金属ナノ粒子から成る水素吸蔵材料の化学状態分析 金ナノ粒子の生体

金属ナノ粒子から成る水素吸蔵材料の化学状態分析
οங˦ʍᵏᵊᴾᵐᵊᴾᕲஜ‫࣓ٻ‬ᵐᵊᴾ‫୓߷ݱ‬Ӫᵐᵊᴾ᣿ʟӐ፦ᵑᵊᴾϋ‫ޛ‬Ⴚ೔ᵑ
ӸӞ‫ܖٻދ‬ǨdzȈȔǢᅹ‫ܖ‬ᄂᆮ৑ ӸӞ‫ܖٻܖٻދ‬ᨈ߻‫ܖ‬ᄂᆮᅹ ǢȄȟȆȃǯఇࡸ˟ᅈؕᄽᄂᆮȖȭȃǯ
Ꮡ୎
6000ൢ‫
ן‬25 éƷ
൦እᩎ‫׊‬ൢɦƴƓƍƯ
൦እ҄ཋǛဃ঺Ƣǔ
ƜƱư൦እǛԈᔺ[1-3]
Ἔἠቩ‫҄܇‬
൦እ
൦እ҄ཋǛ࢟঺ƠƯǔƷƔᲹ
ḵ҄‫ܖ‬ཞ७ὉನᡯửଢỤẦỆẴỦ
evacuate
NiἜἠቩ‫܇‬
QCM Chamber
valves
Ȉȩȳǹȕǡȸ
șȃǻȫ
Linear Motion
Stainless Steel Pipe
(O. D. 1/8 inches)
Ni wire
Fabrication Chamber
Ni nanoparticle
ὉNi K-edge NEXAFS
Before exposure to H2
Hydrogen atmosphere
After exposure to H2
Ni foil
NiH0.85 [2]
NiO
Intensity [a. u.]
Intensity [a. u.]
Ni̇̋፦ࠄ
᜖᭼ʵ༉່
Oxygen
ឍᭆ؅ᇎ
ԅಶʰʑʩʥ
845
Ҿ‫ុ᧓܇‬ᩉ ᣐˮૠ
2.48
12
3.51
6
2.46
8.46d1.71
3.40
3.36d3.81
40
k3χ(k)
4
6
8
k [A]
8330 8340 8350
Photon Energy [eV]
10
12
8360
8370
0.1
20
0
1
2
3
4
Radial Distance [A]
5
6
0.5
0.8
0.7
0.6
0.9
1.0
Before exposure to H2
After exposure to H2
Residual spectrum
:(after)-(before)
ἚἻὅἋἧỳὊἫἕἍἽử
XAFS˸̨ˈӅʳʥˈʴʱைᕠ
865
FIGURE 7. ๣ᎢցᦂኆʱʐʗˑNi̇̋፦ࠄʴ
Ni K-edge EXAFŞ̵̒˥‫ݪ‬୪˶̗ˬ̨̅.
Ꮊ៬
860
855
850
Binding Energy [eV]
‫ݸ‬๟᭹౲᭤ಲώ(ᇄክ˘Щʩʥಲώ)ʭ
XAFS༟ࠪ˘ᜊʌʙʮʭ๣Ꭲ؅ொԅᦂኆ
ʱʐʗˑցࠓၛ੪‫ݪ‬ց˘టˏʑʱʟˑ
845
FIGURE 4. ๣Ꭲ౲᭤Ԫ঵ʱʐʗˑ
Ni̇̋፦ࠄʴNi 2p3/2 XPS˶̗ˬ
̨̅.
Ӌᎋ૨ྂ
[1] M. L. Wayman and G.C. Weatherly, Bulletin of Alloy Phase Diagrams 10,
569 (1989).
[2] B. Lengeler and R. Zeller, Solid State Commun. 51, 889 (1984).
[3] B. Lengeler, Phys. Rev. Lett. 53, 74 (1984).
[4] и޽‫ډ‬඾፦‫ݱ‬௎ීԧ‫ޛ‬ϋ፦ᆞ҅߷‫ܨ‬Ў‫܇‬ᅹ‫᚛ܖ‬ᛯ˟ᜒ๫ᙲଓᨼ(2007)
[5] S. Yagi, et al., e-J. Surf. Sci. Nanotech. 4, 258 (2006).
[6] ɶᙱࡍഏᩓൢ‫˟ܖ‬ᛯ૨ᛏC1762 (2011).
