MKS単位系について

I [A]
=1 C/s
電流
1 A
MKS 単位系
について
2
D [C/ m ]
電束密度(電界)
D=
[ F / m ][ V / m ]
基本単位
・距離
・質量
・時間
m
kg
s
(メートル)
(キロ・グラム)
(秒、セカンド)
・電流
A
(アンペア)
1 C/m
= 1 s⋅A / m
2
力
V [V ]
φ [ V ](スカラー・ポテンシャル)
2
a [m/s ]
E [V/m] = − grad φ
F[N]
1 N = 1 J/m = 1 kg ⋅ m/s
div ⋅ grad φ = ∇ 2φ = ∆φ = −
2
∵ F = ma
1 V
=
1
J/C
W [ J ] = q [C]
エネルギー
W[J]
1J
= 1 N⋅m
∵ W = Fs
(仕事量=力×距離)
kg ⋅ m 2
=1
s2 ⋅ C
∵ W = IVt
(電力量=電流×電圧×時間)
1
∵ W = mv 2
2
1 kg ⋅ m / s
= 1 N ⋅s
θ [ rad ] or [ deg ]
2π = 180
※ 一般に 角度の単位 rad はつけない
角運動量
l [ J ⋅s ]
2
2
P=
1 C/m
2
=1
s⋅A
m2
∑p
i
V
(電束密度と同じ単位)
―――――――――――――――――――――――
磁極(磁荷)
qm [ Wb ]
1 Wb = 1 V ⋅ s
∵ Faraday’s Law:
d (B ⋅ S )
[ Wb / s ]
dt
dB
or
rot E = −
dt
φV [ V ] = −
= 1 J ⋅s
= 1 Wb ⋅ C (磁極電極積)
―――――――――――――――――――――――
p=qd
P [ C/m ]
l = mvr
1 kg ⋅ m / s
kg ⋅ m 2
=1
s3 ⋅ A
= 1 m ⋅s ⋅ A
p = mv
∵ p = F ⋅∆t
角度
1 C⋅m
電気分極
p [ kg ⋅ m / s ]
運動量
φ [V]
p [C⋅m ]
電気モーメント
2
ρ
ε0
= 1 Wb/s
= 1 V⋅ C = 1 Wb ⋅ A
= 1 V⋅ A⋅ s
2
∵ F [N] = q [C] E [ V / m ]
kg ⋅ m
=1 3
s ⋅A
kg ⋅ m
=1 2
s ⋅C
電位(電圧)
= 1 kg⋅ m /s
ρ [ C/m3 ]
電場
E [V/m]
1 V/m = 1 N/C
v [m/s]
加速度
2
Gauss’s Law: div D =
―――――――――――――――――――――――
速度
ε0 E
= 1 H⋅A
∵ Lentz’s Law:
電極(電荷)
q [C]
1C
= 1 A ⋅s
= 1 F⋅V
φV [ V ] = − L [ H ]
∵ Q[ C ] = C[ F ] V[ V ]
dI
[A/s]
dt
kg ⋅ m 2
s2 ⋅ A
=1
B [ Wb / m ]
B=
= 1 s⋅V / m
2
S [m 2 ]
C = ε0
d [m]
3
Gauss’s Law: div B = 0 [ Wb/m ]
1 F
= 1 C/V
∵ Q [C ] = C [F] V [V ]
2
=1
H [A/m]
Ampère’s Law:
rot H = i
直線電流周りの磁場 H =
I [A]
2π r [m]
1
J/A
W [ J ] = qm[ Wb ]
=1 H
−1
⋅ s2
dI
[A/s]
dt
φV [ V ] = − L [ H ]
φm [ A ] (磁気ポテンシャル)
=
2
インダクタンス
L[H]
1 H
= 1 V ⋅s / A
∵ Lentz’s Law:
= 1 Wb / A
H [A/m] = − grad φm
1A
s ⋅A
kg ⋅ m 2
4
注意: [ Wb / m ] = [ T ] tesla
磁位
V
―――――――――――――――――――――――
電気容量
C[F]
kg
=1 2
s ⋅A
磁場
i
B = µ 0 H + I = µ 0 ( H + M ) = µ 0 (1 + x) H
µ0 H
[ H / m ][ A / m ]
1 Wb / m
∑m
M=
2
磁束密度(磁界)
2
M [ A/m ]
磁気分極(磁化):磁場形式
=1
φm [ A ]
kg ⋅ m
s2 ⋅ A2
=1 F
−1
2
A [ H ⋅ A / m ] (ベクトル・ポテンシャル)
div ⋅ grad A = ∇ 2 A = ∆ A = − µ 0 i
kg ⋅ m
1 H ⋅ A / m = 1 Wb / m = 1 2
s ⋅A
B = rot A
2
rot B = rot rot A = grad div A − ∇ A = −∇ 2 A = µ 0 i
誘電率
µ [ Wb ⋅ m ]
1 Wb ⋅ m
µ = qm d
= 1 m ⋅s ⋅ V
=1
1 F/m
磁気モーメント:磁場形式
µ = µo m
[ Wb ⋅ m ] = [ H / m ][ A m ]
2
1 J/T
2
= 1 Am
Zeeman’s Law :
U = −m ⋅ B = − µ0 m ⋅ H = − µ ⋅ H
磁気分極(磁化)
=1
2
=1
I [ Wb/m ]
s⋅V
kg
=1 2
2
m
s ⋅A
2
µ [H/m]
B [ Wb / m ] = µ H [ A / m ]
2
= 1 Wb / A ⋅ m
2
= 1
kg ⋅ m
kg ⋅ m
=1 2 2
2
C
sA
2本の直流電流間の引力
光速との関係
F [ N /m] =
ε 0 ⋅ µ0 =
µ0
I1 I 2
2π d
1
2
2
[ s /m ]
2
C
―――――――――――――――――――――――
真空誘電率 permittivity of free space
ε 0 = 107 / 4π C 2 m / H
2
I=
1 Wb/m
s ⋅A
kg ⋅ m3
4
=1 N/A
m [J/T]
ε E [V/m]
2
透磁率
S [m 2 ]
d [m]
ε
= 1 C/ V⋅m
D [ C/m ] =
1 H/m
kg ⋅ m3
s2 ⋅ A
ε [F/m ]
C [F] =
すなはち、rot H = i
磁気モーメント
注意: [ H ][ F ] = [ s ]
∑µ
i
V
(磁束密度と同じ単位)
真空透磁率 permeability of free space
µ 0 = 4π /107 H / m