉁࠾ࡼ
ࡧ⭷௦ㅰ࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡢⓎ⌧ࡀ࢔ࢵࣉࣞࢠ࣮ࣗࣞ
ࢺࡉࢀ࡚࠸ࡓࠋࡇࢀࡽࡢሗ࿌ࡣࠊDNA ࣐࢖ࢡࣟ࢔ࣞ࢖࡟ࡼࡾᅽຊ୙άᛶ໬࠶ࡿ
࠸ࡣ㧗ᅽ᮲௳࡬ࡢ㐺ᛂ࡜࠸࠺」㞧࡞ࣉࣟࢭࢫࡀゎᯒ࡛ࡁࡿࡇ࡜ࢆ♧ࡋ࡚࠸ࡿࠋ
➨ 3 㡯 DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒ࡟࠾ࡅࡿࢡࣟࢫࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩࣙࣥ
DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒࡣࠊࠕ࠶ࡿ㑇ఏᏊࡣ┦ྠᛶࡢ㧗࠸㑇ఏᏊ࡜ࣁ࢖ࣈࣜ
ࢲ࢖ࢬ(஺㞧ࠊ⤖ྜ)ࡍࡿࠖ(ᒾᶫ, 2002)࡜࠸࠺ཎ⌮࡟ᇶ࡙ࡃࠋᩘ༓✀㢮ࡶࡢ㑇ఏᏊ
Ⓨ⌧ࢆྠ᫬࡟⥙⨶ⓗ࡟ゎᯒ࡛ࡁࡿ฼Ⅼࡀ࠶ࡿࡀࠊ┦ྠᛶࡀ㧗࠸ࡀ୍ḟᵓ㐀ࡢ␗
࡞ࡿ㑇ఏᏊࢆࡶㄗࡗ࡚⤖ྜࡋ࡚ࡋࡲ࠺ࢡࣟࢫࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩࣙࣥࢆᘬࡁ㉳
ࡇࡍ(Iwahashi et al., 2007)ࠋ㑇ఏᏊⓎ⌧ࡢ⥙⨶ⓗゎᯒ࡟࠾࠸࡚୙☜ᐇᛶࢆᘬࡁ㉳
ࡇࡍࢡࣟࢫࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩࣙࣥࡣࠊDNA ࢳࢵࣉୖࡢࢃࡎ࠿ᩘ༑ሷᇶࡢࣉࣟ
࣮ࣈ࡟ࡼࡗ࡚ᩘ༓✀㢮ࡢ㑇ఏᏊࢆ㆑ูࡍࡿࡓࡵ࡟ᘬࡁ㉳ࡇࡉࢀࡿࣜࢫࢡ࡛࠶ࡿࠋ
ࡋ࠿ࡋࠊ㑇ఏᏊⓎ⌧ࣉࣟࣇ࢓࢖ࣝ඲యࢆಠ▔ࡋࠊ᭷ព࡟Ⓨ⌧ࡀኚືࡍࡿ㑇ఏᏊ⩌
22
ࡢᶵ⬟ࢆホ౯ࡍࡿࡓࡵ࡟ࡣࠊ᭷⏝࡛࠶ࡿࠋᚑࡗ࡚ࠊDNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒࡣࠊ
Ⓨ⌧ࡀኚ໬ࡋࡓ 1 㑇ఏᏊࡢࡳ࡟ὀ┠ࡍࡿࡢ࡛ࡣ࡞ࡃࠊⓎ⌧ࡢኚ໬ࡋࡓ㑇ఏᏊ⩌
ࡢᶵ⬟࡟╔┠ࡍࡿ࡭ࡁ࠶ࡿࠋࡲࡓࠊࡑࢀࡽࡢ㑇ఏᏊ⩌ࡢⓎ⌧ࡣࠊᚲせ࡟ᛂࡌ࡚ࢡ
ࣟࢫࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩࣙࣥࡀᘬࡁ㉳ࡇࡉࢀ࡞࠸ࡼ࠺࡟ཝᐦ࡟タィࡉࢀࡓࣉࣛ
࢖࣐࣮ࢆ⏝࠸ࡓ㏫㌿෗ PCR (RT-PCR)➼࡟ࡼࡗ࡚☜ㄆࡍࡿࡇ࡜ࡀ㔜せ࡛࠶ࡿࠋ
➨ 4 㡯 ᐇ㦂┠ⓗ
ᮏ❶࡛ࡣࠊᅽຊឤཷᛶኚ␗ᰴ a924E1 ᰴ࠾ࡼࡧࡑࡢぶᰴ KA31a ᰴࡢ㑇ఏᏊⓎ
⌧ࣉࣟࣇ࢓࢖ࣝࢆ DNA ࣐࢖ࢡࣟ࢔ࣞ࢖࡟ࡼࡗ࡚ẚ㍑ࡍࡿࡇ࡜࡟ࡼࡾࠊᅽຊឤཷ
ᛶ⬟ࢆ௜୚ࡍࡿ㑇ఏⓗせᅉࢆゎᯒࡋࡓࠋDNA ࣐࢖ࢡࣟ࢔ࣞ࢖ࡣࠊࢡࣟࢫࣁ࢖ࣈ
ࣜࢲ࢖ࢮ࣮ࢩࣙࣥ࡟ࡼࡗ࡚ኚ␗㑇ఏᏊࡢྠᐃ࡟୙☜ᐇᛶࢆᘬࡁ㉳ࡇࡍࡀࠊ㑇ఏ
ᏊⓎ⌧ࣉࣟࣇ࢓࢖ࣝࡢ᭷ព࡞ኚືࡣኚ␗㑇ఏᏊࡢᶵ⬟ࢆホ౯ࡍࡿࡓࡵ࡟ᙺ❧ࡘࠋ
23
➨ 2 ⠇ ᐇ㦂ᮦᩱ࠾ࡼࡧᐇ㦂᪉ἲ
➨ 1 㡯 ౑⏝⳦ᰴ
ᮏᐇ㦂࡟ࡣࠊᐇ㦂ᐊ㓝ẕᰴ S. cerevisiae KA31a ᰴ࠾ࡼࡧᅽຊឤཷᛶኚ␗ᰴ
a924E1 ᰴࡢᐃᖖᮇ⣽⬊ࢆ౑⏝ࡋࡓ(⾲ 1)ࠋᅽຊឤཷᛶኚ␗ᰴ a924E1 ᰴࡣࠊ⣸እ
⥺↷ᑕ࡟ࡼࡿ✺↛ኚ␗࡟ࡼࡾྲྀᚓࡋࡓ(Shigematsu et al., 2010a)ࠋࡇࢀࡽࡢ㓝ẕᰴ
ࡣࠊ᪂₲⸆⛉኱Ꮫ 㔜ᯇ ஽ ᩍᤵࡼࡾศ୚ࡋ࡚࠸ࡓࡔ࠸ࡓࠋ
➨ 2 㡯 ᇵ㣴᮲௳
YPD ᇵᆅ(2.0% peptoneࠊ1.0% yeast extract; Becton Dickinson and Co., NJ, USAࠊ
2.0% glucose; ࿴ග⣧⸆ᕤᴗ, ኱㜰, ᪥ᮏ)ࢆ⏝࠸࡚ࠊ30°Cࠊ48 h ࡢ᮲௳࡛᣺┞ᇵ
㣴ࡋࡓᐃᖖᮇ⣽⬊ࢆᐇ㦂࡟౪ࡋࡓࠋቑṪ᭤⥺ࡣ Hasegawa ࡽ(2012)ࡢ᪉ἲ࡟ᚑ࠸ࠊ
Bio Microplate Reader HiTSTM (Scinics, Ⲉᇛ, ᪥ᮏ)ࢆ⏝࠸࡚ 30°Cࠊ120 h ࡢ᮲௳࡛
ᐃࡋࡓࠋ
➨ 3 㡯 RNA ᢳฟ᪉ἲ
YPD ᇵᆅ࡛ᇵ㣴ࡋࡓ㓝ẕ⣽⬊ࡣ 15,000 rpmࠊ4°Cࠊ1 min ࡢ᮲௳࡛㐲ᚰศ㞳(MX301; Tomy Seiko, ᮾி, ᪥ᮏ)࡟ࡼࡾᅇ཰ࡋࡓࠋTotal RNA ࡣ Fast RNA® Pro Red
24
Kit (MP Biomedicals, CA, USA)ࢆ⏝࠸࡚ࣇ࢙࣮ࣀ࣮ࣝ-ࢡ࣒ࣟࣟ࣍ࣝἲ࡟ࡼࡾᢳฟ
ࡋࡓࠋ⣽⬊◚○ࢆ Multi-Beads Shocker® (Ᏻ஭ჾᲔ, ኱㜰, ᪥ᮏ)࡛ 10 min ࡟ࠊࢡ
࣒ࣟࣟ࣍ࣝฎ⌮ࢆ 2 ᅇ࡟ኚ᭦ࡋࡓ௨እࡣᢳฟ࢟ࢵࢺࡢࣉࣟࢺࢥࣝ࡟ᚑࡗࡓࠋRNA
⃰ᗘ࠾ࡼࡧ⣧ᗘࡣ 260 nm ࡢ྾ගᗘ࠾ࡼࡧ Agilent 2100 BioanalyzerTM (Agilent
Technologies, CA, USA)࡟ࡼࡾ ᐃࡋࡓࠋ
➨ 4 㡯 DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒ᪉ἲ
DNA ࣐࢖ࢡࣟ࢔ࣞ࢖࡟ࡼࡿ㑇ఏᏊⓎ⌧ࡢ⥙⨶ⓗゎᯒࡣࠊYeast Oligo Microarray
Kit (V2)TM (Agilent Technologies)ࢆ⏝࠸࡚ゎᯒࡋࡓࠋࡇࡢ࣐࢖ࢡࣟ࢔ࣞ࢖࡛ࡣࠊS.
cerevisiae S288c ᰴࡢ 6,256 㑇ఏᏊ࡟ᑐᛂࡍࡿ DNA ࣉ࣮ࣟࣈࢆ⏝࠸ࡓࠋ㑇ఏᏊⓎ
⌧ゎᯒࡣ 1 Ⰽἲ࡟ࡼࡾゎᯒࡋࡓࠋcDNA ࡣ Quick Amp Labeling KitTM (Agilent
Technologies)ࢆ⏝࠸࡚ total RNA ࠿ࡽㄪ〇ࡋࡓࠋcRNA ࡣࠊCy5 Ⰽ⣲࡟ࡼࡾ T7
RNA polymerase (Agilent Technologies)ࢆ⏝࠸࡚ࣛ࣋ࣝࡋࡓࠋcDNA ࠾ࡼࡧ cRNAࠊ
Cy5 ࡟ࡼࡿࣛ࣋ࣝ໬ࠊࣉ࣮ࣟࣈ࡜ࡢࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩࣙࣥࡣ Ecogenomics (⚟
ᒸ, ᪥ᮏ)࡟ጤクࡋࡓࠋ
25
➨ 5 㡯 㑇ఏᏊⓎ⌧ࡢศ㢮ゎᯒ᪉ἲ
ࡑࢀࡒࢀࡢ ORF(Open Reading Frame)࠿ࡽ᳨ฟࡉࢀࡓࢩࢢࢼࣝࡣࠊࢡ࢜ࣥࢱ࢖
ࣝἲ࡟ࡼࡾṇつ໬ࡋࡓࠋKA31a ᰴ᳨࡛ฟࡉࢀࡓࢩࢢࢼࣝ࡜ẚ࡭࡚ 2 ಸ௨ୖ࠶ࡿ
࠸ࡣ༙ศ௨ୗ࡟ a924E1 ᰴࡢࢩࢢࢼࣝᙉᗘࡀኚ໬ࡋࡓ㑇ఏᏊࢆࡑࢀࡒࢀ࢔ࢵࣉࣞ
ࢠ࣮ࣗࣞࢺ㑇ఏᏊࠊࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊ࡜ࡋࡓࠋྛ㑇ఏᏊࡣࢫࢳ࣮ࣗࢹࣥ
ࢺࡢ t ᳨ᐃ(p < 0.05)࡟ࡼࡾ⤫ィฎ⌮ࡋࡓࠋⓎ⌧ࡀኚ໬ࡋࡓ㑇ఏᏊࡣ MIPS GenRE
CYGD database (http://mips.helmholtz-muenchen.de/genre/proj/yeast/)࡟ࡼࡾゎᯒࡋ
ࡓࠋᮏ◊✲ࡢ DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ࢹ࣮ࢱࡣ MIAME ᇶ‽࡟‽ᣐࡋࠊ⏕ࢹ࣮ࢱࡣ
Gene Expression Omnibus (GEO) database ࡟ᐤクࡋࡓ(GSE55120)ࠋ
➨ 6 㡯 quantitative PCR ᪉ἲ
ୖグࡢ᪉ἲ࡛㓝ẕ⣽⬊࠿ࡽᢳฟࡉࢀࡓ total RNA ࡣࠊReverTra AceR qPCR RT
Master Mix (TOYOBO, Osaka, Japan)ࢆ⏝࠸࡚ 37°Cࠊ15 min ࡢ᮲௳࡛㏫㌿෗ࡋࡓࠋ
DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ࡢ⤖ᯝ࡟ᇶ࡙ࡁࠊ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊ࠾ࡼࡧࢲ࢘ࣥ
ࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊࡢࣉࣛ࢖࣐࣮ࢆタィ(⾲ 2)ࡋࠊPower SYBR® Green Master Mix
(Applied Biosystems, CA, USA) ࢆ ⏝ ࠸ ࡚ StepOnePlusTM rial-time PCR System
(Applied Biosystems)࡟ࡼࡾቑᖜࡋࡓ(95°C for 10 min, and 40 cycles: denaturation at
95°C for 15 s, annealing and extension at 60°C for 2 min)ࠋᚓࡽࢀࡓ Ct ್࠿ࡽ┦ᑐⓎ
26
⌧ࣞ࣋ࣝࢆ⟬ฟࡋࡓࠋCDC48 㑇ఏᏊࡣ⣽⬊࿘ᮇ࡟㛵㐃ࡍࡿᚲ㡲㑇ఏᏊ࡛࠶ࡾࠊ
a924E1 ᰴ࠾ࡼࡧ KA31a ᰴࡢ୧ᰴ࡟࠾࠸࡚ྠ➼ࡢⓎ⌧㔞࡛࠶ࡗࡓࡓࡵ࡟ࣁ࢘ࢫ
࣮࢟ࣆࣥࢢ㑇ఏᏊ࡜ࡋ࡚฼⏝ࡋࡓࠋ
27
➨ 3 ⠇ ⤖ᯝ
➨ 1 㡯 㑇ఏᏊⓎࣉࣟࣇ࢓࢖ࣝࡢᴫせ
ᮏ❶࡛ࡣࠊDNA ࣐࢖ࢡࣟ࢔ࣞ࢖࡟ࡼࡾᅽຊឤཷᛶኚ␗ᰴ a924E1 ᰴࡢ㑇ఏᏊ
Ⓨ⌧ࣉࣟࣇ࢓࢖ࣝࢆゎᯒࡋࡓࠋTotal RNA ࡣ a924E1 ᰴ࠾ࡼࡧ KA31a ᰴ࠿ࡽࡑࢀ
ࡒࢀ 4 ᅇࡢ⊂❧ࡋࡓᐇ㦂࡟ࡼࡾᢳฟࡉࢀࡓࠋᢳฟ RNA ࡢ⃰ᗘࡣ࠾ࡼࡑ 1.2 μg/μL
࡛࠶ࡿࠋࡇࡢ RNA ࢆ௨ୗࡢ DNA ࣐࢖ࢡࣟ࢔ࣞ࢖࠾ࡼࡧ RT-PCR ࡟౪ࡋࡓࠋ
DNA ࣐࢖ࢡࣟ࢔ࣞ࢖࡟ࡼࡾ᳨ฟࡉࢀࡓࢩࢢࢼࣝࢹ࣮ࢱࡣࢡ࢜ࣥࢱ࢖ࣝἲ࡟ࡼ
ࡾṇつ໬ࡋࠊ5,821 㑇ఏᏊࡢⓎ⌧ࢹ࣮ࢱ 8 ࢭࢵࢺࢆྲྀᚓࡋࡓࠋࡇࢀࡽࡢ㑇ఏᏊࡢ
࠺ࡕࠊa924E1 ᰴࡢ 498 㑇ఏᏊࡢⓎ⌧ࣞ࣋ࣝࡣ KA31a ᰴࡢ㑇ఏᏊࡢⓎ⌧ࣞ࣋ࣝࡼ
ࡾࡶ᭷ព࡟㧗ࡃ(p < 0.05)ࠊ649 㑇ఏᏊࡢⓎ⌧ࣞ࣋ࣝࡣ᭷ព࡟ప࠿ࡗࡓ(p < 0.05)ࠋ
➨ 2 㡯 ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊⓎ⌧ࡢゎᯒ
a924E1 ᰴ࡟࠾࠸࡚࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡉࢀࡓ 498 㑇ఏᏊࡣࠊMIPS GenRE
CYGD database ࡟ࡼࡾศ㢮ゎᯒࡉࢀࡓࠋⓎ⌧ࡢኚືࡋࡓ㑇ఏᏊࡢ๭ྜࡀ᭱ࡶ㧗ࡃࠊ
p ್ࡀ᭱ࡶప࠸ᶵ⬟࢝ࢸࢦ࣮ࣜࡣ“Energy”࡛࠶ࡗࡓ(⾲ 3)ࠋ“Energy”࢝ࢸࢦ࣮ࣜ࡟
ศ㢮ࡉࢀࡿ 367 㑇ఏᏊࡢ࠺ࡕࢩࢺࢡ࣒ࣟ c 㓟໬㓝⣲ࠊATP ྜᡂ㓝⣲ࠊcoenzyme
Q ➼࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊ(COX1ࠊAI1ࠊCOX17ࠊCOX18ࠊ
28
CYC7ࠊPET191ࠊSHY1ࠊNCA2ࠊCOQ8 㑇ఏᏊ)ࡸ࣑ࢺࢥࣥࢻࣜ࢔ࡢࣜ࣎ࢯ࣮࣒ྜ
ᡂ࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊ➼ 45 㑇ఏᏊ(MRPL1ࠊMRPS35ࠊ
MBA1 㑇ఏᏊ)ࡀ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡉࢀ࡚࠸ࡓࠋ
“Biogenesis of cellular components”࢝ࢸࢦ࣮ࣜࡣ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊࡢ
๭ྜࡀ 2 ␒┠࡟ከ࠿ࡗࡓ(⾲ 3)ࠋྠ࢝ࢸࢦ࣮ࣜ࡟ศ㢮ࡉࢀࡿ 862 㑇ఏᏊࡢ࠺ࡕ 88
㑇ఏᏊࡀ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡉࢀ࡚࠸ࡓࠋࡲࡓࠊྠ࢝ࢸࢦ࣮ࣜࡢୗ఩࢝ࢸࢦ࣮ࣜ
࡛࠶ࡿ“Mitochondrion”ࢧࣈ࢝ࢸࢦ࣮ࣜ࡟ศ㢮ࡉࢀࡿ 171 㑇ఏᏊࡢ࠺ࡕ 32 㑇ఏᏊ
ࡀ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡉࢀ࡚࠸ࡓࠋࡑࢀࡽࡢ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡉࢀࡓ㑇ఏᏊ
ࡢ࠺ࡕࠊ21 㑇ఏᏊࡀ࣑ࢺࢥࣥࢻࣜ࢔ࣜ࣎ࢯ࣮࣒࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻ
ࡍࡿ㑇ఏᏊ(MRP51ࠊMRPL1ࠊMRPS35ࠊRSM25ࠊVAR1 㑇ఏᏊ)࡛࠶ࡗࡓࠋ
ࡑࢀࡒࢀࡢ㑇ఏᏊࡀࢥ࣮ࢻࡍࡿࢱࣥࣃࢡ㉁ࡢᒁᅾ఩⨨ศ㢮(⾲ 4)࡟࠾࠸࡚ࡣࠊ
࣑ࢺࢥࣥࢻࣜ࢔࡟ᒁᅾࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ“Mitochondria”࢝ࢸࢦ࣮ࣜ࡟
ศ㢮ࡉࢀࡿ㑇ఏᏊ⩌ࡀ᭱ࡶప࠸ p ್ࢆ♧ࡋࡓ(p < 0.01)ࠋࡇࢀࡽࡢ࢔ࢵࣉࣞࢠࣗ
࣮ࣞࢺࡉࢀࡓ㑇ఏᏊࡀࢥ࣮ࢻࡋ࡚࠸ࡿࢱࣥࣃࢡ㉁ࡣ㓟໬ⓗࣜࣥ㓟໬࡟㛵୚ࡋ࡚
࠾ࡾࠊ࢚ࢿࣝࢠ࣮⏘⏕࡟㔜せ࡛࠶ࡿࠋࡇࢀࡽࡢ⤖ᯝࡣࠊa924E1 ᰴ࡟࠾࠸࡚ᅽຊ
ឤཷᛶኚ␗ᑟධ࡟ࡼࡾ࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟࡟㛵㐃ࡍࡿ㑇ఏᏊ࡟ᙳ㡪ࡀ⾲ࢀ࡚࠸
ࡿࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿࠋ
29
➨ 3 㡯 ࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊⓎ⌧ࡢゎᯒ
a924E1 ᰴ࡟࠾࠸࡚ࠊࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺࡋࡓ㑇ఏᏊࡣ 649 㑇ఏᏊ᳨ฟࡉࢀࡓ
(⾲ 5)ࠋࡇࢀࡽࡢ㑇ఏᏊࡣ MIPS GenRE CYGD database ࡟ࡼࡾศ㢮ࡉࢀࠊ“Protein
synthesis”ࠊ“Transcription”ࠊ“Binding protein”࢝ࢸࢦ࣮ࣜࡢ 3 ࢝ࢸࢦ࣮ࣜࡀྛ࢝ࢸ
ࢦ࣮ࣜ࡟ศ㢮ࡉࢀࡿ㑇ఏᏊ࡟࠾࠸࡚ኚື㑇ఏᏊࡢ㧗࠸๭ྜࠊప࠸ p ್ࢆ♧ࡋࡓ
(⾲ 5)ࠋ“Protein synthesis”࢝ࢸࢦ࣮ࣜ࡟ศ㢮ࡉࢀࡿ㑇ఏᏊࡢ࠺ࡕ 155 㑇ఏᏊࡀࢲ
࢘ࣥࣞࢠ࣮ࣗࣞࢺࡉࢀࠊ“Transcription”࢝ࢸࢦ࣮࡛ࣜࡣ 1,077 㑇ఏᏊࡢ࠺ࡕ 155 㑇
