PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
CH.IX: MONTE CARLO METHODS FOR
TRANSPORT PROBLEMS
SOLUTION USING MONTE CARLO SIMULATION
•
•
•
•
•
•
•
MONTE CARLO SIMULATION
SIMULATION OF NEUTRON TRANSPORT
SAMPLING
ESTIMATION OF FINITE INTEGRALS
ESTIMATION OF A REACTION RATE
ADVANTAGES AND DRAWBACKS
IMPROVING THE SIMULATION EFFICIENCY
ESTIMATORS OF A REACTION RATE
• FIRST MOMENT OF THE SCORE
• PARTIALLY NON-BIASED ESTIMATORS
• SECOND MOMENT OF THE SCORE
VARIANCE REDUCTION
• ESTIMATION OF FINITE INTEGRALS
• ESTIMATION OF A REACTION RATE
• EXAMPLES OF BIASED KERNELS
1
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
IX.1 SOLUTION USING MONTE
CARLO SIMULATION
MONTE CARLO SIMULATION
Introduction
Boltzmann eq: PDE with 7 variables
Solution only for some simplified cases
Reactor: highly heterogeneous medium
Classical numerical methods “not fitted” for an exact solution
Monte Carlo
resorting to random numbers to estimate a quantity as an
expected value in a stochastic process associated to the
problem at hand ( “survey”)
2
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
SIMULATION OF NEUTRON TRANSPORT
Transport process = stochastic process!
Estimation of transport-related quantities (e.g. reaction rate) as
their expected value on a large number of evolutions
(“runs/histories”) of the neutron population
Algorithm
1. Draw the initial coordinates and speed of the n from the
source density
2. Draw its free flight
if it escapes the reactor, go to 4.
3. Draw the type of collision
+
* if absorption, go to 4.
* if scattering, draw the outgoing speed of the n
* if fission, draw the number of n produced and their outgoing speed
memorize the coordinates of the additional n
4. Deal with next n in memory (if appropriate) and go to 2.
5. Go to 1. if there are still runs to play
3
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
SAMPLING
Principle
Cumulative distribution function (c.d.f.) F of a random variable x
= monotonously non-decreasing function on [0,1]
F(x)
1
0
x*
x
Draw a random number uniformly distributed on [0,1]
Inversion of F
x* s.t. F(x*) =
4
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Sampling of the transition kernel
Negative exponential distribution
For an homogeneous reactor : F(s) = 1 - exp(-ts)
s* s.t. 1 - exp(-ts*) = ’ = 1 -
s* = - (ln )/t
General case
rj 1 rj s*
with
s* t.q. v (rj , rj s*) ln
(infinite reactor)
5
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Sampling of the collision kernel
Two steps
1. Interaction type
i (r , v)
p
, i c, s , f
Let
i
t (r , v)
i * 1
i*
j 0
j 0
*
i t.q. p j p j
Rem: if i* = f, sampling of the distribution of
2. Speed and direction
Depends on the interaction sampled
6
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
ESTIMATION OF FINITE INTEGRALS
b
I f ( x)dx
1
a
M
(x1,y1)
• n=0
(x3,y3)
f(x)
(x4,y4)
• (xi,yi) uniformly drawn from
[a,b], [m,M] resp., i=1…N
(x2,y2)
g(x)
• yi f(xi) n=n+1
m
a
b
Geometric interpretation of the integral:
n
~
I ( M m).(b a). (b a).m
N
7
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
2
b
b
a
a
I f ( x)dx h( x) ( x)dx
• (x) 0
•
x [a,b]
b
( x)dx 1
a
(cf. MC estimation of an expected value)
If xi, i=1…N, drawn independently from (x)
Then
Proof:
1
I
N
N
h( x )
i 1
i
: unbiased estimator of I
1 N
E ( I ) E
h
(
x
)
i
N i 1
1 N b
h( xi ) ( xi )dxi I
N i 1 a
8
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
ESTIMATION OF A REACTION RATE
Transport kernel
Probabilistic transfer function: output of 1 collision entry
in the next one
( r ', r )
r
r
'
. (v v' ). ( ' )
T ( r ' , v ' , ' r , v, ) t ( r , v ' )
2
r r '
r r'
e
v
Collision kernel
Probabilistic transfer function: entry in 1 collision output
C ( r ' , v ' , ' r , v, )
[ s ( r ' , v ' , ' v, )
(v )
f (r ' , v' )]
4
(r r ' )
t (r ' , v' )
Compact notation: P (r , v, ) ; P' (r ' , v' , ' )
v ( )
T
(
P
'
P
)
dP
1
e
= 1 for an infinite reactor
C ( P' P)dP 1
Captures not accounted for
1
9
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Collision densities
( P)dP = expected number of n entering
Ingoing density:
/u.t. a collision with coordinates in dP about P
( P) t ( P) ( P)
Outgoing density: ( P)dP = expected number of n leaving /u.t.
