今日はひたすら「摩擦の物理」 地震のことはいったん忘れて実験室に篭る 1。クーロン・アモントン則とその現代的意義 2。速度・状態依存摩擦則(Rate and State Friction law) 3。粉体の摩擦 4。摩擦熱の関与する場合 これらの実験室スケールでの知見をもとに 断層スケールでの摩擦をどう理解していくか? ̶> 5月16日(月)と5月27日(金) 実験室スケールの摩擦:古典的法則 1. 摩擦力は法線荷重に比例する 2. 摩擦力は見かけの接触面積には依存しない 3. 静止摩擦は動摩擦より大きい 4. 動摩擦力はすべり速度によらず一定 (1と2はレオナルド・ダ・ヴィンチ、3と4はクーロンによって発見) 1から F=μN F: 摩擦力 μ: 摩擦係数 N:法線荷重 で、現代の法則は? 1と2はほぼ正しいが、3と4は修正が必要 1と2も、そのメカニズムは全然自明ではない 「摩擦力は見かけの接触面積には依存しない」 は、かなり反直観的で、ここが理解のカギ 単位面積あたりの力が一定ならば、面積が大きいほど力も強いはず 実際には、「見かけの接触面積と本当の接触面積が違う」ことが重要 ミクロンスケールでは物体表面は凸凹 ESE 6-6 OHNAKA: CONSTITUTIVE SCALING LAW AND UNIFIED COMPREHENSION Figure 2. Examples of fault surface profiles. (a) Shear-fracture surface profile of an intact Tsukuba granite sample. (b) Surface profile of a pre-cut fault whose roughness is characterized by the characteristic length lc = 200 mm and (c) Surface profile of a pre-cut fault whose roughness is characterized by the characteristic length lc = 100 mm. ハースト(Hurst)指数 h(x) L H: Hurst exponent sinとかcosとか:H=0 (L > 波長) or H = 1 (L << 波長) 「複雑な」界面:0 < H < 1 例:ブラウン運動はH=0.5 H < 1の意味:D/LはLが大きいと0に近づく (ズームアウトするほど滑らかに見える) ズームインするほど凸凹が際立つ ミクロに見ると、ごくわずかな部分しか接触できない もし「本当の接触面積」が法線荷重に比例すれば、 1. 摩擦力は法線荷重に比例する 2. 摩擦力は見かけの接触面積には依存しない が自然に説明できるが。。。 真接触面積は法線荷重に比例する? d:球どうしの重なり長さ 接触半径 力 Hertz 1881 (接触面積) 突起を半球で近似。 半球どうしの接触を考えると、 法線荷重は真接触面積の3/2乗に比例! (真接触面積は法線荷重の2/3乗に比例) 弾性論では 法線荷重と真接触面積は比例しない! ̶> クーロン・アモントンの法則をどう説明するのか? 古典的なところでは、 Archard(1957): Greenwood-Williamson(1966):Bush et al. (1975)など (今でも新理論が定期的に出ており、すっきりした解決はしていない) Persson (2001, 2004)など ̶> 法線荷重と真接触面積の関係は実際どうなっているのか? 真接触部位を可視化する J.H. Dieterich, B.D. Kilgore / Tectonophysics 256 (1996) 219-239 アクリル樹脂、クオーツ、カルサイト、ソーダ石灰ガラス normal stress 50 µm lved image 50 µm 4 - 30 MPa 50 µm d deconvolved image, threshold 50 µm at 30 MPa normal stress. (a,b) Grey scale images before and after deconvolution, respectively. The rendering nd after deconvolution, respectively. Dieterich & Kilgore 1996 a a J.H. Dieterich, B.D. Kilgore / Tectonophysics 256 (1996) 219-239 100 µm bc227 100 µm µm 100 Fig. 6. Representative contact images (deconvolved) #60 acrylic at 4 MPa (a), #240 calcite at 30 MPa (b), #60 soda-lime glass at 20 MPa (c) and #60 quartz at 30 MPa (d). cb 100 µm µm 100 d 100 µm 294 James H. Dieterich and Brian D. Kilgore PAGEOPH, 真接触部位の面積は法線荷重に比例して増大 Dieterich & Kilgore 1994 真接触面積が法線荷重に比例して増大するなら、Ar/NはNに依存しない Ar/Nの物理的意味 =「真接触部位にかかる平均法線応力」の逆数 「真接触部位にかかる平均法線応力」が、法線荷重に依らない これがクーロン・アモントン則の本質 (法線荷重を増やすと、平均法線応力は一定のまま真接触面積が増えていく) ArもNも測定可能なので、真接触部位にかかる平均応力は測定可能 Table 1 Material アクリル カルサイト (方解石) ソーダガラス クォーツ (石英) Acrylic Acrylic Acrylic Acrylic Acrylic Acrylic Acrylic Acrylic Acrylic Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Calcite Glass Glass Glass Glass Glass Glass Glass Glass Glass Glass Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Quartz Surface preparation Normal stress (MPa) Contact size distribution 2) D aaL(µm D L(µm2) 240 240 240 100 100 100 60 60 60 240 240 240 240 100 100 100 100 60 60 60 60 240 240 240 100 100 100 100 60 60 60 240 240 240 240 100 100 100 100 60 60 60 60 1 4 16 1 4 16 1 4 16 5 10 20 30 5 10 20 30 5 10 20 30 1 4 16 5 10 20 30 5 10 20 5 10 20 30 5 10 20 30 5 10 20 30 2.28 1.87 1.55 1.87 1.75 1.65 1.80 1.68 1.60 1.18 1.09 1.06 1.08 1.08 1.08 1.05 1.05 1.30 1.29 1.24 1.24 (3.38) 2.69 2.62 2.13 1.98 1.78 1.78 2.07 1.91 1.76 2.67 2.64 2.45 2.38 1.67 1.60 1.67 1.62 1.55 1.55 1.55 1.55 Poorly determined value between brackets. 210 210 210 300 400 500 910 910 1000 520 370 370 400 1500 900 1200 1200 2600 2600 2600 2200 (90) (90) (90) 150 100 100 300 210 210 210 400 400 Mean contact stress (MPa) 430 ± 170 500 ± 100 730 ± 80 340 ± 50 390 ± 50 520 ± 60 400 ± 60 400 ± 50 460 ± 50 3110 ± 840 2260 ± 480 1980 ± 450 2210 ± 480 1330 ± 310 1390 ± 300 1910 ± 350 2290 ± 410 1250 ± 260 1610 ± 330 1840 ± 390 2310 ± 490 820 ± 420 2620 ± 1220 5500 ± 2010 3760 ± 610 4202 ± 420 5300 ± 450 6550 ± 560 2670 ± 430 3220 ± 430 4240 ± 500 9170 ± 2270 9440 ± 2120 12600 ± 2740 14870 ± 3150 7510 ± 650 8510 ± 670 9500 ± 760 12810 ± 890 8640 ± 1120 9940 ± 1100 9380 ± 1080 10820 ± 810 Ar / N 400MPa 2GPa 4GPa 10GPa Ar/NはNが増大するとやや増える傾向にあるが、 第ゼロ近似ではほぼ一定とみなしてよいだろう ArはNに比例 真接触部位の面積は法線荷重に比例して増大 これをσYと書く。 (物質依存:N非依存) A: 見かけ面積 一方、 法線応力 つまり 物質ごとにσYを適切に選べばコラプスするはず 0.000 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.050 0.045 0.050 Normalized applied stress (σ/σY) 様々な物質の「真接触面積vs垂直応力」 h Acrylic S. L. Glass Calcite 0.0075 Quartz (b) r d el #60 n io #100 Surface abrasive Normalized total contact area gt n e en d n #240 0.0050 tre ss = t ta yi st I ts on c ta C 0.0025 Dieterich & Kilgore 1996 0.0000 0.0000 0.0025 0.0050 Normalized applied stress (σ/σY) 0.0075 さて、このσYは何で決まるのか? 