ఏᏊࠊ“Binding protein”࢝ࢸࢦ࣮࡛ࣜࡣ 1,049 㑇ఏᏊࡢ࠺ࡕ 148 㑇ఏᏊࡀࢲ࢘ࣥ
ࣞࢠ࣮ࣗࣞࢺࡋࡓࠋRPS3ࠊRPS5ࠊRPS31ࠊRPL10ࠊRPL30 㑇ఏᏊ➼ࡢࡇࢀࡽࡢ࢝
ࢸࢦ࣮ࣜ࡟ศ㢮ࡉࢀࡓࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊࡢ࠸ࡃࡘ࠿ࡣࠊࣜ࣎ࢯ࣮࣒ࡢ
⏕ྜᡂࡸ rRNA ࡢྜᡂࠊࣉࣟࢭࢵࢩࣥࢢࠊಟ㣭➼࡟㛵㐃ࡍࡿࠋࡇࢀࡽࡢ㑇ఏᏊࡀ
ࢥ࣮ࢻࡍࡿࢱࣥࣃࢡ㉁ࡣ୺࡟“Cytoplasm”࠾ࡼࡧ“Nucleus”࡟ᒁᅾࡋ࡚࠸ࡓ(⾲ 6)ࠋ
ࡲࡓࠊࣂࣜࣥࠊࣟ࢖ࢩࣥࠊ࢖ࢯࣟ࢖ࢩࣥࠊ࢔ࣝࢠࢽࣥࠊࢭࣜࣥࠊࢺࣜࣉࢺࣇ࢓ࣥ
➼ࡢ࢔࣑ࣀ㓟ࡢ⏕ྜᡂ࡟㛵㐃ࡍࡿࢧࣈ࢝ࢸࢦ࣮ࣜ࡟ศ㢮ࡉࢀࡓ㑇ఏᏊࡶࢲ࢘ࣥ
ࣞࢠ࣮ࣗࣞࢺࡋࡓࠋࡇࢀࡽࡢ⤖ᯝࡣࠊኚ␗ᰴ࡟࠾࠸࡚ࢱࣥࣃࢡ㉁࠾ࡼࡧ࢔࣑ࣀ㓟
ࡢ⏕ྜᡂ࡟㛵୚ࡍࡿάᛶࡀῶᑡࡋ࡚࠸ࡿࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿࠋ
30
➨ 4 㡯 quantitative PCR ࡟ࡼࡿ㑇ఏᏊⓎ⌧ゎᯒࡢホ౯
࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺ࠾ࡼࡧࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊࡢⓎ⌧ࢆ☜ㄆࡍࡿࡓࡵ
࡟ྛ㑇ఏᏊ࡟ᑐᛂࡍࡿࣉࣛ࢖࣐࣮ࢆタィࡋࡓ(⾲ 2)ࠋquantitative PCR ࡟ࡼࡾ
a924E1 ᰴ࠾ࡼࡧ KA31a ᰴࡢ㑇ఏᏊⓎ⌧ࢆホ౯ࡋࡓ(⾲ 7)ࠋa924E1 ᰴࡢ࢔ࢵࣉࣞ
ࢠ࣮ࣗࣞࢺࡋࡓ㑇ఏᏊࡢ┦ᑐⓎ⌧ࣞ࣋ࣝࡣࠊKA31a ᰴࡢ┦ᑐⓎ⌧ࣞ࣋ࣝࡼࡾࡶ
2 ಸ௨ୖ㧗࠿ࡗࡓࠋ୍᪉ࠊa924E1 ᰴࡢࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺ㑇ఏᏊࡢ┦ᑐⓎ⌧ࣞ
࣋ࣝࡣ KA31a ᰴ࡜ẚ㍑ࡋ࡚༙ศ௨ୗ࡛࠶ࡗࡓࠋࡇࢀࡽࡢ⤖ᯝࡣࠊDNA ࣐࢖ࢡࣟ
࢔ࣞ࢖࡟ࡼࡿ㑇ఏᏊⓎ⌧ゎᯒ⤖ᯝࡢጇᙜᛶࢆᨭᣢࡋ࡚࠸ࡿࠋࡋ࠿ࡋ࡞ࡀࡽࠊDNA
࣐࢖ࢡࣟ࢔ࣞ࢖࡟ࡼࡗ࡚࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡉࢀ࡚࠸ࡓ a924E1 ᰴࡢ COX1 㑇ఏ
Ꮚࡢ┦ᑐⓎ⌧ࣞ࣋ࣝࡣ࡜࡚ࡶᑡ࡞࠿ࡗࡓࠋCOX1 㑇ఏᏊࡢูࡢ㡿ᇦࢆࢱ࣮ࢤࢵࢺ
࡜ࡋࡓࣉࣛ࢖࣐࣮࡛☜ㄆࡋࡓࡀࠊⓎ⌧ࢆほᐹࡍࡿࡇ࡜ࡣ࡛ࡁ࡞࠿ࡗࡓ(⾲ 7)ࠋ
31
➨ 4 ⠇ ⪃ᐹ
ᮏ❶࡛ࡣࠊᅽຊឤཷᛶ⬟ࡢ௜୚ᶵᵓࢆ᫂ࡽ࠿࡜ࡍࡿࡓࡵ࡟ࠊDNA ࣐࢖ࢡࣟ࢔
ࣞ࢖࡟ࡼࡾᅽຊឤཷᛶኚ␗ᰴ a924E1 ᰴࡢ㑇ఏᏊⓎ⌧ࣉࣟࣇ࢓࢖ࣝࢆࡑࡢぶᰴ
KA31a ᰴࡢࡶࡢ࡜ẚ㍑ࡋࡓࠋࡑࡢ⤖ᯝࠊa924E1 ᰴࡢ 1,000 ௨ୖࡢ㑇ఏᏊࡢⓎ⌧
ࡀ᭷ព࡟ኚ໬ࡋࡓࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓ(p < 0.05)ࠋ≉࡟࢚ࢿࣝࢠ࣮௦ㅰᶵ⬟࡟
㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡢⓎ⌧ࡀ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡋ(⾲ 3)ࠊ
࢔࣑ࣀ㓟ࡸࢱࣥࣃࢡ㉁ࡢ⏕ྜᡂ࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡢⓎ
⌧ࡀࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺࡋࡓ(⾲ 5)ࠋ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡋࡓ㑇ఏᏊࡢከࡃࡣ࣑
ࢺࢥࣥࢻࣜ࢔࡟ᒁᅾࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊ࡛࠶ࡗࡓࠋDNA ࣐࢖ࢡ
ࣟ࢔ࣞ࢖࡟ࡼࡿ㑇ఏᏊⓎ⌧ࡢゎᯒ࡟࠾࠸࡚ὀពࡋ࡞ࡅࢀࡤ࡞ࡽ࡞࠸ࡇ࡜ࡣࠊⓎ
⌧ࡀኚືࡋࡓᶵ⬟㑇ఏᏊ⩌ࡀࠊ࡞ࡐⓎ⌧ࢆኚືࡉࡏࡿᚲせࡀ࠶ࡗࡓࡢ࠿ DNA ࣐
࢖ࢡࣟ࢔ࣞ࢖ゎᯒࡢ⤖ᯝ඲యࢆಠ▔ⓗ࡟⪃ᐹࡍࡿࡇ࡜࡛࠶ࡿࠋ࣑ࢺࢥࣥࢻࣜ࢔
࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡀ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡉࢀࡓࡇ࡜࠿
ࡽࠊa924E1 ᰴ࡟࠾࠸࡚࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟ࡀ㔜せ࡛࠶ࡿࡇ࡜ࡀ⪃࠼ࡽࢀࡿࠋࡑ
ࡢཎᅉ࡜ࡋ࡚ࡣࠊᅽຊឤཷᛶኚ␗ࡢᑟධ࡟ࡼࡾձ࣑ࢺࢥࣥࢻࣜ࢔ࡀศゎ࠶ࡿ࠸
ࡣᶵ⬟୙඲࡜࡞ࡗࡓࡢ࠿ࠊղ࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟ࡀᙉ໬ࡉࢀࡓࡢ࠿ࢃ࠿ࡽ࡞࠸ࠋ
ࡇࡢ⤖ᯝ࡜ేࡏ࡚ࠊࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺࡋࡓ㑇ఏᏊ⩌ࡀ࢔࣑ࣀ㓟ࡸࢱࣥࣃࢡ㉁
32
ࡢ⏕ྜᡂ࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡋ࡚࠸ࡓࡇ࡜࠿ࡽࠊᅽຊឤཷᛶ⬟ࡣ
a924E1 ᰴࡢ࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟ࡀపୗࡍࡿࡼ࠺࡞ᙳ㡪ࢆᘬࡁ㉳ࡇࡋ࡚࠸ࡿྍ⬟
ᛶࡀ⪃࠼ࡽࢀࡿࠋ
RT-PCR ࡟ࡼࡾ㑇ఏᏊⓎ⌧ࢆホ౯ࡋࡓ⤖ᯝࠊa924E1 ᰴࡢ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺ
ࡋࡓ㑇ఏᏊࡢ┦ᑐⓎ⌧ࣞ࣋ࣝࡣࠊKA31a ᰴࡢ┦ᑐⓎ⌧ࣞ࣋ࣝࡼࡾࡶ 2 ಸ௨ୖ㧗
࠸್ࢆ♧ࡋࡓ(⾲ 7)ࠋࡋ࠿ࡋ࡞ࡀࡽࠊDNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒ࡟ࡼࡾ࢔ࢵࣉࣞࢠ
࣮ࣗࣞࢺࡋ࡚࠸ࡓ࣑ࢺࢥࣥࢻࣜ࢔ࡢ㓟໬ⓗࣜࣥ㓟໬࡟㛵㐃ࡍࡿࢩࢺࢡ࣒ࣟ c 㓟
໬㓝⣲ࢆࢥ࣮ࢻࡍࡿ COX1 㑇ఏᏊࡢⓎ⌧ࡣ☜ㄆ࡛ࡁ࡞࠿ࡗࡓ(⾲ 7)ࠋ
DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ࡣ DNA ࢳࢵࣉୖࡢࢃࡎ࠿ᩘ༑ሷᇶࡢࣉ࣮ࣟࣈ࡟ࡼࡗ࡚
ᩘ༓ࡢ㑇ఏᏊࢆ㆑ูࡍࡿ᪉ἲ࡛࠶ࡿࠋࢡࣟࢫࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩࣙࣥࡍࡿࡇ࡜
ࡀ↓࠸ࡼ࠺࡟ཝᐦ࡟タィࡉࢀࡓ PCR ⏝ࡢࣉࣛ࢖࣐࣮࡜␗࡞ࡾࠊDNA ࣐࢖ࢡࣟ࢔
ࣞ࢖ࡢࣉ࣮ࣟࣈࡣࢡࣟࢫࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩࣙࣥࡍࡿࣜࢫࢡࡼࡾࡶᩘ༓✀㢮௨
ୖࡢ㑇ఏᏊࡢⓎ⌧ࢆ⥙⨶ⓗ࡟ゎᯒࡍࡿࡇ࡜ࢆඃඛࡋ࡚࠸ࡿࠋࡑࡢࡓࡵ࡟ࠊࡇࡢぢ
࠿ࡅୖࡢ COX1 㑇ఏᏊࡢ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢩࣙࣥࡣࠊDNA ࣐࢖ࢡࣟ࢔ࣞ࢖࡟≉
᭷ࡢࢡࣟࢫࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩ࡛ࣙࣥ࠶ࡿ࡜⪃࠼ࡽࢀࡿࠋDNA ࣉ࣮ࣟࣈࡢሷᇶ
㓄ิࡢ┦ྠᛶࡸ⺯ගᙉᗘࡢࡤࡽࡘࡁࠊ⣽⬊ࡢᇵ㣴᮲௳➼ࡀཎᅉ࡛ࡋࡤࡋࡤࢡࣟ
ࢫࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩࣙࣥࡀᘬࡁ㉳ࡇࡉࢀࡿࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ(Iwahashi et
al., 2007)ࠋᐇ㝿࡟ DNA ࢳࢵࣉୖࡢ COX1 㑇ఏᏊࡢࣉ࣮ࣟࣈࡣࠊ௚ࡢ㑇ఏᏊ࡜ᴟ
33
ࡵ࡚㧗࠸┦ྠᛶࢆ♧ࡋࡓࠋ౛࠼ࡤࠊCOX1 㑇ఏᏊࣉ࣮ࣟࣈࡢ 40-60 bp 㒊ศࡣࠊ5࣍ࢫ࣍ࣜ࣎ࢩࣝ-1-α-ࣆࣟࣜࣥ㓟ྜᡂ㓝⣲ࢆࢥ࣮ࢻࡍࡿ PRS2 㑇ఏᏊࡢሷᇶ㓄ิ
࡜୍⮴ࡋࡓࠋຍ࠼࡚ࠊCOX1 㑇ఏᏊࡢⓎ⌧࡟ࡘ࠸࡚ࠊ㑇ఏᏊ㓄ิࡢ␗࡞ࡿ㡿ᇦࢆ
ᑐ㇟࡜ࡋࡓ quantitative PCR ࡛෌ゎᯒࡋࡓ࡜ࡇࢁࠊⓎ⌧ࡣ☜ㄆ࡛ࡁ࡞࠿ࡗࡓ(⾲ 7)ࠋ
ࡇࢀࡽࡢ⤖ᯝࡣࠊa924E1 ᰴ࡟࠾࠸࡚ COX1 㑇ఏᏊࡢⓎ⌧ࡀ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺ
ࡋ࡚࠸࡞࠸ࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿࠋ
ᮏ❶ࡢ⤖ᯝࢆࡲ࡜ࡵࡿ࡜ࠊa924E1 ᰴࡣᅽຊឤཷᛶኚ␗ࡢᑟධ࡟ࡼࡾ࣑ࢺࢥࣥ
ࢻࣜ࢔ࡸ࢔࣑ࣀ㓟➼ࡢࢱࣥࣃࢡ㉁ࡢ⏕ྜᡂ࡟㛵㐃ࡍࡿᶵ⬟࡟ᙳ㡪ࡀ⏕ࡌࡓࡇ࡜
ࡀ♧၀ࡉࢀࡓࠋ࣑ࢺࢥࣥࢻࣜ࢔ࡣࠊᵝࠎ࡞࢔࣑ࣀ㓟➼ࡢ୰㛫௦ㅰ⏘≀ࡢ⏕ྜᡂࡢ
୺せ࡞௦ㅰ⤒㊰࡛࠶ࡾࠊ㔜せ࡞ᙺ๭ࢆᢸ࠺ჾᐁ࡛࠶ࡿࠋ➨ 3 ❶࡛ࡣࠊDNA ࣐࢖
ࢡࣟ࢔ࣞ࢖ゎᯒ࡟ᇶ࡙ࡁࠊa924E1 ᰴࡢᅽຊឤཷᛶ⬟ࡀཬࡰࡍ࣑ࢺࢥࣥࢻࣜ࢔ᶵ
⬟࡬ࡢᙳ㡪࡟ࡘ࠸࡚ゎᯒࡍࡿࠋ
34
➨ 3 ❶ ࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟ࡢゎᯒ
➨ 1 ⠇ ⥴ゝ
➨ 1 㡯 㓝ẕ࡜࣑ࢺࢥࣥࢻࣜ࢔
࣑ࢺࢥࣥࢻࣜ࢔ࡣ㓟໬ⓗࣜࣥ㓟໬࡟ࡼࡿ࢚ࢿࣝࢠ࣮⏕⏘ࢆྖࡿ⣽⬊ᑠჾᐁ࡛
࠶ࡿࠋ࣑ࢺࢥࣥࢻࣜ࢔ࡣ⊂⮬࡟ DNA(࣑ࢺࢥࣥࢻࣜ࢔ DNA)ࢆᣢࡕࠊศ⿣ࠊቑṪ
ࢆ⾜࠺ࡇ࡜ࡀ࡛ࡁࡿࠋ㓝ẕࡢ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡣ࠾ࡼࡑ 76 kbp ࡛࠶ࡾࠊࣄࢺ
ࡣ࠾ࡼࡑ 16.5 kbp ࡛࠶ࡿ(⚟ཎ, 1986)ࠋ࡯࡜ࢇ࡝ࡢ┿᰾⏕≀ࡣ࢚ࢿࣝࢠ࣮⋓ᚓࢆ
ዲẼ࿧྾࡟౫Ꮡࡋ࡚࠸ࡿࡓࡵ࡟ࠊ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡢḞᦆ➼࡟㉳ᅉࡍࡿ࣑ࢺ
ࢥࣥࢻࣜ࢔ᶵ⬟ࡢపୗࡣ⮴࿨ⓗ࡛࠶ࡿࠋ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡢḞᦆ࡟㛵㐃ࡋ࡚
࠸ࡿࣄࢺࡢ㑇ఏ⑓ࡶᑡ࡞ࡃ࡞࠸ࠋࡲࡓࠊ࣑ࢺࢥࣥࢻࣜ࢔ࡢ㓟໬ⓗࣜࣥ㓟໬࡟ࡼࡾ
⏕ᡂࡉࢀࡿάᛶ㓟⣲ࡀ⒴ࢆᘬࡁ㉳ࡇࡍࡇ࡜ࡶ♧၀ࡉࢀ࡚࠸ࡿࠋ
㓝ẕࡣ࢚ࢱࣀ࣮ࣝⓎ㓝࡟ࡼࡾ⏕Ꮡࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࡓࡵࠊ࣑ࢺࢥࣥࢻࣜ
࢔ DNA ࡢḞᦆࡣࣄࢺ࡯࡝⮴࿨ⓗ࡛ࡣ࡞࠸ࠋᐇ㝿࡟ Ephrussi ࡽ(1955)ࡶሗ࿌ࡋ࡚
࠸ࡿࡼ࠺࡟㓝ẕࡢ࿧྾Ḟᦆᰴ࡟ࡘ࠸࡚ࡣᩘከࡃሗ࿌ࡉࢀ࡚࠾ࡾࠊ≉࡟࣑ࢺࢥࣥ
ࢻࣜ࢔ DNA ࡀḞኻࡋࡓᰴࢆ rho㸫ᰴࠊ᏶඲࡟Ḟኻࡋࡓᰴࢆ rho0 ᰴ࡜࿧ࡪࠋ㓝ẕ
ࡣࣄࢺࡢ࿧྾ᶵ⬟࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡢ࣍ࣔࣟࢢࢆᩘከ
35
ࡃ᭷ࡋ࡚࠸ࡿࠋࡑࡢࡓࡵ࡟࣑ࢺࢥࣥࢻࣜ࢔ࡀ㛵㐃ࡍࡿ㑇ఏ⑓ࡸ⒴ࢆጞࡵ࡜ࡋࡓ
ከࡃࡢ⑓Ẽࡸ࿧྾㜼ᐖ๣➼࡟ᑐࡍࡿᇶ♏◊✲࡜ࡋ࡚㓝ẕࡢ࣑ࢺࢥࣥࢻࣜ࢔◊✲
ࡀάⓎ࡟㐍ࡵࡽࢀ࡚࠸ࡿ (⚟ཎ, 1986)ࠋ
➨ 2 㡯 ᐇ㦂┠ⓗ
➨ 2 ❶ࡢ DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒ࡟ࡼࡾࠊa924E1 ᰴࡢᅽຊឤཷᛶ࡜࣑ࢺࢥ
ࣥࢻࣜ࢔ࡢ㛵㐃ᛶࡀ♧၀ࡉࢀࡓࠋ࣑ࢺࢥࣥࢻࣜ࢔ࡣ࿧྾ᶵ⬟ࡸ⣽⬊ෆ௦ㅰࡢ୰
㛫௦ㅰ⏘≀ࢆ⏕⏘ࡍࡿ㔜せ࡞ჾᐁ࡛࠶ࡿࠋᮏ❶࡛ࡣ࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟ࢆ⾲⌧
ᙧ㉁ゎᯒ࡟ࡼࡾホ౯ࡋࡓࠋ
36
➨ 2 ⠇ ᐇ㦂ᮦᩱ࠾ࡼࡧᐇ㦂᪉ἲ
➨ 1 㡯 ౑⏝⳦ᰴ
ᮏᐇ㦂࡟ࡣࠊᐇ㦂ᐊ㓝ẕᰴ S. cerevisiae KA31a ᰴ࠾ࡼࡧᅽຊឤཷᛶኚ␗ᰴ
a924E1 ᰴࡢᐃᖖᮇ⣽⬊ࢆ౑⏝ࡋࡓ(⾲ 1)ࠋࡇࢀࡽࡢ㓝ẕᰴࡣࠊ᪂₲⸆⛉኱Ꮫ 㔜
ᯇ ஽ ᩍᤵࡼࡾศ୚ࡋ࡚࠸ࡓࡔ࠸ࡓࠋࡲࡓࠊ➨ 3 㡯࡛సฟࡋࡓ஧ಸయᰴࢆ౑⏝
ࡋࡓ(⾲ 1)ࠋ
➨ 2 㡯 ᇵ㣴᮲௳
YPD ᇵᆅ(2.0% peptoneࠊ1.0% yeast extractࠊ2.0% glucose)ࢆ⏝࠸࡚ࠊ30°Cࠊ48
h ࡢ᮲௳࡛᣺┞ᇵ㣴ࡋࡓᐃᖖᮇ⣽⬊ࢆᐇ㦂࡟౪ࡋࡓࠋቑṪ᭤⥺ࡣ Hasegawa ࡽ
(2012)ࡢ᪉ἲ࡟ᚑ࠸ࠊBio Microplate Reader HiTSTM ࢆ⏝࠸࡚ 30°Cࠊ120 h ࡢ᮲௳
࡛ ᐃࡋࡓࠋ
➨ 3 㡯 ஧ಸయᰴࡢసฟ
ᮏᐇ㦂࡛౑⏝ࡋࡓ஧ಸయᰴࡣࠊᅽຊឤཷᛶኚ␗ᰴ a924E1 ᰴ(a ᆺ୍ಸయᰴ)࡜
㔝⏕ᆺᰴ KA31α ᰴ(α ᆺ୍ಸయᰴ)ࡢ᥋ྜ࡟ࡼࡾసฟࡋࡓࠋ୧ᰴࡢᇵ㣴ᾮ 300 μL
ࢆ YPD ᇵᆅ 2.4 mL ࡟ຍ࠼࡚ࡼࡃΰྜࡋࠊ30°Cࠊ24 h ࡢ᮲௳࡛㟼⨨ᇵ㣴ࡋࡓࠋᇵ
37
㣴ᚋࠊ఩┦ᕪ㢧ᚤ㙾࡟ࡼࡾ᥋ྜᏊࢆ☜ㄆࡋ࡚ YPD ᐮኳᇵᆅୖ࡟᥋ྜ⣽⬊ࢆ࢔࢖
ࢯ࣮ࣞࢩࣙࣥࡋࠊ༢㞳ࡋࡓࢥࣟࢽ࣮ࢆ஧ಸయೃ⿵ᰴ࡜ࡋࡓࠋ஧ಸయೃ⿵ᰴࢆ෌ࡧ
a924E1 ᰴ࠾ࡼࡧ KA31α ᰴࡢᇵ㣴ᾮ࡜ࡑࢀࡒࢀΰྜࡋࠊ᥋ྜᏊࡀほᐹࡉࢀ࡞࠿ࡗ
ࡓࢥࣟࢽ࣮ࢆ஧ಸయᰴ࡜ࡋࡓࠋసฟࡋࡓ஧ಸయᰴࡣࠊ FACS CaliburTM flow
cytometer (Becton Dickinson and Co., NJ, ⡿ᅜ)࡟ࡼࡾ DNA 㔞࠾ࡼࡧ⣽⬊ࢧ࢖ࢬࢆ
☜ㄆࡋࡓࠋ
➨ 4 㡯 ࿧྾ᶵ⬟ࡢゎᯒ᪉ἲ
㓝ẕᰴࡢ࿧྾ᶵ⬟ࡣ 2,3,5-triphenyl-2H-tetrazolium chloride (TTC; Wako Pure
Chemical Industries)࡟ࡼࡿࢥࣟࢽ࣮ᰁⰍἲ࡟ࡼࡾ Nagai(1959)ࡢሗ࿌࡟ᚑ࠸ゎᯒ
ࡋࡓࠋ
➨ 5 㡯 ࣑ࢺࢥࣥࢻࣜ࢔ DNA Ḟኻࡢゎᯒ᪉ἲ
࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡢḞኻࡣ PCR ἲ࡟ࡼࡾゎᯒࡋࡓࠋTotal DNA ࡣࠊDr.