̴༉່ʰ᜖᭼˘ಇʟˑNi̇̋፦ࠄʵʐˎʣ7 Torrʱʐʊʬ๣Ꭲ˘؅ᘷ(H/NiǗ0.5)ʟˑ
̴؅ᘷ঵ʵ̇̋፦ࠄ᜖᭼ʾʴ๣Ꭲʴ؅ᇎ̴ឍᭆ‫׏‬৓ʒᢧʙˑ
̴Ni̇̋፦ࠄͳʴ๣Ꭲʵᇄክͳʱʐʊʬˈொԅʛ˒ʰʊ
̴̇̋፦ࠄ᜖᭼ʒ᧝ցʛ˒ʬʊˑʮ᜖᭼ʭʴ๣Ꭲʴឍᭆ؅ᇎ‫׏‬৓ʒᢧʙˏʠɱ๣Ꭲʵ
Ni̇̋፦ࠄͳʾକ௚ԅಶʰʊ
FIGURE 6. Ni̇̋፦ࠄʴNi K-edge EXAFŞ̵̒˥‫ݪ‬୪˶̗ˬ̨̅
ʮᥛ̵̧̒˥‫ݪ‬୪˶̗ˬ̨̅.
0.4
ʻࢸ
5
6
0.3
FIGURE 3. Ni̇̋፦ࠄʴ300 KʱʐʗˑۜՆ-Ꮂષዾ༝Ᏹ.
ὉXPS(before and after
exposure to H2)
15
0
0.2
H/Ni
Before exposure to H2
Hydrogen atmosphere
After exposure to H2
Ni foil
25
ȊȎቩ‫܇‬ᘙ᩿ƕᣠ҄ƠƯƍƨໝNiȊȎቩ‫܇‬ɶ
ǁƷ൦እƷਘ૝ƸឪƜǒƳƔƬƨ
5
0.1
8380
10
൦እ୵ᩧǛᘍƬƯNj
ȷᣐˮૠƸ‫҄٭‬ƳƠ
ȷҾ‫ុ᧓܇‬ᩉƸ‫҄٭‬ƳƠ
5
1 st exposure to H 2
1 st evacuation
2 nd exposure to H 2
2 nd evacuation
3 rd exposure to H 2
3 rd evacuation
1
XPS Ni 2p 3/2
30
ؕெɥƴȊȎቩ‫܇‬Ǜᆢ‫ޖ‬ƠƯNjȊȎቩ‫܇‬Ʒ
ࣱឋƸ‫ڂ‬ǘǕƯƍƳƍ
Ni nanoparticles
Fit.
3
4
Radial Distance [A]
8320
Radial Distribution Function
35
Ni foilƴൔǂ
ȷᣐˮૠƕถ‫ݲ‬Ơƨ
ȷҾ‫ុ᧓܇‬ᩉƕჺƘƳƬƨ
10
ԈᔺӒࣖ
10
0.0
8310
Intensity [a. u.]
Radial Distribution Function
20
ԈბȷᏮᩉӒࣖ
0.01
|χ(R)| [A-4]
ᇹᡈ੗
ᇹᡈ੗
ᇹᡈ੗
ᇹᡈ੗
Ni foil
300 K
100
FIGURE 5. ๣ᎢցᦂኆʱʐʗˑNi̇̋፦ࠄʴNi K-edge NEXAFS.
25
2
1000
̇̋፦ࠄ᜖᭼ʵ᧝ցʝʬʐːɱ
๣Ꭲԋࠄʴឍᭆ؅ᇎ‫׏‬৓ʒ
ᢧʙˏʰʑʩʥ
Hydrogen
8300
Ni nanoparticles
1
๣Ꭲ౲᭤˘ᜊʩʬˈ
Ni̇̋፦ࠄʴցࠓၛ੪ʱ
‫ݪ‬ցʵʰʊ
FIGURE 2. Ni̇̋፦ࠄʴNi 2p3/2
XPS˶̗ˬ̨̅.