a collision with coordinates in dP about P
Evolution equations
( P) Q( P) ( P' )C ( P' P)dP'
( P) ( P' )T ( P' P)dP'
( P) Q( P' )T ( P' P)dP' ( P" )C ( P" P' )T ( P' P)dP' dP"
I ( P) ( P' ) K ( P' P)dP'
10
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Rem:
equ. of (P) = (equ. of (P)) x t(P)
Natural interpretation of n transport 1 collision after the other
Formal solution using Neumann series
o ( P) I ( P)
Let
j ( P) j 1 ( P' ) K ( P' P)dP' , j 1...
j(P): ingoing density after j collisions
( P) j ( P) : solution of the transport equation
j 0
Not realistic
Basis for solution algorithms
11
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
ESTIMATION OF A REACTION RATE
Preliminary problem
Estimation of R j f ( P) j ( P)dP
with j ( P) j 1 ( P' ) K ( P' P)dP'
and j-1(P) : pdf + K(P’ P) : non-negative function ?
w( P' ) K ( P' P)dP
Let
and k ( P | P' )
K ( P' P)
w( P' )
Algorithm
Sample N values of P’i from j-1(P’)
Sample next the corresponding Pi , i=1..N, from k(P|P’)
1
~
Rj
N
N
w( P' ) f ( P )
i 1
i
= unbiased estimator of Rj
~
E ( R ) dP' dPw( P' ) f ( P)k ( P | P' ) ( P' )
Proof:
dPf ( P) dP' K ( P' P) ( P' ) R
i
j 1
j
j 1
j
12
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Solution of the transport equation
Estimation of R f ( P) ( P)dP
with
( P) I ( P) ( P' ) K ( P' P)dP' ?
j 0
j 0
Development in Neumann series R R j f ( P) j ( P)dP
Algorithm (run i, i = 1…N)
1. j=0 ; sample Pio from I(P) / wio with
k ( P | Pij )
2. Sample Pi,j+1 from
with
wio I ( P)dP
K ( Pij P )
wi , j 1 ( Pij )
wi , j 1 ( Pij ) K ( Pij P)dP
3. j = j + 1 ; 2 until the n is captured or exits the reactor
1
~
Rj
N
j
N
W
i 1
ij
f ( Pij )
with
Wij wik
k 0
13
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
ADVANTAGES AND DRAWBACKS
Transport = natural stochastic process
No restrictive assumptions on the transport equation
Solution of the whole transport problem
Optimisation of a MC game: for the estimation of one
reaction rate at a time
Number of runs: large for a given accuracy
Important computer times
Rather validation of classical solution schemes than
repeated calculations in industry
14
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
IMPROVING THE SIMULATION EFFICIENCY
Difficulties related to the estimation of low reaction rates
(e.g. transmission probability through a protection wall):
Few histories giving information on the rate to be estimated
A large number of histories have to be played for the
statistical accuracy of the estimations
Efficiency E of a simulation algorithm
The shorter the computer time needed by a MC algorithm to
reach a given accuracy, the higher its efficiency
E=
1/(2)
2 : variance of the MC game
: average time / history
Increasing the efficiency
More info collected / history better estimation
More interesting events biasing
15
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
IX.2 ESTIMATORS OF A REACTION
RATE
FIRST MOMENT OF THE SCORE
Adjoint form of the transport equation
Estimation of R f ( P) ( P)dP
with ( P) Q( P' )T ( P' P)dP' ( P" )C ( P" P' )T ( P' P)dP' dP"
I ( P) ( P' ) K ( P' P)dP'
Importance H(P) of a n – entering a collision at P – in the
estimation of R? (see chap.VI)
Direct contribution due to a collision at point P: f(P)
Expected contribution due to the next collisions:
K ( P P' ) H ( P' )dP'
16
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Adjoint equation: H(P) *(P)
* ( P) f ( P) K ( P P' ) * ( P' )dP'
Expression of the reaction rate based on importance? n
emitted by the source, then transported to a 1st collision
R f ( P) ( P)dP
I ( P) * ( P)dP
Expected contribution to the score due to a n emitted at P?
