金属ナノ粒子から成る水素吸蔵材料の化学状態分析 οங˦ʍᵏᵊᴾᵐᵊᴾᕲஜ࣓ٻᵐᵊᴾ߷ݱӪᵐᵊᴾʟӐ፦ᵑᵊᴾϋޛႺᵑ ӸӞܖٻދǨdzȈȔǢᅹܖᄂᆮ ӸӞܖٻܖٻދᨈܖᄂᆮᅹ ǢȄȟȆȃǯఇࡸ˟ᅈؕᄽᄂᆮȖȭȃǯ Ꮡ 6000ൢ ן25 éƷ ൦እᩎൢɦƴƓƍƯ ൦እ҄ཋǛဃƢǔ ƜƱư൦እǛԈᔺ[1-3] Ἔἠቩ҄܇ ൦እ ൦እ҄ཋǛ࢟ƠƯǔƷƔᲹ ḵ҄ܖཞ७ὉನᡯửଢỤẦỆẴỦ evacuate NiἜἠቩ܇ QCM Chamber valves Ȉȩȳǹȕǡȸ șȃǻȫ Linear Motion Stainless Steel Pipe (O. D. 1/8 inches) Ni wire Fabrication Chamber Ni nanoparticle ὉNi K-edge NEXAFS Before exposure to H2 Hydrogen atmosphere After exposure to H2 Ni foil NiH0.85 [2] NiO Intensity [a. u.] Intensity [a. u.] Ni̇̋፦ࠄ ᭼ʵ༉່ Oxygen ឍᭆᇎ ԅಶʰʑʩʥ 845 Ҿុ᧓܇ᩉ ᣐˮૠ 2.48 12 3.51 6 2.46 8.46d1.71 3.40 3.36d3.81 40 k3χ(k) 4 6 8 k [A] 8330 8340 8350 Photon Energy [eV] 10 12 8360 8370 0.1 20 0 1 2 3 4 Radial Distance [A] 5 6 0.5 0.8 0.7 0.6 0.9 1.0 Before exposure to H2 After exposure to H2 Residual spectrum :(after)-(before) ἚἻὅἋἧỳὊἫἕἍἽử XAFS˸̨ˈӅʳʥˈʴʱைᕠ 865 FIGURE 7. ᎢցᦂኆʱʐʗˑNi̇̋፦ࠄʴ Ni K-edge EXAFŞ̵̒˥ݪ୪˶̗ˬ̨̅. Ꮊ 860 855 850 Binding Energy [eV] ݸ᭹᭤ಲώ(ᇄክ˘Щʩʥಲώ)ʭ XAFS༟ࠪ˘ᜊʌʙʮʭᎢொԅᦂኆ ʱʐʗˑցࠓၛ੪ݪց˘టˏʑʱʟˑ 845 FIGURE 4. Ꭲ᭤Ԫʱʐʗˑ Ni̇̋፦ࠄʴNi 2p3/2 XPS˶̗ˬ ̨̅. Ӌᎋ૨ྂ [1] M. L. Wayman and G.C. Weatherly, Bulletin of Alloy Phase Diagrams 10, 569 (1989). [2] B. Lengeler and R. Zeller, Solid State Commun. 51, 889 (1984). [3] B. Lengeler, Phys. Rev. Lett. 53, 74 (1984). [4] иډ፦ݱීԧޛϋ፦ᆞ҅߷ܨЎ܇ᅹ᚛ܖᛯ˟ᜒᙲଓᨼ(2007) [5] S. Yagi, et al., e-J. Surf. Sci. Nanotech. 4, 258 (2006). [6] ɶᙱࡍഏᩓൢ˟ܖᛯ૨ᛏC1762 (2011). ̴༉່ʰ᭼˘ಇʟˑNi̇̋፦ࠄʵʐˎʣ7 TorrʱʐʊʬᎢ˘ᘷ(H/NiǗ0.5)ʟˑ ̴ᘷʵ̇̋፦ࠄ᭼ʾʴᎢʴᇎ̴ឍᭆʒᢧʙˑ ̴Ni̇̋፦ࠄͳʴᎢʵᇄክͳʱʐʊʬˈொԅʛ˒ʰʊ ̴̇̋፦ࠄ᭼ʒցʛ˒ʬʊˑʮ᭼ʭʴᎢʴឍᭆᇎʒᢧʙˏʠɱᎢʵ Ni̇̋፦ࠄͳʾକԅಶʰʊ FIGURE 6. Ni̇̋፦ࠄʴNi K-edge EXAFŞ̵̒˥ݪ୪˶̗ˬ̨̅ ʮᥛ̵̧̒˥ݪ୪˶̗ˬ̨̅. 