ὉNi K-edge EXAFS
0
ὉQCM
Ni K-edge NEXAFS
BL5S1@Aichi SR
Ni0
860
855
850
Binding Energy [eV]
ȷ൦እ҄ᢅᆉƴƓƚǔ҄‫ܖ‬ཞ७‫҄٭‬
XAFS: Ni K-edge XAFS
Fluorescence Yield (FY)
ȷ᎑ᣠ҄ϼྸ
ኝᆷእ
0ƴፗ੭ƞǕƨǰȭȸȖȜȃǯǹϋư
ᚾ૰ᘙ᩿ƴȕȃእ೔ᏢǛdzȸȆǣȳǰ
He
NiO
Ni(OH) 2
ᢃ੿
൦୒ਰѣ‫܇‬
ἚἻὅἋἧỳὊἫἕἍἽ[6]
DC
Power
Supply
ब‫ۥ‬፦ࠄয4.0ă1.5 nmʴNi̇̋፦ࠄ
15
൦እ୵ᩧ
ἓἵὅἢ
൦୒ਰѣ‫܇‬
Ni nanoparticles
Ni single crystal
residual spectrum
FIGURE 1. Ni̇̋፦ࠄʴTEMѿ.
|χ(R)| [A-4]
ᵟᶓ
Deposition Chamber
XPS chamber
XPS Ni 2p3/2
865
῍BL5S1@Aichi SR῍
19እ‫܇‬SSD౨Ј֥
ἧἕእ೔Ꮲ
H2 or He
ὉXPS(as prepared sample)
ኽௐὉᎋ‫ݑ‬
ὉTEM image
I0ἓἵὅἢ
῍ἂἿὊἨἮἕἁἋ῍
Reference QCM
ᵬᵐ
ȷᚾ૰˺ᙌ
Ǭǹɶᔕႆඥ[5]Ჴ
᭗ኝࡇ᣿‫ޓ‬ȯǤȤȸǛHeǬǹ(6N5)ᩎ‫׊‬ൢɦư
Ⴚ੗ᡫᩓь༏
ȷቩ‫ࢲ܇‬
TEM : JEM2500SE
ȷᘙ᩿҄‫ܖ‬ཞ७
in-situ XPS: PHOIBOS100-5ch with Mg Kα X-ray
ȷ‫ן‬щኵ঺ሁภዴ
300 K
Quartz Crystal Microbalance (QCM)
0
NiἜἠቩ‫܇‬
῍Ἔἠቩ‫˺܇‬ᙌᘺፗ῍
QCM
Ni KԈӓᇢXAFSỆợụ
NiἜἠቩ‫܇‬ỉ൦እԈ્ЈᢅᆉỂỉ
҄‫ܖ‬ཞ७Ὁ‫ޅ‬৑ನᡯ‫҄٭‬ử
ଢỤẦỆẴỦ
Hydrogen
Hard X-ray
1ൢ‫
ן‬200 éƴƓƍƯ
൦እǛԈᔺ[4]
ᚾ૰˺ᙌὉ᬴ܱ
Ⴘႎ
ȷXAFS(X-ray Absorption Fine Structure)
҄‫ܖ‬ཞ७Ὁ‫ޅ‬৑ನᡯЎௌầӧᏡ
ȷNiȊȎቩ‫܇‬
࠯‫ר‬ቩ‫ࢲ܇‬20 nm
Hydrogen pressure [Torr]
ȷNi
金ナノ粒子の生体適合性に関する研究
οங˦ʍᵏᵊᴾᵐᵊᴾ‫ش‬ဋҘऔᵐ
Ritsumeikan Univ.
The SR center
ӸӞ‫ܖٻދ‬ǨdzȈȔǢᅹ‫ܖ‬ᄂᆮ৑ ӸӞ‫ܖٻܖٻދ‬ᨈ߻‫ܖ‬ᄂᆮᅹ
৲ࢨƷ6'/΂
ӒࣖȢȇȫ
ኬᏘᐏȢȇȫƱƠƯ
ဇƍǒǕǔȪȝǽȸȠ
ဃ˳ƷኬᏘᐏ
Ꮲឋʚ᣻‫ޖ‬
ȪȳᏢឋဃ˳ưƸɼƴ
ȕǩǹȕǡȁǸȫdzȪȳ
2%
ဃ˳Ў‫܇‬ƴ‫ݣ‬Ƣǔ#W02UƷ෇ࣱƕ᭗ƍ
#W02UƷဃ˳ᢘӳࣱ
ဃ˳Ў‫܇‬Ʊ#W02UƷ
Ў‫܇‬ԈბӒࣖƷᚐଢƕ᣻ᙲ
᬴ܱ
ᚃ൦ؕ
H3C
N+
CH3
2%ভບ෩
2%ብ஛OI
OKNNK3൦O.
P
O
H
ᐏҽPO
Ⴘႎ
O
ျ൦ؕ
O
éưԈბӒࣖǛ
̟Ơƨ
ɥ຋Lj๋෩
=2%ভບ෩?