GenTLE® (from Yeast) High Recovery (ࢱ࢝ࣛࣂ࢖࢜)ࢆ⏝࠸ࡓࢨ࢖ࣔࣜ࢔࣮ࢮฎ⌮
࡟ࡼࡾᢳฟࡋࡓࠋᢳฟࡋࡓ DNA ࡣ TE ࣂࢵࣇ࢓࣮50 μL ࡟⁐ゎࡋࠊ㸫20°C ࡛ಖ
ᏑࡋࡓࠋDNA ⃰ᗘࡣ 260 nm ࡢ྾ගᗘ࡛ ᐃࡋࡓࠋ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡢቑᖜ
ࡢࡓࡵ࡟ࠊSaccharomyces Genome Database (SGD, http://www.yeastgenome.org/) ࠾
38
ࡼ ࡧ Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/)
ࢆ⏝࠸࡚ࠊ15S rRNAࠊ21S rRNAࠊCOX1ࠊCOX3ࠊCOB 㑇ఏᏊࢆᑐ㇟࡜ࡋࡓࣉࣛ
࢖࣐࣮ࢆタィࡋࡓ(⾲ 2)ࠋࣁ࢘ࢫ࣮࢟ࣆࣥࢢ㑇ఏᏊ࡜ࡋ࡚ࡣ CDC48 㑇ఏᏊࢆ⏝
࠸ࡓࠋ
➨ 6 㡯 㧗ᅽฎ⌮᪉ἲ
㧗ᅽฎ⌮ࡣࠊShigematsu ࡽ(2010a)ࡢሗ࿌࡟ᚑ࠸ࠊ200 MPaࠊ20°Cࠊ0-360 s ࡢ᮲
௳࡛⾜ࡗࡓࠋ
39
➨ 3 ⠇ ⤖ᯝ
➨ 1 㡯 ࿧྾ᶵ⬟ࡢゎᯒ
DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ࡢ⥙⨶ⓗ㑇ఏᏊⓎ⌧ゎᯒࡢ⤖ᯝ࠿ࡽ a924E1 ᰴ࡟࠾࠸࡚ࠊ
࣑ࢺࢥࣥࢻࣜ࢔ࡢᶵ⬟ࡀᅽຊឤཷᛶ⬟࡟ᙳ㡪ࢆ୚࠼࡚࠸ࡿࡇ࡜ࡀ♧၀ࡉࢀࡓࠋ
ࡑࡇ࡛ TTC ᰁⰍἲ࡟ࡼࡾ a924E1 ᰴࡢ࣑ࢺࢥࣥࢻࣜ࢔ࡢ࿧྾ᶵ⬟ࢆホ౯ࡋࡓࠋ
↓Ⰽࡢࢸࢺࣛࢰ࣒ࣜ࢘ሷࡣ㟁Ꮚཷᐜయ࡜ࡋ࡚ാࡁࠊ㓟໬ⓗࣜࣥ㓟໬ࡀ⾜ࢃࢀࡿ
࣑ࢺࢥࣥࢻࣜ࢔⭷㛫⭍࡛㉥Ⰽࡢ࣐࣍ࣝࢨࣥⰍ⣲࡟㑏ඖࡉࢀࡿࠋKA31a ᰴࡢࢥࣟ
ࢽ࣮ࡣ TTC ᐮኳᇵᆅࢆ㔜ᒙᚋ 20 min ࡛ࣆࣥࢡⰍ࡟ᰁࡲࡾࡣࡌࡵࠊ100 min ᚋ࡟
ࡣ⃰㉥Ⰽ࡟ᰁⰍࡉࢀࡓ(ᅗ 1)ࠋᑐ↷ⓗ࡟ࠊa924E1 ᰴࡢࢥࣟࢽ࣮ࡣ 100 min ࡀ⤒㐣
ࡋ࡚ࡶࢃࡎ࠿࡟ࣆࣥࢡⰍ࡟Ⰽ௜ࡃࡔࡅ࡛࠶ࡗࡓ(ᅗ 1)ࠋࡇࢀࡽࡢ⤖ᯝࡣࠊa924E1
ᰴࡢዲẼ࿧྾⬟ࡢάᛶࡀపୗࡋ࡚࠸ࡿࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿࠋ
➨ 2 㡯 ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡢḞኻ
㓝ẕ࡟࠾ࡅࡿ࿧྾ᶵ⬟ࡢάᛶపୗࡣࠊ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡢḞኻࡀཎᅉ࡛࠶
ࡿࡇ࡜ࡀከ࠸ࠋa924E1 ᰴࡢ࿧྾ᶵ⬟ࡢάᛶపୗࢆᘬࡁ㉳ࡇࡋࡓ㑇ఏⓗせᅉࢆྠ
ᐃࡍࡿࡓࡵ࡟ࠊ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࢆᑐ㇟࡜ࡋ࡚ PCR ἲ࡟ࡼࡾゎᯒࡋࡓࠋ࣑
ࢺࢥࣥࢻࣜ࢔ DNA ࡢ୺せ࡞㑇ఏᏊ࡛࠶ࡿ 15S rRNAࠊ21S rRNAࠊCOX1ࠊCOX3ࠊ
40
COB 㑇ఏᏊࢆࢱ࣮ࢤࢵࢺ࡜ࡋ࡚ࣉࣛ࢖࣐࣮ࢆタィࡋࡓ(⾲ 2)ࠋCDC48 㑇ఏᏊࡣ
ෆ㒊ᶆ‽࡜ࡋࡓࠋࡑࡢ⤖ᯝࠊa924E1 ᰴ࡟࠾࠸࡚ 15S rRNAࠊ21S rRNAࠊCOX3ࠊ
COB 㑇ఏᏊࡢࣂࣥࢻࡣ᳨ฟࡉࢀࡓࡀࠊCOX1 㑇ఏᏊࢆྵࡴ㡿ᇦࢆࢱ࣮ࢤࢵࢺ࡜
ࡋࡓࣂࣥࢻࡣ᳨ฟࡉࢀ࡞࠿ࡗࡓ(ᅗ 5)ࠋ
➨ 3 㡯 ஧ಸయᰴࡢసฟ
COX1 㑇ఏᏊࡢḞኻ࡜ᅽຊឤཷᛶ⬟ࡢ㛵㐃ᛶࢆゎᯒࡍࡿࡓࡵ࡟ࠊa ᆺ୍ಸయᰴ
a924E1 ᰴ࠾ࡼࡧ α ᆺ୍ಸయ㔝⏕ᆺᰴ KA31α ᰴࡢ᥋ྜ࡟ࡼࡾ 5 ᰴࡢ஧ಸయᰴࢆ
సฟࡋࡓࠋసฟࡋࡓ஧ಸయᰴࡢ DNA 㔞࠾ࡼࡧ⣽⬊ࢧ࢖ࢬࡣࣇ࣮ࣟࢧ࢖ࢺ࣓ࢺࣜ
࣮࡛☜ㄆࡋࡓ(ᅗ 2)ࠋ஧ಸయᰴࡢ DNA 㔞(G1 ᮇ㸸2CࠊG2 ᮇ㸸4C)ࡣࠊ୍ಸయᰴ
(G1 ᮇ㸸1CࠊG2 ᮇ㸸2C)ࡢ࠾ࡼࡑ 2 ಸ㔞࡛࠶ࡗࡓࠋ஧ಸయᰴࡢ G2 ᮇ(DNA 㔞㸸
4C)ࡢ⣽⬊ࡢࢧ࢖ࢬࡣࠊG1 ᮇ(2C)ࡢ⣽⬊ࡢ 2 ಸ௨ୖ࡛࠶ࡾࠊྠᵝ࡟୍ಸయᰴ࡟
࠾࠸࡚ࡶࠊG2 ᮇ(DNA 㔞㸸2C)ࡢ⣽⬊ࡢࢧ࢖ࢬࡣࠊG1 ᮇ(1C)ࡢ⣽⬊ࡢ 2 ಸ௨ୖ
࡛࠶ࡗࡓࠋ஧ಸయᰴࡢቑṪ᭤⥺ࡣᅗ 3 ࡟♧ࡍࠋ
41
➨ 4 㡯 ᅽຊ୙άᛶ໬ᣲືࡢゎᯒ
సฟࡋࡓ஧ಸయᰴ࠾ࡼࡧ a924E1 ᰴࠊKA31a ᰴࢆ 200 MPaࠊ20°Cࠊ0-360 s ࡢ᮲
௳࡛㧗ᅽฎ⌮ࡋࡓࠋYPD ᐮኳᇵᆅ࡟ࡼࡿࢥࣟࢽ࣮࢝࢘ࣥࢺἲ࡟ࡼࡾ⏕⳦ᩘࢆ⟬
ฟࡋࡓࠋ120 sࠊ240 sࠊ360 s ࡢ᮲௳࡛㧗ᅽฎ⌮ࡋࡓࢧࣥࣉࣝࡢ⏕⳦ᩘࢆ 0 s ฎ⌮
ࢧࣥࣉࣝࡢ⏕⳦ᩘ࡛㝖ࡋ࡚⏕Ꮡ⋡࡜ࡋࡓࠋྛฎ⌮᮲௳ࡢ⏕Ꮡ⋡ࡢ⮬↛ᑐᩘ್ࢆ
⦪㍈࡟㧗ᅽฎ⌮᫬㛫ࢆᶓ㍈࡟ࣉࣟࢵࢺࡋ࡚ᅽຊ୙άᛶ໬᭤⥺ࢆసᡂࡋࠊᅽຊ୙
άᛶ໬㏿ᗘᐃᩘࢆ⟬ฟࡋࡓ(ᅗ 4)ࠋࡑࡢ⤖ᯝࠊKA31a ᰴ࡜ẚ㍑ࡋ࡚ a924E1 ᰴࡢ
ᅽຊឤཷᛶࡀ☜ㄆ࡛ࡁࡓࠋ஧ಸయᰴࡣࠊKA31a ᰴ࡜ྠ⛬ᗘࡢᅽຊ⪏ᛶࢆ♧ࡍ⩌
࡜ a924E1 ᰴ࡟༉ᩛࡍࡿᅽຊឤཷᛶࢆ♧ࡍ⩌࡟ศ࠿ࢀࡓࠋ
➨ 5 㡯 㔝⏕ᆺ࣑ࢺࢥࣥࢻࣜ࢔࡟ࡼࡿḞኻ㑇ఏᏊࡢ⿵᏶
࿧྾Ḟᦆ㓝ẕᰴ࡜㔝⏕ᆺ㓝ẕᰴࡢ᥋ྜ࡟࠾࠸࡚ࠊ࿧྾Ḟᦆᆺ࣑ࢺࢥࣥࢻࣜ࢔
ࡣ㔝⏕ᆺ࣑ࢺࢥࣥࢻࣜ࢔࡟୍ᐃࡢ๭ྜ࡛⨨᥮ࡉࢀࡿࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿࠋࡑ
ࡇ࡛ࠊa924E1 ᰴࡢ࿧྾Ḟᦆ࠾ࡼࡧᅽຊឤཷᛶࡢ⾲⌧ᆺࡀసฟࡋࡓ஧ಸయᰴ࡬࡝
ࡢࡼ࠺࡟ཷࡅ⥅ࡀࢀࡿࡢ࠿ホ౯ࡋࡓࠋTTC ᰁⰍࡢ⤖ᯝࠊ஧ಸయᰴࡣ TTC ࣏ࢪࢸ
࢕ࣈ(࿧྾ᶵ⬟᭷)࠾ࡼࡧ TTC ࢿ࢞ࢸ࢕ࣈ(࿧྾ᶵ⬟పୗ) ࡢ 2 ࡘࡢ⾲⌧ᙧ㉁ࢆ♧
ࡍ⩌࡟ศ㞳ࡋࡓ(ᅗ 1)ࠋTTC ࣏ࢪࢸ࢕ࣈ⩌ࡣ KA31a ᰴ࡜ྠ⛬ᗘࡢᅽຊ⪏ᛶࢆ♧
ࡍ⩌࡜ྠࡌ࡛࠶ࡗࡓࠋྠᵝ࡟ TTC ࢿ࢞ࢸ࢕ࣈ⩌ࡣ a924E1 ᰴ࡟༉ᩛࡍࡿᅽຊឤ
42
ཷᛶࢆ♧ࡋࡓ⩌࡜ྠࡌ࡛࠶ࡗࡓࠋࡲࡓࠊTTC ࣏ࢪࢸ࢕ࣈ⩌᳨࡛ฟࡉࢀࡿ COX1
㑇ఏᏊࡀࠊTTC ࢿ࢞ࢸ࢕ࣈ⩌࡛ࡣḞኻࡋ࡚࠸ࡿࡇ࡜ࢆ PCR ࡟ࡼࡾ☜ㄆࡋࡓ(ᅗ
5)ࠋࡇࢀࡽࡢ⤖ᯝࡣࠊᅽຊឤཷᛶ⬟ࡀ࣓ࣥࢹࣝᘧ࡟㑇ఏࡍࡿࡢ࡛ࡣ࡞ࡃࠊ࿧྾Ḟ
ᦆ࣑ࢺࢥࣥࢻࣜ࢔࡜ඹ࡟⣽⬊㉁㑇ఏࡋࡓࡇ࡜ࢆ♧၀ࡍࡿࠋ
43
➨ 4 ⠇ ⪃ᐹ
ᮏ❶࡛ࡣࠊDNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒ࡛♧၀ࡉࢀࡓ࣑ࢺࢥࣥࢻࣜ࢔࡜ᅽຊឤཷ
ᛶࡢ㛵㐃ᛶ࡟ࡘ࠸࡚↔Ⅼࢆᙜ࡚࡚ゎᯒࡋࡓࠋTTC ᰁⰍ࡟ࡼࡾ࣑ࢺࢥࣥࢻࣜ࢔ࡢ
࿧྾ᶵ⬟ࢆホ౯ࡋࡓ࡜ࡇࢁࠊa924E1 ᰴࡢ࿧྾ᶵ⬟ࡀపୗࡋ࡚࠸ࡿࡇ࡜ࡀ♧ࡉࢀ
ࡓ(ᅗ 1)ࠋ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࢆᑐ㇟࡜ࡋࡓ PCR ࡟ࡼࡗ࡚ COX1 㑇ఏᏊࢆࢥ
࣮ࢻࡍࡿ㡿ᇦࡢḞኻࡀ♧ࡉࢀࡓ(ᅗ 5)ࠋ
COX1 㑇ఏᏊ௨እࡢ࣑ࢺࢥࣥࢻࣜ࢔ DNA
ࡢ㑇ఏᏊ࡟࠾࠸࡚ࡣࠊḞኻࡣ☜ㄆࡉࢀ࡞࠿ࡗࡓ(ᅗ 5)ࠋࡇࢀࡽࡢ⤖ᯝࡣࠊa924E1
ᰴࡢ࣑ࢺࢥࣥࢻࣜ࢔࿧྾ᶵ⬟ࡢపୗࡀ COX1 㑇ఏᏊࡢḞኻ࡟㉳ᅉࡋ࡚࠸ࡿࡇ࡜
ࢆ♧၀ࡋ࡚࠸ࡿࠋ୍⯡ⓗ࡟࿧྾Ḟᦆ㓝ẕᰴࡣ඲࡚ࡢ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࢆḞᦆ
ࡋ࡚࠸ࡿࡀࠊa924E1 ᰴࡣ COX1 㑇ఏᏊࡢࡳࢆḞኻࡋࡓ㠀ᖖ࡟⛥࡞࿧྾Ḟᦆᰴ
࡛࠶ࡾࠊ࣑ࢺࢥࣥࢻࣜ࢔࡜࿧྾ᶵ⬟࡟㛵ࡍࡿ◊✲࡟࠾࠸࡚ࡶ᭷┈࡞ኚ␗ᰴ࡛࠶
ࡿࠋ
సฟࡋࡓ஧ಸయᰴ࡟࠾࠸࡚ࠊCOX1 㑇ఏᏊࡢḞኻࡣࠊ࣑ࢺࢥࣥࢻࣜ࢔࡜ඹ࡟
⣽⬊㉁㑇ఏࡋࡓ(ᅗ 1)ࠋCOX1 㑇ఏᏊࢆḞኻࡋࡓ࣑ࢺࢥࣥࢻࣜ࢔ࢆᣢࡘ࿧྾ᶵ⬟
ࡀపୗࡋࡓ஧ಸయᰴࡣࠊCOX1 㑇ఏᏊḞኻ࣑ࢺࢥࣥࢻࣜ࢔ࡀ㔝⏕ᆺ࣑ࢺࢥࣥࢻ
ࣜ࢔࡟⨨ࡁ᥮࠼ࡽࢀࡓ࿧྾ᶵ⬟ࢆ⥔ᣢࡋࡓ஧ಸయᰴ࡜ẚ㍑ࡋ࡚ࠊ᭷ព࡟㧗࠸ᅽ
ຊឤཷᛶࢆ♧ࡋࠊࡑࡢᅽຊឤཷᛶ⬟ࡣ a924E1 ᰴ࡟༉ᩛࡍࡿࡇ࡜ࡀ♧ࡉࢀࡓ(ᅗ
44
4)ࠋࡇࢀࡽࡢ⤖ᯝࡣࠊCOX1 㑇ఏᏊࡢḞኻࡀ a924E1 ᰴ࡟ᅽຊឤཷᛶ⬟ࢆ௜୚ࡋ
࡚࠸ࡿ୍ᅉ࡛࠶ࡿࡇ࡜ࢆ♧ࡋ࡚࠸ࡿࠋ࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟ࡀᅽຊឤཷᛶ⬟࡟ᙉ
ࡃ㛵㐃ࡍࡿ࡜࠸࠺ࡇࢀࡽࡢ⤖ᯝࡣ๓౛ࡀ↓࠸ࡀࠊᇶ♏ⓗ࡞ᅽຊឤཷᛶᶵᵓࢆ⌮
ゎࡍࡿࡓࡵࡢࣈࣞ࢖ࢡࢫ࣮ࣝ࡟࡞ࡿྍ⬟ᛶࡀ࠶ࡿࠋ
࣑ࢺࢥࣥࢻࣜ࢔ࡣࠊATP ࡸ NADHࠊᵝࠎ࡞࢔࣑ࣀ㓟ࡢ୰㛫⏘≀➼ࢆ⏕ᡂࡍࡿ
୺せ࡞௦ㅰ⤒㊰ࡢ୰ᚰⓗ࡞ᙺ๭ࢆᢸ࠺ࠋ࠸ࡃࡘ࠿ࡢ໬ྜ≀ࡣቑṪ࡟ᚲ㡲࡛ࡣ࡞
࠸ࡀࠊ࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟ࡢపୗ࡟ࡼࡗ࡚୺せ࡞௦ㅰࡀ೵Ṇࡍࡿࡇ࡜ࡣࠊከࡃࡢ
ࢫࢺࣞࢫ⪏ᛶࢆ㜼ᐖࡍࡿࡇ࡜࡟ࡘ࡞ࡀࡿࠋ౛࠼ࡤࠊࣉࣟࣜࣥࠊ࢔ࣝࢠࢽࣥࠊࢢࣝ
ࢱ࣑ࣥ㓟ࠊᒀ⣲➼ࡢ௦ㅰ࡟㛵㐃ࡍࡿ㓝⣲ࡣ࣑ࢺࢥࣥࢻࣜ࢔࡟ᒁᅾࡋ࡚࠾ࡾࠊࡇࢀ
ࡽࡣ㓟໬ࢫࢺࣞࢫࠊ㧗 ࢫࢺࣞࢫࠊ෾⤖⼥ゎࢫࢺࣞࢫ➼ࡢࢫࢺࣞࢫ⪏ᛶ࡟ᐤ୚ࡋ
࡚࠸ࡿࠋࡇࢀࡽࡢ⤖ᯝࡣࠊa924E1 ᰴ࡟ᅽຊឤཷᛶ⬟ࢆ௜୚ࡋࡓせᅉ࡜ࡋ࡚ࠊ
COX1 㑇ఏᏊࡢḞኻ࡟ࡼࡿ࣑ࢺࢥࣥࢻࣜ࢔ࡢᶵ⬟୙඲࡟㉳ᅉࡍࡿ┤᥋ⓗ࡞ᙳ㡪
࡛ࡣ࡞ࡃࠊ࣑ࢺࢥࣥࢻࣜ࢔ࡢᶵ⬟୙඲࡟క࠺ࢫࢺࣞࢫ⪏ᛶ࡟ᐤ୚ࡍࡿ௦ㅰ⏘≀
ࡢῶᑡ࡟ࡼࡗ࡚ᵝࠎ࡞ࢫࢺࣞࢫ࡟ᑐࡍࡿ⪏ᛶࡀపୗࡋࡓྍ⬟ᛶࡀ⪃࠼ࡽࢀࡿࠋ
୍⯡ⓗ࡟࿧྾Ḟᦆ㓝ẕᰴࡣ඲࡚ࡢ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࢆḞᦆࡋ࡚࠾ࡾࠊࡑࡢ
࢚ࢱࣀ࣮ࣝⓎ㓝⬟࠾ࡼࡧቑṪ⬟ࡣ㔝⏕ᆺᰴ࡜ẚ㍑ࡋ࡚኱ࡁࡃῶᑡࡍࡿࠋࡋ࠿ࡋ
࡞ࡀࡽࠊᅽຊឤཷᛶኚ␗ᰴ a924E1 ᰴࡣ COX1 㑇ఏᏊḞኻ࡟㉳ᅉࡍࡿ࣑ࢺࢥࣥ
ࢻࣜ࢔ᶵ⬟୙඲ࢆᘬࡁ㉳ࡇࡋ࡚࠸ࡿ࡟ࡶ㛵ࢃࡽࡎࠊKA31a ᰴ࡜ྠ➼ࡢ࢚ࢱࣀ࣮
45
ࣝⓎ㓝⬟(Shigematsu et al., 2010a)࠾ࡼࡧቑṪ⬟(ᅗ 3)ࢆ᭷ࡍࡿࠋBrauer ࡽ
(2005)࡟ࡼࡗ࡚ ࠊࢢ ࣝࢥ࣮ ࢫ⃰ ᗘࡀ 0.5%௨ ୖࡢ ᮲௳ ࡛ᇵ㣴 ࡍࡿሙ ྜࠊ S.