M 1 ( P) T ( P P' ) * ( P' )dP'
Thus R Q( P) M 1 ( P)dP
1st moment? M 1 ( P) T ( P P' ) f ( P' )dP' L( P P' ) M 1 ( P' )dP'
~
~
~ (Physical interpretation ?)
with L( P P' ) T ( P P )C ( P P' )dP
17
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
General set of estimators
Consider the following MC algorithm:
Samplings are performed from kernels T and C
Score collected along a history based on estimators
associated to each possible event:
Event
Free flight from P to P’
Capture at P’
Estimator
f(P,P’)
fc(P’)
Scattering from P’ to P”
fs(P’,P”)
Fission (with k secondary n) at P’ with n
emitted at P”
fk(P’,P”)
18
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Explicit form of the collision kernel
C ( P' P" ) cc ( P' ) ( P" P ) cs ( P' )Cs ( P' P" )
c f ( P' ) kqk ( P' )Ck ( P' P" )
k 1
with
ci(P’): proba that the collision at P’ is of type i , i = c,s,f
P: point outside the domain of interest (capture)
Cs(P’P”): scattering kernel – distribution of the outgoing
coordinates P”, given a scattering collision takes place at P’
qk(P’): proba that a fission at P’ produces k secondary n
Ck(P’P”): fission kernel – distribution of the coordinates P”
of the secondary n, given a fission producing k n takes place
at P’
19
Expected score M1’(P) from a starter at P
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Contribution due to the 1st collision:
Free flight:
T ( P P' ) f ( P, P' )dP'
Capture:
T ( P P' )c ( P' ) f ( P' )dP'
c
T ( P P' )c ( P' ) C ( P' P" ) f ( P' , P" )dP" dP'
Scattering:
Fission:
c
s
T ( P P ' )c
s
s
f
( P' ) kqk ( P' ) Ck ( P' P" ) f k ( P' , P" )dP" dP'
k 1
Contribution due to the next collisions:
dP" dP'T ( P P' )C ( P' P" )M ' ( P" )
1
+
=
M1’(P)
20
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
PARTIALLY NON-BIASED ESTIMATORS
Definition
For the estimation of a reaction rate R f ( P) ( P)dP
{f(P,P’), fc(P’), fs(P’,P”), fk(P’,P”)} = set of partially non-biased
estimators iff
M1(P) M1’(P) P
with
M 1 ( P) T ( P P' ) f ( P' )dP' L( P P' ) M 1 ( P' )dP'
and M 1 ' ( P) dP' T ( P P' ) f ( P, P' ) cc ( P' ) f c ( P' )
cs ( P' ) Cs ( P' P" ) f s ( P' , P" )dP"
c f ( P' ) kqk ( P' ) Ck ( P' P" ) f k ( P' , P" )dP"
k 1
L( P P' ) M 1 ' ( P' )dP'
21
Necessary and Sufficient Condition: independent terms
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
equal
I o ( P) T ( P P' ) f ( P' )dP' dP' T ( P P' ) f ( P, P' ) cc ( P' ) f c ( P' )
cs ( P' ) Cs ( P' P" ) f s ( P' , P" )dP"
c f ( P' ) kqk ( P' ) Ck ( P' P" ) f k ( P' , P" )dP"
k 1
Particular cases
Estimator f(P) in the definition of R
Case without fission
f ( P, P' ) f k ( P' , P" ) 0
f ( P, P' ) f ( P' )
f
(
P
'
)
f
(
P
'
,
P
"
)
f
(
P
'
,
P
"
)
0
s
k
c
f c ( P' ) f s ( P' , P" ) f ( P' )
Free-flight estimator
