AP Calculus AB Name ____________________________________ Limits and Continuity Review Date ________________________ Pd. _________ 1. If f ( x) = x2 − 9 is continuous at x = -3, then f (-3) = ____________________ x+3 (3 − x ) lim x →0 ( x − 3 ) 2 2. = 3. lim(sin 2 x) x →π ⎧ x 2 + bx, x ≤ 5 ⎪ 4. Non-Calculator If is a continuous function defined by f ( x) = ⎨ ⎛πx ⎞ ⎪5sin ⎜ 2 ⎟ , x > 5 ⎝ ⎠ ⎩ Find b. 5. If y = 7 is a horizontal asymptote of a rational function f, then which of the following is true a) lim f ( x) = ∞ x→7 b) lim f ( x) = 7 x →∞ d) lim f ( x) = 0 x →7 c) lim f ( x) = 7 x →0 e) lim f ( x) = −7 x→−∞ 6. Non-Calculator Which of the following is continuous at x = 0? II. f ( x) = e x I. f ( x) = x a) I only b) II only III. f ( x) = ln(e x − 1) c) I and II only d) II and III only ⎧ln x, 0 < x ≤ 2 7. Non-Calculator If f ( x) = ⎨ 2 then lim f ( x) is x →2 ⎩ x ln 2, 2 < x ≤ 4 a) ln 2 b) ln 8 c) ln 16 d) 4 e) nonexsistent e) none ⎧ −x, x < 0 ⎪ 8. Let f (x) = ⎨3 − x, 0 ≤ x < 3 ⎪( x − 3) 2 , x > 3 ⎩ a) lim+ f ( x) = b) lim− f ( x) = c) lim f ( x) = d) lim− f ( x) = e) lim+ f ( x) = f) lim f ( x) = x →0 x →0 x→0 x →3 x →3 x →3 ⎧⎪ x + 1, 0 ≤ x ≤ 3 9. Let the function f be defined by f ( x) = ⎨ ⎪⎩5 − x, 3 < x ≤ 5 Is f(x) continuous at x = 3? Why or why not? 10. lim+ x →0 ln x = x sin x = x →∞ e + cos x 11. lim 12. Let f be the function given by f(x) = 2 xe2 x a) Find lim f ( x) x →−∞ and lim f ( x) x→∞ x
© Copyright 2026 Paperzz