cerevisiae ࡢቑṪࡣ୺࡟࢚ࢱࣀ࣮ࣝⓎ㓝࡟౫Ꮡࡍࡿࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿࡇ࡜
࠿ࡽࠊa924E1 ᰴ࠾ࡼࡧ KA31a ᰴࡣ࢚ࢱࣀ࣮ࣝⓎ㓝ࡍࡿࡇ࡜࡟ࡼࡾぢ࠿ࡅୖྠ
➼ࡢቑṪ⬟ࢆ᭷ࡋ࡚࠸ࡓ࡜⪃࠼ࡽࢀࡿࠋࡲࡓࠊࡇࢀࡽࡢ⤖ᯝࡣࠊCOX1 㑇ఏᏊࡢ
Ḟኻ࡟㉳ᅉࡍࡿ௦ㅰࡢኚ໬ࡀ࢚ࢱࣀ࣮ࣝⓎ㓝⬟࡟ᙳ㡪ࢆཬࡰࡉࡎ࡟ᅽຊឤཷᛶ
⬟ࢆ௜୚ࡋ࡚࠸ࡿࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿࡇ࡜ࡣࠊPReF ᢏ⾡ࡢᐇ⏝໬࡟ྥࡅ࡚᭷┈
࡛࠶ࡿࠋ
ᮏ❶ࡢ⤖ᯝࢆࡲ࡜ࡵࡿ࡜ࠊa924E1 ᰴࡢᅽຊឤཷᛶ⬟ࡣ࣑ࢺࢥࣥࢻࣜ࢔ࡢᶵ⬟
୙඲࡟ࡼࡾ௜୚ࡉࢀࡓ࡜⪃࠼ࡽࢀࡿࠋࡋ࠿ࡋ࡞ࡀࡽࠊᅽຊឤཷᛶࢆ௜୚ࡍࡿᶵᵓ
ࡢ┤᥋ⓗ࡞ドᣐࡣ᫂ࡽ࠿࡜࡞ࡽ࡞࠿ࡗࡓࡀࠊa924E1 ᰴࡢ࣑ࢺࢥࣥࢻࣜ࢔ࢆ௚ࡢ
㓝ẕᰴࡢ࣑ࢺࢥࣥࢻࣜ࢔࡟⿵᏶ࡍࡿࡇ࡜࡛ᐜ᫆࡟⏘ᴗ⏝㓝ẕᰴ࡟ᅽຊឤཷᛶ⬟
ࢆ௜୚ࡍࡿࡇ࡜ࡀᮇᚅ࡛ࡁࡿࠋ
46
➨ 4 ❶ ࣓ࢱ࣑࣎ࣟࢡࢫ࡟ࡼࡿᅽຊឤཷᛶᶵᵓࡢゎᯒ
➨ 1 ⠇ ⥴ゝ
➨ 1 㡯 ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒ
࣓ࢱ࣑࣎ࣟࢡࢫࡣࠊ᭷ᶵ໬ྜ≀ࠊ࢔࣑ࣀ㓟ࠊ᰾㓟➼ࡢ⣽⬊ෆ௦ㅰ⏘≀ࢆࢱ࣮ࢤ
ࢵࢺ࡜ࡋࡓ⥙⨶ⓗゎᯒᢏ⾡࡛࠶ࡿ(⚟ᓮ, 2013)ࠋ࣓ࢱ࣑࣎ࣟࢡࢫࡢ኱ࡁ࡞≉ᛶࡣ
ࡑࡢ୍⯡ᛶ࡛࠶ࡿࠋDNA ࡸ RNA ࢆ⥙⨶ⓗ࡟ゎᯒࡍࡿࢤࣀ࣑ࢡࢫࠊࢱࣥࣃࢡ㉁
ࢆ⥙⨶ⓗ࡟ゎᯒࡍࡿࣉࣟࢸ࣑࢜ࢡࢫ➼࡟ࡼࡿゎᯒ࡛ࡣࠊࡑࡢゎᯒࢧࣥࣉࣝ࡟≉
᭷ࡢሷᇶ㓄ิ➼ࡢ᝟ሗࡀᚲせ࡛࠶ࡿࠋࡑࡢ୍᪉ࠊ࣓ࢱ࣑࣎ࣟࢡࢫࡢゎᯒᑐ㇟ࡣ௦
ㅰ⏘≀࡛࠶ࡾࠊᙜ↛ࡢࡇ࡜࡞ࡀࡽࡑࢀࡽࡣࣄࢺ࡛ࡶ኱⭠⳦࡛ࡶ⏕≀㛫࡛஫᥮ᛶ
ࢆ᭷ࡍࡿ໬ྜ≀࡛࠶ࡿሙྜࡀከ࠸ࠋࡋ࠿ࡋࠊ࣓ࢱ࣑࣎ࣟࢡࢫ࡛ゎᯒ࡛ࡁࡿ௦ㅰ⏘
≀࡟ᶵ⬟ᛶࡀ࠶ࡿ࡜ࡣ㝈ࡽ࡞࠸ࡓࡵ࡟ࠊ⏕≀Ꮫⓗ࡞⌮⏤௜ࡅࡀ㞴ࡋ࠸࡜࠸࠺ၥ
㢟ࡶ࠶ࡿࠋ౛࠼ࡤࠊ࠶ࡿ௦ㅰ⏘≀ࡀቑຍࡋࡓሙྜࠊᚲせ࡟࡞ࡗࡓࡓࡵ࡟⵳✚ࡋࡓ
ࡢ࠿ࠊ୙せ࡟࡞ࡗࡓࡢ࠿ࡽ⵳✚ࡋࡓࡢ࠿ࡢゎ㔘ࡣࠊูࡢᐇ㦂⤖ᯝ࡛⌮⏤௜ࡅࢆ⾜
࠺ᚲせࡀ࠶ࡿ(㔝ᮧ, ᒾᶫ, 2013)ࠋ
47
➨ 2 㡯 ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒࡢᛂ⏝౛
ከ✀ከᵝ࡞໬ྜ≀ࢆศᯒࡍࡿ࣓ࢱ࣑࣎ࣟࢡࢫ࡟᭱ࡶࡼࡃ⏝࠸ࡽࢀࡿᢏ⾡ࡣࠊ
㉁㔞ศᯒ࡛࠶ࡿࠋゎീᗘ࡜෌⌧ᛶ࡟ඃࢀࡓ࢞ࢫࢡ࣐ࣟࢺࢢࣛࣇ࢕࣮㉁㔞ศᯒ
(GC/MS)ࡸᾮయࢡ࣐ࣟࢺࢢࣛࣇ࢕࣮㉁㔞ศᯒ(LC/MS)ࠊ⢾ࣜࣥ㓟ࡸ᰾㓟➼࡟᭷ຠ
࡞࢟ࣕࣆ࣮ࣛࣜ㟁ẼὋື㉁㔞ศᯒ(CE/MS)➼ࡢᡭἲࡀࡼࡃ▱ࡽࢀ࡚࠸ࡿ(⚟ᓮ,
2013)ࠋ
Tanaka ࡽ(2007)ࡣࠊ㓝ẕࡢ࢝ࢻ࣑࣒࢘ࢫࢺࣞࢫᛂ⟅ࢆゎᯒࡍࡿࡓࡵ࡟࢟ࣕࣆࣛ
࣮ࣜ㟁ẼὋື㉁㔞ศᯒἲ(CE/MS)ࢆ⏝࠸ࡓ⣽⬊ෆ௦ㅰ⏘≀ࡢ⥙⨶ⓗゎᯒࢆ⾜࠸ࠊ
ࢫࢺࣞࢫᛂ⟅ゎᯒ࡟࠾ࡅࡿ࣓ࢱ࣑࣎ࣟࢡࢫࡢ᭷⏝ᛶࢆ♧ࡋࡓࠋࡲࡓࠊࢤࣀ࣑ࢡࢫ
࡜࣓ࢱ࣑࣎ࣟࢡࢫࢆ⤌ࡳྜࢃࡏࡿࡇ࡜࡛ࠊᶵ⬟᝟ሗ࡜௦ㅰ᝟ሗࢆྠ᫬࡟ゎᯒࡍ
ࡿࡇ࡜ࡶሗ࿌ࡉࢀ࡚࠸ࡿ(⏣୰ࡽ, 2013)ࠋᶵ⬟᝟ሗࡣཎᅉ࡛࠶ࡾࠊ௦ㅰ᝟ሗࡣ⤖
ᯝ࡛࠶ࡿࠋࡇࢀࡽࢆ⤌ࡳྜࢃࡏࡿࡇ࡜࡛ࠊ࡝ࡢࡼ࠺࡞㑇ఏᏊࡢⓎ⌧ࡢኚ໬ࡀཎᅉ
࡜࡞ࡗ࡚ࠊࢫࢺࣞࢫ➼࡟㐺ᛂࡍࡿ⤖ᯝ࡜࡞ࡿࡢ࠿ࠊࡼࡾ῝ࡃ⪃ᐹࡍࡿࡇ࡜ࡀ࡛ࡁ
ࡿࠋ
➨ 3 㡯 ࢔ࣝࢠࢽࣥ
࢔ࣝࢠࢽࣥࡣࢢ࢔ࢽࢪࣥ࡜㢮ఝࡋࡓ࢔࣑ࣀ㓟ഃ㙐ࢆ᭷ࡍࡿሷᇶᛶ࢔࣑ࣀ㓟ࡢ
1 ✀࡛࠶ࡿ(Hamada and Shirali, 2007)ࠋࢢ࢔ࢽࢪࣥࡣࢱࣥࣃࢡ㉁ࡢจ㞟ࢆᢚไ
48
ࡍࡿኚᛶ๣࡛࠶ࡿࡓࡵࠊࢢ࢔ࢽࢪࣥ࡟㢮ఝࡋࡓഃ㙐ࢆᣢࡘ࢔ࣝࢠࢽࣥࡶจ㞟ࡋ
ࡓࢱࣥࣃࢡ㉁ࡢ࣮ࣜ࣍ࣝࢹ࢕ࣥࢢࢆ⿵ຓࡍࡿ᭷ᮃ࡞ῧຍ≀࡛࠶ࡿ(Tsumoto et
al., 2004; Lyutoya et al., 2007)ࠋࡑࢀᨾ࡟ࠊ࢔ࣝࢠࢽࣥࡣ㓝ẕ࡟࠾࠸࡚㓟໬ࡸ෾
⤖࡟ᑐࡍࡿࢫࢺࣞࢫ⪏ᛶ࡟㛵୚ࡍࡿࡇ࡜ࡀሗ࿌ࡉࢀ࡚࠸ࡿ(Morita et al., 2002;
Nishimura et al., 2010)ࠋ㧗ᅽࡣ㠀ඹ᭷⤖ྜࡢ୙Ᏻᐃ໬ࢆᘬࡁ㉳ࡇࡋ࡚ࢱࣥࣃࢡ
㉁ࡢኚᛶࢆಁ㐍ࡍࡿࠋࡋ࠿ࡋ࡞ࡀࡽࠊ࢔ࣝࢠࢽࣥࡢ㧗ᅽࢫࢺࣞࢫ࡟ᑐࡍࡿຠᯝࡣ
ᮍࡔ࠶ࡁࡽ࠿࡜࡞ࡗ࡚࠸࡞࠸ࠋ
➨ 4 㡯 ᐇ㦂┠ⓗ
➨ 2 ❶࠾ࡼࡧ➨ 3 ❶ࡢ⤖ᯝ࠿ࡽࠊa924E1 ᰴࡢᅽຊឤཷᛶ⬟ࡀ COX1 㑇ఏᏊ
ࡢḞኻ࡟㉳ᅉࡍࡿ࣑ࢺࢥࣥࢻࣜ࢔ࡢᶵ⬟୙඲࡟ࡼࡾ௜୚ࡉࢀࡓࡇ࡜ࡀ♧၀ࡉࢀ
ࡓࠋᮏ㡯࡛ࡣࠊ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒ࡟ࡼࡾࠊ࣑ࢺࢥࣥࢻࣜ࢔ࡢᶵ⬟୙඲࡟ࡼࡾᅽ
ຊឤཷᛶࢆᘬࡁ㉳ࡇࡍ࣓࢝ࢽࢬ࣒ࢆゎᯒࡋࡓࠋࡲࡓࠊ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒ࡟ࡼࡾ
ᵝࠎ࡞ࢫࢺࣞࢫ⪏ᛶ࡟ᐤ୚ࡍࡿ࢔ࣝࢠࢽࣥࡢῶᑡࡀ♧ࡉࢀࡓࡓࡵ࡟ࠊ࢔ࣝࢠࢽ
ࣥࡢᅽຊ⪏ᛶ࡬ࡢᐤ୚࡟ࡘ࠸࡚ࡶేࡏ࡚ゎᯒࡋࡓࠋ
49
➨ 2 ⠇ ᐇ㦂ᮦᩱ࠾ࡼࡧᐇ㦂᪉ἲ
➨ 1 㡯 ౑⏝⳦ᰴ
ᮏᐇ㦂࡟ࡣࠊᐇ㦂ᐊ㓝ẕᰴ S. cerevisiae KA31a ᰴ࠾ࡼࡧᅽຊឤཷᛶኚ␗ᰴ
a924E1 ᰴࡢᐃᖖᮇ⣽⬊ࢆ౑⏝ࡋࡓ(⾲ 1)ࠋᅽຊឤཷᛶኚ␗ᰴ a924E1 ᰴࡣࠊ⣸እ
⥺↷ᑕ࡟ࡼࡿ✺↛ኚ␗࡟ࡼࡾྲྀᚓࡋࡓ(Shigematsu et al., 2010a)ࠋࡇࢀࡽࡢ㓝ẕᰴ
ࡣࠊ᪂₲⸆⛉኱Ꮫ 㔜ᯇ ஽ ᩍᤵࡼࡾศ୚ࡋ࡚࠸ࡓࡔ࠸ࡓࠋ
➨ 2 㡯 ᇵ㣴᮲௳
YPD ᇵᆅ(2.0% peptoneࠊ1.0% yeast extract; Becton Dickinson and Co., NJ, USAࠊ
2.0% glucose; ࿴ග⣧⸆ᕤᴗ, ኱㜰, ᪥ᮏ)ࢆ⏝࠸࡚ࠊ30°Cࠊ48 h ࡢ᮲௳࡛᣺┞ᇵ
㣴ࡋࡓᐃᖖᮇ⣽⬊ࢆᐇ㦂࡟౪ࡋࡓࠋቑṪ᭤⥺ࡣ Hasegawa ࡽ(2012)ࡢ᪉ἲ࡟ᚑ࠸ࠊ
Bio Microplate Reader HiTSTM (Scinics, Ⲉᇛ, ᪥ᮏ)ࢆ⏝࠸࡚ 30°Cࠊ120 h ࡢ᮲௳࡛
ᐃࡋࡓࠋ
➨ 3 㡯 ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒ᪉ἲ
௦ㅰ⏘≀ࡢᢳฟἲࡣ Human Metabolomics Technologies (HMT; ᒣᙧ, ᪥ᮏ)ࡢࣉ
ࣟࢺࢥࣝ࡟ᚑࡗࡓࠋCE/MS ࡟ࡼࡿ௦ㅰ⏘≀ࡢ᳨ฟࡣ HMT ࡟ጤクࡋࡓࠋa924E1
50
ᰴ࠿ࡽ᳨ฟࡋࡓྛ໬ྜ≀ࡢ┦ᑐ್ࡣ KA31a ᰴࡢࡑࢀࡽ࡜ẚ㍑ࡋ࡚ 2 ಸ௨ୖ㧗࠸
್ࢆ♧ࡍ໬ྜ≀ࠊ༙ศ௨ୗࡢప࠸್ࢆ♧ࡍ໬ྜ≀ࠊ್ࡢኚ໬ࡢ↓࠸໬ྜ≀࡟ศ㢮
ࡋࠊ࢙࢘ࣝࢳࡢ t ᳨ᐃ࡟ࡼࡾ⤫ィⓗ࡟ゎᯒࡋࡓࠋKA31a ᰴ࡜ẚ㍑ࡋ࡚᭷ព࡟ኚື
ࡋࡓ໬ྜ≀ࡢ௦ㅰ⤒㊰ࡣ KEGG (http://www.genome.jp/kegg/pathway.html)࡟ᚑࡗ
࡚ゎᯒࡋࡓࠋ
➨ 4 㡯 ௦ㅰ⤒㊰ࡢゎᯒ᪉ἲ
total RNA ࡣࠊFast RNA ® Pro Red Kit (MP Biomedicals, CA, USA)࡟ࡼࡾᢳฟࡉ
ࢀࠊRNeasy ® Mini Kit (Qiagen, Hilden, Germany)࡟ࡼࡾ⢭〇ࡋࡓࠋcDNA ࡣࠊᢳฟ
ࡋࡓ RNA ࠿ࡽ ReverTra Ace® qPCR RT Master Mix (Toyobo, ኱㜰, ᪥ᮏ)࡟ࡼࡾ㏫
㌿෗ࡋࡓࠋ࢔ࣝࢠࢽࣥ⏕ྜᡂ࡟㛵㐃ࡍࡿ 4 㑇ఏᏊ࡟ᑐࡋ࡚ࣉࣛ࢖࣐࣮ࢆタィࡋ
ࡓ(⾲ 2)ࠋࡇࢀࡽࡢ㑇ఏᏊࡢ࠺ࡕ 3 㑇ఏᏊࡣ DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒ࡟ࡼࡾࠊ
ࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺࡋࡓ㑇ఏᏊ(ARG3ࠊARG1ࠊARG4 㑇ఏᏊ)ࢆᑐ㇟࡜ࡋࡓࠋARG8
㑇ఏᏊࡣ᭷ពᕪࡀㄆࡵࡽࢀ࡞࠿ࡗࡓࡀࠊࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺࡋ࡚࠾ࡾࠊ࢔ࣝࢠࢽ
ࣥ⏕ྜᡂ࡟㔜せ࡞㓝⣲ࢆࢥ࣮ࢻࡋ࡚࠸ࡿࡓࡵ࡟㑅ᢥࡋࡓࠋPCR ࡟ࡣ GoTaq Green
Master Mix (Promega, WI, USA)ࢆ⏝࠸࡚ࠊ๓㏙ࡢ᮲௳࡛ቑᖜࡋࡓࠋ
51
➨ 5 㡯 㧗ᅽฎ⌮᪉ἲ
㧗ᅽࢫࢺࣞࢫ⪏ᛶ࡬ࡢ࢔ࣝࢠࢽࣥࡢᙳ㡪ࢆゎᯒࡍࡿࡓࡵ࡟ࠊ࢔ࣝࢠࢽࣥῧຍ
(10-500 mM)࠶ࡿ࠸ࡣᮍῧຍࡢ᮲௳࡟࠾࠸࡚ᇵ㣴ᚋࠊ200 MPaࠊ0-4°Cࠊ360 s ࡢ᮲
௳࡛㧗ᅽฎ⌮ࡋࡓࠋ㧗ᅽฎ⌮ࡣࣁࣥࢻ࣏ࣥࣉᆺ㧗ᅽ⿦⨨ HP-500 (Syn Corporation,
ி㒔, ᪥ᮏ)ࢆ⏝࠸ࡓ௨እࡣࠊShigematsu ࡽ(2010a)ࡢሗ࿌࡟ᚑࡗࡓࠋ㧗ᅽฎ⌮ᚋ
࡟⏕⌮㣗ሷỈ࡛ 10-100 ಸ࡟ᕼ㔘ࡋ࡚ࠊ5 μL ࡎࡘ YPD ᐮኳᇵᆅ࡟ࢫ࣏ࢵࢺࡋࠊ
30°C ࡛㟼⨨ᇵ㣴ࡋࡓࠋ
52
➨ 3 ⠇ ⤖ᯝ
➨ 1 㡯 ࣓ࢱ࣑࣎ࣟࢡࢫゎᯒ
CE/MS ゎᯒ࡟ࡼࡾࠊ250 ✀㢮ࡢ໬ྜ≀ࢆ᳨ฟࡋࡓ(⾲ 8)ࠋᮏ◊✲࡛ࡣ a924E1 ᰴ
࡟࠾࠸࡚ KA31a ᰴ࡜ẚ㍑ࡋ࡚┦ᑐⓗ࡟ῶᑡࡋࡓ໬ྜ≀࡟╔┠ࡋࡓࠋࢢࣝࢱ࣑ࣥ
㓟ࠊ࢔ࢫࣃࣛࢠࣥ㓟ࠊࢢࣝࢱ࣑ࣥࠊ࢜ࣝࢽࢳࣥࠊ࢔ࣝࢠࢽࣥ➼ࡢ࢔࣑ࣀ㓟ࢆྵࡴ
48 ✀㢮ࡢ໬ྜ≀ࡣࠊKA31a ᰴࡢࡑࢀࡽ࡜ẚ㍑ࡋ࡚᭷ព࡟ప࠸್࡛࠶ࡗࡓ(p <
0.05)ࠋ࢔ࢭࢳࣝ CoAࠊ࢔ࢥࢽࢵࢺ㓟ࠊࣇ࣐ࣝ㓟ࠊ࢖ࢯࢡ࢚ࣥ㓟➼ࡢ TCA ࢧ࢖ࢡ
ࣝ࡟㛵㐃ࡍࡿ໬ྜ≀➼ࡢ 59 ✀㢮ࡢ໬ྜ≀ࡣࠊa924E1 ᰴ࡛ࡣ᳨ฟࡉࢀ࡞࠿ࡗࡓࠋ
ࡲࡓࠊα-ࢣࢺࢢࣝࢱࣝ㓟➼ࡢ࠸ࡃࡘ࠿ࡢ໬ྜ≀ࡣ a924E1 ᰴ࠾ࡼࡧ KA31a ᰴࡢ୧
ᰴ᳨࡛ฟࡉࢀ࡞࠿ࡗࡓࠋࡲࡓ a924E1 ᰴ࡟࠾࠸࡚ࠊ᳨ฟࡉࢀࡓ TCA ࢧ࢖ࢡࣝ࡟
㛵㐃ࡍࡿ໬ྜ≀ࡢ࠺ࡕࠊࢥࣁࢡ㓟ࡢࡳࡀ౛እⓗ࡟ቑຍࡋ࡚࠸ࡓࠋࡇࢀࡽࡢ a924E1
ᰴ࡟࠾࠸࡚ኚືࡋࡓ໬ྜ≀ࡣࠊ࢔ࣝࢠࢽࣥ⏕ྜᡂ࡟㛵㐃ࡋ࡚࠸ࡿ(⾲ 8)ࠋ
➨ 2 㡯 ࢔ࣝࢠࢽࣥ௦ㅰゎᯒ⤒㊰࡟㛵ࡍࡿ㑇ఏᏊࡢゎᯒ
⾲ 9 ࡟♧ࡉࢀࡓࢢࣝࢱ࣑ࣥࠊ࢔ࢫࣃࣛࢠࣥ㓟ࠊࢢࣝࢱ࣑ࣥ㓟ࠊ࢜ࣝࢽࢳࣥࡣࠊ
࢔ࣝࢠࢽࣥࡢ⏕ྜᡂ࡟㛵㐃ࡍࡿ࢔࣑ࣀ㓟࡛࠶ࡿࠋ࢔ࣝࢠࢽࣥࡣࢫࢺࣞࢫᛂ⟅࡟
㔜せ࡞ᙺ๭ࢆᢸ࠺࢔࣑ࣀ㓟࡛࠶ࡿࡓࡵࠊࡑࡢ⏕ྜᡂ࡟㛵㐃ࡍࡿ㓝⣲⩌ࢆࢥ࣮ࢻ
53
ࡍࡿ㑇ఏᏊࡢⓎ⌧ࢆホ౯ࡍࡿࡇ࡜ࡣ㔜せ࡛࠶ࡿࠋᮏ㡯࡛ࡣࠊ࢔ࣝࢠࢽࣥ⏕ྜᡂ㓝
⣲ࢆࢥ࣮ࢻࡍࡿ ARG8ࠊARG3ࠊARG1ࠊARG4 㑇ఏᏊࡢⓎ⌧ࢆ RT-PCR ἲ࡟ࡼࡾ
ゎᯒࡋࡓࠋෆ㒊ᶆ‽࡜ࡋ࡚࢔ࢡࢳࣥࢆࢥ࣮ࢻࡍࡿ ACT1 㑇ఏᏊࢆ⏝࠸ࡓࠋࡑࡢ⤖
ᯝࠊゎᯒࡋࡓ 4 㑇ఏᏊ࡟࠾࠸࡚ࠊKA31a ᰴ࡛ࡣⓎ⌧ࡀ☜ㄆ࡛ࡁࡓࡀࠊa924E1 ᰴ
࡛ࡣⓎ⌧ࢆ☜ㄆ࡛ࡁ࡞࠿ࡗࡓ(ᅗ 6)ࠋ
➨ 3 㡯 ࢔ࣝࢠࢽࣥࡢᅽຊ୙άᛶ໬࡬ࡢᐤ୚
࢔ࣝࢠࢽࣥࡢ㧗ᅽࢫࢺࣞࢫ⪏ᛶ࡬ࡢᙳ㡪ࢆゎᯒࡍࡿࡓࡵ࡟ࠊࢫ࣏ࢵࢺヨ㦂࡟
ࡼࡾ࢔ࣝࢠࢽࣥࡢ᭷↓࡟ࡼࡿ a924E1 ᰴࡢᅽຊឤཷᛶ⬟ࢆホ౯ࡋࡓࠋ࢔ࣝࢠࢽࣥ