f ( P, P' ) I o ( P)
f c ( P' ) f s ( P' , P" ) f k ( P' , P" ) 0
At the start of each free flight, score = expected contribution
over all possible free flights
22
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Example: escape rate out of an homogeneous slab of thickness
L
We have R ( P)( ( x L) H ( x ) ( x) H ( x )) dP f ( P) ( P)dP
f ( P)
1
( ( x L) H ( x ) ( x) H ( x ))
t ( P)
But T ( x, v, x x' , v' , x ' ) t ( x' , v' )e
Then
t
x x' / x
. (v v' ). ( x x ' )
I o ( P) T ( P P' ) f ( P' )dP'
L x
x
.H ( x )
.H ( x ) exp t ( x, v)
exp t ( x, v)
x
x
Track-length estimator
(H(x) = 1 if x 0, 0 else)
23
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Intuitive, binary estimator of the capture rate in a volume V
(analog MC algorithm)
Simulation of the free flights and collision types, and unit
contribution to the score when a capture is sampled
f c ( P' ) V (r ' )
f ( P, P' ) f s ( P' , P" ) f k ( P' , P" ) 0
Partially non-biased estimator associated to the free flight
f ( P, P' ) f ( P' ) c ( P' ) / t ( P' ).V (r ' ) cc ( P' ).V (r ' )
f c ( P' ) f s ( P' , P" ) f k ( P' , P" ) 0
Corresponding reaction rate:
R f ( P) ( P)dP
c ( P)
V (r ) ( P)dP c ( P) ( P)dP Capture rate
t ( P)
V
24
SECOND MOMENT OF THE SCORE
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Comparison of the efficiency of different estimators
Reference MC game with f(P)
2nd moment: expected value of (f(P’)+s(P”))2, where s(P”) =
score obtained starting from P”, leaving the 1st collision
M 2 ( P) T ( P P' ) f 2 ( P' )dP'2 dP'T ( P P' ) f ( P' ) dP" C ( P' P" ) M 1 ( P" )
dP' T ( P P' ) C ( P' P" ) M 2 ( P" )
MC game with partially non-biased estimators (no fission)
M 2 ' ( P) dP' T ( P P' )cc ( P' )( f c ( P' ) f ( P, P' )) 2
1
Cr2 dP'T ( P P' ) dP" C ( P' P" )( f ( P, P' ) f s ( P' , P" )) 2 r M r ( P" )
r 0
dP' T ( P P' ) C ( P' P" ) M 2 ' ( P" )
Comparison not really obvious…
25
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
IX.3 VARIANCE REDUCTION
ESTIMATION OF FINITE INTEGRALS
Analog estimation
b
b
a
a
Let I f ( x)dx h( x) ( x)dx
with
• (x) 0
x [a,b]
b
•
( x)dx 1
a
If xi, i=1…N, are sampled independently from (x)
1 N
Then I h( xi ) : unbiased estimator of I, i.e. E ( I ) I
N i 1
Variance s 2 b (h( x) I ) 2 ( x)dx
a
Estimator?
s.t. E (s 2 ) s 2
N
N
N
1
1
2
2
2
(
h
(
x
))
I
s2
(
h
(
x
)
I
)
k
k
N 1 N k 1
N 1 k 1
26
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Importance sampling
Let
with
b
b
a
a
I h( x) ( x)dx
~
( x) ~
h( x) ~ ( x)dx
( x)
( x ) : probability density function
~
If xi, i=1…N, sampled independently from ( x )
1
Ii
N
Then
Variance:
( xk )
h( xk ) ~
( xk )
k 1
N
s
2
i
a
s s
2
2
i
b
b
a
: unbiased estimator of I
h( x) ( x)
2 ~
( ~
I ) ( x)dx
( x)
( x)
h ( x)(1 ~ ) ( x)dx
( x)
2
: better or worse?
