RPP-SEPMCL Initial Report 2002, p.13-48
© 2002, INRST-JICA
Contamination of Potentially Toxic Elements (PTEs) in Bizerte lagoon
bottom sediments, surface sediment and sediment repository
Mitsuo Yoshida, Helmi Hamdi, Ibrahim Abdul Nasser, and Naceur Jedidi
Laboratoire Eau & Environnement, Institut National de Recherche Scientifique et Technique
(INRST), B.P.95, 2050 Hammam-Lif, Tunisia
Abstract
The concentration of PTEs was measured for a total of 180 sediment samples collected from the Upper Layer
(surface sediments) and the Lower Layer (sediments repository) of lagoon bottom sediments in Bizerte lagoon.
The pattern of PTEs distribution in the lagoon bottom sediments is classified into three types: (i) A ‘peak’ type
high concentration site(s) limitedly appears nearby the landfill of Menzel Bourguiba. The other sites show
relatively homogeneous distribution with low concentration values. This variation pattern implies that the
contamination source is at the Menzel Bourguiba landfill, and the contamination has not widely spread toward
the lagoon basin. Twelve elements are found in this type: Sb, As, Ba, Cd, Cu, Pb, Mo, Se, Ag, Tl, U, and Zn.
Three heavy metals, Ba, Pb, and Zn, and two metalloids, As and Se, show toxic level of values above the criteria.
(ii) A ‘pleateau’-type very high concentration zone is present from southwestern part (Menzel Bourguiba, Tinja,
and its north) to the west central part of the lagoon basin. The concentration significantly decreases eastward,
southward, and northward. This ‘Plateau’ type pattern implies that the pollution source is the southwestern side
(Menzel Bourguiba, Tinja, and its north) of the lagoon, and the contamination migrates towards the central of the
lagoon. Seven elements are found in this pattern: Al, Cr, Co, Fe, Mn, Ni, and V. The concentration of five metals,
Al, Cr, Co, Mn, and V, indicates above or around the threshold value in the ‘plateau’ zone. (iii) The variation of
Hg concentration basically shows ‘peak’ pattern but it also enhances near the southeastern part of the lagoon
basin. The peak values exceed the threshold value. One of the pollution sources can attribute to the Menzel
Bourguiba landfill, but the other is probably due to a non-point pollution of Hg contained agricultural chemicals
such as pesticides in the eastward-southward agricultural zone. Thus, sediment contamination with 11 PTEs, Ba,
Pb, Zn, As, Se, Al, Cr, Co, Mn, V, and Hg, could be recognized in the Bizerte lagoon, of which concentrations
indicated the toxic levels (Table 2).
Keywords
Sediment contamination, PTEs, Heavy metals, Contaminant transport, Lagoon pollution
I. Introduction
Populated cities and/or industrial zones in northern Tunisia have been mostly
developed along Mediterranean coastal lagoons, e.g. Tunis and Bizerte. It is also very
common in Tunisia that lagoon basins and streams (“Wad”) flowing into the lagoons or sea
have been used as open-dumping type solid waste disposal sites. Thus, an important problem
in these lagoons is environmental contamination and pollution caused by human activities
such as industrial effluents, wastewater, and solid waste disposals. The lagoon bottom
sediments is, in this context, a sink of pollutants. Indeed, a significant sediment contamination
of lagoon bottom sediments was known in Lake Tunis and Lake Ariana nearby Tunis
urban/industrial zone (Yoshida et al., 2001).
The Bizerte lagoon is one of such lagoons located near the industrial and urban zones,
where industrial zones of Menzel Bourguiba, Bizerte, and Menzel Jmil have been developed
as urban as well as industrial zones, and three open-dumping type municipal/industrial solid
waste landfills have been operated near the Bizerte, Menzel Bourguiba, Menzel Abderahmen,
and Menzel Jmil (Figure 1). In addition to these land uses, the eastern side of the Bizerte
lagoon is a widely opened as an agricultural zone where potential pollutants like fertilizer and
agro-chemicals (pesticides and insecticides) are applying.
In this paper, we report the results of potentially toxic elements (PTEs) analysis of
lagoon bottom sediments sampled by the RPP-SEPMCL leg Bizerte2002, and interpret the
environmental impacts of human activities through the spatial distribution of PTEs
contamination.
