The Enigmatic Diffuse Interstellar Bands: A Reservoir of Organic Material Ben McCall Department of Chemistry and Department of Astronomy University of Illinois at Urbana-Champaign Apache Point Observatory DIB Collaboration: Meredith Drosback (Colorado), Scott Friedman (STScI), Lew Hobbs (Yerkes), Ben McCall (UIUC), Takeshi Oka (Chicago), Brian Rachford (ERAU), Ted Snow (Colorado), Paule Sonnentrucker (JHU), Julie Thorburn (Yerkes), Dan Welty (Chicago), Don York (Chicago) pre Astro biology ^ • Precursors in diffuse clouds? • Precursors in dense clouds? • Precursors in disks? • Delivery to planets? • Production of pre-biotic molecules on planets • Formation of life Dense vs. Diffuse Clouds Dense molecular clouds: • • • • H H2 C CO n(H2) ~ 104–106 cm-3 T ~ 20 K Diffuse clouds: • • • • H ↔ H2 C C+ n(H2) ~ 101–103 cm-3 T ~ 50 K Persei Pound ApJ 493, L113 (1998) Photo: Jose Fernandez Garcia Molecules in Diffuse Clouds H· 3×109 M = 6×1042 g ~ 3×1066 atoms Optical: OH CH+ C2 CN CH C3 NH ~ 1×1059 ~ 8×1058 ~ 5×1058 ~ 7×1057 ~ 5×1057 ~ 4×1057 ~ 2×1057 DIBs ~ 1058 ? Ultraviolet: H2 CO HD N2 HCl ~ 1×1066 ~ 2×1061 ~ 1×1060 ~ 9×1058 ~ 6×1056 Infrared: H3+ ~ 2×1059 mm-wave: C2H H2CO HCN CS HCO+ C3H2 HNC HOC+ ~ 3×1058 ~ 1×1058 ~ 8×1057 ~ 5×1057 ~ 5×1057 ~ 2×1057 ~ 1×1057 ~ 8×1055 Based on abundances from Snow & McCall, ARAA 44, 367 (2006) Discovery of the DIBs • 5780, 5797 seen as unidentified bands – Per, Leo (Mary Lea Heger, Lick, 1919) • Broad (“diffuse”) • Possibly “stationary” B. J. McCall, in preparation Interstellar Origin P. W. Merrill, ApJ 83, 126 (1936) P. W. Merrill, PASP 483, 179 (1936) DIBs as Radicals or Ions? 100 50 200 150 1920 1940 1960 1980 350 300 250 0 2000 Hobbs et al. 2008 Tuairisg et al. 2000 Jenniskens & Desert 1994 Herbig 1988 Herbig 1975 Merrill & Wilson 1960 Herbig 1966 Merrill & Wilson 1938 Heger 1919 # of known DIBs A Growing Problem • Mostly in the visible – 4175–8763 Å • None known in UV • Few in near-infrared – 9577, 9632, 11797, 13175 Å Examples: Lorentzian Profiles 0.38 ps Snow, Zukowski, & Massey, ApJ 578, 877 (2002) Examples: Smooth Profiles M. Drosback, Ph.D. Thesis (2006) Krelowski & Schmidt, ApJ 477, 209 (1997) Examples: Fine Structure Galazutdinov et al., MNRAS 345, 365 (2003) Examples: Molecular Structure? Sarre et al., MNRAS 277, L41 (1995) Galazutdinov et al., MNRAS 345, 365 (2003) Kerr et al., MNRAS 283, L105 (1996) The APO DIB Survey • • • • • Apache Point Observatory 3.5-meter 3,600–10,200 Å ; / ~ 37,500 (8 km/s) 119 nights, from Jan 1999 to Jan 2003 S/N (@ 5780Å) > 500 for 160 stars (115 reddened) Measurements & analysis still underway Echelle Image Fraunhofer Lines H K H: Ca II ~ 3968 Å K: Ca II ~ 3934 Å D D: Na I ~ 5890 Å A A: O2 ~ 7650 Å Stellar Spectra C 60000 HD 50064 EB-V = 0.84 50000 30000 F 20000 B 10000 0 KH 4000 D 6000 A 8000 Wavelength (Å) 10000 120000 100000 Intensity Intensity 40000 Cyg OB2 #12 EB-V = 3.2 80000 60000 40000 20000 0 4000 6000 8000 Wavelength (Å) 10000 Stellar Spectra Orionis HD 183143 1.0 4428 0.6 5780, 5797 1.0 0.4 Relative Intensity 1.00 Relative Intensity Relative Intensity 0.8 0.95 CH 0.90 0.9 0.8 0.7 0.2 0.85 4299 4000 4300 4301 Wavelength (Å) 4500 4302 5760 5000 Wavelength (Å) 5770 5780 5790 Wavelength (Å) 5500 5800 6000 Overview of Preliminary Results • Spectral atlas of DIBs – for comparison to laboratory spectra – Version 1: HD 204827 – Version 2: Four reddened stars • DIB correlations – between DIBs & other species → chemistry, environment of carriers – among DIBs → spectra of carriers DIB Spectral Atlas: Version 1 • Initial target: HD 204827 – – – – heavily reddened: EB-V=1.11 early spectral type: ~B0V fairly bright: V=7.94 member of open cluster Trumpler 37 • in Cepheus OB2 association • Abundant C2 • Champion of C3 Adamkovics, Blake, & McCall, ApJ 595, 235 (2003) Spectroscopic Binary! 