↓ῧຍ᮲௳࡟࠾࠸࡚ࠊKA31a ᰴ࡛ࡣ㧗ᅽฎ⌮ᚋ࡟⣽⬊ࡢቑṪࡀほᐹࡉࢀࡓࠋ୍
᪉ࠊa924E1 ᰴ࡛ࡣቑṪࡀほᐹ࡛ࡁ࡞࠿ࡗࡓࠋa924E1 ᰴ࡟࠾࠸࡚ࠊᇵ㣴᫬࡟࢔ࣝ
ࢠࢽࣥࢆῧຍࡋ࡚ᇵ㣴ࡋࡓሙྜࠊ10 mM ௨ୖࡢ᮲௳࡟࠾࠸࡚ࠊ㧗ᅽฎ⌮ᚋ࡟⣽
⬊ࡢቑṪࢆほᐹࡋࡓࠋKA31a ᰴ࡟࠾࠸࡚ࡣࠊ඲࡚ࡢ᮲௳࡛⣽⬊ࡢቑṪࡀほᐹࡉ
ࢀࡓ(ᅗ 8)ࠋ
54
➨ 4 ⠇ ⪃ᐹ
࣓ࢱ࣑࣎ࣟࢡࢫゎᯒࡢ⤖ᯝࠊ⾲ 8 ࡟♧ࡋࡓࡼ࠺࡟ a924E1 ᰴ࡟࠾࠸࡚ TCA ࢧ
࢖ࢡࣝࡸ࢔ࣝࢠࢽࣥ⏕ྜᡂ࡟㛵㐃ࡍࡿ໬ྜ≀ࡀ┦ᑐⓗ࡟ῶᑡࡋ࡚࠸ࡓ(⾲ 9)ࠋ
TCA ࢧ࢖ࢡࣝ࡟㛵㐃ࡍࡿ໬ྜ≀ࡢ࠺ࡕࠊ࢔ࢭࢳࣝ CoAࠊ࢔ࢥࢽࢵࢺ㓟ࠊࣇ࣐ࣝ
㓟ࠊ࢖ࢯࢡ࢚ࣥ㓟➼ࡢ໬ྜ≀ࡣῶᑡࡋ࡚࠸ࡓࡀࠊࢥࣁࢡ㓟ࡔࡅࡀ౛እⓗ࡟ቑຍࡋ
ࡓ(⾲ 8)ࠋࢥࣁࢡ㓟ࡣࠊ࣑ࢺࢥࣥࢻࣜ࢔⭷㛫⭍࡟ᒁᅾࡍࡿ㟁Ꮚఏ㐩㙐ࡢ」ྜయ II
ࡢゐ፹స⏝࡟ࡼࡗ࡚ࣇ࣐ࣝ㓟࡟㓟໬ࡉࢀࡿࠋa924E1 ᰴ࡟࠾ࡅࡿࢥࣁࢡ㓟ࡢቑຍ
࠾ࡼࡧࣇ࣐ࣝ㓟ࡢῶᑡࡣ࣑ࢺࢥࣥࢻࣜ࢔㟁Ꮚఏ㐩㙐ࡢᶵ⬟୙඲ࢆ♧၀ࡋ࡚࠸ࡿࠋ
DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒࡢ⤖ᯝ࠿ࡽ a924E1 ᰴ࡟࠾࠸࡚ࠊTCA ࢧ࢖ࢡࣝ࡟㛵㐃
ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ 31 㑇ఏᏊࡢ࠺ࡕ 8 㑇ఏᏊ(CIT2ࠊCIT3ࠊGDH1ࠊ
GDH3ࠊIDP2ࠊSDH1ࠊSDH2ࠊSHH3 㑇ఏᏊ)ࡢⓎ⌧ࡀ᭷ព࡟ࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺ
ࡋ࡚࠸ࡓࠋ≉࡟㟁Ꮚఏ㐩㙐ࡢ」ྜయ II (ࢥࣁࢡ㓟ࢆࣇ࣐ࣝ㓟࡟௦ㅰࡍࡿ㓝⣲)࡟㛵
㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡢ༙ᩘࡀࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺࡋ࡚࠸ࡓ
(SDH1ࠊSDH2ࠊSHH3 㑇ఏᏊ)ࠋࡇࢀࡽࡢ⤖ᯝࡣࠊCOX1 㑇ఏᏊࡢḞኻ࡟㉳ᅉࡍࡿ
࣑ࢺࢥࣥࢻࣜ࢔ࡢᶵ⬟୙඲࠾ࡼࡧࡑࢀ࡟ࡼࡿ࢚ࢿࣝࢠ࣮୙㊊࡟ࡼࡗ࡚ࠊTCA ࢧ
࢖ࢡࣝࡀ೵Ṇࡋ࡚࠸ࡿࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿࠋᐇ㝿࡟ࠊTTC ᰁⰍἲ࡟ࡼࡾ࿧྾ᶵ
⬟ࢆホ౯ࡋࡓ⤖ᯝࡶࡑࢀࡽࡢ⤖ᯝࢆᨭᣢࡋࡓ(ᅗ 1)ࠋ
⾲ 8 ࡟♧ࡍࡼ࠺࡟ࠊa924E1 ᰴ࡟࠾࠸࡚࢔ࣝࢠࢽࣥࡢࡳ࡛ࡣ࡞ࡃࢢࣝࢱ࣑ࣥ㓟
55
ࡸࢢࣝࢱ࣑ࣥࡶ᭷ព࡟ῶᑡࡋ࡚࠸ࡿࠋࢢࣝࢱ࣑ࣥ㓟ࡢ⏕ྜᡂ࡟㛵ࡍࡿ㓝⣲ࢆࢥ
࣮ࢻࡍࡿ㑇ఏᏊ(GDH1ࠊGDH3 㑇ఏᏊ)ࡶࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺࡋ࡚࠸ࡓࡇ࡜࠿ࡽࠊ
TCA ࢧ࢖ࢡࣝࡢ೵Ṇࡣࠊ࢔ࣝࢠࢽࣥ⏕ྜᡂࡢ୰㛫≀㉁࡛࠶ࡿࢢࣝࢱ࣑ࣥ㓟ࡢᯤ
Ῥࢆᘬࡁ㉳ࡇࡋ࡚࠸ࡿྍ⬟ᛶࡀ⪃࠼ࡽࢀࡿࠋ࢔ࣝࢠࢽࣥࡢ⏕ྜᡂ࡟ࡣࢢࣝࢱ࣑
ࣥ㓟࡜࢚ࢿࣝࢠ࣮ࡀᚲ㡲࡛࠶ࡿࡓࡵ࡟ࠊa924E1 ᰴ࡟࠾࠸࡚࢔ࣝࢠࢽࣥ⏕ྜᡂ⤒
㊰ࡢάᛶࡣᚲ↛ⓗ࡟పୗࡍࡿࡔࢁ࠺ࠋDNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒࡢ⤖ᯝࠊ࢔ࣝࢠ
ࢽࣥࡢ⏕ྜᡂ࡟㛵㐃ࡍࡿ㓝⣲ࢆࢥ࣮ࢻࡍࡿ 21 㑇ఏᏊࡢ࠺ࡕ 8 㑇ఏᏊࡀࢲ࢘ࣥࣞ
ࢠ࣮ࣗࣞࢺࡋ࡚࠸ࡓ(ARG1ࠊARG3ࠊARG4ࠊARG7ࠊCPA1ࠊMAK31ࠊPUT1ࠊVBA1
㑇ఏᏊ)ࠋDNA ࣐࢖ࢡࣟ࢔ࣞ࢖ゎᯒࡢ⤖ᯝࢆ☜ㄆࡋࠊ࢔ࣝࢠࢽࣥࡢ┦ᑐⓗ࡞ῶᑡ
ࡢཎᅉࢆホ౯ࡍࡿࡓࡵ࡟ࠊࢢࣝࢱ࣑ࣥ㓟࠿ࡽ࢔ࣝࢠࢽࣥࢆ⏕ྜᡂࡍࡿ୺せ࡞㓝
⣲⩌ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡢⓎ⌧ࢆ RT-PCR ࡟ࡼࡾゎᯒࡋࡓࠋࡑࡢ⤖ᯝࠊa924E1 ᰴ
࡟࠾࠸࡚࢔ࣝࢠࢽࣥ⏕ྜᡂ࡟㛵㐃ࡍࡿ㑇ఏᏊࡢⓎ⌧ࡢῶᑡࡀ☜ㄆࡉࢀࡓ(ᅗ 6)ࠋ
ࡇࢀࡽࡢ⤖ᯝࡣࠊTCA ࢧ࢖ࢡࣝࡢ೵Ṇ࡟ࡼࡾࠊࢢࣝࢱ࣑ࣥ㓟࠿ࡽ࢔ࣝࢠࢽࣥࢆ
⏕ྜᡂࡍࡿ௦ㅰ⤒㊰ࡢάᛶࡢపୗࡋ࡚࠸ࡿࡇ࡜ࢆ♧၀ࡋ࡚࠸ࡿ(ᅗ 7)ࠋ
࢔ࣝࢠࢽࣥࡀ㧗ᅽ⪏ᛶ࡟ཬࡰࡍᙳ㡪ࢆホ౯ࡍࡿࡓࡵ࡟ࠊ࢔ࣝࢠࢽࣥῧຍࡲࡓ
ࡣᮍῧຍࡢ᮲௳࡛ᇵ㣴ࡋࡓᚋ࡟㧗ᅽฎ⌮ࢆ᪋ࡋࠊࢫ࣏ࢵࢺヨ㦂࡟ࡼࡾቑṪࢆ☜
ㄆࡋࡓࠋ࢔ࣝࢠࢽࣥᮍῧຍࡢሙྜࠊKA31a ᰴࡢቑṪࡀほᐹࡉࢀࡓࡀࠊa924E1 ᰴ
ࡢቑṪࡣほᐹ࡛ࡁ࡞࠿ࡗࡓࠋࡇࡢ⤖ᯝࡣࠊࡇࢀࡲ࡛ࡢ Shigematsu ࡽ(2010a)࡟ࡼ
56
ࡿ a924E1 ᰴࡀ KA31a ᰴ࡜ẚ㍑ࡋ࡚ࡼࡾ㧗࠸ᅽຊឤཷᛶ⬟ࢆ᭷ࡍࡿ࡜࠸࠺ሗ࿌
ࢆᨭᣢࡋࡓࠋࡋ࠿ࡋ࡞ࡀࡽࠊ࢔ࣝࢠࢽࣥࢆῧຍࡋ࡚ᇵ㣴ࡋࡓሙྜࠊ㧗ᅽฎ⌮ᚋ࡟
a924E1 ᰴ࠾ࡼࡧ KA31a ᰴࡢ୧ᰴ࡟࠾࠸࡚ቑṪࢆほᐹࡋࡓ(ᅗ 8)ࠋࡇࢀࡽࡢ⤖ᯝ
ࡣࠊ࢔ࣝࢠࢽࣥࡀ㓝ẕ⣽⬊࡟ᑐࡋ࡚ࠊ㧗ᅽ⪏ᛶ࡟ᐤ୚ࡋ࡚࠸ࡿࡇ࡜ࢆ♧၀ࡋ࡚࠸
ࡿࠋ
ᮏ❶ࡢ⤖ᯝࢆࡲ࡜ࡵࡿ࡜ࠊ࢔ࣝࢠࢽࣥ⏕ྜᡂ⤒㊰ࡢάᛶࡢపୗ࡟㉳ᅉࡍࡿ࢔
ࣝࢠࢽࣥࡢᯤῬࡀࠊa924E1 ᰴࡢᅽຊឤཷᛶ⬟ࢆ௜୚ࡍࡿ୍ᅉ࡛࠶ࡿࡇ࡜ࡀ♧၀
ࡉࢀࡓ(ᅗ 7)ࠋࡲࡓࠊᮏ❶ࡢᡂᯝࡣ࢔ࣝࢠࢽࣥࡀ㓟໬ࡸ෾⤖ࢫࢺࣞࢫ⪏ᛶࡢࡳ࡞
ࡽࡎࠊ㧗ᅽࢫࢺࣞࢫ⪏ᛶ࡟࠾࠸࡚ࡶᐤ୚ࡍࡿࡇ࡜ࢆ♧၀ࡍࡿึࡵ࡚ࡢሗ࿌࡛࠶
ࡿࠋࡇࡢ᪂ࡋ࠸▱ぢࡣ PReF ᢏ⾡ࡢ㛤Ⓨ࡟኱ࡁࡃᐤ୚ࡍࡿࡇ࡜ࡔࢁ࠺ࠋ
57
➨ 5 ❶ ⤖ㄽ
ᅽຊࡣࠊ㠀ඹ᭷⤖ྜࡢࡳ࡟స⏝ࡋࠊ㠀⇕ⓗ࡟ࢱࣥࣃࢡ㉁ࢆኚᛶࡉࡏࡿࡇ࡜࡟ࡼ
ࡾࠊᚤ⏕≀ࡢቑṪ㜼ᐖࡸ୙άᛶ໬ࢆᘬࡁ㉳ࡇࡍ≀⌮ⓗࢫࢺࣞࢫ࡛࠶ࡿࠋ1987 ᖺ
࡟㧗ᅽࢆ㣗ရຍᕤ࡬ᛂ⏝ࡍࡿ㧗ᅽ㣗ရຍᕤࡢᴫᛕࡀᥦၐࡉࢀࡓࠋ㣗ရ୰ࡢ᭷⏝
ᡂศࡸ᪂㩭࡞㢼࿡ࠊⰍࠊ࿡ࢃ࠸ࢆಖᣢࡋࡘࡘࠊᚤ⏕≀ࢆ୙άᛶ໬ࡉࡏࡿࡇ࡜ࡀྍ
⬟࡜࡞ࡗࡓࠋࡋ࠿ࡋࠊᚤ⏕≀ࡢ୙άᛶ໬࡟ࡣ 300 MPa ௨ୖࡢ㧗ᅽࡀᚲせ࡛࠶ࡿ
ࡓࡵࠊ㧗ᅽ࡟⪏࠼ࡽࢀࡿᅽຊᐜჾࡸᅽຊ⿦⨨ࡢタഛࢥࢫࢺࡢቑ኱➼࡟ࡼࡾ㧗ᅽ
ᢏ⾡ࡢᬑཬࡀጉࡆࡽࢀ࡚࠸ࡿࡢࡀ⌧≧࡛࠶ࡿࠋࡑࡢၥ㢟ࢆゎỴࡍࡿࡓࡵ࡟ࠊ㧗
ᅽ࣭㧗ࢥࢫࢺࡀᚲせ࡞ᚤ⏕≀ࡢ⁛⳦(sterilization)࡛ࡣ࡞ࡃࠊ100~200 MP ⛬ᗘࡢ୰
㧗ᅽ᮲௳࡟ࡼࡗ࡚Ⓨ㓝㣗ရࢆ⏕⏘ࡍࡿ㓝ẕࡢẅ⳦(pasteurization)࡟↔Ⅼࢆᙜ࡚ࠊ
ᅽຊ࡟ࡼࡾⓎ㓝ࢆไᚚࡍࡿᢏ⾡(Pressure Regulated Fermentation; PReF)ࡀᥦ᱌ࡉ
ࢀࡓ(Nomura and Iwahahsi, 2014)ࠋPReF ᢏ⾡ࡢ☜❧࡟ࡣࠊ୰㧗ᅽ᮲௳࡛୙άᛶ໬
ࡍࡿᅽຊ࡟ᙅ࠸㓝ẕᰴࡢసฟࡀᚲせ࡛࠶ࡿࠋ
ࡇࢀࡲ࡛࡟ᐇ㦂ᐊ㓝ẕᰴ S. cerevisiae KA31a ᰴ࡟ᑐࡋ࡚⣸እ⥺↷ᑕἲ࡟ࡼࡿࣛ
ࣥࢲ࣒✺↛ኚ␗ࡢᑟධ࡟ࡼࡗ࡚ KA31a ᰴࡼࡾࡶ㧗࠸ᅽຊឤཷᛶ⬟ࢆ♧ࡍᅽຊឤ
ཷᛶኚ␗ᰴ a924E1 ᰴࢆྲྀᚓࡋࡓࠋa924E1 ᰴࡣࠊᅽຊឤཷᛶ⬟ࡢࡳ࡞ࡽࡎࠊKA31a
ᰴ࡜ྠ➼ࡢ࢚ࢱࣀ࣮ࣝⓎ㓝⬟ࢆ᭷ࡋ࡚࠾ࡾࠊPReF ᢏ⾡ࡢ☜❧ࡢࡓࡵ࡟ࡣࡇࢀࡽ
58
ࡢ⾲⌧ᙧ㉁ࢆ᭷ࡍࡿ⏘ᴗ⏝㓝ẕᰴࡢసฟࡀᚲせ࡛࠶ࡿࠋࡋ࠿ࡋࠊa924E1 ᰴࡣࣛ
ࣥࢲ࣒✺↛ኚ␗࡟ࡼࡾྲྀᚓࡉࢀࡓࡓࡵࠊᅽຊឤཷᛶኚ␗㑇ఏᏊࡀᮍࡔ᫂ࡽ࠿࡜
࡞ࡗ࡚࠸࡞࠸ࠋᮏ◊✲࡛ࡣࠊa924E1 ᰴࡢᅽຊឤཷᛶኚ␗㑇ఏᏊࡢྠᐃ࠾ࡼࡧࡑ
ࡢᅽຊឤཷᛶᶵᵓࡢゎ᫂ࢆ┠ⓗ࡜ࡋࡓࠋ➨ 2 ❶࠾ࡼࡧ➨ 3 ❶࡛ࡣࠊDNA ࣐࢖ࢡ
ࣟ࢔ࣞ࢖࡟ࡼࡿ㑇ఏᏊⓎ⌧ࣉࣟࣇ࢓࢖ࣝࡢ⥙⨶ⓗゎᯒ࡟ࡼࡾࠊᅽຊឤཷᛶ⬟ࢆ
௜୚ࡍࡿኚ␗㑇ఏᏊࢆ⤠ࡾ㎸ࡳࠊ࣑ࢺࢥࣥࢻࣜ࢔ࡢ⾲⌧ᙧ㉁ゎᯒ࠾ࡼࡧ PCR ࡟
ࡼࡾᅽຊឤཷᛶኚ␗㑇ఏᏊࢆྠᐃࡋࡓࠋ➨ 4 ❶࡛ࡣࠊ࣓ࢱ࣑࣎ࣟࢡࢫ࡟ࡼࡾ௦
ㅰ⏘≀ࡢࣉࣟࣇ࢓࢖ࣝࢆ⥙⨶ⓗ࡟ゎᯒࡋࠊCOX1 㑇ఏᏊࡢḞኻ࡟ࡼࡗ࡚ᅽຊឤཷ
ᛶ⬟ࡀ௜୚ࡉࢀࡿ࣓࢝ࢽࢬ࣒ࢆゎᯒࡋࡓࠋ௨ୗ࡟ྛ❶ࢆ⥲ᣓࡍࡿࠋ
➨ 2 ❶࡛ࡣࠊa924E1 ᰴࡢᅽຊឤཷᛶ⬟ࢆ௜୚ࡍࡿ㑇ఏⓗせᅉࢆゎᯒࡍࡿࡓࡵ
࡟ࠊDNA ࣐࢖ࢡࣟ࢔ࣞ࢖࡟ࡼࡾ㑇ఏᏊⓎ⌧ࣉࣟࣇ࢓࢖ࣝࢆ KA31a ᰴࡢࡶࡢ࡜ẚ
㍑ゎᯒࡋࡓ(⾲ 3-6)ࠋࡑࡢ⤖ᯝࠊ5,821 㑇ఏᏊࡢⓎ⌧ࢹ࣮ࢱࢆྲྀᚓࡋࠊࡇࢀࡽࡢ㑇
ఏᏊࡢ࠺ࡕࠊa924E1 ᰴࡢ 498 㑇ఏᏊࡢⓎ⌧ࣞ࣋ࣝࡣ KA31a ᰴࡢ㑇ఏᏊࡢⓎ⌧ࣞ
࣋ࣝࡼࡾࡶ᭷ព࡟㧗ࡃ(p < 0.05)ࠊ649 㑇ఏᏊࡢⓎ⌧ࣞ࣋ࣝࡣ᭷ព࡟ప࠿ࡗࡓ(p <
0.05)ࠋa924E1 ᰴ࡟࠾࠸࡚ࠊ“Energy”ᶵ⬟࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇
ఏᏊ࠾ࡼࡧ“Mitochondria”࡟ᒁᅾࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡢⓎ⌧ࡀ᭱
ࡶ᭷ព࡟࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺ(p < 0.05)ࡋࡓࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋ≉࡟ COX1ࠊ
59
AI1ࠊCOX17ࠊCOX18ࠊCYC7ࠊPET191ࠊSHY1ࠊNCA2ࠊCOQ8ࠊMRPL1ࠊMRPS35ࠊ
MBA1 㑇ఏᏊ➼ࡢ࣑ࢺࢥࣥࢻࣜ࢔ࡸ࢚ࢿࣝࢠ࣮௦ㅰ࡟㛵㐃ࡍࡿࢱࣥࣃࢡ㉁ࢆࢥ
࣮ࢻࡍࡿ㑇ఏᏊࡢⓎ⌧ࡀ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡋࡓࠋࡲࡓࠊRPS3ࠊRPS5ࠊRPS31ࠊ
RPL10ࠊRPL30 㑇ఏᏊ➼ࡢ͆Protein synthesis”ᶵ⬟ࡸࣂࣜࣥࠊࣟ࢖ࢩࣥࠊ࢖ࢯࣟ࢖
ࢩࣥࠊ࢔ࣝࢠࢽࣥࠊࢭࣜࣥࠊࢺࣜࣉࢺࣇ࢓ࣥ➼ࡢ࢔࣑ࣀ㓟ࡢ⏕ྜᡂ࡟㛵㐃ࡍࡿࢱ
ࣥࣃࢡ㉁ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊࡀ᭷ព࡟ࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺ(p < 0.05)ࡋࡓࡇ࡜ࡀ
᫂ࡽ࠿࡜࡞ࡗࡓࠋQuantitative PCR ࡟ࡼࡗ࡚ DNA ࣐࢖ࢡࣟ࢔ࣞ࢖ࡢ㑇ఏᏊⓎ⌧
ࢆホ౯ࡋࡓ࡜ࡇࢁࠊa924E1 ᰴࡢ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡋࡓ㑇ఏᏊࡢ┦ᑐⓎ⌧ࣞ࣋
ࣝࡣ KA31a ᰴࡢ┦ᑐⓎ⌧ࣞ࣋ࣝ࡜ẚ㍑ࡋ࡚ 2 ಸ௨ୖࡢ್ࢆ♧ࡋࡓࠋa924E1 ᰴࡢ
ࢲ࢘ࣥࣞࢠ࣮ࣗࣞࢺࡋࡓ㑇ఏᏊࡢ┦ᑐⓎ⌧ࣞ࣋ࣝࡣ KA31a ᰴࡢ┦ᑐⓎ⌧ࣞ࣋ࣝ
ࡢ༙ศ௨ୗ࡛࠶ࡗࡓ(⾲ 7)ࠋࡇࢀࡽࡢ⤖ᯝ࠿ࡽࠊᅽຊឤཷᛶኚ␗ࡢᑟධ࡟ࡼࡾ࣑
ࢺࢥࣥࢻࣜ࢔ᶵ⬟࡟ᙳ㡪ࡀ⏕ࡌࠊࢱࣥࣃࢡ㉁ࡸ࢔࣑ࣀ㓟ࡢ௦ㅰᶵ⬟ࡀపୗࡋ࡚
࠸ࡿྍ⬟ᛶࢆ♧ࡋ࡚࠸ࡿࠋࡋ࠿ࡋ a924E1 ᰴ࡟࠾࠸࡚ࠊ࢔ࢵࣉࣞࢠ࣮ࣗࣞࢺࡋ࡚
࠸ࡓ COX1 㑇ఏᏊࡢⓎ⌧ࡀ౛እⓗ࡟☜ㄆ࡛ࡁ࡞࠿ࡗࡓ(⾲ 7)ࠋCOX1 㑇ఏᏊࡢ௚
ࡢ㡿ᇦࢆࢱ࣮ࢤࢵࢺ࡜ࡋࡓ quantitative PCR ࡟ࡼࡾ෌ゎᯒࡋࡓ⤖ᯝ࡟࠾࠸࡚ࡶⓎ
⌧ࡣほᐹ࡛ࡁࡎࠊࡲࡓ COX1 㑇ఏᏊࡢࣉ࣮ࣟࣈ㓄ิࡀ PRS2 㑇ఏᏊ࡜㧗࠸┦ྠᛶ