一つの可能性: 突起部には応力が集中するので、降伏応力を超えて塑性変形を起こす ̶> σYは降伏応力 法線荷重をどんどん強くしていっても突起部に一定の応力しかかからないのは、 降伏応力以上の応力は支えられないから 本当だろうか? ビッカース硬度試験 試験片の形状は標準が決まっている 対面角 α 136 のピラミッド型圧縮子 ダイヤモンド 圧縮痕はだいたい10ミクロンオーダーで行う 試料 ビッカース硬さ=(荷重) / (圧縮痕の面積) 押し込み時の平均降伏応力と解される (一般には荷重Fにも依存するが、 変形が小さいうちはだいたい面積 荷重) ©wikipedia アクリル カルサイト ソーダガラス 石英 σY ビッカース硬度 400 MPa 2 GPa 200 MPa 1.4 GPa 4 GPa 10 GPa 5.5 GPa 11 GPa ヤング率 3.1 75 72 90 GPa GPa GPa GPa σYはビッカース硬度とだいたい対応する ̶> 降伏応力という解釈でよさそう ヤング率で規格化すると1/8から1/40程度 バラツキ大きい̶> 弾性変形とは関係ない? (もともとσY自体バラツキが大きかったのだが) 228 Contact density, dN/da .1 1000 Contact density, dN/da 100 .001 .0001 .0001 .01 1 10 1 10 100 1000 10000 5 100 Dieterich, 1000 10000 J.H. B.D. Kilgore/ Tectonophysics 256 (1996).01219-239 10 10 真接触部位のサイズ分布 10 .001 100 .0001 Calcite #240 10.00001 1 10 1 4 .1 .0001 1000 16 10 1000 .00001 100Acrylic 1000 10000 1 10 #100 10000 1 10 10 4 .01 10 5 .001 1 .1 16 1 .0001 100 Calcite #60 100 1000 1000 10000 #60 Acrylic 30 30 .1 100 S.L. Glass #100 16 1 .001 1 .1 .00001 10000 1 .001 .001 10 .01 10 10 5 1 4 #60 S.L. Glass 20 16 10 1 .1 .1 .0001 20 .01 .01 .1 10000 10 20 4 10 1000 1 100 30 S.L. Glass #240 1 20 100 5 Calcite #60 1 10 .00001 1 .01 .01 100 .0001 1001 10 100 1 100 .0001 .1100 5 .001 .001 1000 10 .00001 Acrylic #240 20 .1 1000 .01 100 .001 30 5 10 10010 1000 .01 .01 20 .00001 10000 .001 1.001 10 100 5 1000 10000 10 .001 .001 1 100 .0001 .0001 1001 10000 .00001 1000 100 1 10 100 1000 10000 10 100 1000 10000 10 100 1000 .00001from #60 surface Fig..0001 9.1 Superimposed images at 4 and 16 MPa normal S.L. Glass #240 S.L. Glassof #60acrylic, showing characterist S.L. Glass #100 stress 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 100 10 1 101 normal stress is increased. 10 1 10 16 Calcite #240 Quartz #240 1 1 100 1001 4 100 10 .0001.0001 100 .1 10 Calcite #60 Quartz #100 10 100 .1 10 Quartz #60Calcite 10 #60 transmission are not known, but we speculate it.01is 1 of the contacts (contact area/ .1 .01 1 1 1 1 1 20 30 20 due to scattering either by.001 damage such as microcC and 30D are constants. The .01 .001 30 .1 .1 .1 .1 .1 5 .1 .001 .0001 or by small voids within .0001 racking around the contacts each material, surface prepara 20 10 .01 .01 .01 5 5 .01 .01 .01 10 .00001 .00001 the.0001contact interface that are too small to10000 resolve 10 mal stress are shown in Fig. 1 10 100 1000 10000 1 10 100 1000 1.001 10 100 1000 10000 .001 .001 .001 .001 .001 optically. exception of soda-lime glass, .0001 .0001 .0001 .0001 .0001 .0001 1001 100 Over of contact sizes, the density 1 a range 1 10 100 1000 10000 100 10 100 1000 distribu10000 10 100 1000 Eq. 10000 3 occur above a from Quartz #60 Quartz #240 .00001 .00001 .00001 Quartz #100 1 10of10 100 area 1000 are 10000 10by a100 1000 law: 10000 10 1 10 100 1000as10000 101 tion contact described power designated aL (µm2 ). See T 1 1 of D and aL . The contact de Area of contact (µm2) 1 dN -D 1000 100 100 2 (one square pi Ca (3) off atS.L.3.5 µm .1 .1 ≡ ρ = .1 S.L. Glass #240 Glass #60 S.L. Glass #100 Dieterich & Kilgore 1996 100 10 10 da.01 because contacts comparable .01 .01 20 20 30 30 20 10 10 5 30 5 20 30 20 5 10 10 10 30 20 5 10 20 5 5 act density, dN/da .1 5 1 .01 10 1 30 30 .1 30 5 10 20 5 10 30 1. 真接触部位のサイズ分布はベキ的 指数Dは1から2.5程度までの値をとる 指数Dはハースト指数Hと関係 D=2-H/2 H=0でD=2; H=1で1.5 * 導出はP. Meakinの本 Fractals, Scaling and Growth Far From Equilibrium 2. 実験での空間分解能は5平方ミクロン程度 実験では、可視光程度の波長( 400nm)程度かそれ以下の突起は見えない Arを数え落とすと、真の法線応力は過大評価になる ̶> 実は降伏応力に達していない可能性も? D<2ならばそんなに気にしなくて良い ρ(a) a-D (a1 < a < a2) a1= lower limit, a2= upper limit 真のa1はゼロ、Arが見かけ最小面積a1の関数として、 1 (D < 2) ただしa1/a2 10-2なので、D = 1.8で0.6、D=1.9だと0.37 ̶> Dが2に近いとArを半分くらいに過小評価 σYを2倍過大評価してしまう 実験ではほとんどの場合D < 2 D=2-H/2に注意 (0<H<1) D>2 の場合、Ar(ゆえにσY)の評価はあてにならない D > 2 だと全真接触面積が最小サイズで決まる Ar /Ar ∼ [a1/a1 ]D-2 a1 は検出限界 Ar はそこから求まる値 a1 ∼10nm2なら、a1/a1 10-6 ̶> D=2.2でも、Ar 0.06Arで、ひどい過小評価となる a1 ∼1000nm2でも、a1/a1 10-4 ̶> D=2.2でも、Ar 0.16Arで、かなりの過小評価となる いずれにせよ、実験から求めるσYは過大評価になる ̶> 本当に降伏応力に達しているのだろうか? PHYSICAL REVIEW E 70, 026117 (2004) 実は弾性論だけでもいける? he roughness exponent. For Hyun et al. 2004 the mean contact size is tion of the calculation. As iamson [14], the linear rise r increase in the number of heir mean size or probabilcontrasted to a common regions where undeformed oximation has been used to s [2,3], and by Greenwood ng the statistics of asperity FIG. 1. (Color online) Self-affine fractal surface image !256 uch too large a total contact ラフな面を作成 --> 有限要素シミュレーション ' 256" generated by the successive random midpoint algorithm. nt distribution of ac with Heights are magnified by a factor of 10 to make the roughness de regions that are merely HYUN PHYSICAL FINITE-ELEMENT ANALYSIS OF CONTACT BETWEEN… 70, 026117 (2004) visible, andet al.the color variesPHYSICAL from REVIEW darkE (blue) to light (red) with REVIEW E 70, 026117 (2004) ラフonフラット 真接触部位 ntact. We find that this can increasing height. conventional master/slave with badly distortedapproach elements that woulda at predictor/ best require impractiy between experiment and small time time-stepping steps and at worst produce [27]. negative Jacobicorrector split incally the Newmark algorithm ans.ofThus nodescube are is