2%ብ஛OI
OKNNK3൦O.
#W02UdzȭǤȉ
൦๋෩ƴьƑƨ
0.1-0.2 mm
0-ӏƼ1-GFIG+Pெ
2-GFIGȝȪǨȁȬȳ
ųųųųųȕǣȫȠ
2%#W02U
᱅ᑥƷආോཋǛ˂ƷȞǤǯȭȁȥȸȖƴ
ӕǓЈƠƨࢸŴOKNNK3൦ǛьƑƯȪȳǹƠƨ
2%OWNVKNC[GT
Ӌༀᚾ૰
H3 C
H
PC multilayer
PC/Au sheet
CH3
O-
N+
P
C
Au
O
H
O
O
Au sheet
Fluorescence Yield (arb. units)
N K-edge (TEY)
2140
405
410
415
Photon Energy (eV)
(KI2%OWNVKNC[GT2%#WUJGGVƴ‫ݣ‬Ƣǔ
0-GFIG0':#(5ǹȚǯȈȫ
420
425
0
5
10
15
20 25
Particle size (nm)
30
(KIᩓᚐឋƱƠƯ0C%NǛဇƍƨ‫ئ‬ӳƷ
෩ɶȗȩǺȞඥư˺ᙌƠƨ#W02UƷ
ቩࢲЎࠋ
"54ǻȳǿȸ$.=?ᇌԡ᫾‫ܖٻ‬
"*K514ǻȳǿȸ$.=?࠼޽‫ܖٻ‬
Šμᩓ‫܇‬ӓ᣽ඥ
6';
Š᭗Ⴧᆰவˑ
P K-edge (FY)
2151.8eV
P1sḵπ*(P=O)
@ AichiSR
2152.6eV
P1sḵσ*(P-O)
O-
CH3
H3C
N+
P
O
CH3
PC multilayer
(PC/Au sheet) - Au sheet
O
O
O-
Smoothed spectrum
In
O
Au
3
N+
O
2%Ў‫܇‬Ƹ#Wெᘙ᩿ƴ0%*21ျ൦ؕͨƷᣠእưԈბƠƨƱ
ᎋƑǒǕǔ
O
Au sheet
or CH
P
(KI2%ভບ෩Ʒɥ຋Lj๋෩Ʊ#W02UdzȭǤȉ൦๋෩ǛฆӳƠƨ
ᚾ૰ƴ‫ݣ‬Ƣǔ6'/΂6'/ဇᚾ૰ƸȍǬȆǣȖ௨ᑥư˺ᙌ
ኽᛯ
5'/΂ӏƼ'&5Ўௌ
73.9 %
@ Ritsumeikan univ.
SR center
#WȭȃȉᩓಊӏƼ
#W02UƷ˺ᙌเ
0C%Nብ஛ᩓᚐឋ
ᔕသ൦
O.
˺ᙌ࿢‫ؾ‬
6'/΂
"*K514ǻȳǿȸ$.=?࠼޽‫ܖٻ‬
ų2Ǭǹ
%*KP#TǛˤƬƨ
ųǬǹHNQY‫׹‬Ʒൔ̊ᚘૠሥ
"ƋƍƪǷȳǯȭȈȭȳήǻȳǿȸ
#KEJK54
ų$.0ǷȪdzȳȉȪȕȈ౨Ј֥
5&&
2-GFIG0':#(5
0-GFIG0':#(5
13.4+/-3.3 nm
0-CPF1-GFIGU0':#(5ย‫ܭ‬
TEHưЎ᧓Ŵ
2%ভບ෩Ǜᢒ࣎Ўᩉ
ኽௐƱᎋ‫ݑ‬
ᢩΨдǍЎ૝дǛ
ဇƍƳƍ
#W02UdzȭǤȉ
൦๋෩Ʒ˺ᙌ૾ඥ
Šᖩήӓ᣽ඥ
(;
Š*GRCVJ=?Ǜဇƍƨ‫ٻ‬ൢ‫ן‬வˑ
‫ٻ‬ൢɶư
ʑ༞
ආോཋ
2%#WUJGGV
Total Electron Yield (arb. units)
෩ɶȗȩǺȞඥ
2-GFIG0':#(5ย‫ܭ‬
Ӓࣖவˑ
ภࡇé
଺᧓଺᧓
400
਀ƠЈƠඥ
ᚾ૰
#W02Uᘙ᩿ƴԈბƠƨ2%Ў‫܇‬
ԈბӒࣖǛ̟ƠƨࢸŴ
OKNNK3൦ưȪȳǹƠŴ
‫ٻ‬ൢɶưʑ༞ƞƤƨ
395
#W02UdzȭǤȉ
൦๋෩
#Wᘙ᩿Ტ#WெӏƼ#W02UᲣƴԈბƠƨ2%ƷӲ‫ܫ‬ᏡؕƷ҄‫ܖ‬ཞ७‫҄٭‬Ǜ
2%Ʒᚃ൦ؕǛನ঺Ƣǔ01ӏƼ2ƷӲ-Ԉӓᇢ0':#(5ย‫ܭ‬ǑǓᛦǂŴ
ƲƷ‫ܫ‬Ꮱؕư#Wᘙ᩿ƴԈბƠƯƍǔƷƔǛଢǒƔƴƢǔ
O
O
O
2%ȪȝǽȸȠ
൦๋෩
ȍǬȆǣȖ௨ᑥư˺ᙌ
O
O-
CH3
ᚾ૰
#Wெᘙ᩿ƴԈბƠƨ2%Ў‫܇‬
403.6eV
σ*(N-C)
෩ɶȗȩǺȞඥ=?