13
II. Samples
A total of 180 samples were collected from lagoon bottom sediments of 100 sites
using a grab sampler (Figure 1). The location was defined with a receiver of global
positioning system (GPS). According to the on-site observation with naked eyes, the collected
sediments, which were more or less maintained the original texture, were mostly divided into
two layers, the upper thin (thickness < 1 cm) unconsolidated layer (‘Upper Layer’) and the
lower semi-consolidated sediments (‘Lower Layer’) (Plate 1). The former is normally light
brown colour indicating oxidizing conditions but the later is dark gray to black in anoxic
conditions. We collected separately for the chemical analysis, named ‘U’ samples and ‘L’
samples. The upper layer is discriminated in 80 sites. The latitude and longitude of each site
was reported in the Table 1 of the companion paper (Shipboard Scientists Team of RPPSEPMCL leg Bizerte2002, 2002).
E9 47'
Bizerte
Mediterranean Sea
E9 56'
N37 16'
N37 16'
Jarzouna
N
40
39
38
37
36
34 33
100 85
86
99
98
Tinja
Menzel Abdrahmen
35
1
16
2
17
84
32
83
Menzel Jmil
82
41 63 61
62
79
42
60
31
43
59
65
77
30
44
58
66
76
29
45
Bizerte Lagoon
57
67
75
64
78
97
96
87
3
18
95
88
4
19
94
93
92
89
5
20
28
46
56
68
74
90
6
21
27
47
55
69
73
7
22
26
48
54
8
15
25
49
53
9
14
24
50
52
23
51
12
11
10
13
81
LEGEND
Sampling site
91
Menzel
Bourguiba
80
70
72
Populated area
71
Industrial area
Solid waste landfill
N37 08'
N37 08'
E9 47'
E9 56'
Hani
5 km
Figure 1: Geographic setting and location of sampling sites. Dashed circles are the areas of populated zones,
solid circles are those of industrial zones, and shaded parts are solid waste landfills. The geography is based on
the 1/200,000 topographic sheet “Binzart”.
14
Upper Layer
(bottom surface)
Lower Layer
Lower Layer
downward
downward
5cm
Plate 1: Typical occurrence of the Upper Layer (surface sediment) and the Lower Layer (sediment repository) in
a sample of the lagoon bottom sediment dredged by a grab sampler.
III. Analysis
The dredged sediment samples, Upper and Lower Layers, were disintegrated and dried
under 105°C, and powdered by a ceramic mill. Then the powder samples were sieved by a 68
micron, and the finer fraction was used for the analysis.
A 15.0 gm sample split was digested in 90 mL aqua regia (HCl-HNO3-H2O) at 95°C
for one hour. The solution is diluted to 300 mL with distilled water. Analysis was made by an
Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Mass
Spectrometry (ICP-MS). Total 37 elements were measured: B, Na, Mg, Al, P, S, K, Ca, Sc, Ti,
V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sr, Mo, Ag, Cd, Sb, Te, Ba, La, W, Au, Hg, Tl, Pb,
Bi, Th, and U. The upper detection limit for Ag, Au, Hg, W, Se, Te, Tl, and Ga is 100 ppm,
that for Mo, Co, Cd, Sb, Bi, Th, U, and B is 2 %, and that for Cu, Pb, Zn, Ni, Mn, As, V, La,
and Cr is 10 %. The aqua regia digestion of sediment extracts only a fraction of the major
elements (pseudo-total analysis) because silicates are not completely dissolved with this
method. Owing to this limitation, results are total to near total for trace and base metals and
possibly partial for rock-forming elements such as Na, Mg, Al, K, Ca, Mn, and Fe. However,
environmentally concerned components like heavy metals or potentially toxic elements
(PTEs; Alloway, 1995) not bound to silicates are efficiently dissolved (Ure, 1995), which is
indicative for the assessment of toxicity.
IV. Results and Discussion
The results of chemical analysis using the aqua regia extraction method are
summarized in Appendixes 1 and 2 (data for the Lower Layer sediments), Appendix 3 (data
for the Upper Layer sediments), and Appendix 4 (stream sediments).
IV-1. Upper Layer and Lower Layer
The variations of aqua regia extracted element composition of the sediments from the
Upper and Lower Layers are respectively illustrated on box & whisker plots (Figure 2). The
15
pattern of variation is almost similar to each other, while the concentration of several
elements such as S, Mo, and U exhibits quite different range between the Upper and Lower
Layers. For clarifying the differences, a ‘difference ratio’ is calculated. The ratio is defined by
the following equation for the concentration data of given element:
Difference ratio = {(Average in Upper
- (Average
in Lower Layer)} / (Average in Upper Layer)
Box &Layer)
Whisker
Plot
1000000.00
Sediments of the Upper Layer
100000.00
10000.00
1000.00
100.00
10.00
1.00
0.10
0.01
B Mg P K Sc V Mn Co Cu Ga Se Mo Cd Te La Au Tl Bi U
Na Al S Ca Ti Cr Fe Ni Zn As Sr Ag Sb Ba W Hg Pb Th
Min-Max
25%-75%
Median v alue
Box & Whisker Plot
100000.000
Sediments of the Lower Layer
10000.000
1000.000
100.000
10.000
1.000
0.100
0.010
0.001
B Mg P K Sc V Mn Co Cu Ga Se Mo Cd Te La Au Tl Bi U
Na Al S Ca Ti Cr Fe Ni Zn As Sr Ag Sb Ba W Hg Pb Th
Min-Max
25%-75%
Median v alue
Figure 2: Box & whisker plots of the element pseudo-total concentration of the sediments from the upper layer
and lower layers. The whiskers show the range of distribution (minimum and maximum), open boxes show the
range from 25% to 75% of the population, and closed boxes show the median value.
16
B Na Mg Al
P
S
K Ca Sc Ti
V
Cr Mn Fe Co Ni Cu Zn Ga As Se Sr Mo Ag Cd Sb Te Ba La Au Hg Tl Pb Bi Th U
40%
20%
Difference ratio (%)
0%
-20%
-40%
-60%
-80%
-100%
-120%
Figure 3: Comparison of the elemental concentrations in sediments between the Upper and Lower Layers using
‘difference ratio’. The ratio for tungsten (W) was excluded because of a lack of sufficient data. The standard
deviation of the population of ‘difference ratio’ is 28% showing dashed lines.
Therefore, if the difference ratio is positive then the concentration in the upper layer is
relatively larger than that in the Lower Layer for given element, while if it is negative then the
concentration in the Upper Layer is smaller than that in the Lower Layer.
The elements showing a negative ‘difference ratio’ are relatively enriched in the
Lower Layer where anoxic conditions are dominant. PTEs such as Co, Se, Mo, Sb, and U
Under anoxic conditions metals are normally immobilized as sulfides. After erosion and
oxidation of the sediment containing metal sulfides, the metals are transformed into more
unstable forms and are easily released and complexed with chloride ions especially under
marine (high salinity) conditions (de Groot, 1995). In fact, the concentration of S is very high
in the Lower Layer (difference ratio of S = -52%). The Upper Layer represents oxidizing
materials reworked.
Deposition: adsorbed PTEs are
transformed to sulfides (immobilization)
Erosion: oxidation of sulfides,
release of PTEs (mobilization)
<<Lower Layer>>
Anoxic reduced lagoon sediments
PTEs present as sulfides
Mobilized
PTEs in
lagoon water
<<Upper Layer>>
Oxidized surface sediments
PTEs present as oxides and other
complexes
Figure 4: Schematic model of the formation of Lower and Upper Layers with immobilization and mobilization
of PTEs (proposed mobilization-immobilization processes are based on de Groot, 1995).
17
A schematic model of the formation process of the Lower and Upper Layers is shown
in Figure 4. The particulates transported by streams or currents are supplied into the lagoon
and settled finally on the bottom (= deposition). Adsorbed metals and other PTEs are then
transformed to sulfides under anoxic conditions after the deposition, which is an
immobilization effect in the Lower Layer. While, reworking or erosion of settled sediments
oxidizes the sulfides and mobilizes metals and other PTEs. Some parts of these mobilized
elements are settled in the Upper Layers as more unstable forms, and the others are dissolved
into lagoon water. The Upper Layer is gradually transformed again to the Lower Layer, where
the formation of sulfides immobilizes metals and other PTEs. Repeating process of the
deposition and reworking/erosion may, as a whole, release the PTEs in lagoon water and
deplete them in the bottom sediments.
Thus, the Upper Layer is ‘surface sediments’ not yet settled completely, and the
Lower Layer is the ‘sediments repository’.
IV-2. Spatial Variation of PTEs in the Lagoon Basin
Spatial variation of PTEs; Al, Sb, As, Ba, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Hg, Ni, Se,
Ag, Tl, U, V, and Zn, in the Upper Layer (surface sediments) and Lower Layer (sediments
repository) is graphically displayed in Figures 5(a) to 5(s).
Table 1: Several criteria for environmental screening of sediment contamination (unit: mg/kg except specified).
Concentration values in the shaded cells are used for sediment contamination screening criteria in present study.