moved by a fraction The rough surface the all elastic identified as slaveof the local height that thepredictor initial height of the while the rigid surface is depends master. on The partz0 of the node above the bottom of the elastic cube (Fig. 2). The magnitude of the Newmark algorithm neglects the contact constraints and change, !z, decreases to zero at the top of the cube so that therefore consists of an unconstrained step, with the result geometries with periodic boundary conditions in the x − y ssures p is also studied. We the top surface remains flat.by The the specific form for the plane and specify the surface height h disalong the z axis. zes, roughness amplitudes, " = h!x , y"!L − z " where a = 6 usually placement is !z!x , y , z!t For a self-affine in !5"the height over a lata , = x meshes. + !tv +variations x surface, gives good se onto a universal curve 2 H eral length scale ! rise as ! where H # 1 is called the Hurst d by its mean value. The C. Finite-element simulation !t aSince . the equilibrium !6" geometry or roughness exponent. H #contact 1, the surface looks Thev goal=isvto+determine ed from the roughness amat a given load. An2implicit approach is too memory intensmoother at larger scales. also sive forneeds the length system sizes of interest. Instead we use an researchers exThis predictor solution to be corrected in order toMany comstribution decreases monoplicit integration algorithm combined with a dynamic relaxply the with the impenetrability constraints. The net result of specify scaling byis Three an effective dimension d − H, ation scheme. different algorithms fractal were compared to has an exponential tail at imposing these constraints a set of self-equilibrated conensure accuracy. In the first, the top surface is given a small that modify the and velocities. wheretactd forces is the spatial velocity andpredictor itsdimension. impactpositions with the bottom surface is followed. nalytic results for the presSince the contactIn surfaces are presumed to be smooth, the second, the displacement of the nodes norat the top of the To mals generate three-dimensional fractal surfaces are well defined and surfaces can be unambiguously elastic cubethe (Fig. 2) is incremented at self-affine a fixed rate or in small sian at large p [8]. Possible FIG. 2. Geometry of a finite element mesh in an elastic body classified as master andsteps. slave.InThe configuration discrete the third, a constant before force is calapplied to each pred n+1 0 2 n pred n+1 n n 0 n n a 弾性変形だけでも真接触部位は法線荷重に比例する FINITE-ELEMENT ANALYSIS OF CONTACT BETWEEN… PHYSICAL REVIEW E 70, 026117 (2004) Hyun et al. 2004 Most of the analytic theories mentioned above explicitly assume that there is a statistically significant number of asperities in contact, and that only the tops of asperities are in contact. The latter assumption breaks down as A / A0 approaches unity, and this contributes to the decrease at large A / A0 in Fig. 5. The first assumption must break down for our systems when the total number of nodes in contact, L2A / A0, is small. This explains the rise in the L = 64 data for A / A0 ! 2% in Fig. 5. This rise is dependent on the specific A0: 見かけの面積 random surface generated, and is particularly dramatic for the case shown. Examination A: of this and other data indicates 真接触面積 that proportionality between load and area is observed when there are more than 100 contacting nodes $L2A / A0 " 100%. W: 垂直荷重 Batrouni et al. [10] considered the same range of system data from A / A0 $ 0.2 to a sizes for # = 0. They fitted all (ν 0.3) & power law and found W % A with & " 1. Their numerical (見かけの法線応力)/E FIG. 4. Fractional contact area A / A0 (solid line) as a function of results clearly rule out an earlier prediction [12] that & = $1 the normalized load W / E!A0 for L = 256, ' = 0.082, # = 0 and H + H% / 2, but we do not believe that their results are inconsis= 1 / 2. The dashed line is a fit to the linear behavior at small areas. tent with an initially linear relation between load and area $& = 1%. Their fit included regions where the number of contional to the load at small 弾性変形だけでも、真接触面積は荷重に比例 loads. A growing deviation from tacting nodes is below the minimum threshold just described. this proportionality is evident as A / A0 increases above 4 or In addition, their value of & decreased steadily towards unity ̶> 突起部の塑性変形が本質的なわけではない 5%. with increasing L, varying from 1.18 at L = 32 to 1.08 at L To emphasize deviations from linearity, the dimensionless = 256. We believe that this small difference from unity is ratio of true contact area to load AE! / W is plotted against within the systematic errors associated with the limited scallog10A / A0 in Fig. 5. Results for L between 64 and 512 fall ing range. Note that & = 1.1 would imply a 25% decrease in onto almost identical curves. The small variation between −2 −1 N et al. 