+
ҔၲЎ᣼ƴƓƚǔ ȉȩȃǰȇȪȐȪȸǷǹȆȠ=?
#W02UƷࣖဇ
ƕǜኬᏘƴ‫ݣ‬Ƣǔภ༏ၲඥ=?
#Wெ
#W02UdzȭǤȉ൦๋෩Ʒ˺ᙌ
ฆӳ
#W02
Distribution (%)
ደᚕ
᣿ȊȎቩ‫
܇‬#W02U
CH3
CH3
0%
(KI2%ভບ෩Ʊ#W02UdzȭǤȉ൦๋෩Ǜฆӳ
ƠƨࢸƴဃơƨආോཋǛᔕသ൦ưȪȳǹƠƨᚾ
૰ƴ‫ݣ‬Ƣǔ5'/΂
P
(KI(KIƴ‫ݣ‬Ƣǔ'&5ЎௌƷȩǤȳȗȭ
ȕǡǤȫ
2%Ў‫܇‬Ƹ#W02Uᘙ᩿ƴԈბƠƯƍǔƕŴ#W02UƱႺ੗ԈბӒ
ࣖƠƯƍƳƍ2%Ў‫܇‬Nj‫ٶ‬Ƙ‫נ܍‬ƢǔƨNJŴ0-ӏƼ2-GFIGU
0':#(5ưƸ2%OWNVKNC[GTƱ2%#W02UưǹȚǯȈȫƷ‫҄٭‬ƕᙸ
ǒǕƳƔƬƨƱᎋƑǒǕǔ
2%Ў‫܇‬Ƹ#W02Uᘙ᩿ƴᣠእҾ‫܇‬ưஇNjԈბƠǍƢƍƱᎋƑǒ
Ǖǔ
2%Ў‫܇‬Ʊ#W02UƸԈბӒࣖǛဃơƯƍǔƱᎋƑǒǕǔ
2145
2150 2155 2160 2165
Photon Energy (eV)
2170
(KI2%OWNVKNC[GT
2%#WUJGGV#WUJGGV
UOQQVJGFURGEVTWOƴ‫ݣ‬Ƣǔ2-GFIG0':#(5ǹȚǯȈȫ
Ӌᎋ૨ྂ
[1] S. Rana et al., Adv. Drug Delivery Rev. 64 (2012) 200.
[2] H.-C. Huang et al., J. Am. Chem. Soc. 4 (2010) 2892.
[3] S. Yagi et al., Nucl. Instrum. Meth. A 467-468 (2001) 723.
[4] S. Yagi et al., Surf. Interface Anal. 36 (2004) 1064.
[5] K. Yamanaka, private communication in Report for Ritsumeikan
University SR Center BL-2 (2013).
[6] M. Sawada et al., AIP Conference Proceedings 879 (2007) 551.
[7] H. Nameki, private communication in Aichi Prefectural Technical Report (2010).
[8] C. Tsukada et al., e-J. Surf. Sci. Nanotech. 11 (2013) 18.
[9] T. Mizutani et al., Thomson Reuters database (2012).
[10] T. Okajima et al., BUNSEKI KAGAKU 59 (2010) 447.