NOAA SquiRTs for Marine Sediment*
Netherlands**
Japan
PTEs
Background TEL
ERL PEL
ERM
AET
Ref. Interv. Test EQS soil
Al
0.26%
1.8%
Sb
0.16
9.3
As
1.1
7.24
8.2
41.6
70
35
29
50
30
50
Ba
0.7
48
200 2000
400
Cd
0.1-0.3
0.676 1.2
4.21
9.6
3
0.8
12
5
9
Cr
7-13
52.3
81
160.4
370
62
100 380
250
Co
10
10
10
300
50
Cu
10-25
18.7
34
108.2
270
390
36
190
100
Fe
0.99-1.8%
22%
Pb
4-17
30.24 46.7 112.18
218
400
85
530
150 600
Mn
400
260
Mo
10
10
200
40
Hg
0.004-0.051 0.13
0.15 0.696
0.71
0.41
0.3
10
2
3
Ni
9.9
15.9
20.9 42.8
51.6
110
35
210
100
Se
0.29
1
Ag
<0.5
0.73
1
1.7
3.7
3.1
Sn
5
>3.4
20
300
50
Tl
0.1-0.8
1***
U
0.7-9
V
50
57
Zn
7-38
410
140 720
500
* NOAA Screening Quick Reference Tables (SQuiRTs) (US NOAA, 1999). TEL: Threshold Effects
Level, ERL: Effects Range-Low, PEL: Probable Effects Level, ERM: Effects Range Median, AET:
Apparent Effects Threshold, in increasing order of toxicity. The ‘Background’ values is obtained from
fresh water sediments.
** Guide values and quality standards used in the Netherlands for assessing soil contamination. Ref.:
Reference value, Interv.: Intervention value, Test: Test value (Alloway, 1995)
*** Critical soil total concentration: the range of values above which toxicity is considered to be
possible (Kabata-Pendias and Pendias in Alloway,1995)
EQS soil: Environmental Quality Standards for Soil (Japan)
18
The PTEs we chose here are typical elements that have been monitored for assessing
soil/sediment contamination. The spatial data (open circles in each figure) are statistically
averaged using a Distance Weighted Least Squares algorism of which result was expressed by
a curved surface (see Figures 5(a) to 5(t)). The criteria for sediment contamination are
summarized in Table 1, which are applied for our screening. It is noteworthy that the
threshold values in Table 1 are defined as a totally extracted concentration and not like the
concentration obtained by the aqua regia extracted pseudo-total extraction, where the criteria
in Table 1 are relatively higher threshold values for applying to present data set. It means
contaminated sites screened from present data set using the threshold values indicate
environmentally more risky (or higher toxicity) ones. The description about each PTE is as
follows:
The concentration of aluminum (Al) varies widely but generally the sites of central to
central western part of the lagoon basin show very high concentration around the threshold
value (1.8 %) (Figure 5(a)). The concentration decreases towards the shoreline, which
suggests us the granulometry is a controlling factor of the variation (Hamdi et al., 2002).
Antimony (Sb) concentration is rather homogeneous in the lagoon basin except
abnormally high values near Menzel Bourguiba landfill (LB-11 and 12), which indicates a
strong impact of human activity such as landfilling (Figure 5(b)). However the concentration
does not exceed threshold values for its toxicity (<9.3 ppm).
Arsenic (As) contents is relatively homogeneous but toward Menzel Bourguiba and
Bizerte city, the concentration tends to increase, which is more significant in the Lower Layer
(Figure 5(c)). The concentration level is rather high in comparing with the threshold value (35
ppm, Table 2), and it exceeds in the sites near the Menzel Bourguiba.
The concentration of Barium (Ba) is also relatively homogeneous in the lagoon basin
but it tends to increase toward Menzel Bourguiba, which is more significant in the Lower
Layer (Figure 5(d)). The level of concentration is generally high above and around the
threshold value (48 ppm).
Cadmium (Cd) also exhibit similar trend in the cases of Sb, As, and Ba, while even
the highest concentration near Menzel Bourguiba does not exceed the threshold value (3 ppm)
(Figure 5(e)).
Chromium (Cr) concentration is generally high around west central part of the basin to
Menzel Bourguiba, and it suddenly decreases eastward and Mediterranean side, which
indicates the polluter(s) is possibly found around Menzel Bourguiba – Tinja, and the Cr is
migrating central-eastward (Figure 5(f)). It should take note that the concentration level in the
west central part (the zone of higher values) does not exceed the threshold value (62 ppm),
but very closed to the threshold value.
The spatial variation of the concentration of cobalt (Co) is quite similar to that of Cr,
which also suggest the polluter is around Menzel Bourguiba –Tinja (Figure 5(g)). The
concentration level is also around the threshold values (10 ppm).
Copper (Cu) content does not vary in the major part of the lagoon basin where it is
low around background level (10-25 ppm) (Figure 5(h)). However only the sites close to the
Menzel Bourguiba landfill show several times higher value as a peak.