真接触面積にかかる平均法線応力σY = W/Aはどのくらいか? ヤング率の1/40程度で一定(A/A0 < 8%まで) PHYSICAL REVIEW E 70, 026117 (2004) この数因子は何で決まるのか?実はラフネス(勾配)に依存する! (Bush et al. 1975) (Persson 2001) G. 6. Product ! [Eq. (10)] as a function of roughness # for 理論とかなり合う! 突起部にかかる応力は降伏応力 or 弾性力? ヤング率に比例 弾性力 降伏応力 比例係数はラフネスで決まる σYは物質で決まる:ラフネスには依存しない 白黒つけられるか? たとえば・・ 温度依存性:ヤング率も降伏応力も温度依存性は似ているので難しい ラフネス依存性:Dが増える(Hが減る)とσYが増える傾向はある カルサイト(D1 1.3) σY 2GPa ソーダガラス(D1.8 2) σY 4GPa ヤング率はだいたい同じだがラフネスによって大きな違い ただしビッカース硬度もだいぶ違うので降伏応力でないとも言い切れない ̶> 同じ物質でラフネスを変えた系統的実験が必要 … 真接触パッチごとの法線応力ばらつき HYUN et al. PHYSICAL REVIEW E 70, 026117 (2004) Hyun et al. 2004 Δ: 高さの標準偏差 塑性領域? where p0 = W note a deriv vs the model iction erlap r, but meter ength 8,30]. omes . Figconts for sc / ac known, and points. Incr surface rou affine. The resolution a FIG. 14. (Color online) Probability distribution of the local pressure at contacting nodes for different system sizes with # = 0.082, " = 0, H = 0.5 and A / A0 between 5% and 10%. FIG. 15. (Color online) Probability distributions for p / #p$ at the indicated values of ! and H all collapse onto a universal curve. Here ( = 0 and A / A0 is between 5% and 10%. The solid line is a fit to the exponential tail of the distribution, the dotted line shows Eq. (14), and the dashed line shows a Gaussian with the appropriate normalization and mean. 実際は弾性変形のパッチと塑性変形のパッチが混在するはず so the average cluster size is comparable to the lattice resolution. On the other hand, a small local maximum can only that this distribution has a strikingly universal form. Figure screen a small local region. 実際の応力がこれ以上変化しない突起と、 Thus there tend to be many small 14 shows that the probability P!p" for a contacting node to contacts in the regions where overlap first occurs. These have local pressure p is independent of the system size. points lie in the middle of 弾性的接触をしていて応力がまだ変化する突起 the large clusters in Figs. 12(c) Since the contact area increases linearly with the load, the and 12(f). A higher density of clusters and clusters of larger mean local contact pressure #p$ = W / A is independent of the size are found in these regions of Figs. 12(a) and 12(d). As contact area, and the entire distribution also remains un- Persson obt sidered her P!p , 1" = %!p imposed the zero at zero Given th if Persson’s of small loa within the c tacting regio contact area tribution P̃ = A / A0. The for P̃: There is a value of & = surface # σn D σY 実験データをよく見ると、σYがσnによらず一定というのは言い過ぎで、 実はみかけ法線応力σnとともに少しずつ増えている ̶> 弾性変形パッチが少なからず存在することを示唆 (σY一定というのは第ゼロ近似的) 真接触部位のサイズ分布:シミュレーション PHYSICAL REVIEW E 70, 026117 FINITE-ELEMENT OF CONTACT BETWEEN… FINITE-ELEMENTANALYSIS ANALYSIS OF CONTACT BETWEEN… PHYSICAL REVIEW E 70, 026117 (2004) exponent -2 FIG. 9. (Color online) Probability P of a connected cluster of area ac as a function of ac for ! = 0, H = 1 / 2, " = 0.082 and the indicated system sizes. All results follow a power law, P!ac" # a−c $, with $ = 3.1 (dashed line) at large ac. The dotted line corresponds to FIG. $ = 2.9. (Color online) Probability P of -τa connected cluster ofFIG. 10. (Color online) Probability P of a connected cluster as a c c the of area ac for ! = 0, " = 0.082, L = 512 and the indicated area ac as a function of ac for ! = 0, H = 1 / 2, " = 0.082 and function should be increased to about 2.5 as ! increases thec" #values indicated system sizes. linearly All results follow a power law,toP!a a−c $, of H. Dashed lines indicate asymptotic power law behavior with $ = 4.2, 3.1 and 2.3 for H = 0.3, 0.5 and 0.7, respectively. The value of line) 0.5. at large a . The dotted line corresponds with limiting $ = 3.1 (dashed to c solid line corresponds to $ = 2. The agreement with these analytic predictions is quite P(a ) a 指数τはハースト指数の減少関数 $ = 2. τ= 3 for H=0.5 FIG. 10. (Color online) Probability P of a connected clust good considering the ambiguities in discretization of the surclusters. Thus even of though function area the ac maximum for ! = 0, observed " = 0.082,cluster L = 512 and the ind face. Both analytic models assume that the surface has conD=2-H/2とは定量的には合わない(?) size grows with L, the value of P at small a is unaffected. c tinuous derivatives linearly below the to small length of the to the values of H. Dashed lines indicate asymptotic power law be should be increased about 2.5scale as !cutoff increases between 5% and All of the data shown in Fig. 9 are for A / A 0 roughness. Bush et al. [15] considered contact between ellipwith $ = 4.2, 3.1 and 2.3 for H = 0.3, 0.5 and 0.7, respectivel limiting value of 0.5. 10%, but we find that the distribution of clusters is nearly tical asperities and Persson [8] removed all Fourier content solid corresponds to $ = 2. constant for A / Aline The agreement with While these weanalytic predictions 0 % 10%. This is the same range where A above some wave vector. use quadratic shape func-is quite and the load are nearly linearly related. The probability of goodtions, considering ambiguities in discretization the contactthe algorithm only considers nodal heights of andthe surclusters begin large clusters rises markedly A / Athough clusters. Thus for even maximum observed c 0 # 0.3, asthe that contact of a node implies contact over the entire face.assumes Both analytic models assume that the surface has con- 1。