ILSVRC優勝を支える 深層学習プラットフォーム

ILSVRC優勝を支える
深層学習プラットフォーム
株式会社センスタイムジャパン
代表取締役 勞世竑
1
What is ILSVRC
センスタイムジャパン
ILSVRC: ImageNet Large Scale Visual
Recognition Challenge
• Olympics in computer vision research.
• Evaluates algorithms for object detection
and image classification at large scale.
2
ILSVRC2016 object detection
センスタイムジャパン
• 200 clases
• Training data
400,000 objects
• Testing
>100,000
Crutch
Bee
Sunglasses
Horizontal bar
Aspect ratio
Watercraft
Burrito
Cart
Monkey
Deformability
Low
3
High
Challenges
• Intra-class variation (person)
センスタイムジャパン
3 Keys to win the challenge
センスタイムジャパン
1. A smart algorithm good enough to deal
with those variations
2. Enough big data for training
3. A powerful training platform to
improving the training efficiency
5
Our Integrated Solutions
センスタイムジャパン
Deep Link
•
•
•
•
C
P
U
Storage
Communucation
Scheduling
Monitoring
Parrots
Parrots
PPL
PPL
G
P
U
G
P
U
G
P
U
G
P
U
C
P
U
G
P
U
G
P
U
G
P
U
G
P
U
7
Overall Architectures
センスタイムジャパン
Deep Learning Monitoring
Parrots
Parrots Learning Framework
PPL Library
Communication Module
Backup
Virtualization
Cluster monitoring & management
GPU Clusters
DeepLink
Cache
Storage
8
DeepLink Clusters
センスタイムジャパン
• Designed for Deep Learning
Software
Hardware Codesign
Maximize respective strengths while ensuring optimal cooperation.
Highperformance
Hardware
• High speed interconnects
• High performance GPU computing
• Efficient distributed storage
Customized
Middlewares
• Distributed storage & cache system (optimized for small files)
• Distributed deep learning framework
• Task scheduling & monitoring
9
Parrots for large scale training
センスタイムジャパン
• A New Deep Learning Framework for the Future
Efficiency
効率性
Scalability
大規模対応
Flexibility
拡張性
10
Feature Matrix
センスタイムジャパン
Parrots
Caffe
TensorFlow
Chainer
Multi-GPU support
Y
Y
L
L
Distributed training (multinodes)
Y
N
L
N
Model parallelism
Planned
N
L
L
Concurrent feeding
Y
N
Y
N
Parallel data preprocessing
Y
N
Y
N
RNN support
Y
N
Y
Y
Variable input size
Y
Y
Y
Y
Dynamic network structure
Y
N
Y
Y
Partial flow execution
Y
N
Y
N
Block composition
Y
N
Y
Y
Customized layer
Y
Y
Y
Y
Customized updating policy
Y
N
Y
Y
Interoperability with Caffe
Y
Y
N
N
Can directly load Caffe models and provide tools to convert
Caffe to Parrots
L: low-level support. Non-trivial coding is required to make it happen.
11
PPL is a library for fast DL computing
センスタイムジャパン
• The efficiency of a deep network essentially depends on how fast we can
compute
• PPL (Parrots Primitive Library) is to provide highly optimized functions for such
computation.
Convolution
Matrix product
Pooling
Activation
Batch normalization
Others …
12
ILSVRC2016 Results
センスタイムジャパン
1. By using the power of the DL platform we are able to train
very large scale deep learning networks efficiently
2. Chinese Univ of HongKong and SenseTime won on Object
Detection and Scene Parsing
14
Summary
センスタイムジャパン
• Technical infrastructure is crucial
• We have solutions across the entire stack
• DeepLink: sophisticated and versatile cluster training platform
• Parrots: deep learning framework (efficient, scalable, and flexible)
• PPL: computation modules (supporting CPU, GPU, and embedded devices)
• Top-notch performance
• Looking forward to collaborating with you
15
センスタイムジャパン
Thanks for attention
16