10 Lac avg Night 5 Night 4 Night 3 Night 2 Night 1 Great Test for DIBs • DIB count: 267 confirmed, 113 new, 380 total! • ApJ in press (see http://dibdata.org) DIB Spectral Atlas: Version 2 Four heavily reddened stars: Star Sp. Type EB-V N(C2) HD 204827 B0V 1.11 440×1012 Cyg OB2 5 O7f 1.99 200×1012 HD 166734 O8e 1.39 160×1012 HD 183143 B7Iae 1.27 < 6×1012 Sample of Spectra reddened previous work DIBs unreddened Statistics & Status Criterion (2 stars) Criterion (4 stars) New Confirmed Total DIBs DIBs DIBs 10 σ 5σ 111 270 381 8σ 4σ 151 291 442 4σ ― 284 350 634 • Issues still to address: – defining the continuum – blends of DIBs with each other • Complete atlas ~late 2008? DIB Correlations: H & H2 λ5780 well correlated with H no correlation with H2 [a la Herbig ApJ 407, 142 (1993)] r=0.944 (linear fit, w/o outliers) York et al., in preparation r=0.589 (linear fit) The “C2 DIBs” • First set of DIBs known to be correlated with a known species! Tuairisg atlas 1.5 1.4 Relative Intensity N(C 2) (10 1.3 12 HD 183143 <3 HD 167971 <4 HD 179406 73 HD 206267 93 HD 34078 -2 EB-V cm ) 1.27 1.08 0.33 0.53 110 0.52 1.2 HD 147889 210 HD 172028 1.1 1.07 270 0.79 HD 204827 1.0 430 1.11 0.9 4960 4965 4970 4975 4980 4985 5170 Wavelength (Å) 5180 5540 5550 Thorburn et al, ApJ 584, 339 (2003) Correlations Among DIBs • Assumptions: – gas phase molecules – DIBs are vibronic bands – low temperature • carriers all in v=0 – relative intensities fixed A v=0 • Franck-Condon factors • independent of T, n • Method: – look for DIBs with tight correlations in intensity • Prospect: – identify vibronic spectrum of single carrier – spacings may suggest ID X v=0 A Star #1 1 2 3 Intensity Star #2 B Strength of DIB B Correlation Plots Star #3 Wavelength Strength of DIB A Example: Bad Correlation r=0.55 Example: Good Correlation r=0.985 measurement errors could be causing deviations? Statistics of Correlations • 58 strong DIBs • Pairs of DIBs observed in >40 stars • 1218 pairs • Generally well correlated • Few very good correlations – 118 with r > 0.90 – 19 with r > 0.95 Why So Few Perfect Correlations? • Assumption of a common ground state bad? – energetically accessible excited states? • spin-orbit splitting? – if linear molecules • low lying vibrationally excited states? – if very large molecules • “Vertical” transitions? – intense origin band – weaker vibronic bands • correlations could be seen with weaker bands? • Lots of individual molecular carriers? The Road to a Solution • Laboratory spectroscopy is essential! • Blind laboratory searches unlikely to work ~107 organic molecules known on Earth ~10200 stable molecules of weight < 750 containing only C, H, N, O, S • Observational constraints & progress are also essential! • Computational chemistry will play an important role • Close collaborations needed! • Great astrobiological significance! Acknowledgments ACS Petroleum Research Fund Dreyfus New