ࢆ♧ࡋࡓࡇ࡜࠿ࡽࠊa924E1 ᰴࡢ COX1 㑇ఏᏊࡢⓎ⌧ࡢぢ࠿ࡅୖࡢ࢔ࢵࣉࣞࢠࣗ
࣮ࣞࢺࡣࢡࣟࢫࣁ࢖ࣈࣜࢲ࢖ࢮ࣮ࢩ࡛ࣙࣥ࠶ࡿࡇ࡜ࡀ♧၀ࡉࢀࡓࠋ
60
➨ 3 ❶࡛ࡣࠊ㑇ఏᏊⓎ⌧ࣉࣟࣇ࢓࢖ࣝࡢ⥙⨶ⓗゎᯒ࠿ࡽ᫂ࡽ࠿࡜࡞ࡗࡓ a924E1
ᰴࡢ࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟࡜ᅽຊឤཷᛶࡢ㛵㐃ᛶ࡟ࡘ࠸࡚ゎᯒࡋࡓࠋTTC ᰁⰍ࡟
ࡼࡾ࣑ࢺࢥࣥࢻࣜ࢔ࡢ࿧྾ᶵ⬟ࢆホ౯ࡋࡓ࡜ࡇࢁࠊa924E1 ᰴࡢ࿧྾ᶵ⬟ࡢపୗ
ࡀ᫂ࡽ࠿࡜࡞ࡗࡓ(ᅗ 1)ࠋ㓝ẕࡢ࿧྾ᶵ⬟ࡢపୗࡣ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡢḞᦆ
࡟㉳ᅉࡍࡿࡇ࡜ࡀከ࠸ࠋ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࢆ PCR ࡟ࡼࡾゎᯒࡋࡓ࡜ࡇࢁࠊ
COX1 㑇ఏᏊ㡿ᇦࡢḞኻࡀ᫂ࡽ࠿࡜࡞ࡗࡓ(ᅗ 5)ࠋࡲࡓࠊCOX1 㑇ఏᏊ௨እࡢ࣑ࢺ
ࢥࣥࢻࣜ࢔㑇ఏᏊࡢḞኻࡣ☜ㄆࡉࢀ࡞࠿ࡗࡓࠋࡇࢀࡽࡢ⤖ᯝࡣࠊa924E1 ᰴࡢ࣑
ࢺࢥࣥࢻࣜ࢔࿧྾ᶵ⬟ࡢపୗࡀ COX1 㑇ఏᏊࡢࡳࡢḞኻ࡟㉳ᅉࡋ࡚࠸ࡿࡇ࡜ࢆ
♧ࡋ࡚࠸ࡿࠋ୍⯡ⓗ࡞࿧྾Ḟᦆ㓝ẕᰴࡣ඲࡚ࡢ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࢆḞᦆࡋ࡚
࠸ࡿࡀࠊ
a924E1 ᰴࡣ COX1 㑇ఏᏊࡢࡳࢆḞኻࡋࡓ㠀ᖖ࡟⛥࡞࿧྾Ḟᦆᰴ࡛࠶ࡾࠊ
࣑ࢺࢥࣥࢻࣜ࢔࡜࿧྾ᶵ⬟࡟㛵ࡍࡿ◊✲࡟࠾࠸࡚ࡶ᭷┈࡞ኚ␗ᰴ࡛࠶ࡿࡇ࡜ࡀ
᫂ࡽ࠿࡜࡞ࡗࡓࠋCOX1 㑇ఏᏊࢆḞኻࡋࡓ a924E1 ᰴ(a ᆺ୍ಸయ)࠾ࡼࡧ COX1 㑇
ఏᏊࢆḞኻࡋ࡚࠸࡞࠸㔝⏕ᆺᰴ KA31α ᰴ(α ᆺ୍ಸయ)ࢆ᥋ྜࡋࠊ஧ಸయᰴࢆస
ฟࡋࡓࠋࡑࡢ⤖ᯝࠊCOX1 㑇ఏᏊࡢḞኻࡣ࣑ࢺࢥࣥࢻࣜ࢔࡜ඹ࡟⣽⬊㉁㑇ఏࡋࡓ
(ᅗ 1, 5)ࠋCOX1 㑇ఏᏊḞኻ࣑ࢺࢥࣥࢻࣜ࢔ࢆᣢࡘ஧ಸయᰴࡣࠊCOX1 㑇ఏᏊࢆḞ
ኻࡋ࡚࠸࡞࠸㔝⏕ᆺ࣑ࢺࢥࣥࢻࣜ࢔ࢆᣢࡘ஧ಸయᰴࡼࡾࡶ᭷ព࡟㧗࠸ᅽຊឤཷ
ᛶ⬟ࢆ♧ࡋࠊࡑࡢ஧ಸయᰴࡢᅽຊឤཷᛶ⬟ࡣ a924E1 ᰴ࡟༉ᩛࡍࡿࡇ࡜ࡀ᫂ࡽ࠿
61
࡜࡞ࡗࡓ(ᅗ 4)ࠋࡇࢀࡽࡢ⤖ᯝ࠿ࡽࠊ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡢ COX1 㑇ఏᏊࡢḞ
ኻࡀᅽຊឤཷᛶ࡟ᙉࡃ㛵㐃ࡍࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋ
➨ 4 ❶࡛ࡣࠊ࣓ࢱ࣑࣎ࣟࢡࢫ࡟ࡼࡾ௦ㅰ⏘≀ࡢ⥙⨶ⓗゎᯒ࡟ࡼࡾࠊCOX1 㑇ఏ
ᏊࡢḞኻ࡟ࡼࡿᅽຊឤཷᛶ⬟ࡢ௜୚ᶵᵓࢆゎᯒࡋࡓ(⾲ 8)ࠋࡑࡢ⤖ᯝࠊCE/MS ゎ
ᯒ࡟ࡼࡾࠊ250 ✀㢮ࡢ໬ྜ≀ࢆ᳨ฟࡋࠊa924E1 ᰴ࡟࠾࠸࡚ 48 ✀㢮ࡢ໬ྜ≀ࡀ
KA31a ᰴ࡜ẚ㍑ࡋ࡚┦ᑐⓗ࡟ῶᑡࡋࡓ(p < 0.05)ࠋࡲࡓࠊ59 ✀㢮ࡢ໬ྜ≀ࡣࠊ
a924E1 ᰴ࡛ࡣ᳨ฟࡉࢀࡎࠊα-ࢣࢺࢢࣝࢱࣝ㓟➼ࡢ࠸ࡃࡘ࠿ࡢ໬ྜ≀ࡣ a924E1 ᰴ
࠾ࡼࡧ KA31a ᰴࡢ୧ᰴ᳨࡛ฟࡉࢀ࡞࠿ࡗࡓࠋࡇࢀࡽࡢ┦ᑐⓗ࡟ῶᑡࡋࡓ໬ྜ≀
࠶ࡿ࠸ࡣ a924E1 ᰴ᳨࡛ฟࡉࢀ࡞࠿ࡗࡓ໬ྜ≀ࡣ TCA ࢧ࢖ࢡࣝࡸ࢔ࣝࢠࢽࣥ⏕
ྜᡂ࡟㛵୚ࡋ࡚࠸ࡓ(⾲ 9, ᅗ 7)ࠋDNA ࣐࢖ࢡࣟ࢔ࣞ࢖࡟ࡼࡿ㑇ఏᏊⓎ⌧ࡢ⥙⨶
ⓗゎᯒࡢ⤖ᯝ࠿ࡽࠊa924E1 ᰴ࡟࠾࠸࡚ࠊࡇࢀࡽࡢ໬ྜ≀ࡢ௦ㅰ࡟㛵㐃ࡍࡿ㓝⣲
ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊ(CIT2ࠊCIT3ࠊGDH1ࠊGDH3ࠊIDP2ࠊSDH1ࠊSDH2ࠊSHH3ࠊ
ARG1ࠊARG3ࠊARG4ࠊARG7ࠊCPA1ࠊMAK31ࠊPUT1ࠊVBA1 㑇ఏᏊ)ࡢⓎ⌧ࡀࢲ
࢘ࣥࣞࢠ࣮ࣗࣞࢺࡋࡓࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗ࡚࠸ࡿࠋᵝࠎ࡞ࢫࢺࣞࢫ⪏ᛶ࡟ᐤ୚
ࡍࡿ࢔ࣝࢠࢽࣥ⏕ྜᡂ࡟㛵୚ࡍࡿ㓝⣲ࢆࢥ࣮ࢻࡍࡿ㑇ఏᏊ࡛࠶ࡿ ARG8ࠊARG3ࠊ
ARG1ࠊARG4 㑇ఏᏊࡢⓎ⌧ࢆ RT-PCR ࡛ゎᯒࡋࡓ࡜ࡇࢁࠊa924E1 ᰴ࡟࠾࠸࡚Ⓨ
⌧ࡢపୗࡀ᫂ࡽ࠿࡜࡞ࡗࡓ(ᅗ 6)ࠋ࢔ࣝࢠࢽࣥࡀᅽຊ⪏ᛶ࡟ᐤ୚ࡍࡿᙳ㡪ࢆホ౯
62
ࡍࡿࡓࡵ࡟ࠊ࢔ࣝࢠࢽࣥῧຍࡲࡓࡣᮍῧຍࡢ᮲௳࡛ᇵ㣴ࡋࡓᚋ࡟㧗ᅽฎ⌮ࢆ᪋
ࡋࡓࠋ࢔ࣝࢠࢽࣥᮍῧຍࡢሙྜࠊKA31a ᰴࡢቑṪࡀほᐹࡉࢀࡓࡀࠊa924E1 ᰴࡢ
ቑṪࡣほᐹ࡛ࡁ࡞࠿ࡗࡓ(ᅗ 8)ࠋࡇࡢ⤖ᯝࡣࠊࡇࢀࡲ࡛ࡢ a924E1 ᰴࡀ KA31a ᰴ
࡜ẚ㍑ࡋ࡚ࡼࡾ㧗࠸ᅽຊឤཷᛶ⬟ࢆ᭷ࡍࡿ࡜࠸࠺ሗ࿌ࢆᨭᣢࡋࡓ(Shigematsu et
al., 2010a)ࠋࡲࡓࠊ10 mM ௨ୖࡢ࢔ࣝࢠࢽࣥࢆῧຍࡋ࡚ᇵ㣴ࡋࡓሙྜࠊa924E1 ᰴ
ࡢᅽຊ⪏ᛶࡢྥୖࡀ☜ㄆࡉࢀࡓ(ᅗ 8)ࠋࡇࢀࡽࡢ⤖ᯝ࠿ࡽࠊ࢔ࣝࢠࢽࣥࡀ㓝ẕ⣽
⬊࡟ᑐࡋ࡚㧗ᅽ⪏ᛶ࡟ᐤ୚ࡋ࡚࠸ࡿࡇ࡜ࢆ᫂ࡽ࠿࡜ࡋࡓࠋ
௨ୖࠊᮏ◊✲࡟࠾࠸࡚ࠊ࣑ࢺࢥࣥࢻࣜ࢔ DNA ࡢ COX1 㑇ఏᏊࡀᅽຊ⪏ᛶ࡟ᐤ
୚ࡍࡿࡇ࡜ࡀ᫂ࡽ࠿࡜࡞ࡗࡓࠋᅽຊឤཷᛶኚ␗ᰴ a924E1 ᰴࡣࠊCOX1 㑇ఏᏊࡢ
Ḟኻ࡟ࡼࡿ࣑ࢺࢥࣥࢻࣜ࢔ᶵ⬟ࡢపୗ࡟ࡼࡾࠊTCA ࢧ࢖ࢡࣝࡸ࢔ࣝࢠࢽࣥ⏕ྜ
ᡂ࡟㛵㐃ࡍࡿ௦ㅰᶵ⬟ࡀపୗࡋࡓࡇ࡜ࡀ♧ࡉࢀࡓ(ᅗ 7)ࠋᮏ◊✲࡛ࡣࠊࡇࢀࡽࡢ
⤖ᯝ࠿ࡽᘬࡁ㉳ࡇࡉࢀࡓ࢔ࣝࢠࢽࣥࡢᯤῬࡀᅽຊឤཷᛶ⬟ࢆ௜୚ࡋࡓ୍ᅉ࡛࠶
ࡿࡇ࡜ࢆ᫂ࡽ࠿࡜ࡋࡓࠋࡲࡓࠊᮏ◊✲ࡣࠊ㓟໬ࡸ෾⤖ࢫࢺࣞࢫ⪏ᛶ࡟ᐤ୚ࡍࡿ࢔
ࣝࢠࢽࣥࡀࠊ㧗ᅽࢫࢺࣞࢫ⪏ᛶ࡟ᑐࡋ࡚ࡶᐤ୚ࡍࡿࡇ࡜ࢆ♧ࡍึࡵ࡚ࡢሗ࿌࡛
࠶ࡿࠋᮏ◊✲ࡢᡂᯝࡣࠊCOX1 㑇ఏᏊḞኻ࣑ࢺࢥࣥࢻࣜ࢔ࢆ⏘ᴗ⏝㓝ẕᰴ࡟౪୚
ࡍࡿࡇ࡜࡛ࠊᅽຊឤཷᛶ⏘ᴗ⏝㓝ẕᰴࢆᐜ᫆࡟సฟࡍࡿࡇ࡜ࡀྍ⬟࡛࠶ࡿࡇ࡜
ࢆ♧၀ࡋࠊPReF ᢏ⾡ࡢ☜❧ࡢࡓࡵࡢ㊊᥃࠿ࡾ࡜࡞ࡿࡇ࡜ࡀᮇᚅ࡛ࡁࡿࠋ
63
➨ 6 ❶ ㅰ㎡
ᒱ㜧኱Ꮫ ᒾᶫ ᆒ ᩍᤵ࡟ࡣࠊᮏ◊✲ࡢ඲⯡࠾ࡼࡧᮏ༤ኈㄽᩥࡢᇳ➹࡟࠾ࡁࡲ
ࡋ࡚ࡈᣦᑟࢆ㈷ࡾࡲࡋࡓࠋ◊✲࡟ᑐࡍࡿ⪃࠼᪉ࠊㄽᩥࡸ⏦ㄳ᭩ࡢᵓᡂࠊᐇ⏝໬◊
✲࡟࠾ࡅࡿࢥࢫࢺព㆑➼ࠊ⊂≉ࡢ࣮ࣘࣔ࢔ࢆ஺࠼࡚ ࠿ࡃࡈᣦᑟ࠸ࡓࡔࡁࡲࡋ
ࡓࠋࡲࡓࠊࢼࣀ⢏Ꮚࡸື≀ᐇ㦂➼ࡢ㧗ᅽ◊✲௨እࡢ◊✲ࠊᏛ఍ࡢ㐠Ⴀࡢ⿵ຓ➼ࢆ
㏻ࡌ࡚௚࡛ࡣ⤒㦂ࡍࡿࡇ࡜ࡀ㞴ࡋ࠸ࡇ࡜ࢆᏛࡪᶵ఍ࢆ୚࠼࡚࠸ࡓࡔࡁࡲࡋࡓࠋ
ᚰࡼࡾᚚ♩⏦ࡋୖࡆࡲࡍࠋ࠶ࡾࡀ࡜࠺ࡈࡊ࠸ࡲࡋࡓࠋ
ᒱ㜧኱Ꮫ 㕥ᮌ ᚭ ᩍᤵ࡟ࡣࠊᮏ◊✲ࡢ㐙⾜ࡸ୰㛫Ⓨ⾲࡟࡚ࡈຓゝ࠸ࡓࡔࡁࠊ
ᮏ༤ኈㄽᩥࡢᵓᡂ࠾ࡼࡧᑂᰝ➼࡟࠾ࡁࡲࡋ࡚ࡈᣦᑟࢆ㈷ࡾࡲࡋࡓࠋࡲࡓࠊㄽᩥࡢ
సᡂࡸࢻࢡࢱ࣮ࢥ࣮ࢫࡢྜᐟ➼ࡢᵝࠎ࢖࣋ࣥࢺ࡛ ࠿ࡃࡈᣦᑟ࠸ࡓࡔࡁࡲࡋࡓࠋ
ཌࡃᚚ♩⏦ࡋୖࡆࡲࡍࠋ
㟼ᒸ኱Ꮫ ᑠᕝ ┤ே ᩍᤵ࡟ࡣࠊᮏ◊✲ࡢ㐙⾜ࡸ୰㛫Ⓨ⾲࡟࡚ࡈຓゝ࠸ࡓࡔࡁࠊ
ᮏ༤ኈㄽᩥࡢᵓᡂ࠾ࡼࡧᑂᰝ➼࡟࠾ࡁࡲࡋ࡚ࡈᣦᑟࢆ㈷ࡾࡲࡋࡓࠋࡲࡓࠊ◊✲ࡢ
㐍ࡵ᪉ࡸᐇ㦂ࡢᡭᢏࠊᡭἲ࡟ࡘࡁࡲࡋ࡚ ࠿ࡃࡈᣦᑟ࠸ࡓࡔࡁࡲࡋࡓࠋཌࡃᚚ♩
⏦ࡋୖࡆࡲࡍࠋ
᪂₲⸆⛉኱Ꮫ 㔜ᯇ ஽ ᩍᤵࠊ஭ཱྀ ᫭ᚨ ຓᩍ࡟ࡣࠊᮏ◊✲࡛⏝࠸ࡓ S.
cerevisiae KA31a ᰴ࠾ࡼࡧ a924E1 ᰴࠊࡑࢀࡽࡢ஧ಸయᰴ➼ࢆศ୚ࡋ࡚࠸ࡓࡔࡁ
64
ࡲࡋࡓࠋࡲࡓࠊᮏ◊✲ࡢ㐙⾜࠾ࡼࡧㄽᩥࡢᇳ➹࡟࠾ࡁࡲࡋ࡚㐺ษ࡞ࡈຓゝࢆ㈷ࡾ
ࡲࡋࡓࠋཌࡃᚚ♩⏦ࡋୖࡆࡲࡍࠋ
⏘ᴗᢏ⾡⥲ྜ◊✲ᡤࡢ㧗ᶫ ῟Ꮚ ༤ኈࠊ㣗ရ⥲ྜ◊✲ᡤࡢ㕥ᮌ ᛅᏹ ༤ኈ࡟
ࡣࠊDNA ࣐࢖ࢡࣟ࢔ࣞ࢖ࡢゎᯒ࡟ࡘࡁࡲࡋ࡚ࡈᣦᑟࢆ㈷ࡾࡲࡋࡓࠋ῝ࡃᚚ♩⏦
ࡋୖࡆࡲࡍࠋ
ᒱ㜧኱Ꮫ ୰ᕝ ᬛ⾜ ᩍᤵࠊ୰ᮧ ᾈᖹ ෸ᩍᤵ࡟ࡣࠊ࣑ࢺࢥࣥࢻࣜ࢔ࡢᰁⰍᐇ
㦂࠾ࡼࡧ⺯ග㢧ᚤ㙾ࡢほᐹ࡟࠾ࡁࡲࡋ࡚ࡈᣦᑟࢆ㈷ࡾࡲࡋࡓࠋ῝ࡃᚚ♩⏦ࡋୖ
ࡆࡲࡍࠋ
ᒱ㜧኱Ꮫ ᒾ㛫 ᬛᚨ ෸ᩍᤵ࡟ࡣࠊ◊✲ࡢ㐙⾜࠾ࡼࡧ◊✲⏕ά࡟࠾ࡁࡲࡋ࡚㐺
ษ࡞ࡈຓゝࢆ㈷ࡾࡲࡋࡓࠋ῝ࡃᚚ♩⏦ࡋୖࡆࡲࡍࠋ
࠾ྡ๓ࢆ࠾ᣲࡆ࡛ࡁࡲࡏࢇ࡛ࡋࡓࡀࠊᏛ఍➼࡛ᮏ◊✲࡟ࡘࡁࡲࡋ࡚ከࡃࡢඛ
⏕᪉࡟ࡈຓゝࢆ㈷ࡾࡲࡋࡓࠋ῝ࡃᚚ♩⏦ࡋୖࡆࡲࡍࠋ
᭱ᚋ࡟ࠊ㛗࠸Ꮫ⏕⏕άࢆᨭ࠼࡚࠸ࡓࡔ࠸ࡓ୧ぶ࡜♽∗ẕࠊᘵ࡟ឤㅰ࠸ࡓࡋࡲࡍࠋ
࠶ࡾࡀ࡜࠺ࡈࡊ࠸ࡲࡋࡓࠋ
65
➨ 7 ❶ ཧ⪃ᩥ⊩
[1] Abe, F., and Kato, C. (1999) Barophysiology. In: Horikoshi, K., and Tsuji, K. [eds.]
Extremophile in Deep-sea Environments, pp. 227-248. Springer, Berlin.
[2] Adegoke, G. O., and Babalola, A. K. (1988) Characteristics of microorganisms of
importance in the fermentation of fufu and ogi ̺ two Nigerian foods. J. Appl.
Bacteriol. 65, 449-453.
[3] Aertsen, A., Houdt, R. V., Vanoirbeek, K., and Michiels, C. W. (2004) An SOS
response induced by high pressure in Escherichia coli. J. Bacteriol. 186, 6133-6141.
[4] Basak, S., Ramaswamy, H. S., and Piette, J. P. G. (2002) High pressure destruction
kinetics of Leuconostoc mesenteroides and Saccharomyces cerevisiae in single
strength and concentrated orange juice. Innov. Food Sci. Emerg. Technol. 3, 223-231.
[5] Brauer, M. J., Saldanha, A. J., Dolinski, K., and Botstein, D. (2005) Homeostatic
adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol. Biol.
Cell 16, 2503–17.
[6] Bravim, F., Lippman S. I., Silva, L. F. D., Souza, D. T., Fernandes, A. A. R., Masuda,
C. A., Broach, J. R., Fernandes, P. M. B. (2012) High hydrostatic pressure activates
gene expression that leads to ethanol production enhancement in a Saccharomyces
66
cerevisiae distillery strain. Appl. Microbiol. Biotechnol. 97, 2093-2107.