27
Particular case
h( x) ( x)
( x)
I
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
~
zero variance:
si2 0
!
But applicable only if the solution I is already known…
~
Practical use: choice of ( x ) based on an approximation of I
Better variance
Statistical weight
1
Ii
N
( xk )
1 N
h( xk ) ~
h( xk )w( xk )
N k 1
( xk )
k 1
N
w(xk) = corrective factor of the estimator h(x) due to changing the
pdf used for the sampling
28
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
ESTIMATION OF A REACTION RATE
Preliminary problem
Estimation of R j f ( P) j ( P)dP
with j ( P) j 1 ( P' ) K ( P' P)dP'
and j-1(P): pdf + K(P’ P): non-negative function?
Sampling?
~
Based on a kernel K ( P ' P ) s.t.
~
K ( P' P)dP 1
Objective: artificially increase the number of samplings
favorable to the estimation of Rj, in order to increase the
statistical quality of its estimation
29
Algorithm
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Sample N values of P’i from j-1(P’)
~
Sample the corresponding Pi , i = 1..N, from K ( Pi ' P)
Let
K ( P' P)
w( P' , P) ~
K ( P' P)
1
~
Rj
N
the corresponding statistical weight
N
w( P' , P ) f ( P )
i 1
i
i
i
Proof:
= unbiased estimator of Rj
~
E(R j )
~
dP
'
dPw
(
P
'
,
P
)
f
(
P
)
K
( P' P' ) j 1 ( P' )
dPf ( P) dP' K ( P' P) j 1 ( P' ) R j
Solution of the transport equation
Estimation of R f ( P) ( P)dP
with
( P) I ( P) ( P' ) K ( P' P)dP' ?
Sampling from a modified kernel
Solution in Neumann series
~
K ( P' P)
R Rj
j 0
j 0
f ( P)
j
( P)dP
30
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Algorithm (run i, i = 1…N)
1. j=0 ; sample Pio from I(P) / wio with wio I ( P)dP
~
2. Sample Pi,j+1 from K ( Pij P)
K ( Pij Pi , j 1 )
Compute the statistical weight wi , j 1 ( Pij , Pi , j 1 ) ~
K ( Pij Pi , j 1 )
3. j = j + 1 ; 2 until n is captured or exits the reactor
1
~
Rj
N
Remark
j
N
W
i 1
ij
f ( Pij )
with
Wij wik
k 0
Impact of biasing the kernel on the accuracy of the results?