摩擦力は見かけの面積には依存しない! 2。摩擦力は垂直荷重に比例する! 現代の実験知識をもとに言い直すと、 1。摩擦力は真接触部位の面積に比例する 2。真接触面積は垂直荷重に比例する 実際の物理過程(弾性or塑性)に関しては綺麗な理論はまだない では、 3。静止摩擦は動摩擦より大きい 4。動摩擦力はすべり速度によらず一定 はどうなる?? 静止摩擦は難しい0.0 I0 IO0 1000 10000 Time (s) (c) 0.25 i , ''""1 ' 7 ' ' ' " ' 1 ' ' ''""1 , ~,[ , , , i,,,,, 0.05 0.00 ~ , I0 ~ , IO0 1000 ...... I 10000 Time (s) Figure 7 Normalized increases of micro-indentation area, contact area and peak friction versus lo for acrylic and glass (Figures 7b and 7c, respectively). Contact area and friction in Figur against slip which has been corrected to remove the effects of finite apparatus stiffness. T and friction data are normalized by ~ and #, area and friction respectively, at the start o data for increase of indentation area with time are normalized by the 1-second inde Time-dependent increases o f contact area measured during a hold A~I/~ (solid curve) 0 micro-indentation area increases. Contact area measured at peak friction, A~2/~ , agrees change of peak friction, A # / # confirming a direct dependence of friction on con Dieterich & Kilgore 1994 真接触面積は時間とともに増える: S(t) = S + c log t 静止摩擦は静止時間に依存(healing) late physically based frictional constitu- five distinct silica–silica pairs tested. The much larger ageing of the relative friction drop at the nanoscale e current empirically based ‘laws’11,12, than at the macroscale suggests that frictional ageing may be a lengthxtrapolation to natural faults. en attributed to increases in contact area scale-dependent phenomenon influenced by the multi-asperity ntact ‘quantity’) as well as to time-dependent 600 at asperity contacts (contact ‘quality’). 450 both interpretations. By measuring the RH = 60% across rough Lucite plastic surfaces in con300 100 s ss surfaces in contact, Dieterich and Kilgore8 450 n the sizes of illuminated microscopic con150 on a silicate rock (quartzite) have demong is suppressed by drying the samples and 0 7 0.01 0.1 1 10 100 1,000 ents in a water-free environment . Because 300 10 s Hold time, thold (s) ents on silicate minerals like quartz at high ΔF of water (that is, in the absence of hydrolytic ions are consistent with the hypothesis that Li et al (2011) Nature 1s 150 changes in contact area caused by asperity geing may also result from strengthening of rface over time. Chemical bonding could be 0.1 s Fss nt desorption of contamination films15 that 0 ugh chemically assisted mechanisms (such 0 20 40 60 80 100 16–18 oxane bridging) that can be aided by Lateral displacement, D (nm) he contact stresses. understand the contribution of each mech- Figure 1 | Lateral force versus nominal lateral displacement data for typical ngly difficult, because the buried frictional SA-SHS tests after stationary holds at 60% RH. Upon lateral displacement, atomic force microscopyによる摩擦:ナノコンタクトでもhealing the tip sticks to the substrate, resulting in linear, elastic lateral loading of the essible and involves myriad microscopic AFM cantilever (Supplementary Figs 1 and 2). When the lateral force exceeds ange of sizes down to the nanoscale19,20. static friction, the tip slips forward, indicated by abrupt drops in lateral force ing behaviour of a single nanoscale contact (DF), followed by subsequent sliding at the steady-state friction force (Fss). In ns of thehttp://www.keysight.com/upload/cmc_upload/ck/zz-other/images/AFM_schematic.gif ageing process and provide new the inset DF varies linearly with the logarithm of hold time. The dotted line is a al rate- and state-dependent friction laws. linear fit of the averaged values. ΔF (nN) tic kin g’ ‘S Lateral force, FL (nN) 静止摩擦は難しい:その2 relative frictional ageing before and after breaking the contact within our experiment is typically between 0.5–5, whereas the difference Published online Brace, W. F. & 153, 990–99 8 8 8 2. Scholz, C. H. 3. Marone, C. La faulting. Annu 4. Scholz, C. H. 6 6 6 University Pr 5. Tullis, T. E. Ro implications ΔF Geophys. 126 ΔF ≈6 4 4 4 6. Dieterich, J. H ΔF ≈0 Fss Fss < 0.5 (1972). Fss 7. Dieterich, J. H dependent fr 2 2 2 8. Dieterich, J. H insights for s (1994). 9. Ranjith, K. & 0 0 0 elastic system 0 30 60 0 30 60 0 60 120 180 240 1207–1218 ( Sliding distance (nm) 10. Rice, J. R., La stability of sli Figure 4 | Three SA-SHS tests between a silica tip and three different 1865–1898 ( surfaces. a, Silica–silica; b, silica–hydrogen-terminated diamond; c, silica– tipもsurfaceもSiO2にするとhealingが起こるが、違う物質どうしの 11. Dieterich, J. H graphite. The tests were all performed at 60% RH for a 100-s hold time. The equations. J. 