Faculty Award NASA Laboratory Astrophysics NSF Divisions of Chemistry & Astronomy Packard Fellowship Air Force Young Investigator Award Cottrell Scholarship http://astrochemistry.uiuc.edu Advertisement SCRIBES: Sensitive Cooled Resolved Ion BEam Spectroscopy • Infrared spectra of ions important in: – astrochemistry – atmospheric chemistry – propulsion/combustion • Optical spectra → DIBs ? Evaluation of Proposed DIB Carriers • Need a laboratory spectrum HD 185418 – gas phase (avoid matrix shifts) – rotationally resolved (or profile resolved) HD 229059 1.0 – interstellar temperatures, excitation conditions • DIB, simulated spectra must match exactly – central wavelength & profile – relative intensities & correlation – all laboratory bands present Relative Intensity • Need to be able to simulate spectrum 70 K 0.9 50 K 30 K 0.8 10 K C76268 6270 6272 Wavelength (Å) McCall et al., ApJ 559, L49 (2001) l-C3H2- McCall et al., ApJ 567, L145 (2002) Carbon Chains as DIB Carriers? • Some DIBs correlated with C2 • C3 widely observed in diffuse clouds • But, search for C4, C5 unsuccessful so far • Conclusions: – Need high abundance, or – Large oscillator strength – Maier, Walker, & Bohlender [ApJ 602, 286 (2004)]: • Potential carbon chain DIB carriers must have >15 carbon atoms • C2n+1 (n=7-15); HCnH (n>40); C2n (n>10); CnH; HCnH+; Cn- – No lab spectra of long chains; very little of cations Ádaámkovics, Blake, &McCall, ApJ 595, 235 (2003) – J. P. Maier 2001 PAHs as DIB Carriers? • Polycyclic Aromatic Hydrocarbons – proposed by Leger & d’Hendecourt and by van der Zwet & Allamandola in 1985 • Would expect complex mixture – ionization stages (cation, neutral, anion?) – hydrogenation states • So far, no spectroscopic match with DIBs • Cation transitions observed so far in gasphase are too broad! • Still no convincing evidence Fullerenes as DIB Carriers? • Expected to form in carbon star outflows • IP(C60) = 7.6 eV – Ionized in diffuse clouds Fulara, Jakobi, & Maier • C60+ in Ne matrix Chem. Phys. Lett. 211, 227 (1993) – two bands near 9600 Å Foing & Ehrenfreund • Detection claimed in HD 183143 A&A 319, L59 (1997) • Need gas-phase spectrum! – Experiment in preparation HD 183143 C60+ Ne matrix C2 DIBs toward HD 62542 • Unusual sightline with only diffuse cloud “core” – outer layers stripped away by shock (?) – DIBs undetected [Snow et al. ApJ 573, 670 (2002)] • Recent Keck observations (higher S/N) – Classical DIBs (e.g. λ5780) very weak – C2 DIBs among the few DIBs observed • C2 DIBs evidently form in denser (molecular) regions Ádámkovics, Blake, & McCall ApJ 625, 857 (2005) DIB "Families" • Look for sets of DIBs in which all correlation coefficients are high λ6196 λ4963 λ6613 0.96 0.92 λ5487 0.96 λ6204 λ4727 blend λ5780 0.97 0.94 0.94 0.93 λ4984 0.86 0.92 λ5418 blend λ6284 More on λ6613 & λ6196 Can observed scatter be due to measurement errors? • • • • • • • Observed r=0.985 Assume perfection Add Gaussian noise 1000 M.C. trials Double the noise 1000 M.C. trials Statistically OK if we underestimated errors r=0.985 r=0.996 Measurement Errors • Is doubling the error estimate reasonable? • Error sources include: – finite S/N – unexpected structure • Agreement not always perfect! – interfering DIBs? – continuum placement HD 281159 – CH+ A-X band • Hard to say; but it’s certainly a very good correlation! r=0.985
© Copyright 2026 Paperzz