Cases favored by resorting to the modified kernel w < 1
Cases unfavored by resorting to the modified kernel w
>1
A couple of unfavored samplings might ruin the statistical
accuracy
Biasing: dangerous if not cautiously used
31
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
EQUATION OF THE FIRST MOMENT
MC game based on the definition of the reaction rate
Reminder: analog case
M 1 ( P) T ( P P' ) f ( P' )dP'
dP' T ( P P' ) dP"C ( P' P" ) M 1 ( P" )
Biased case
~
Let M 1 ( P ) be the first moment of the score obtained from a
starter n emitted at P with a unit statistical weight
Let
W: statistical weight of the n at P
W’(P,P’): weight after a free flight from P to P’
W”(P’,P”): weight after a collision at P’ exited at P”
~
~
WM 1 ( P) T ( P P' )W ' f ( P' )dP'
~
~
~
dP' T ( P P' ) dP"C ( P' P" )W " M 1 ( P" )
32
MC game with partially non-biased estimators
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Reminder: analog case
M 1 ( P) dP' T ( P P' ) f ( P, P' ) ca ( P' ) f a ( P' )
cs ( P' ) Cs ( P' P" ) f s ( P' , P" )dP"
c f ( P' ) kqk ( P' ) Ck ( P' P" ) f k ( P' , P" )dP"
k 1
dP' T ( P P' ) dP" C ( P' P" )M 1 ( P" )
Biased case
W: statistical weight of the n at P
W’(P,P’): weight after a free flight from P to P’
W”(P’,P”): weight after a collision from P’ to P”
Wc(P,P’): weight due to the capture at P’ of a n emitted at P
Ws(P’,P”): weight due to a scattering from P’ to P” of 1 n
emitted at P
Wk(P’,P”): weight due to a fission from P’ to P” of 1 n emitted
at P
33
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Biased case
~
WM 1 ( P) dP' T ( P P' ) W ' f ( P, P' ) Wc c~c ( P' ) f c ( P' )
c~s ( P' ) Ws " Cs ( P' P" ) f s ( P' , P" )dP"
c~f ( P' ) kqk ( P' ) Wk " Ck ( P' P" ) f k ( P' , P" )dP"
k 1
~
~
~
dP' T ( P P' ) dP"C ( P' P" )W " M 1 ( P" )
Estimation with no bias?
~
~
Q
(
P
)
M
1 ( P ) dP Q ( P ) M 1 ( P ) dP
34
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
EXAMPLES OF BIASED KERNELS
Estimation of the escape probability (see above)
Slab of thickness L, 1D-model
analog case:
x'
du
T ( x x' ) t ( x' ) exp t (u ) L (u )
x
x
Track-length estimator
Expected value of the escape probability accounted for from
the start of any free flight
No additional info if this event of leak is actually sampled
Transport kernel biased to prevent this non-informative
situation to occur and extend the interesting runs
x'
du
t ( x' ) exp t (u )
x
x
~
T ( x x' )
. L ( x)
L
x
du
du
exp t (u ) .H ( x ) t (u )
.H ( x )
x
o
x
x
35
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Estimation of the capture rate in a volume V (see
above)
Analog case: use of the collision kernel
Estimator associated to the free flight and scoring cc(P’)
Expected value of the capture probability at the end of each
free flight
No additional info if capture is actually sampled
Collision kernel biased to prevent this non-informative
situation to occur and extend the interesting runs
Remark
In both cases, “risk-free” biasing:
Augmentation of the number of favorable cases
No loss of information
Statistical accuracy ok (all weights < 1)
BUT no stopping criterion of a history !
36
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
Russian roulette
If the weight W of a history goes below a threshold Wo:
Sampling of a random number , uniformly distributed on [0,1]
If < Wo, then the history goes on with a weight W / Wo
Else, the history is killed
Bias?
Expected value of the weight after a roulette:
E(W) = (W / Wo).P(history kept) + 0.P(history killed)
=W
37
PHYS-H406 – Nuclear Reactor Physics – Academic year 2015-2016
CH.IX: MONTE CARLO METHODS FOR
TRANSPORT PROBLEMS
SOLUTION USING MONTE CARLO SIMULATION
•
•
•
•
•
•
•
MONTE CARLO SIMULATION
SIMULATION OF NEUTRON TRANSPORT
SAMPLING
ESTIMATION OF FINITE INTEGRALS
ESTIMATION OF A REACTION RATE
ADVANTAGES AND DRAWBACKS
IMPROVING THE SIMULATION EFFICIENCY
ESTIMATORS OF A REACTION RATE
• FIRST MOMENT OF THE SCORE
• PARTIALLY NON-BIASED ESTIMATORS
• SECOND MOMENT OF THE SCORE
VARIANCE REDUCTION
• ESTIMATION OF FINITE INTEGRALS
• ESTIMATION OF A REACTION RATE
• EXAMPLES OF BIASED KERNELS
39
© Copyright 2026 Paperzz