CALCULUS Limits. Functions defined by a graph 1. Consider the following function defined by its graph: e y6 3 u e e 2 u 1 x - 0 −5 −4 −3 −2 −1 0 −1 1 2 3 4 −2 e u −3 e 5 −4 Find the following limits: a) lim − f (x) x→−1 b) lim + f (x) x→−1 c) lim f (x) d) lim f (x) x→−1 e) lim f (x) x→−4 x→4 2. Consider the following function defined by its graph: y6 e 3 u e 2 u e 1 e 0 −5 −4 −3 −2 −1 0 −1 1 2 3 4 e u 5 x - −2 −3 −4 Find the following limits: a) lim f (x) x→1− b) lim f (x) x→1+ c 2009 La Citadelle c) lim f (x) x→1 d) lim f (x) x→−5 1 of 9 e) lim f (x) x→5 www.la-citadelle.com CALCULUS Limits. Functions defined by a graph 3. Consider the following function defined by its graph: y6 e 3 u e 2 1 x - 0 −5 −4 −3 −2 −1 u e 0 −1 1 2 3 −2 e −3 u 4 5 −4 Find the following limits: a) lim f (x) x→−2− b) lim f (x) x→−2+ c) lim f (x) d) lim f (x) x→−2 e) lim f (x) x→−4 x→3 4. Consider the following function defined by its graph: y6 3 −5 e −4 u 2 e 1 u x - 0 −3 −2 −1 0 −1 1 2 3 4 5 e u −2 −3 −4 Find the following limits: a) lim− f (x) x→2 b) lim+ f (x) x→2 c 2009 La Citadelle c) lim f (x) x→2 d) lim f (x) x→−4 2 of 9 e) lim f (x) x→5 www.la-citadelle.com CALCULUS Limits. Functions defined by a graph 5. Consider the following function defined by its graph: y6 3 2 1 e −5 u e e 0 −4 −3 −2 e −1 0 −1 1 2 3 4 u 5 x - −2 u −3 −4 Find the following limits: a) lim f (x) x→−2− b) lim f (x) x→−2+ c) lim f (x) d) lim f (x) x→−2 e) lim f (x) x→−5 x→5 6. Consider the following function defined by its graph: e e u y6 u e 3 e 2 u e 1 x - 0 −5 −4 −3 −2 −1 0 −1 1 2 3 4 5 −2 −3 −4 Find the following limits: a) lim − f (x) x→−2 b) lim + f (x) x→−2 c 2009 La Citadelle c) lim f (x) x→−2 d) lim f (x) x→−5 3 of 9 e) lim f (x) x→5 www.la-citadelle.com CALCULUS Limits. Functions defined by a graph 7. Consider the following function defined by its graph: y6 3 u e 2 −5 e 1 e u −4 0 −3 e u −2 −1 0 −1 x 1 2 3 4 5 −2 −3 −4 Find the following limits: a) lim f (x) x→−2− b) lim f (x) x→−2+ c) lim f (x) d) lim f (x) x→−2 e) lim f (x) x→−4 x→5 8. Consider the following function defined by its graph: y6 3 2 e u −5 e −3 −4 e 1 e u −2 0 −1 0 −1 x 1 2 3 4 5 e u −2 −3 −4 Find the following limits: a) lim − f (x) x→−2 b) lim + f (x) x→−2 c 2009 La Citadelle c) lim f (x) x→−2 d) lim f (x) x→−3 4 of 9 e) lim f (x) x→5 www.la-citadelle.com CALCULUS Limits. Functions defined by a graph 9. Consider the following function defined by its graph: y6 3 2 1 −5 x - 0 u e −4 e −3 −2 −1 0 −1 1 2 u e 3 −2 4 e 5 u −3 −4 Find the following limits: a) lim f (x) x→2− b) lim f (x) c) lim f (x) x→2 x→2+ d) lim f (x) e) lim f (x) x→−4 x→4 10. Consider the following function defined by its graph: y6 e 3 u 2 1 x - 0 −5 −4 −3 u e −2 e −1 0 −1 1 2 3 4 5 −2 −3 u e −4 Find the following limits: a) lim − f (x) x→−2 b) lim + f (x) x→−2 c 2009 La Citadelle c) lim f (x) x→−2 d) lim f (x) x→−3 5 of 9 e) lim f (x) x→3 www.la-citadelle.com 6 of 9 www.la-citadelle.com Answers: 2. a) 3 3. a) − 2 4. a) 2 5. a) − 1 6. a) 3 7. a) 0 8. a) 0 9. a) − 1 10. a) 3 c 2009 La Citadelle 1. a) 2 b) 2 c) 2 d) DN E