[7] Bridgman, P. W. (1912) Water, in the liquid and five solid forms, under pressure. Proc.
Amer. Acad. Arts Sci. 47, 439-558.
[8] Bridgman, P. W. (1914) The coagulation of albumen by pressure. J. Biol. Chem. 19,
511-512.
[9] Chong, P. L., Fortes, P. A., and Jameson, D. M. (1985) Mechanisms of inhibition of
(Na, K)-ATPase by hydrostatic pressure studied with fluorescent probes. J. Biol.
Chem. 260, 14484-14490.
[10] Egilmez, N. K., and Jazwinski, S.M. (1989) Evidence for the involvement of a
cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J. Bacteriol.
171, 37-42.
[11] Fernandes, P. M., Domitrovic, T., Kao, C. M., Kurtenbach, E. (2004) Genomic
expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic
pressure. FEBS Lett. 556, 153–6.
[12] Freitas, J. M. D., Bravim, F., Buss, D. S., Lemos, E. M., Fernandes, A. A. R., and
Fernandes, P. M. B. (2012) Influence of cellular fatty acid composition on the
response of Saccharomyces cerevisiae to hydrostatic pressure stress. FEMS Yeast
Res. 12, 871-878.
67
[13] ⚟ཎ ᏹ (1986) 㓝ẕ࣑ࢺࢥࣥࢻࣜ࢔㑇ఏᏊࡢᵓ㐀࡜ᶵ⬟. ໬Ꮫ࡜⏕≀, 24,
707-716.
[14] ⚟ᓮ ⱥ୍㑻 (2013) ࣓ࢱ࣑࣎ࣟࢡࢫࡢ⌧≧࡜ྍ⬟ᛶ, ⚟ᓮ ⱥ୍㑻[eds.] ࣓
ࢱ࣑࣎ࣟࢡࢫࡢ᭱ඛ➃ᢏ⾡࡜ᛂ⏝<ᬑཬ∧>, ➨ 1 ∧, 1-10. ࢩ࣮࢚࣒ࢩ࣮ฟ
∧, ᮾி.
[15] Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J.
R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A. (2008) Transformation of
the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 320,
889-892.
[16] Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H.,
Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W.,
Murakami, Y., Philippsen, P., Tettelin, H., and Oliver, S. G. (1996) Life with 6000
Genes. Science 274, 546-567.
[17] Hamada, H., and Shiraki, K. (2007) L-Argininamide improves the refolding more
effectively than L-arginine. J. Biotechnol. 130, 153-160.
[18] Haney, S. A., Xu, J., Lee, S. Y., Ma, C. L., Duzic, E., Broach, J., and Manfredi, J.
(2001) Genetic selection in Saccharomyces of mutant mammalian adenylyl cyclases
with elevated basal activities Mol. Gen. Genet. 265, 1120-1128.
68
[19] Hartwell, L. H. (2004) Yeast and Cancer. Biosci. Rep. 24, 523-544.
[20] Hasegawa, T., Hayashi, M., Nomura, K., Hayashi, M., Kido, M., Ohmori, T., Fukuda,
M., Iguchi, A., Ueno, S., Shigematsu, T., Hirayama, M., and Fujii, T. (2012) Highthroughput method for kinetic analysis on high pressure inactivation of
microorganisms using microplate. J. Biosci. Bioeng. 113, 788–91.
[21] Hashizume, C., Kimura, K., and Hayashi, R. (1995) Kinetic Analysis of Yeast
Inactivation by High Pressure Treatment at Low Temperatures. Biosci. Biotech.
Biochem. 59, 1455-1458.
[22] Hayashi, R., Kawamura, Y., and Kunugi, S. (1987) Introduction of High Pressure to
Food Processing: Preferential Proteolysis of β-Lactoglobulin in Milk Whey. J. Food
Sci. 52: 1107–1108.
[23] ᯘ ຊ୸ (1991) 㣗ရ࡬ࡢᅽຊຍᕤ㸫ຍᕤ㣗ရࡢ≀ᛶ. ⇕≀ᛶ 5, 284-290.
[24] ᯘ ຊ୸ (2008) ⏕≀࡟୚࠼ࡿᅽຊຠᯝ࡜ຍᅽ㣗ရࡢᑠྐ. 㧗ᅽຊࡢ⛉Ꮫ࡜
ᢏ⾡ 18, 70-377.
[25] Hite, B. (1899) The effect of pressure in the preservation of milk. Bull. W. VA U.
Agricultural Experiment Station 58: 15-35.
[26] Hite, B., Giddings, N. J., and Weakley, Jr. C. E. (1914) The effect of pressure on
certain microorganisms encountered in the preservation of fruits and veges. Bull. W.
69
VA U. Agricultural Experiment Station. 146: 1-67.
[27] Hohmann, S. (2002) Osmotic Stress Signaling and Osmoadaptation in Yeasts.
Microbiol. Mol. Biolo. Rev. 66, 300-372.
[28] ᇼỤ 㞝, ᮌᮧ 㑥⏨, ஭⏣ 㞞ኵ (1991) ຍᅽἲ࡟ࡼࡿࢪ࣒ࣕ〇㐀࡟㛵ࡍࡿ◊
✲. ᪥ᮏ㎰ⱁ໬Ꮫ఍ㄅ 65, 975-980.
[29] Ishii, S. (2002) Some microbiological findings on kumiss and their functions. J.
Brewing Society of Japan 97, 210-215.
[30] Iwahashi, H., Kaul, S. C., Obuchi, K., and Komatsu, Y. (1991) Induction of
barotolerance by heat shock treatment in yeast. FEMS Microbiol. Lett. 80, 325-328.
[31] ᒾᶫ ᆒ (2002) DNA ࣐࢖ࢡࣟ࢔ࣞ࢖, DNA ࢳࢵࣉ㸫ࡇࢀ࠿ࡽࡢ᪂ᢏ⾡㸫. ⎔
ቃᢏ⾡ 31, 679-685.
[32] Iwahashi, H., Shimizu, H., Odani, M., and Komatsu, Y. (2003) Piezophysiology of
genome wide gene expression levels in the yeast Saccharomyces cerevisiae.
Extremophiles 7, 291–98.
[33] Iwahashi, H., Odani, M., Ishidou, E., and Kitagawa, E. (2005) Adaptation of
Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition.
FEBS Lett. 579, 2847-52.
[34] Iwahashi, H., Kitagawa, E., Suzuki, Y., Ueda, Y., Ishizawa, Y., Nobumasa, H.,
70
Kuboki, Y., Hosoda, H., and Iwahashi, Y. (2007) Evaluation of toxicity of the
mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray.
BMC Genomics 8, 1-13.
[35] Iwahashi, Y., Kitagawa, E., and Iwahashi, H. (2008) Analysis of mechanisms of T-2
toxin toxicity using yeast DNA microarrays. Int. J. Mol. Sci. 9, 2585-2600.
[36] Jaenicke, L. (2007) Centenary of the award of a Nobel Prize to Eduard Buchner, the
father of biochemistry in a test tube and thus of experimental molecular bioscience.
Angew. Chem. Int. Edit. 46: 6776-6782.
[37] Kasuga, K. (1998) Outline of the results of the food industry extrahigh-pressure
application technology research association. Food and Technology 320: 15-17.
[38] Kawarai, T., Arai, S., Furukawa, S., Ogihara, H., and Yamasaki, M. (2006) Highhydrostatic- pressure treatment impairs actin cables and budding in Saccharomyces
cerevisiae. J. Biosci. Bioeng. 101, 515-518.
[39] ᮌᮧ 㐍 (1993) 㣗ရ⏘ᴗࡢᮍ᮶ࢆᣅࡃ㸫㧗ᅽᢏ⾡࡜㧗ᐦᗘᇵ㣴. 㣗ရ⏘ᴗ
㉸㧗ᅽ฼⏝ᢏ⾡◊✲⤌ྜ[Eds.] ೺ᗣ⏘ᴗ᪂⪺, ᮾி.
[40] Kobori, H., Sato, M., Tameike, A., Hamada, K., Shimada, S., Osumi, M. (1995)
Ultrastructural effects of pressure stress to the nucleus in Saccharomyces cerevisiae:
a study by immunoelectron microscopy using frozen thin sections. FEMS Microbiol.
71
Lett. 132, 253.
[41] Koseki, S., and Yamamoto, K. (2006) Recovery of Escherichia coli ATCC 25922 in
phosphate buffered saline after treatment with high hydrostatic pressure. Int. J. Food
Microbiol. 110, 108-111.
[42] Kurita, S., Kitagawa, E., Kim, C. H., Momose, Y., and Iwahashi, H. (2002) Studies
on the antimicrobial mechanisms of capsaicin using yeast DNA microarray. Bios.
Biot. Biochem. 66: 532-536.
[43] Lee, J.W., Cha, D.S., Park, H.J., and Hwang, K.T. (2003) Effects of CO2 absorbent
and high-pressure treatment on the shelf-life of packaged Kimchi products. Int. J.
Food Sci. Technol. 38, 519-524.
[44] Liti, G., Carter, D. M., Moses, A.M., Warringer, J., Parts, L., James, S. A., Davey, R.
P., Roberts, I. N., Burt, A., Koufopanou, V., Tsai, I. J., Bergman, C. M., Bensasson,
D., O’Kelly, M. J. T., Oudenaarden, A. V., Barton, D. B. H., Bailes, E., Nguyen, A.
N., Jones, M., Quail, M. A., Goodhead, I., Sims, S., Smith, F., Blomberg, A., Durbin,
R., and Louis, E. J. (2009) Population genomics of domestic and wild yeasts. Nature
458, 337-341.
[45] Lyutova, E. M., Kasakov, A. S., and Gurvits, B.Y. (2007) Effects of Arginine on
Kinetics of Protein Aggregation Studied by Dynamic Laser Light Scattering and
72
Tubidimetry Techniques. Biotechnol. Prog. 23, 1411-1416.
[46] Matsuoka, H., Suzuki, Y., Iwahashi, H., Arao, T., Suzuki, Y., and Tamura, K. (2005)
The biological effects of high-pressure gas on the yeast transcriptome. Braz. J. Med.
Biol. Res. 38, 1267-1272.
[47] Mitsuoka, T., Makita, S., and Asano, H. (2002) The characteristics of lactic acid
bacteria isolated from Masai fermented milk in Kenya. Biosci. Microflora 21, 171178.
[48] Mohammed, S. I., Steenson, L. S., and Kireleis, A. W. (1991) Isolation and
characterization of microorganisms associated with the traditional sorghum
fermentation for production of Sudanese kisra. Appl. Environ. Microbiol. 57, 25292533.
[49] Momose, Y., and Iwahashi, H. (2001) Bioassay of cadmium using DNA microarray:
Genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium.
Env. Tox. Chem. 20: 2353-2360.
[50] Morita, Y., Nakamori, S., and Takagi, H. (2002) Effect of proline and arginine
metabolism on freezing stress of Saccharomyces cerevisiae. J. Biosci. Bioeng. 94,
390-394.
[51] Murata, Y., Watanabe, T., Sato, M., Momose, Y., Nakahara, T., Oka, S., and Iwahashi,
73
H. (2003) DMSO exposure facilitates phospholipid biosynthesis and cellular
membrane proliferation in yeast cells. J. Biol. Chem. 278: 33185-33193.
[52] Murokoshi, A. (2004) Development of a device for shucking oysters. Nippon Suisan
Gakk., 70: 671-673.
[53] Nagai, S. (1959) Induction of the respiration-deficient mutation in yeast by various
synthetic dyes. Science 130, 1188–1189.
[54] Nishimura, A., Kotani, T., Sasano, Y., and Takagi, H. (2010) An antioxidative
mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced
arginine synthesis and its physiological role. FEMS Yeast Res. 10, 687-698.
[55] 㔝ᮧ ୍ᶞ, ᒾᶫ ᆒ (2013) 㧗ᅽୗ࡟࠾ࡅࡿ㓝ẕ⣽⬊ࡢṚ. 㧗ᅽຊࡢ⛉Ꮫ࡜
ᢏ⾡ 23, 53-58.
[56] Nomura, K., and Iwahashi, H. (2014) Pressure-Regulated Fermentation: A
revolutionary approach that utilizes hydrostatic pressure. Reviews in Agricultural
Science 2, 1-10.
[57] Odani, M., Komatsu, Y., Oka, S., and Iwahashi, H. (2003) Screening of genes that
respond to cryopreservation stress using yeast DNA microarray. Cryobiol. 47: 155164.
[58] ኱᳃ ୣ, 㔜ஂ ಖ (1990) ␆⏘࡟ཬࡰࡍ㧗ᅽస⏝. In: ᯘ ຊ୸[eds.] ຍᅽ㣗
74
ရ, ➨ 1 ∧ pp. 131-139. ࡉࢇ࠼࠸ฟ∧, ி㒔.
[59] Ohshima, S., Nomura, K., and Iwahashi, H. (2013) Clarification of the recovery
mechanism of Escherichia coli after hydrostatic pressure treatment. High Pressure
Res. 33, 308-314.
[60] Okada, S., Ishikawa, M., Yoshida, I., Uchimura, T., Ohara, N., and Kozaki, M. (1992)
Identification and characteristics of lactic acid bacteria isolated from sour dough
sponges. Biosci. Biotech. Biochem. 56, 572-575.
[61] Oyewole, O. B., and Odunfa, S. A. (1988) Microbiological studies on cassava
fermentation for ‘lafun’ production. Food Microbiol. 5, 125-133.
[62] Pascal, B. (1653) ᯇᾉಙ୕㑻ヂ (1953) ࣃࢫ࢝ࣝ⛉Ꮫㄽᩥ㞟, ➨ 4 ∧. Pp. 1203. ᒾἼ᭩ᗑ, ᮾி.
[63] Patrignani, F., Vannini, L., Kamdem, S. L. S., Lanciotti, L., and Guerzoni, M. E.
(2009) Effect of high pressure homogenization on Saccharomyces cerevisiae
inactivation and physico-chemical features in apricot and carrot juices. Int. J. Food
Microbiol. 136, 23-31.
[64] Pope, D. H., and Berger, L. R. (1973) Inhibition of metabolism by hydrostatic
pressure: What limits microbial growth? Arch. Microbiol. 93, 367–370.
[65] Roger, H. (1892) Action des hautes pressions sur quelques bactéries. C. R. Hebd.
75
Acad. Sci. 114.
[66] Roger, H. (1895) Action des hautes pressions sur quelques bactéries. Arch. Physiol.
Norm. Path. 7:12–17.
[67] Shigematsu, T., Nasuhara, Y., Nagai, G., Nomura, K., Ikarashi, K., Hayashi, M.,
Ueno, S., and Fujii, T. (2010a) Isolation and characterization of barosensitive mutants
of Saccharomyces cerevisiae obtained by UV mutagenesis. J. Food Sci. 75, M509M514.
[68] Shigematsu, T., Nomura, K., Nasuhara, Y., Ikarashi, K., Nagai, G., Hirayama, M.,
Hayashi, M., Ueno, S., and Fujii, T. (2010b) Thermosensitivity of a barosensitive
Saccharomyces cerevisiae mutant obtained by UV mutagenesis. High Pressure Res.
30, 524-529.
[69] 㔜ᯇ ஽ (2013) 㧗ᅽຊୗ⌧㇟ࡢ≉ᚩ࡜໬Ꮫ཯ᛂ. In: 㔜ᯇ ஽, すᾏ ⌮அ
[eds.] 㐍໬ࡍࡿ㣗ရ㧗ᅽຍᕤᢏ⾡㸫ᇶ♏࠿ࡽ᭱᪂ࡢᛂ⏝஦౛ࡲ࡛㸫, ➨ 1 ∧
pp. 11-16. ࢚ࢾ࣭ࢸ࢕࣮࣭࢚ࢫ, ᮾி.
[70] Sirisattha, S., Momose, Y., Kitagawa, K. and Iwahashi, H. (2004) Genomic profile
of Roundup treatment of yeast using DNA microarray analysis. Environ. Sci. 11: 313323.
[71] 㕥ᮌ ᩔኈ (2011) ᪂₲┴ࡀ࣮ࣜࢻࡍࡿ㣗ရ࡬ࡢ㧗ᅽຍᕤฎ⌮ᢏ⾡. New
76
Food Ibdustry 53, 47-56.
[72] 㕥ᮌ ᩔኈ (2013) 㣗ရຍᕤ࡟࠾ࡅࡿඛ➃ຍᕤᢏ⾡࡜㧗ᅽᢏ⾡ࡢ᭱᪂஦᝟.
In: 㔜ᯇ ஽, すᾏ ⌮அ[eds.] 㐍໬ࡍࡿ㣗ရ㧗ᅽຍᕤᢏ⾡㸫ᇶ♏࠿ࡽ᭱᪂ࡢ
ᛂ⏝஦౛ࡲ࡛㸫, ➨ 1 ∧ pp. 11-16. ࢚ࢾ࣭ࢸ࢕࣮࣭࢚ࢫ, ᮾி.
[73] Tamura, K., Shimizu, T., and Kourai, H. (1992) Effects of ethanol on the growth and
elongation of Escherichia coli under high pressure up to 40 MPa. FEMS Microbiol.
Lett. 99, 321-324.
[74] Tanaka, Y., Higashi, T., Rakwal, R., Wakida, S., and Iwahashi, H. (2007) J. Pharm.
Biomed. Anal. 44, 608-613.
[75] ⏣୰ ႐⚽, ᮾ ဴྖ, Rakwal, R., ᰘ⸨ ῟Ꮚ, ⬥⏣ ៅ୍, ᒾᶫ ᆒ (2013) ࢤ
ࣀ࣑ࢡࢫ࡜࣓ࢱ࣑࣎ࣟࢡࢫࡢ⏕≀Ꮫⓗゎᯒᢏ⾡࡜ࡋ࡚ࡢ⼥ྜ, ⚟ᓮ ⱥ୍㑻
[eds.] ࣓ࢱ࣑࣎ࣟࢡࢫࡢ᭱ඛ➃ᢏ⾡࡜ᛂ⏝<ᬑཬ∧>, ➨ 1 ∧, pp. 195-203. ࢩ
࣮࢚࣒ࢩ࣮ฟ∧, ᮾி.
[76] ㎷⏣⣧஧, 㕥ᮌ㑥ᏹ (1990) 㧗ᅽฎ⌮ᢏ⾡ࢆ฼⏝ࡋࡓ㣗⫗ຍᕤရ. In: ᯘ ຊ
୸[eds.] ຍᅽ㣗ရ, ➨ 1 ∧ pp. 123-130. ࡉࢇ࠼࠸ฟ∧, ி㒔.
[77] Tsumoto, K., Umetsu, M., Kumagai, I., Ejima, D., Philo, J. S., and Arakawa, T.
(2004) Role of Arginine in Protein Refolding, Solubilization, and Purification.
Biotechnol. Prog. 20, 1301-1308.
77
[78] ㉸㧗ᅽᢏ⾡ࡢ㣗ရ➼࡬ࡢᛂ⏝࡟㛵ࡍࡿ◊✲఍ (1991) 㧗ᅽ฼⏝࡟㛵ࡍࡿ◊✲
ᡂᯝሗ࿌᭩. pp. 1-88. ཮ⴥ༳ๅ, ᪂₲.
[79] Vogel, R. F., Pavlovic, M., Hörmann, S., and Ehrmann, M. A. (2005) High pressuresensitive gene expression in Lactobacillus sanfranciscensis. Braz. J. Med. Biol. Res.
38, 1247-1252.
[80] ᒣᮏ ࿴㈗, ᑠ㛵 ᡂᶞ (2009) 㣗ရ㧗ᅽຍᕤᢏ⾡. 㣗⣊㸫ࡑࡢ⛉Ꮫ࡜ᢏ⾡㸫
47, 37-50.
[81] ᒣᓮ ᙯ, ➲ᕝ ⛅ᙪ (2000) 㧗ᅽࢆ฼⏝ࡋࡓ⡿ຍᕤ㣗ရࡢ㛤Ⓨ. ᪥ᮏ㎰ⱁ໬
Ꮫ఍ㄅ 74, 619-623.
[82] Yasokawa, D., Murata, S., Kitagawa, E., Iwahashi, Y., Nakagawa, R., Hashido, T.,
and Iwahashi, H. (2008) Mechanisms of copper toxicity in Saccharomyces cerevisiae
determined by microarray analysis. Environ Toxicol. 23, 599-606.
[83] Yasokawa, D., Murata, S., Iwahashi, Y., Kitagawa, E., Kishi, K., Okumura, Y., and
Iwahashi, H. (2010) DNA microarray analysis suggests that zinc pyrithione causes
iron starvation to the yeast Saccharomyces cerevisiae. J. Biosci. Bioeng. 109, 479486.
[84] Yasokawa, D. and Iwahashi, H. (2010) Toxicogenomics using yeast DNA
microarrays. J. Biosci. Bioeng. 110, 511-522.
78
[85] Yayanos, A. A., and Pollard, E. C. (1969) A study of the effects of hydrostatic
pressure on macromolecular synthesis in Escherichia coli. Biophys. J. 9, 1464–82.
[86] ZoBell, C. E. and Cobet, A. B. (1964) Filament formation by Escherichia coli at
increased hydrostatic pressures. J. Bacteriol. 87, 710-719.
79
➨ 8 ❶ ᅗ⾲
Table 1. Saccharomyces cerevisiae strains used in this study. rho+; normal respiration
strain, rho-; respiration-deficient strain.
Strain
Genotype
Saccharomyces cerevisiae KA31a
MATa his3 leu2 trp1 ura3
Saccharomyces cerevisiae a924E1
MATa his3 leu2 trp1 ura3
Saccharomyces cerevisiae KA31α
MATα his3 leu2 trp1 ura3
Parent
rho+ type haploid
Barosensitive mutant
rho㸫 type haploid
Wild type
rho+ type haploid
Saccharomyces cerevisiae C208
MATa/α his3 leu2 trp1 ura3
rho㸫 type diploid
Saccharomyces cerevisiae E201
MATa/α his3 leu2 trp1 ura3
rho+ type diploid
Saccharomyces cerevisiae E208
MATa/α his3 leu2 trp1 ura3
rho㸫 type diploid
Saccharomyces cerevisiae F102
MATa/α his3 leu2 trp1 ura3
rho㸫 type diploid
Saccharomyces cerevisiae F108
MATa/α his3 leu2 trp1 ura3
rho+ type diploid
80
5’-ATGGGTGAAACCATTCCATT-3’
5’-ACAGATTCCCCTTGACCTTG-3’
5’-CGTCCTGAGGATGAGTCTCA-3’
5’-TTGATCGTTTTTCCCACAAA-3’
5’-GGTTGGCAGTGTTCATCAAC-3’
5’-TCACCGAAGCTGTTCTTGTC-3’
5’-TTTAGTGGTATGGCAGGAACAG-3’
5’-GCTACAGATACAGCATTTCCAAGA-3’
5’-GAAAAGGGGGTGGGAGTAAA-3’
5’-CGCACTTTGCAGAAACGATA-3’
5’-ATGCGGGAAAACCCTAAAGT-3’
5’-TCTTTGCTGGTTTATTCTGAGC-3’
5’-GGGTTCTTTGATGCTGATGG-3’
5’-TCCAAGCACATCAAGAAACC-3'
5’-TGTCAACCACAGCATCCAC-3’
5’-GCCTTTGGATGTTTTCTTGG-3’
5’-ACTATGGGGTGGGAGATTCA-3’
5’-ATTGCCGAAAGAATGCAAAAGG-3’
Aldehyde dehydrogenase
Catabolism of arginine
Mitochondrial ribosomal protein
Fructose-1,6-bisphosphatase
Isocitrate lyase
Succinate-fumarate carrier
Cytochrome c oxidase
Cytochrome c oxidase
15S ribosomal RNA
21S ribosomal RNA
Cytochrome c oxidase
Cytochrome c oxidase
Cytochrome B
Cell division cycle
N-acetyl-ornithine aminotransferase
Ornithine carbamoyltransferase
Arginisuccinate synthetase
Argiosuccinate lyase
Actin
ALD3
CAR1
MRP51
FBP1
ICL1
SFC1
COX1
COX1
15S rRNA
21S rRNA
COX1
COX3
COB
CDC48
ARG8
ARG3
ARG1
ARG4
ACT1
81
5’-ACCAAAAAGGACGAGATTGC-3’
F-primer
Gene function
Gene name
Table 2. Sequences of oligonucleotide primers used in this study.