接触では起こらない:面積の増加によるものではなく共有結合が時間 normal load in each case is maintained at approximately 1 nN. The lateral 12. Ruina, A. Slip forces during stationary hold are negative (see Supplementary Information). とともに増加していく(?) 10359–1037 Normalized friction, FL / Fss a Silica–silica b Silica–diamond c Silica–graphite 1. !ðtÞ ¼ FS ðtÞ=FN ðtÞ were measured to better than 1% acof slip curacy. For each event, we define !S % !ðt ¼ 0Þ. Rapid 静止摩擦は難しい:その3 acquisition of Aðx; tÞ and FS was triggered by an acoustic et; the ng the Ben-David sensor& mounted to the x ¼ 0 face系のgeometryに依存する of the top block. Local Fineberg 2011 ly and eover, 6] and te the aterial factor more, to the s link variat with k-slip ies of 摩擦係数はFS/FNで定義 FIG. 1 (color online). (a) Schematic view of the experimental demonstrates that $S , in fact, changes significantly with the loading details. Furthermore, the variation of $S is 静止摩擦は垂直荷重に依存する FN 2kN 4kN 6kN 真接触面をモニター(真接触の割合が高いと赤い) FIG. 2 (color online). (a)–(c) Measurements at 20 $s intervals 浮き上がりそうな左端からすべりが開始される of the changes in the real contact area Aðx; tÞ for representative events with # ¼ 0:01% and (top to bottom) FN ¼ 2000, 4000, instead span a function o collapse on each #. W with the sam variation of instead, clo For these the first ev those of su are induced frictional p configuratio from the sa fore, not in defined. Large va the conseq apparent in slip events larger (& 8 erich's law of friction 3.1. Main properties of Dieterich's law of friction lomb already knew that the coefficient of static friction ins slowly with time and that the coefficient of kinetic friction296 静止摩擦は難しい:その4 0 Displacement [mm] therefore, be interpreted as the average age of the micro-contacts be2 12 ginning from the moment they were formed. In the case of motion at Experimental Data condition θ(0) = θ , the solution to 10velocity a1 constant v and the initial 0 Eq. (2) is 8 Numerical Solution without vc 6! " ! " Dc D jvjt 4 θ0 − c exp − þ : θ-1 ðt Þ ¼ Dc jvj jvj 2 -2 6 Fig. 2. Typical time dependence of the position for an individual event of unstable slip. b s a c a Experimental Data Numerical SolutionExperimental without vc is velocity dependent. investigations by Dieterich 0 0 (1979), in (1983) to a rate 0 1 which 2 were 3 summarized 5 6 the 7theory 4 8 of Ruina 9 10 Time [s] friction, have shown that there is a close re-1 and state-dependent law of lation between these effects. In the law of friction from Dieterich–Ruina, Fig. Time dependence for the same interval as in Fig. 2, but with a 1000 times higher -2 3.the coefficient ofis friction isthat dependent thethroughout instantaneous velocity v resolution of the position. It readily seen the specimenon moves most of-3 theas stick stage and its motion is regular and is accelerated as the instability point is well as the state variable θ: f a v 0 o -3 20 x10 0.1 Displacement [mm] Log10 (Velocity) Log10 (Velocity) Laser vibrometer ct ourselves to the principle possibility of rather accurately he onset of instability in the simple model system. If the pressible, the conducted research would form the basis for furレーザー変位計 lization and extension of the findings to more complex ystems. If the prediction is impossible even in the simplest (分解能8nm) ystem under strictly controllable conditions, this would he position of researchers negating earthquake predictabilental results reported in the present paper are partially preliminary report of this study (Popov et al., 2010b), with mental results now replaced by better-quality data. ent In this section we briefly describe the main properties of Dieterich's V.L. Popov et al. / Tectonophysics V.L. Popov et al. / Tectonophysics 532-535 (2012) 291–300 friction law. In the static case, θ = t is valid. The state variable θ can, 15 0 0 -3 1 0.15 2 3 0.2 ð3Þ 4 5 0.25 Time [s] 6 Time [s] 7 0.3 8 9 10 0.35 0.4 2 10 1 5 ological system to be studied consisted of a specimen g a base plate by means of a soft spring (Fig. 1). The specse plate materials were varied, but in this work we report v0 only for a steel–steel pairing. The position of the specimen ed using a laser vibrometer with a resolution of 8 nm. The approached. Fig. 1. Schematic of the experimental arrangement. 