0.4 ʻࢸ 5 6 0.3 FIGURE 3. Ni̇̋፦ࠄʴ300 KʱʐʗˑۜՆ-Ꮂષዾ༝Ᏹ. ὉXPS(before and after exposure to H2) 15 0 0.2 H/Ni Before exposure to H2 Hydrogen atmosphere After exposure to H2 Ni foil 25 ȊȎቩ܇ᘙ᩿ƕᣠ҄ƠƯƍƨໝNiȊȎቩ܇ɶ ǁƷ൦እƷਘƸឪƜǒƳƔƬƨ 5 0.1 8380 10 ൦እ୵ᩧǛᘍƬƯNj ȷᣐˮૠƸ҄٭ƳƠ ȷҾុ᧓܇ᩉƸ҄٭ƳƠ 5 1 st exposure to H 2 1 st evacuation 2 nd exposure to H 2 2 nd evacuation 3 rd exposure to H 2 3 rd evacuation 1 XPS Ni 2p 3/2 30 ؕெɥƴȊȎቩ܇ǛᆢޖƠƯNjȊȎቩ܇Ʒ ࣱឋƸڂǘǕƯƍƳƍ Ni nanoparticles Fit. 3 4 Radial Distance [A] 8320 Radial Distribution Function 35 Ni foilƴൔǂ ȷᣐˮૠƕถݲƠƨ ȷҾុ᧓܇ᩉƕჺƘƳƬƨ 10 ԈᔺӒࣖ 10 0.0 8310 Intensity [a. u.] Radial Distribution Function 20 ԈბȷᏮᩉӒࣖ 0.01 |χ(R)| [A-4] ᇹᡈ ᇹᡈ ᇹᡈ ᇹᡈ Ni foil 300 K 100 FIGURE 5. ᎢցᦂኆʱʐʗˑNi̇̋፦ࠄʴNi K-edge NEXAFS. 25 2 1000 ̇̋፦ࠄ᭼ʵցʝʬʐːɱ Ꭲԋࠄʴឍᭆᇎʒ ᢧʙˏʰʑʩʥ Hydrogen 8300 Ni nanoparticles 1 Ꭲ᭤˘ᜊʩʬˈ Ni̇̋፦ࠄʴցࠓၛ੪ʱ ݪցʵʰʊ FIGURE 2. Ni̇̋፦ࠄʴNi 2p3/2 XPS˶̗ˬ̨̅. ὉNi K-edge EXAFS 0 ὉQCM Ni K-edge NEXAFS BL5S1@Aichi SR Ni0 860 855 850 Binding Energy [eV] ȷ൦እ҄ᢅᆉƴƓƚǔ҄ܖཞ७҄٭ XAFS: Ni K-edge XAFS Fluorescence Yield (FY) ȷ᎑ᣠ҄ϼྸ ኝᆷእ 0ƴፗ੭ƞǕƨǰȭȸȖȜȃǯǹϋư ᚾ૰ᘙ᩿ƴȕȃእᏢǛdzȸȆǣȳǰ He NiO Ni(OH) 2 ᢃ ൦ਰѣ܇ ἚἻὅἋἧỳὊἫἕἍἽ[6] DC Power Supply बۥ፦ࠄয4.0ă1.5 nmʴNi̇̋፦ࠄ 15 ൦እ୵ᩧ ἓἵὅἢ ൦ਰѣ܇ Ni nanoparticles Ni single crystal residual spectrum FIGURE 1. Ni̇̋፦ࠄʴTEMѿ. |χ(R)| [A-4] ᵟᶓ Deposition Chamber XPS chamber XPS Ni 2p3/2 865 ῍BL5S1@Aichi SR῍ 19እ܇SSD౨Ј֥ ἧἕእᏢ H2 or He ὉXPS(as prepared sample) ኽௐὉᎋݑ ὉTEM image I0ἓἵὅἢ ῍ἂἿὊἨἮἕἁἋ῍ Reference QCM ᵬᵐ ȷᚾ૰˺ᙌ Ǭǹɶᔕႆඥ[5]Ჴ ᭗ኝࡇޓȯǤȤȸǛHeǬǹ(6N5)ᩎൢɦư Ⴚᡫᩓь༏ ȷቩࢲ܇ TEM : JEM2500SE ȷᘙ᩿҄ܖཞ७ in-situ XPS: PHOIBOS100-5ch with Mg Kα X-ray ȷןщኵሁภዴ 300 K Quartz Crystal Microbalance (QCM) 0 NiἜἠቩ܇ ῍Ἔἠቩ˺܇ᙌᘺፗ῍ QCM Ni KԈӓᇢXAFSỆợụ NiἜἠቩ܇ỉ൦እԈ્ЈᢅᆉỂỉ ҄ܖཞ७Ὁޅನᡯ҄٭ử ଢỤẦỆẴỦ Hydrogen Hard X-ray 1ൢ ן200 éƴƓƍƯ ൦እǛԈᔺ[4] ᚾ૰˺ᙌὉ᬴ܱ Ⴘႎ ȷXAFS(X-ray Absorption Fine Structure) ҄ܖཞ७ὉޅನᡯЎௌầӧᏡ ȷNiȊȎቩ܇ רቩࢲ܇20 nm Hydrogen pressure [Torr] ȷNi 金ナノ粒子の生体適合性に関する研究 οங˦ʍᵏᵊᴾᵐᵊᴾشဋҘऔᵐ Ritsumeikan Univ. The SR center ӸӞܖٻދǨdzȈȔǢᅹܖᄂᆮ ӸӞܖٻܖٻދᨈܖᄂᆮᅹ ৲ࢨƷ6'/ ӒࣖȢȇȫ ኬᏘᐏȢȇȫƱƠƯ ဇƍǒǕǔȪȝǽȸȠ ဃ˳ƷኬᏘᐏ Ꮲឋʚޖ ȪȳᏢឋဃ˳ưƸɼƴ ȕǩǹȕǡȁǸȫdzȪȳ 2% ဃ˳Ў܇ƴݣƢǔ#W02UƷࣱƕ᭗ƍ #W02UƷဃ˳ᢘӳࣱ ဃ˳Ў܇Ʊ#W02UƷ Ў܇ԈბӒࣖƷᚐଢƕᙲ ᬴ܱ ᚃ൦ؕ H3C N+ CH3 2%ভບ෩ 2%ብOI OKNNK3൦O. P O H ᐏҽPO Ⴘႎ O ျ൦ؕ O éưԈბӒࣖǛ ̟Ơƨ ɥLj๋෩ =2%ভບ෩? 2%ብOI OKNNK3൦O. #W02UdzȭǤȉ ൦๋෩ƴьƑƨ 0.1-0.2 mm 0-ӏƼ1-GFIG+Pெ 2-GFIGȝȪǨȁȬȳ ųųųųųȕǣȫȠ 2%#W02U ᱅ᑥƷආോཋǛ˂ƷȞǤǯȭȁȥȸȖƴ ӕǓЈƠƨࢸŴOKNNK3൦ǛьƑƯȪȳǹƠƨ 2%OWNVKNC[GT Ӌༀᚾ૰ H3 C H PC multilayer PC/Au sheet CH3 O- N+ P C Au O H O O Au sheet Fluorescence Yield (arb. units) N K-edge (TEY) 2140 405 410 415 Photon Energy (eV) (KI2%OWNVKNC[GT2%#WUJGGVƴݣƢǔ 0-GFIG0':#(5ǹȚǯȈȫ 420 425 0 5 10 15 20 25 Particle size (nm) 30 (KIᩓᚐឋƱƠƯ0C%NǛဇƍƨئӳƷ ෩ɶȗȩǺȞඥư˺ᙌƠƨ#W02UƷ ቩࢲЎࠋ "54ǻȳǿȸ$.=?ᇌԡܖٻ "*K514ǻȳǿȸ$.=?࠼ܖٻ Šμᩓ܇ӓඥ 6'; Š᭗Ⴧᆰவˑ P K-edge (FY) 2151.8eV P1sḵπ*(P=O) @ AichiSR 2152.6eV P1sḵσ*(P-O) O- CH3 H3C N+ P O CH3 PC multilayer (PC/Au sheet) - Au sheet O O O- Smoothed spectrum In O Au 3 N+ O 2%Ў܇Ƹ#Wெᘙ᩿ƴ0%*21ျ൦ؕͨƷᣠእưԈბƠƨƱ ᎋƑǒǕǔ O Au sheet or CH P (KI2%ভບ෩ƷɥLj๋෩Ʊ#W02UdzȭǤȉ൦๋෩ǛฆӳƠƨ ᚾ૰ƴݣƢǔ6'/6'/ဇᚾ૰ƸȍǬȆǣȖ௨ᑥư˺ᙌ ኽᛯ 5'/ӏƼ'&5Ўௌ 73.9 % @ Ritsumeikan univ. SR center #WȭȃȉᩓಊӏƼ #W02UƷ˺ᙌเ 0C%Nብᩓᚐឋ ᔕသ൦ O. ˺ᙌؾ 6'/ "*K514ǻȳǿȸ$.=?࠼ܖٻ ų2Ǭǹ %*KP#TǛˤƬƨ ųǬǹHNQYƷൔ̊ᚘૠሥ "ƋƍƪǷȳǯȭȈȭȳήǻȳǿȸ #KEJK54 ų$.0ǷȪdzȳȉȪȕȈ౨Ј֥ 5&& 2-GFIG0':#(5 0-GFIG0':#(5 13.4+/-3.3 nm 0-CPF1-GFIGU0':#(5ยܭ TEHưЎ᧓Ŵ 2%ভບ෩Ǜᢒ࣎Ўᩉ ኽௐƱᎋݑ ᢩΨдǍЎдǛ ဇƍƳƍ #W02UdzȭǤȉ ൦๋෩Ʒ˺ᙌ૾ඥ Šᖩήӓඥ (; Š*GRCVJ=?