Shape coexistence in exotic nuclei studied by low energy coulomb excitation Emmanuel Clément CERN-PH, Geneva Shapes of exotic nuclei Magnetic and quadrupole moments are veryreflecting sensitivethe The shapedipole of a nucleus is a fundamental property to all types of correlations spatial distribution of the nucleons Important benchmarks for nuclear models / theory B(E2) measurement Static moment measurement (oblate-prolate) Quadrupole deformation of the nuclear ground states Prolate-oblatespherical shape in a small energy range Shape coexistence A=70-80, N=Z n-rich Sr&Zr M. Girod, CEA n-rich Ar See M. Zielińska’s talk HFB+Gogny D1S M. Girod et al., To be published Single particule level scheme (MeV) Shapes coexistence in light Kr isotopes 74Kr Deformation parameter Important constraints for modern nuclear structure theories : Predicted values of 2 E (0+2), r²(E0), B(E2), Q0 … Mixing of wave function GCM Once upon a time …. prolate 2000 & 2001 Conversion electron spectroscopy : E0 transition oblate 6+ 6+ 2000 Coulomb excitation of 78Kr 2002 First Coulomb excitation of a radioactive 76 Kr beam @ SPIRAL +EXOGAM 791 2+ 2+ 4+ 1233 611 558 0+ 671 2004 Lifetime measurement of 76Kr and 74Kr @ GASP Transition strenght : r²(E0).10-3 0+ 2+ 710 0+ 72Kr 72(6) ? 0+ 456 52 End of 2006 Coherent analysis of all data from 76Kr and 74Kr In the future Low-energy Coulomb excitation of 72Kr beam development needed 2+ 508 0+ 74Kr 4+ 0+ 346 770 424 76Kr 0+ 664 562 2+ 1017 455 0+ 78Kr E. Bouchez F. Becker et al. E. Clément 84(18) 79(11) 47(13) Thèse Université de Nucl. Phys. A 770 Thèse Université de Paris 11 (2006) Complete measure of reduced transition probability B(E2) and static quadrupole moment 918 4+ 4+ 612 858 824 768 2+ 2003 Coulomb excitation of a radioactive 74Kr beam @ SPIRAL+EXOGAM 6+ 6+ Strasbourg 1 (2003) (2006) A. Görgen, E. Clément et al. Eur. Phys. J. A 26, 153 (2005) E. Bouchez et al. Phys. Rev. Lett., 90 (2003) F. Becker et al., Eur. Phys. J. A 4 (1999) A. Giannatiempo et al., Phys. Rev. C 52 (1995) E. Clément, A. Görgen, W. Korten et al. Submitted to Phys. Rev. C Coulomb excitation analysis with GOSIA 74Kr 14 E2 transitional matrix elements In 74Kr 76Kr 18 E2 transitional matrix elements and 76Kr, a prolate ground state coexists with an oblate excited configuration Transition probability : describe the coupling between states First direct experimental proof of the shape 5 E2 diagonal matrix coexistence element 5 E2 diagonal matrix element in light Kr isotopes Spectroscopic quadrupole moment : intrinsic properties of the nucleus E. Bouchez Thèse SPhN 2003 E. Clément Thèse SPhN 2006 E. Clément et al. Submitted to PRC Configurations mixing (1) For the shape-coexisting states, prolate and oblate wave functions are highly mixed Weak mixing ≈ quantum rotor 74Kr Strong mixing perturbation of the collectivity Configurations mixing (2) Shape coexistence in a two-state mixing model Pure states Perturbed states Extract mixing and shape parameters from set of experimental matrix elements. 76Kr 74Kr cos2θ0 0.73(1) 0.48(1) cos2θ0 0.69(4) 0.48(2) 72Kr Energy perturbation of 0+2 states E. Bouchez et al. Phys. Rev. Lett., 90 (2003) Full set of matrix elements : E. Clément, A. Görgen, W. Korten el al. Submitted to PRC 0.10(1) Model describes mixing of 0+ states well, but ambiguities remain for higher-lying states. Two-band mixing of prolate and oblate configurations is too simple. Shape coexistence in mean-field models (2) Skyrme GCM-HFB (SLy6) M. Bender, P. Bonche et P.H. Heenen, Phys. Rev. C 74, 024312 (2006) HFB+GCM method Skyrme SLy6 force density dependent pairing interaction Restricted to axial symmetry : no K=2 states Inversion of oblate and prolate states B(E2) values e2fm4 Collectivity of the prolate rotational band is correctly reproduced Interband B(E2) are under estimated Same conclusion for 76Kr Shape coexistence