0.15 0.2 0.25 0.3 0.35 0.4 V.had Popov et al.stick–slip 2012 character, an ex- 0.1 he specimen a pronounced ! " " ! " " v v θ Time [s] hich is given in Fig. 2. However, with a higher resolution, μ ¼ μ 0 −a ln þ 1 þ b ln þ1 ; ð1Þ Dc jv j n of the specimen is actually observed throughout the and its velocity increases as the instability pointFig. is 9. Experimental time dependence of the velocity and appropriate theoretical dewhere following kinetic equation valid for the state (Fig. 3). Note that Figs. 2 and 3 show the same time interpendence withthe parameters that ensure the isbest agreement in variable: the range of accelerated coordinate scales differ by a factor of 1000. creep and fast slip. ! " v j jθ ows the time dependence of the position for a series of al: ð2Þ θ_ ¼ 1− Dc eriods of “rest” and unstable slip, and Fig. 5 depicts the ng time dependences of the velocity. Macroscopically, 5. Experimental data smoothening appears as a series of periods of full rest and slip. Actually, The constants a and b in Eq. (1) are both positive and have an ove, the specimen moves throughout the stick stage; this order of magnitude from 10 − 2 to 10 − 3, Dc has an order of magnitude Theoretically, both velocity and acceleration increase monotonien from the logarithmic inset in Fig. 6. of 1–10 μm in laboratory conditions, its scaling for larger systems has the is approached. experimental tion we tried to answer in the work is whether or not cally it is asnot yetinstability been clarified; typical values of With v* are on the order of 0.2data, m/s. howev- 少しでも力がかかっていれば目に見えないくらいゆっくり動いている 厳密な静止摩擦というのはよく分からない 地震の前兆現象の根拠にもなっている(核形成理論、5月6日) s t a a 7 s 3. 静止摩擦は動摩擦より大きい ・待機時間に依存(メカニズム?) ・高速すべりの前に準静的な核形成過程 (系の形状などに依存) 4. 動摩擦はすべり速度に依らない 速度に関して対数的に依存する rock friction experiment: steady state rock friction experiment at quasistatic shear rates dynamic friction coefficient at steady state at velocity V µss (V ) = µ + V log V C. Marone, Ann. Rev. Earth Planet. Sci. 1998 ♠ constant α is generally negative: 0.01-0.001 ♠ friction coefficient is 0.6-0.8 irrespective of rock species ♠ valid only at low sliding velocities (<1mm/sec) 速度・状態依存摩擦法則 定常状態だけでなく非定常状態も記述 rock friction experiment: transient change V=V1 to V2 abruptly --> friction settles to a new value C. Marone, Ann. Rev. Earth Planet. Sci. 1998 ♠ instantaneous response + slow relaxation ♠ slow relaxation takes certain amount of slip (not time) ♠ can define characteristic length (typically several microns) 定式化 1. Two variables: sliding velocity V and the state variable θ µ = µ(V, ) (slow relaxation) 2. A reference state (steady state of V=V*) µ(V , ss ) µ 3. Describe change from a reference state µ(V, ) µ(V , ) = f (V, , V , ) Rate and state friction (RSF) law friction coefficient is function of sliding velocity and state variable(s) V µ = µ + a log + b log V - μ* is friction coefficient at reference state (V , ) - then friction coefficient at arbitrary state, μ(V,θ), is expressed as difference from reference state - the difference is logarithmic in V and θ - state variable is time-dependent ˙ = f ({X}) ss = L/V L is characteristic length Rate and state friction (RSF) law 1. at steady state ss = L/V µss (V ) = µ + (a = L/V ˙ = f (V, L, ) 2. evolution of state e.g. ✓˙ = 1 ˙= V b) log V ✓V L aging law (Dieterich 1979) V V log L L slip law (Ruina 1983) typical value of L is several microns ss = L/V in any case 664 MARONE V µ = µ + a log + b log V ˙ = f (V, L, ) 非定常状態 定常状態 どちらも記述できる! ただし、状態変数の発展法則を適切に選ぶ必要あり しかし、そもそも物理的な背景は? friction = traction at asperities assume rigid-body motion (spatially uniform sliding) physical meaning of RSF (1) X i: asperity number rigid bodies F = Ai True contact area Ai i i2S Y じつは、 Ai: area of asperity i σi: shear stress at asperity i =Atrue (それぞれについての構成関係が必要 Y Y + i )Ai i S i = = Ai + RSF Y O( n) 異なる二つの物理過程: 1.true contactでの応力vs速度関係 2.true contact areaのゆっくりした拡大 (healing) F Ai Y i S Y + i i Ai i S導出できるi S O(n) i n: # asperities --> negligible i-dependence in σ significant only for low-angle GBs F Ai = Y i S Y Atru Atru Ai i S σYとAtruの構成法則が分かれば摩擦力もわかる マクロな摩擦係数=突起レベルでの摩擦係数 constitutive laws of asperities 1. shear stress physical meaning of RSF (1) Y friction = grain boundary sliding ? grain boundary sliding = thermal activation process critical stress 2 exp * 1 0 0 True contact area Ai forward sliding backward sliding fit to exponential function 3 * yz [GPa] 4 200 400 600 800 sliding is thermal activation process F. Heslot et al., PRE 1994 F.M. Chester, JGR 1994 Baumberger et al. PRE 1999 A T 1000 temperature T [K] (Shiga & Shinoda, 2004) V V* exp * AT still not confirmed directly じつは、 assume Y Atrue それぞれについての構成関係が必要 V0: sound velocity Ω: activation volume E: activation energy RSF 2. healing 導出できる 異なる二つの物理過程: 1.true contactでの応力vs速度関係 c: aging parameter 2.true contact areaのゆっくりした拡大 (healing) θ= average contact duration of asperity where 4.1 Nondimensional parameters a and b * constitutive laws of asperities: aging Ai (0) k T V can get simpler expressions for a and b wi One b=c B Ω1 i N log ∗ . (25) tionV that n (0) = n : The areal density of cova only on the contact duration ✓i . With this assum 0 i 0 に代入して、摩擦力の式が求まる This gives a microscopic expression of the parameter b. We can also obtain a microscopic expression for'the parameter Zi (0) n0 A i (0), 定常状態V=V *のまわりで展開、あるいは a by inserting Eq. (17) into Eq. (12) and using Eqs. (19) where we use Eq. (14). Then Eqs. (31) and (32 and (23). kB T a= Ω1 * ⇣ L $ %kB T A (0) i L a = 1+ c log i 1 + c log . (26) V⇤ ⌧ N V∗ τ P ⌦ ⇣ ⌘ cE kB T V⇤ b = 1 + log To see the physical meaning of