5’-CGCACAAAAGCAGAGATTAGAAACA-3’
5’-CGTAAGGATGACCAGCAAGA-3’
5’-TCTGGGGTGAAGTAGGAACC-3’
5’-TCACACGGGCAAAAATACAT-3’
5’-ACTCAGCACCAAGCATCAAA-3’
5’-CCTCCACAAACAATCTCGTG-3’
5’-TATGGGAGTTCCCACAAAGC-3’
5’-TACCTGCGATTAAGGCATGA-3’
5’-CCCTGTACCAGCACCTGATT-3’
5’-ATAATGACGCCCCATCAAAA-3’
5’-GATTCGCATGTGTCATGTCC-3’
5’-CACCACCTCCTGATACTTCAAA-3’
5’-CGTAGTAAGTATCGTGGAATGCTA-3’
5’-TTTGGCTTTGGTGTGTCATT-3’
5’-CTAGCCATTGGTCAGGGAAT-3’
5‘-ATCCGTACATGGCATAGCAA-3’
5’-CCAGCCATTTATTGTCGTTG-3’
5’-ACACCATCGACGTCATAGGA-3’
5’-CCATGTGGGTTCCTAAAGCT-3’
R-primer
Control
Downregulated
Downregulated
Downregulated
Downregulated
Control
Mitochondria
Mitochondria
Mitochondria
Mitochondria
Mitochondria
COX1 gene 2
COX1 gene 1
Downregulated
Downregulated
Downregulated
Upregulated
Upregulated
Upregulated
Table 3. Functional categories of upregulated genes in the mutant strain a924E1. p-values
indicate the statistical significance of the observed upregulation of genes in each category.
Number of
Number of
Percentage of
Total genes
Altered genes
Altered genes
Energy
367
45
12.3%
0.003
Biogenesis of cellular components
862
88
10.2%
0.012
Unclassified proteins
1393
128
9.2%
0.042
Metabolism
1514
137
9.0%
0.085
Protein synthesis
480
42
8.8%
0.341
Cell fate
273
22
8.1%
1.000
Interaction with the environment
463
37
8.0%
1.000
Protein fate
1154
91
7.9%
1.000
Cellular transport
1038
76
7.3%
1.000
Cell type differentiation
452
33
7.3%
1.000
Cell cycle and DNA processing
1012
73
7.2%
1.000
Regulation of metabolism
253
17
6.7%
1.000
Binding proteins
1049
66
6.3%
1.000
Cell rescue, defense and virulence
554
34
6.1%
1.000
Signal transduction mechanism
234
13
5.6%
1.000
Transcription
1077
57
5.3%
1.000
Development
69
3
4.3%
1.000
Transposable elements
120
3
2.5%
1.000
Functional Category
82
P value
Table 4. Locational categories of upregulated genes in the mutant strain a924E1. p-values
indicate the statistical significance of the observed upregulation of genes in each category.
Number of
Number of
Percentage of
Total genes
Altered genes
Altered genes
1047
124
11.8%
0.001>
Cell wall
44
10
22.7%
0.002
Extracellular
54
11
20.4%
0.004
Bud
150
17
11.3%
0.104
Cell periphery
216
23
10.6%
0.113
Endosome
58
7
12.1%
0.192
Cytoskeleton
204
20
9.8%
0.226
Microsomes
5
1
20.0%
0.347
Ambiguous
237
21
8.9%
0.381
172
15
8.7%
0.436
Plasma membrane
186
15
8.1%
0.454
Transport vesicles
141
11
7.8%
1.000
ER
552
40
7.2%
1.000
Punctate composite
140
10
7.1%
1.000
Cytoplasm
2844
190
6.7%
1.000
Vacuole
284
19
6.7%
1.000
Golgi
158
10
6.3%
1.000
Nucleus
2136
131
6.1%
1.000
Peroxisome
52
2
3.8%
1.000
Lipid particles
27
1
3.7%
1.000
Locational Category
Mitochondria
Integral membrane /
endomembranes
83
P value
Table 5. Functional categories of downregulated genes in the mutant strain a924E1. p-values
indicate the statistical significance of the observed downregulation of genes in each category.
Functional Category
Number of
Number of
Total genes
Altered genes
Percentage of
Altered genes
P value
Protein synthesis
480
155
32.3%
0.001>
Transcription
1077
155
14.4%
0.001>
Binding proteins
1049
148
14.1%
0.001>
Energy
367
48
13.1%
0.071
Metabolism
1514
174
11.5%
0.111
69
8
11.6%
0.453
Cell rescue, defense and virulence
554
57
10.3%
1.000
Cell fate
273
24
8.8%
1.000
Cellular transport
1038
90
8.7%
1.000
Cell cycle and DNA processing
1012
83
8.2%
1.000
Protein fate
1154
85
7.4%
1.000
Cell type differentiation
452
30
6.6%
1.000
Regulation of metabolism
253
16
6.3%
1.000
Biogenesis of cellular components
862
52
6.0%
1.000
Interaction with the environment
463
27
5.8%
1.000
Signal transduction mechanism
234
13
5.6%
1.000
Unclassified proteins
1393
74
5.3%
1.000
Transposable elements
120
5
4.2%
1.000
Development
84
Table 6. Locational categories of downregulated genes in the mutant strain a924E1. p-values
indicate the statistical significance of the observed downregulation of genes in each category.
Number of
Number of
Percentage of
Total genes
Altered genes
Altered genes
Cytoplasm
2844
386
13.6%
0.001>
Nucleus
2136
270
12.6%
0.001>
Peroxisome
52
7
13.5%
0.313
Microsomes
5
1
20.0%
0.430
Plasma membrane
186
16
8.6%
1.000
Vacuole
284
24
8.5%
1.000
ER
552
46
8.3%
1.000
Mitochondria
1047
86
8.2%
1.000
Cell periphery
216
17
7.9%
1.000
Lipid particles
27
2
7.4%
1.000
172
11
6.4%
1.000
Golgi
158
8
5.1%
1.000
Cell wall
44
2
4.5%
1.000
Bud
150
6
4.0%
1.000
Ambiguous
237
9
3.8%
1.000
Extracellular
54
2
3.7%
1.000
Punctate composite
140
5
3.6%
1.000
Cytoskeleton
204
7
3.4%
1.000
Transport vesicles
141
4
2.8%
1.000
Locational Category
Integral membrane /
endomembranes
85
P value
Table 7. Confirmation of DNA microarray analysis results.
ALD3, CAR1, and MRP51 genes of the mutant strain were upregulated compared to those of
the parent strain, and FBP1, ICL1, and SFC1 genes were downregulated. Relative expression
level of the upregulated genes of the mutant strain was higher than that of the parent strain,
and relative expression level of the downregulated genes was lower. Relative expression level
of the COX1 gene was very low or it could not be detected. The CDC48 gene was amplified
as a control. Reproducibility was confirmed by performing at least 3 independent
experiments. N.D.; not detected. *; p < 0.05, **; p < 0.01.
Gene
Relative expression level
name
KA31a
a924E1
ALD3
1.00
4.82 ± 1.09 *
Upregulated gene
CAR1
1.00
2.70 ± 0.59 *
Upregulated gene
MRP51
1.00
2.57 ± 0.62 *
Upregulated gene
FBP1
1.00
0.03 ± 0.03 **
Downregulated gene
ICL1
1.00
0.12 ± 0.13 **
Downregulated gene
SFC1
1.00
0.02 ± 0.02 **
Downregulated gene
COX1
1.00
< 0.01 **
COX1 gene 1
COX1
1.00
N.D.
COX1 gene 2
CDC48
1.00
1.12 ± 0.53
Control
86
Table 8. Total detected metabolites. Metabolomics was carried out with three independent
experiments (*; p < 0.05, **; p < 0.01, ***; p < 0.001). N.A.; Not Available.
Compound name
Fold
P-value㻌㻌
ATP
0.01
0.109
Gln
0.02
0.009
Guanidoacetic acid
0.02
GDP-glucose
Compound name
Fold
P-value
Sarcosine
0.19
N.A.
**
Mevalolactone
0.19
0.013
*
0.012
*
p-Aminobenzoic acid
0.19
0.010
**
0.03
0.037
*
Imidazolelactic acid
0.20
0.001>
***
UDP-N-acetylglucosamine
0.06
0.061
2-Hydroxyvaleric acid
0.20
0.069
N-Acetylleucine
0.06
0.015
N-Acetylornithine
0.20
0.001>
***
Butyric acid
0.07
0.090
3-Hydroxypropionic acid
0.20
0.001>
***
Citric acid
0.07
0.051
Isovaleric acid
0.21
0.096
3-Hydroxy-3-methylglutaric acid
0.07
0.076
Thiamine diphosphate
0.21
0.054
Mevalonic acid
0.07
0.071
Tyr
0.21
0.008
Creatinine
0.08
0.007
**
CMP-N-acetylneuraminate
0.21
0.066
Anthranilic acid
0.09
0.013
*
Acetoacetamide
0.21
0.006
**
2-Isopropylmalic acid
0.09
0.074
3-Methylhistidine
0.21
0.006
**
Asp
0.09
0.012
*
Glutathione (GSSG)_divalent
0.22
0.028
*
Uridine
0.11
0.013
*
Glu
0.22
0.005
**
Fructose 6-phosphate
0.11
0.051
Phosphoenolpyruvic acid
0.22
0.007
**
Sucrose 6'-phosphate
0.11
0.012
*
Hydroxyproline
0.24
0.013
*
Pro
0.11
0.010
**
O-Acetylcarnitine
0.25
0.009
**
Leu
0.12
0.005
**
N-Acetylasparagine
0.26
0.018
*
Argininosuccinic acid
0.13
0.016
*
Carnosine
0.26
0.011
*
Betaine
0.13
0.002
**
2-Methylserine
0.28
0.004
**
Phosphorylcholine
0.14
0.019
*
Val
0.28
0.006
**
Ophthalmic acid
0.14
0.055
N6-Acetyllysine
0.28
0.022
*
2-Hydroxy-4-methylvaleric acid
0.15
0.043
*
N-Acetylhistidine
0.30
0.044
*
2-Aminoisobutyric acid
0.15
0.002
**
Cystine
0.33
0.066
3-Hydroxybutyric acid
0.15
0.012
*
N-Acetyllysine
0.33
0.150
Malic acid
0.15
0.059
Cysteine glutathione disulfide
0.33
0.074
1-Methyladenosine
0.15
0.014
*
2-Aminoadipic acid
0.33
0.105
Adenine
0.16
0.021
*
Carboxymethyllysine
0.33
0.049
cis-4-Hydroxyproline
0.16
0.006
**
N-Ethylglycine
0.33
0.001>
***
Isobutyrylcarnitine
0.16
0.042
*
His
0.36
0.001>
***
Ile
0.17
0.001>
***
Ornithine
0.37
0.030
N-Acetylglutamic acid
0.18
0.067
Octanoic acid
0.37
N.A.
*
87
**
*
*
Compound name
Fold
P-value㻌㻌
Compound name
Fold
P-value
Isovalerylcarnitine
0.37
0.013
*
SDMA
0.66
0.136
Nicotinamide
0.38
0.045
*
Heptanoic acid
0.67
0.166
S-Methylcysteine
0.39
0.003
**
Citrulline
0.67
0.114
N-Acetylglycine
0.40
0.023
*
Thiamine
0.67
0.017
Gluconic acid
0.40
0.022
*
S-Adenosylmethionine
0.69
0.080
Creatine
0.40
0.003
**
FAD_divalent
0.72
0.398
5'-Deoxy-5'-methylthioadenosine
0.40
0.006
**
Lys
0.73
0.016
4-Guanidinobutyric acid
0.41
0.054
Trp
0.73
0.063
N-Methylalanine
0.42
N.A.
Carbachol
0.74
0.539
Isoniazid
0.43
N.A.
Thr
0.75
0.082
Glycerophosphocholine
0.43
0.001>
***
Thiamine phosphate
0.76
0.549
Arg
0.44
0.001>
***
Ala
0.77
0.085
Trimethylamine
0.45
N.A.
Glyceric acid
0.78
0.254
Pyridoxamine
0.47
0.205
p-Toluic acid
0.78
0.441
Dyphylline
0.47
0.009
Pelargonic acid
0.78
0.204
Glutathione (GSH)
0.48
0.615
Pyridoxamine 5'-phosphate
0.79
0.158
O-Acetylhomoserine
0.48
N.A.
γ-Butyrobetaine
0.81
0.008
NAD+
0.48
0.057
4-Methyl-5-thiazoleethanol
0.84
0.270
β-Ala-Lys
0.48
0.124
NMN
0.84
0.096
N6-Methyllysine
0.49
0.001>
***
Cys
0.87
0.844
Asn
0.49
0.019
*
5-Hydroxylysine
0.90
0.298
γ-Glu-2-aminobutyric acid
0.50
N.A.
FMN
0.92
0.733
Theobromine
0.50
0.089
5-Oxohexanoic acid
0.93
0.737
S-Lactoylglutathione
0.51
0.011
Homoserinelactone
0.95
0.753
Ser
0.52
0.109
Imidazole-4-acetic acid
0.96
0.601
Thiaproline
0.53
0.253
N-Acetylputrescine
0.98
0.853
ADMA
0.54
0.007
GDP
0.98
0.951
Xanthine
0.56
0.064
Lauric acid
0.99
0.955
N6,N6,N6-Trimethyllysine
0.58
0.007
**
Urea
1.0
0.999
5-Aminovaleric acid
0.58
0.003
**
11-Aminoundecanoic acid
1.0
0.916
1-Aminocyclopropane-1-carboxylic acid
0.58
0.398
Morpholine
1.0
0.930
Nω-Methylarginine
0.58
0.035
3-Aminopropane-1,2-diol
1.0
0.289
Hexanoic acid
0.59
0.223
N8-Acetylspermidine
1.1
0.798
NADP+
0.60
0.271
NADH
1.1
0.713
Phe
0.60
0.004
**
N-Acetylglucosamine 6-phosphate
1.1
0.782
S-Methylglutathione
0.63
0.050
*
Cyclohexylamine
1.2
0.694
2-Amino-2-(hydroxymethyl)-1,3-propanediol
0.64
0.439
UDP
1.2
0.611
**
*
**
*
88
*
*
**
Compound name
Fold
P-value㻌㻌
Compound name
Fold
P-value
ADP
1.2
0.585
5-Amino-4-oxovaleric acid
7.0
0.014
*
Choline
1.2
0.117
Orotic acid
7.4
0.004
**
Pantothenic acid
1.2
0.281
UMP
11.1
0.011
*
Decanoic acid
1.2
0.709
GMP
15.6
0.005
**
3-Amino-2-piperidone
1.2
0.083
AMP
22.7
0.002
**
Threonic acid
1.2
0.383
S-Adenosylhomocysteine
32.2
0.011
*
Glycerol
1.4
0.127
Pipecolic acid
43.9
0.001>
Taurocholic acid
1.4
0.536
1-Pyrroline 5-carboxylic acid
1>
N.A.
Trimethylamine N-oxide
1.4
0.059
2-Hydroxyglutaric acid
1>
N.A.
Spermidine
1.5
0.388
2-Oxoisovaleric acid
1>
N.A.
Ala-Ala
1.5
0.050
2-Phosphoglyceric acid
1>
N.A.
Urocanic acid
1.7
0.269
3-Hydroxykynurenine
1>
N.A.
Lactic acid
1.8
0.104
3-Methyladenine
1>
N.A.
Triethanolamine
1.8
0.275
3-Phosphoglyceric acid
1>
N.A.
Cystathionine
1.8
0.009
**
4-Acetamidobutanoic acid
1>
N.A.
Gly
1.9
0.002
**
1>
N.A.
Nicotinic acid
1.9
0.008
**
5-Oxo-2-tetrahydrofurancarboxylic acid
1>
N.A.
Met
2.2
0.003
**
6-Aminohexanoic acid
1>
N.A.
Hypoxanthine
2.3
0.033
*
Acetyl CoA_divalent
1>
N.A.
Carnitine
2.5
0.001>
***
Acetylcholine
1>
N.A.
Diethanolamine
2.6
0.001>
***
Arg-Glu
1>
N.A.
5-Oxoproline
2.6
0.003
**
Benzoic acid
1>
N.A.
2.7
N.A.
Butyrylcarnitine
1>
N.A.
Ethanolamine
2.8
0.001
**
CDP
1>
N.A.
Tyramine
3.0
0.010
*
cis-Aconitic acid
1>
N.A.
Methionine sulfoxide
3.0
0.039
*
CoA_divalent
1>
N.A.
γ-Glu-Cys
3.0
0.197
CTP
1>
N.A.
CDP-choline
3.4
0.003
**
Cytidine
1>
N.A.
Saccharopine
3.6
0.004
**
Ectoine
1>
N.A.
CMP
4.3
0.006
**
Fructose 1,6-diphosphate
1>
N.A.
Adenosine
5.4
0.005
**
Fumaric acid
1>
N.A.
Cholic acid
5.9
0.005
**
Glucose 1-phosphate
1>
N.A.
Putrescine
6.0
0.083
Glucose 6-phosphate
1>
N.A.
GABA
6.5
0.001>
***
Gly-Asp
1>
N.A.
Succinic acid
6.5
0.001>
***
Glycerol 3-phosphate
1>
N.A.
myo-Inositol 1-phosphate
myo-Inositol 3-phosphate
89
4-Methyl-2-oxovaleric acid
3-Methyl-2-oxovaleric acid
***
Compound name
Fold
P-value㻌㻌
Compound name
Fold
P-value
Gly-Gly
1>
N.A.
Propionic acid
1>
N.A.
GTP
1>
N.A.
Propionyl CoA_divalent
1>
N.A.
Guanosine
1>
N.A.
PRPP
1>
N.A.
His-Glu
1>
N.A.
Pyridoxal
1>
N.A.
HMG CoA_divalent
1>
N.A.
Pyridoxine
1>
N.A.
Hypotaurine
1>
N.A.
Ribose 5-phosphate
1>
N.A.
Indole-3-ethanol
1>
N.A.
Sedoheptulose 7-phosphate
1>
N.A.
Inosine
1>
N.A.
Trehalose 6-phosphate
1>
N.A.
Isobutyryl CoA_divalent
1>
N.A.
1>
N.A.
Isocitric acid
1>
N.A.
Uracil
1>
N.A.
Kynurenine
1>
N.A.
UTP
1>
N.A.
Metronidazole
1>
N.A.
>1
N.A.
N-Acetylglutamine
1>
N.A.
>1
N.A.
N-Acetylphenylalanine
1>
N.A.
>1
N.A.
N-Acetylserine
1>
N.A.
Histidinol
>1
N.A.
N-Acetyl-β-alanine
1>
N.A.
Homoserine
>1
N.A.
NADPH_divalent
1>
N.A.
IMP
>1
N.A.
N-Methylglutamic acid
1>
N.A.
N2-Succinylornithine
>1
N.A.
N-Methylproline
1>
N.A.
N-Acetylalanine
>1
N.A.
Orotidine 5'-monophosphate
1>
N.A.
γ-Glu-Val-Gly
>1
N.A.
UDP-glucose
UDP-galactose
2'-Deoxyadenosine
5'-Deoxyadenosine
Aminoacetone
Ethanolamine
phosphate
90
Table 9. Relatively decreased metabolites observed in the barosensitive mutant. Metabolites
were selected by a Welch’s t-test (p < 0.05) and by a two-fold cutoff in relative values compared
with the parent strain.
‫ە‬
; metabolites not detected in the mutant strain but present in the parent
strain. ×; metabolite not detected in either strain.
Relatively decreased
Compound name
Fold
Glutamine
0.02
Aspartate
0.09
Argininosuccinic acid
0.13
Glutamate
0.22
Ornithine
0.37
Arginine
0.44
Succinic acid
6.48
cis-Aconitic acid
䠉●
Isocitric acid
䠉●
Acetyl CoA divalent
䠉●
Fumaric acid
䠉●
2-Oxoglutaric acid
䠉×
91
Fig. 1. Respiratory function of the mutant strains.
TTC staining of the parent strain (A and B), the mutant strain (C and D), the diploid strain
group with normal respiration (E and F), and the respiration-deficient diploid strain group (G
and H). Before staining, colonies were white (A, C, E, and G). The parent strain and the diploid
strain group with normal respiration turned red at least 100 min after staining (B and F), while
the mutant strain and the respiration-deficient diploid strain group became faintly pink within
the same time frame (D and H). Reproducibility was confirmed in at least 3 independent
experiments.
92
Fig. 2. DNA contents and cell sizes of the diploid strains.
DNA contents and cell sizes observed in a mixture of the diploid strains and the haploid strains.
DNA contents of the diploid strains (G1 phase: 2C, G2 phase: 4C) were approximately 2-fold
compared to those of the haploid strains (G1 phase: 1C, G2 phase: 2C), and cell sizes were also
similar. Reproducibility was confirmed in at least three independent experiments.
93
Fig. 3. Growth ability of the mutant strains.
Growth rates of the parent strain (open triangles), the mutant strain (open diamonds), the TTCpositive diploid strain group (shaded triangles), and the TTC-negative diploid strain group
(shaded diamonds) were shown. Cell concentrations were measured by A660.
94
Fig. 4. Barosensitivity of the diploid strains.
Barosensitivity of the parent strain (open triangles), the mutant strain (open diamonds), the
TTC-positive diploid strain group (shaded triangles), and the TTC-negative diploid strain
group (shaded diamonds) after pressurized treatment at 200 MPa for 0–360 s. Means and
standard deviations are shown from at least 4 independent experiments.
95
Fig. 5. Confirmation of gene deletion of the COX1 gene.
K, KA31a (parent strain); E, a924E1 (mutant strain); P, TTC-positive diploid strain group; N,
TTC-negative diploid strain group. Amplifications proceeded for 25 cycles. Amplification of
the CDC48 gene was used as a positive control. The results shown are representative of at least
3 independent experiments.
96
Fig. 6. Gene expression involved in arginine biosynthesis.
S; Molecular weight marker, W; the parent strain, M; the mutant strain.
97
Fig. 7. Arginine biosynthesis pathway.
The vertical axis represents the relative values of each metabolite in the bar graphs. The dotted
squares indicate genes for which mRNAs were decreased in the mutant strain.
increased compound,
‫ە‬
‫ۑ‬
; relatively
; compounds not detected in the mutant strain but present in the parent
strain, x; compound not detected in either strain. Metabolomics were carried out with three
independent experiments (*; p < 0.05, **; p < 0.01).
98
Fig. 8. Growth ability after treatment with or without arginine.
Treated cells were serially diluted from 10-1 to 10-2 and 5 μL of undiluted solutions and diluted
solutions were spotted onto plates (from left to right).
99