in mean-field models (3) Gogny GCM-HFB (Gogny-D1S) J-P. Delaroche et al. In preparation HFB+GCM with Gaussian overlap approximation Gogny D1S force The agreement is remarkable for excitation energy and matrix elements K=0 prolate rotational ground state band K=2 gamma vibrational band 2+3 oblate rotational state Strong mixing of K=0 and K=2 components for 2+3 and 2+2 states Axial and triaxial degrees of freedom Grouping the non-yrast states above 0+2 state in band structures is not straightforward GCM is a good approach to treat shape coexistence main differences between the two ‘beyond mean field’ calculations: Skyrme Gogny axial triaxial • It is important to include the triaxial degree of freedom to describe shape coexistence in light krypton isotopes Same conclusion for 76Kr New area of investigation All theoretical calculations predict a sudden onset of quadrupole deformation at the neutron number N=60 Neutron rich Sr & Zr isotopes are accessible by fission of an UCx target Coulomb excitation of such nuclei can be performed at REX-ISOLDE Sr and Zr n-rich isotopes around N=60 E [MeV] HFB Gogny D1S M. Girod CEA Bruyères-le-Châtel 96Sr is a transitional nucleus Both deformations should coexist at low energy Shape coexistence between highly deformed and quasi-spherical shapes Electromagnetic matrix elements are stringent test for theory Evidence for shape coexistence in Sr N=58 N=60 The highly deformed band 0+32+34+2 becomes the ground state band in 98Sr Evidence for shape coexistence in Sr Recent results :C. Y. Wu et al. PRC 70 (2004) W. Urban et al Nucl. Phys. A 689 (2001) Lifetime compatible with = 0.25 N=58 N=60 The measure of transition strength and intrinsic quadrupole moments is essential to understand the complex shape coexistence in Sr isotopes Coulomb excitation The onset of deformation around N=58 is maybe more gradual Accepted experiment at REX-ISOLDE (IS451) Conclusion Coulomb excitation at low energy offers an unique opportunity to understand the complex scenario of shape coexistence in exotic nuclei Precise comparisons with HFB+GCM calculations are essential to understand the shape coexistence • GCM is a good approach to treat shape coexistence. • It is important to include triaxial degree of freedom. • Data from n-rich nuclei will provide more insight into shape coexistence. Collaboration E. Clément,1 A. Görgen,1 W. Korten,1 E. Bouchez,1 A. Chatillon,1 Y. Le Coz,1 Ch. Theisen,1 J.N. Wilson,1 M. Zielinska,5,1 , J.-P. Delaroche8, M. Girod8, H. Goutte8, S. Péru8, C. Andreoiu,2 F. Becker,3 J.M. Casandjian,4 W. Catford,9 T. Czosnyka,5 G. de France,4 J. Gerl,3 J. Iwanicki,5 P. Napiorkowski,5 G. Sletten,6 C. Timis7 1DAPNIA/SPhN, CEA Saclay 2Oliver Lodge Laboratory, University of Liverpool 3GSI Darmstadt 4GANIL 5Heavy Ion Laboratory, Warsaw Copenhagen 7University of Surrey 8CEA/DIF, DPTA/SPN, CEA Bruyère-le-Châtel 6NBI E. Clément1, A. Görgen2 , J. Cederkäll1, P. Delahaye1, L. Fraile1, F. Wenander1, J. Van de Walle4, D. Voulot1, C.Dossat2, W. Korten2, J. Ljungvall2, A. Obertelli2, Ch. Theisen2, M. Zielinska2, J. Iwanicki3, J. Kownacki3, P. Napiorkowski3, K. Wrzosek3, P. Van Duppen4, T. Cocolios4, M. Huyse4, O. Ivanov4, M. Sawicka 4, I.Stefanescu4, N. Bree4, S. Franchoo5, F. Dayras6, G. Georgiev6, A. Ekström7, M. Guttormsen8, A.C. Larsen8, S. Siem8, N.U.H. Syed8, P.A. Butler9, A. Petts9, D.G. Jenkins10, V. Bildstein11, R. Gernhäuser11, T. Kröll11, R. Krücken11, P. Reiter12, N. Warr12 , 1CERN, Geneva, Switzerland 2DAPNIA/SPhN, CEA Saclay, France 7Department of Physics, Lund University, Sweden 8Department of Physics, University of Oslo, Norway 3HIL, Warsaw, Poland 4IKS Leuven, Belgium 10Department 5IPN Orsay, France 11TU 6CSNSM Orsay, France 9Oliver Lodge Laboratory, University of Liverpool, UK, of Physics, University of York, UK, München, Germany 12IKP Köln, Germany
© Copyright 2026 Paperzz