e) DN E b) 3 c) 3 d) DN E e) DN E b) − 2 c) − 2 d) DN E e) − 2 b) 2 c) 2 d) 0 e) − 1 b) − 1 c) − 1 d) DN E e) 1 b) 4 c) DN E d) DN E e) 2 b) 0 c) 0 d) DN E e) 3 b) 1 c) DN E d) DN E e) − 1 b) − 1 c) − 1 d) DN E e) − 1 b) 3 c) 3 d) DN E e) − 3 CALCULUS Limits. Functions defined by a graph CALCULUS Limits. Functions defined by a graph Solutions: 1. a) b) c) d) lim f (x) = 2 x→−1− lim f (x) = 2 x→−1+ lim f (x) = x→−1− lim f (x) 6= x→−4− lim f (x) . Therefore lim f (x) = 2 x→−1+ x→−1 lim f (x) . Therefore lim f (x) = DNE x→−4+ x→−4 e) lim− f (x) 6= lim+ f (x) . Therefore lim f (x) = DNE x→4 x→4 x→4 2. a) lim− f (x) = 3 x→1 b) lim+ f (x) = 3 x→1 c) lim f (x) = lim f (x) . Therefore lim f (x) = 3 x→1− d) x→1+ lim − f (x) 6= x→−5 x→1 lim + f (x) . Therefore lim f (x) = DNE x→−5 x→−5 e) lim f (x) 6= lim f (x) . Therefore lim f (x) = DNE x→5− 3. a) b) c) d) x→5+ x→5 lim f (x) = −2 x→−2− lim f (x) = −2 x→−2+ lim f (x) = x→−2− lim − f (x) 6= x→−4 lim f (x) . Therefore lim f (x) = −2 x→−2+ x→−2 lim + f (x) . Therefore lim f (x) = DNE x→−4 x→−4 e) lim− f (x) = lim+ f (x) . Therefore lim f (x) = −2 x→3 x→3 x→3 4. a) lim− f (x) = 2 x→2 b) lim+ f (x) = 2 x→2 c) lim f (x) = lim f (x) . Therefore lim f (x) = 2 x→2− d) x→2+ lim − f (x) = x→−4 x→2 lim + f (x) . Therefore lim f (x) = 0 x→−4 x→−4 e) lim f (x) = lim f (x) . Therefore lim f (x) = −1 x→5− 5. a) b) c) d) x→5+ x→5 lim f (x) = −1 x→−2− lim f (x) = −1 x→−2+ lim f (x) = x→−2− lim − f (x) 6= x→−5 lim f (x) . Therefore lim f (x) = −1 x→−2+ x→−2 lim + f (x) . Therefore lim f (x) = DNE x→−5 x→−5 e) lim f (x) = lim f (x) . Therefore lim f (x) = 1 x→5− 6. a) b) c) d) x→5+ x→5 lim f (x) = 3 x→−2− lim f (x) = 4 x→−2+ lim f (x) 6= x→−2− lim − f (x) 6= x→−5 lim f (x) . Therefore lim f (x) = DNE x→−2+ x→−2 lim + f (x) . Therefore lim f (x) = DNE x→−5 x→−5 e) lim− f (x) = lim+ f (x) . Therefore lim f (x) = 2 x→5 x→5 c 2009 La Citadelle x→5 7 of 9 www.la-citadelle.com CALCULUS 7. a) b) c) d) Limits. Functions defined by a graph lim f (x) = 0 x→−2− lim f (x) = 0 x→−2+ lim f (x) = x→−2− lim − f (x) 6= x→−4 lim f (x) . Therefore lim f (x) = 0 x→−2+ x→−2 lim + f (x) . Therefore lim f (x) = DNE x→−4 x→−4 e) lim− f (x) = lim+ f (x) . Therefore lim f (x) = 3 x→5 8. a) b) c) d) x→5 x→5 lim f (x) = 0 x→−2− lim f (x) = 1 x→−2+ lim f (x) 6= x→−2− lim − f (x) 6= x→−3 lim f (x) . Therefore lim f (x) = DNE x→−2+ x→−2 lim + f (x) . Therefore lim f (x) = DNE x→−3 x→−3 e) lim− f (x) = lim+ f (x) . Therefore lim f (x) = −1 x→5 x→5 x→5 9. a) lim− f (x) = −1 x→2 b) lim f (x) = −1 x→2+ c) lim− f (x) = lim+ f (x) . Therefore lim f (x) = −1 x→2 d) x→2 lim − f (x) 6= x→−4 x→2 lim + f (x) . Therefore lim f (x) = DNE x→−4 x→−4 e) lim− f (x) = lim+ f (x) . Therefore lim f (x) = −1 x→4 x→4 x→4 10. a) lim f (x) = 3 x→−2− b) c) d) lim f (x) = 3 x→−2+ lim f (x) = x→−2− lim − f (x) 6= x→−3 lim f (x) . Therefore lim f (x) = 3 x→−2+ x→−2 lim + f (x) . Therefore lim f (x) = DNE x→−3 x→−3 e) lim− f (x) = lim+ f (x) . Therefore lim f (x) = −3 x→3 x→3 c 2009 La Citadelle x→3 8 of 9 www.la-citadelle.com
© Copyright 2026 Paperzz