Ǜဇƍƨٻൢןவˑ ٻൢɶư ʑ༞ ආോཋ 2%#WUJGGV Total Electron Yield (arb. units) ෩ɶȗȩǺȞඥ 2-GFIG0':#(5ยܭ Ӓࣖவˑ ภࡇé ᧓᧓ 400 ƠЈƠඥ ᚾ૰ #W02Uᘙ᩿ƴԈბƠƨ2%Ў܇ ԈბӒࣖǛ̟ƠƨࢸŴ OKNNK3൦ưȪȳǹƠŴ ٻൢɶưʑ༞ƞƤƨ 395 #W02UdzȭǤȉ ൦๋෩ #Wᘙ᩿Ტ#WெӏƼ#W02UᲣƴԈბƠƨ2%ƷӲܫᏡؕƷ҄ܖཞ७҄٭Ǜ 2%Ʒᚃ൦ؕǛನƢǔ01ӏƼ2ƷӲ-Ԉӓᇢ0':#(5ยܭǑǓᛦǂŴ ƲƷܫᏡؕư#Wᘙ᩿ƴԈბƠƯƍǔƷƔǛଢǒƔƴƢǔ O O O 2%ȪȝǽȸȠ ൦๋෩ ȍǬȆǣȖ௨ᑥư˺ᙌ O O- CH3 ᚾ૰ #Wெᘙ᩿ƴԈბƠƨ2%Ў܇ 403.6eV σ*(N-C) ෩ɶȗȩǺȞඥ=? + ҔၲЎƴƓƚǔ ȉȩȃǰȇȪȐȪȸǷǹȆȠ=? #W02UƷࣖဇ ƕǜኬᏘƴݣƢǔภ༏ၲඥ=? #Wெ #W02UdzȭǤȉ൦๋෩Ʒ˺ᙌ ฆӳ #W02 Distribution (%) ደᚕ ȊȎቩ ܇#W02U CH3 CH3 0% (KI2%ভບ෩Ʊ#W02UdzȭǤȉ൦๋෩Ǜฆӳ ƠƨࢸƴဃơƨආോཋǛᔕသ൦ưȪȳǹƠƨᚾ ૰ƴݣƢǔ5'/ P (KI(KIƴݣƢǔ'&5ЎௌƷȩǤȳȗȭ ȕǡǤȫ 2%Ў܇Ƹ#W02Uᘙ᩿ƴԈბƠƯƍǔƕŴ#W02UƱႺԈბӒ ࣖƠƯƍƳƍ2%Ў܇NjٶƘנ܍ƢǔƨNJŴ0-ӏƼ2-GFIGU 0':#(5ưƸ2%OWNVKNC[GTƱ2%#W02UưǹȚǯȈȫƷ҄٭ƕᙸ ǒǕƳƔƬƨƱᎋƑǒǕǔ 2%Ў܇Ƹ#W02Uᘙ᩿ƴᣠእҾ܇ưஇNjԈბƠǍƢƍƱᎋƑǒ Ǖǔ 2%Ў܇Ʊ#W02UƸԈბӒࣖǛဃơƯƍǔƱᎋƑǒǕǔ 2145 2150 2155 2160 2165 Photon Energy (eV) 2170 (KI2%OWNVKNC[GT 2%#WUJGGV#WUJGGV UOQQVJGFURGEVTWOƴݣƢǔ2-GFIG0':#(5ǹȚǯȈȫ Ӌᎋ૨ྂ [1] S. Rana et al., Adv. Drug Delivery Rev. 64 (2012) 200. [2] H.-C. Huang et al., J. Am. Chem. Soc. 4 (2010) 2892. [3] S. Yagi et al., Nucl. Instrum. Meth. A 467-468 (2001) 723. [4] S. Yagi et al., Surf. Interface Anal. 36 (2004) 1064. [5] K. Yamanaka, private communication in Report for Ritsumeikan University SR Center BL-2 (2013). [6] M. Sawada et al., AIP Conference Proceedings 879 (2007) 551. [7] H. Nameki, private communication in Aichi Prefectural Technical Report (2010). [8] C. Tsukada et al., e-J. Surf. Sci. Nanotech. 11 (2013) 18. [9] T. Mizutani et al., Thomson Reuters database (2012). [10] T. Okajima et al., BUNSEKI KAGAKU 59 (2010) 447.
© Copyright 2024 Paperzz