HW 1.2.4: Composite Functions Given each pair of functions, calculate f g 0 and g f 0 . 1. f x 4 x 8 , g x 7 x2 2. f x 5x 7 , g x 4 2x2 3. f x x 4 , g x 12 x3 4. f x 1 , g x 4x 3 x2 Use the table of values to evaluate each expression 5. f ( g (8)) 6. f g 5 7. g ( f (5)) 8. g f 3 9. f ( f (4)) 10. f f 1 11. g ( g (2)) x 0 1 2 3 4 5 6 7 8 9 f ( x) 7 6 5 8 4 0 2 1 9 3 g( x) 9 5 6 2 1 8 7 3 4 0 12. g g 6 Use the graphs to evaluate the expressions below. 13. f ( g (3)) 14. f g 1 15. g ( f (1)) 16. g f 0 17. f ( f (5)) 18. f f 4 19. g ( g (2)) 20. g g 0 David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5. Retrieved from: http://www.opentextbookstore.com/precalc/ For each pair of functions, find f g x and g f x . Simplify your answers. 21. f x 1 7 , g x 6 x6 x 22. f x 1 2 , g x 4 x4 x 23. f x x2 1 , g x x 2 24. f x x 2 , g x x2 3 25. f x x , g x 5x 1 26. f x 3 x , g x x 1 x3 27. If f x x4 6 , g ( x) x 6 and h( x) x , find f ( g (h( x))) 28. If f x x 2 1, g x 1 and h x x 3 , find f ( g (h( x))) x David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5. Retrieved from: http://www.opentextbookstore.com/precalc/ 29. Given functions p x interval notation. a. Domain of 1 and m x x 2 4 , state the domains of the following functions using x p x m x b. Domain of p(m( x)) c. Domain of m( p ( x )) 30. Given functions q x interval notation. a. Domain of 1 and h x x 2 9 , state the domains of the following functions using x q x h x b. Domain of q (h( x)) c. Domain of h(q( x)) 31. The function D ( p ) gives the number of items that will be demanded when the price is p. The production cost, C ( x) is the cost of producing x items. To determine the cost of production when the price is $6, you would do which of the following: a. Evaluate D (C (6)) b. Evaluate C ( D (6)) c. Solve D (C ( x )) 6 d. Solve C ( D( p)) 6 32. The function A(d ) gives the pain level on a scale of 0-10 experienced by a patient with d milligrams of a pain reduction drug in their system. The milligrams of drug in the patient’s system after t minutes is modeled by m(t ) . To determine when the patient will be at a pain level of 4, you would need to: a. Evaluate A m 4 b. Evaluate m A 4 c. Solve A m t 4 d. Solve m A d 4 David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5. Retrieved from: http://www.opentextbookstore.com/precalc/ 33. The radius r, in inches, of a spherical balloon is related to the volume, V, by r (V ) 3 pumped into the balloon, so the volume after t seconds is given by V t 10 20t . 3V . Air is 4 a. Find the composite function r V t b. Find the time when the radius reaches 10 inches. 34. The number of bacteria in a refrigerated food product is given by N T 23T 2 56T 1 , 3 T 33 , where T is the temperature of the food. When the food is removed from the refrigerator, the temperature is given by T (t ) 5t 1.5 , where t is the time in hours. a. Find the composite function N T t b. Find the time when the bacteria count reaches 6752 Find functions f ( x) and g ( x ) so the given function can be expressed as h x f g x . 35. h x x 2 37. h x 2 3 x5 39. h x 3 x 2 36. h x x 5 38. h x 3 4 x 2 2 40. h x 4 3 x David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5. Retrieved from: http://www.opentextbookstore.com/precalc/ Selected Answers: 1. 𝑓(𝑔(0)) = 4(7) + 8 = 26, 𝑔(𝑓(0)) = 7 − (8)2 = −57 3. 𝑓(𝑔(0)) = √(12) + 4 = 4, 𝑔(𝑓(0)) = 12 − (2)3 = 4 5. 𝑓(𝑔(8)) = 4 7. 𝑔(𝑓(5)) = 9 9. 𝑓(𝑓(4)) = 4 11. 𝑔(𝑔(2)) = 7 13. 𝑓(𝑔(3)) = 0 15. 𝑔(𝑓(1)) = 4 17. 𝑓(𝑓(5)) = 3 19. 𝑔(𝑔(2)) = 2 21. 𝑓(𝑔(𝑥)) = 1 𝑥 = 7 , 𝑔(𝑓(𝑥)) = 7 ( +6)−6 𝑥 7 ( 1 ) 𝑥−6 + 6 = 7𝑥 − 36 23. 𝑓(𝑔(𝑥)) = (√𝑥 + 2)2 + 1 = 𝑥 + 3, 𝑔(𝑓(𝑥)) = √(𝑥 2 + 1) + 2 = √(𝑥 2 + 3) 25. 𝑓(𝑔(𝑥)) = |5𝑥 + 1|, 𝑔(𝑓(𝑥)) = 5|𝑥| + 1 4 27. 𝑓(𝑔(ℎ(𝑥))) = ((√𝑥) − 6) + 6 29. (a) 𝑝(𝑥) 𝑚(𝑥) = 1 √𝑥 𝑥 2 −4 , which can be written as 1 . This function is undefined when there is a √𝑥(𝑥 2 −4) negative number under the square root, or when the factor in the denominator equals zero. So the domain is all positive numbers excluding 2, or {𝑥|𝑥 > 0, 𝑥 ≠ 2}. 1 (b) 𝑝(𝑚(𝑥)) = √𝑥 2 . This function is undefined when there is a negative number under the −4 square root or a zero in the denominator, which happens when 𝑥 is between -2 and 2. So the domain is −2 > 𝑥 > 2. 1 (c) 𝑚(𝑝(𝑥)) = ( √ 2 1 ) − 4 = 𝑥 − 4. This function is undefined when the denominator is zero, or 𝑥 when 𝑥 = 0. So the domain is {𝑥|𝑥 ∊ ℝ, 𝑥 ≠ 0}. 31. b David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5. Retrieved from: http://www.opentextbookstore.com/precalc/ 3 3(10+20𝑡) 33. (a) 𝑟(𝑉(𝑡)) = √ 4𝜋 3 3(10+20𝑡) (b) Evaluating the function in (a) when 𝑟(𝑉(𝑡)) = 10 gives 10 = √ 4𝜋 . Solving this for t gives 𝑡 ≈ 208.93, which means that it takes approximately 208 seconds or 3.3 minutes to blow up a balloon to a radius of 10 inches. 35. 𝑓(𝑥) = 𝑥 2 , 𝑔(𝑥) = 𝑥 + 2 3 37. 𝑓(𝑥) = 𝑥 , 𝑔(𝑥) = 𝑥 − 5 39. 𝑓(𝑥) = 3 + 𝑥, 𝑔(𝑥) = √𝑥 − 2 David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5. Retrieved from: http://www.opentextbookstore.com/precalc/
© Copyright 2025 Paperzz