Eqs. (25) and P ⌦(26) moreE V0 clearly, it may be convenient to introduce N * P ≡ i Ai (0) . (27) を使った This may be regarded as the (average) normal stress at asperities and is approximately the yield stress of the material. Here we refer to P as the actual normal stress. Using Eqs. (27), (8), and (14), the parameters a and b may be rewritten , ⌘ . limit on activation energy kB T a= P 1 L 1 + c log V b=c kB T P 1 E1 V + log kB T V0 a and b could depend on reference velocity --> RSF is not valid V* dependence of a and b must be negligible E > 180 [kJ/mol] at T=300 [K] E = 180 [kJ/mol] (Nakatani 2001) second term in the and bracket on the rig Because c is approximately 0.01 log(L/V ⇤⌧ ) beterm negligible if E/kon 170,han w expressions for the parameters B Tthe right of 1, the second in the bracket becomemicroscopicorder so,Thus, Eq. (36) becomes Eq. (35) is negligible. one gets (35) kB T E a' , b'c , P⌦ P⌦ (36) which is consistent(Nakatani the previous studies (Baumb aswith is already given & Scholz 2004)by (Bar-Sinai e (Heslot et al. 1994) (34) large activation energy is not plau ies, the activation energy E has b kB T L kB T E V et al., 2001 1 (Nakatani, 2001; Rice a= 1 + c log b=c + log P 1 V BT evenP at1 T k= 300 K.V0Therefore, th itself may not be negligible. This m aに関しては第二項は無視できるが、bの第二項自体は無視できない in terms of material constants only. (第二項の「変化」が無視できるだけ) In a practical respect, howeve problem because the change of on % change in b. Such a small change measurement, but so far we are un show this, let us write b as b(V⇤ ) to 0 0.02 0.02 - 0.01 - 実験的検証? 0.01 kB T a= P13,360 0.• 0 4• P: actual normal stress on asperities Ω: activation volume for sliding creep NAKATANI: PHYSICALCLARIFICATIONOF RATE AND STATEFRICTION 8• T (K) 0.0• m (a) 0,04 12• Nakatani, o 0.05 4• - 8• (b) J. Geophys. Res. 0.04 T (K) m (2001) P=8Gpa They re 6. Values of a, a•, andae plotted against thelinear temperature. were obta sured values of ©p•,.Thevalue of a wasobtained bytwodifferent methods andsepar dand6b.Seetext.They arealmost thesame except fortheerror bars. Allthevalues, in ted inTable 2.Thelinedrawn inFigure 6acorresponds tog2= (0.43nm) 3, andthelin 0.03 - 0.03 - 0.02 - 0.02 - 0.01 - 0.01 - i sponds to g2= (0.38nm)3, wheno'½ = 8 GPaisassumed (section 6). 0.00 - 0.00 0 4• 8• ß - 12• 0 T (K) 4• 800 1200 T (K) E (c) (d) E: activation energy b=c P2, 3, and(Nakatani dsimulations (Plates 4).-In the second.In the experiments,s & Sholz per 2004) oadpointvelocityis suddenly raised to et g,.al. J. Geophys. (Bar-Sinai Res. 2014) central block of thedouble-di ckis connected withtheloadpointwith a Hence the•: measured intheexpe 0.05 - 0.05 - 0.02 - 0.04 0.03 ao 0.02 estiffness [e.g.,Dieterich, 1981].Inertiais exerted onthesliding interface no 0.01 simulation of theseexperiments, wherethe 0.01 - limit on activation energy µ(V, ) = a log V V0 1 + c log absolute value of frictional force 1.2 T=300 1 μ 0.6 to 0.8 µ 0.8 0.6 E1 = 2.5 3.5 10 19 0.4 0 1e-19 150 to 210 [kJ/mol] T=700 0.2 2e-19 3e-19 4e-19 ∆Ε [Joule] 5e-19 6e-19 [J] atomistic origin of activation energy (?) E1 = 2.5 3.5 10 19 [J] 1 1 10 28 m3 appears to be insensitive to rock species activation energy too large for grain-boundary sliding/ diffusion creep energy of Si-O covalent bonds at asperities? NB. activation energy for grain-boundary diffusion of Si ̶> similar value Image sequence captured by the TEM and comparison with the MD simulations. T. Ishida et al. Nano Lett. (2014) friction <̶> rheology of confined glass? frictional instability predicted from RSF law case 1: spring and block (one-degree of freedom) Dc vs stress drop N stant force F k V1 k< m th discussion of a three-dimensional model X(t)=Vt x(t)model is essentially he previous section. This Program. (b a)N L steady state unstable (Ruina, JGR 1983) Dc a < b is necessary V1 t s, basic description case 2: sliding elastic continuum Dc D 1.2 exponent 1.2 = experiments spatially homogeneous state is unstable if a < b the exponent depends on the detail of vel. prof. Dc (Rice & Ruina, 1983) nucleation size of unstable rupture is proportional to L Figure 4: Our schematic model of a thin elastic continuous bulk in frictional contact with the fault plane, driven by a constant pushing force P in the x direction. (Ampuero and Rubin, JGR 2008) 実験の傾向 実地に当てはめてみると・・・ となってハッピーに見えるが・・・ 実はパラメター(a, b)の温度圧力依存性はそんなに単純ではない 高温で a >b になるという傾向はほぼ共通だが、それ以外は 再現性が悪い。 (そもそもlogV依存性があまりよくない場合も多い) 「実験したがlogV依存性が出なかった(のでやめてしまった)」 と言う某(割と有名な)実験家もいた 一例 500 BLANPIED ET AL.' EFFECTS OF SLIP AND SHEAR HEATING ON F c, 0.015 0.015 Experiment#2 (10 MPa Experiment#2 (25 MPa) 局所的な a-b 0.010 0.010 0.005 .005 0.000 :-% o.ooo : -0.005 -0.010 Error: . -3 -•. I . -0.005 -0.010 -1 0 1 2 3 ß -3 ,, -1 •) log [Veloc log [Velocity,I.Lm/S] b,, Ave. Error: d. 0.015 0.015 values Blanpied etAverage al 1998 Average values 0.010 0.010 0.005 0.005 : .T. . T '
© Copyright 2024 Paperzz