The concentration of iron (Fe) is generally high in central to western area of the basin
and around Menzel Bourguiba, but the concentration level is lower than the threshold value
(22 %) (Figure 5(i)).
The concentration of lead (Pb) is again showing Cu-type pattern of variation, and the
peak values above the threshold value (400 ppm) can be found in the Lower Layer near the
Menzel Bourguiba landfill (Figure 5(j)).
19
Manganese (Mn) content in the baisn is rather high in comparing the threshold values
(260 ppm), where the concentration increase toward Menzel Bourguiba (Figure 5(k)). Central
and western part of the basin exhibit a pleateu of high concentration above the threshold value,
which is more significant in the Upper Layer.
The concentration of molybdenum (Mo) is generally low and monotonous, but near
the Menzel Bourguiba it suddenly increases several times (Figure 5(l)). The concentration in
the Lower Layer also depict some peaks in the western margin of the lagoon basin. However
they do not exceed the threshold value (40 ppm).
The concentration of mercury (Hg) is generally low in the lagoon center, but
surrounding areas such as Bizerte, Menzel Bourguiba, and southeastern shore zone show
higher values around the threshold value (0.41 ppm) (Figure 5(m)). Particularly in the Lower
Layer sediments, the concentration suddenly increases near the southeastern part where
agricultural area is widely developed.
The variation of nickel (Ni) concentration is again similar to the Cr and Co type
behavior, where the central western part toward Menzel Bourguiba shows a plateau of relative
high concentration (Figure 5(n)). However the concentration level is low in comparing with
the threshold value (110 ppm) even in the sites showing relative higher values (‘plateau’).
The concentration of selenium (Se) in the Upper Layer sediments is generally low in
the major part of the lagoon basin (<1 ppm) while it suddenly increases nearby the Menzel
Boulguiba landfill as a peak that exceeds the threshold value (1 ppm) (Figure 5(o)). The
concentration of Se of the Lower Layer sediments show an increase not only nearby Menzel
Bourguiba landfill but towards Menzel Jmil, which suggests us there are two pollution
sources.
The concentration of silver (Ag) is also very low in the major part of the lagoon basin.
It only shows a peak value near the Menzel Bourguiba landfill, but it is still less than the
threshold value (3.1 ppm) (Figure 5(p)).
The concentration of thallium (Tl) little varies in the major part of the lagoon basin but
marks peak values only nearby the Menzel Bourguiba landfill which are not above the
threshold value (1 ppm) (Figure 5(q)). Industrial uses of Tl are varied, but all are, at present,
small scale, such as using as a catalyst, semiconductor, and in electric engineering. However,
its major use was a pesticide and rodenticide, until banned in many countries in the mid 1970s
(Edwards et al., 1995).
The variation of uranium (U) concentration does not vary so much while it increases
near Menzel Bourguiba and Bizerte port (Figure 5(r)). There is no reliable criterion for
evaluating sediment contamination by U, while the concentration obtained by present study is
background level previously reported in other areas (Edwards et al., 1995).
The variation of vanadium (V) concentration is similar to the Cr and Co type ‘plateau’
behavior, where the central western part toward Menzel Bourguiba shows a plateau of relative
high concentration (Figure 5(s)). The higher concentrations in ‘plateau’ around Benzel
Bourguiba are above the threshold vale (57 ppm).
The concentration of zinc (Zn) is rather monotonous in the major part of the lagoon
basin (Figure 5(t)). It shows peak values near the Menzel Bourguiba landfill, which marks
abnormally high vales above the criteria (410 ppm).
Thus the pattern of PTEs distribution in the lagoon bottom sediments is basically
classified into three types,
(i)
A ‘peak’-type abnormally high concentration site(s) limitedly appears nearby the
landfill of Menzel Bourguiba. The other sites show relatively homogeneous
distribution with low concentration values. This variation pattern implies that the
contamination source is at the Menzel Bourguiba landfill, and the contamination
20
(ii)
(iii)
has not widely spread toward the lagoon basin. Twelve elements are found in this
type: Sb, As, Ba, Cd, Cu, Pb, Mo, Se, Ag, Tl, U, and Zn. Three heavy metals, Ba,
Pb, and Zn, and two metalloids, As and Se, show toxic level of values above the
criteria.
A ‘pleateau’-type very high concentration zone is present from southwestern part
(Menzel Bourguiba, Tinja, and its north) to the west central part of the lagoon
basin. The concentration significantly decreases eastward, southward, and
northward. This ‘Plateau’ type pattern implies that the pollution source is the
southwestern side (Menzel Bourguiba, Tinja, and its north) of the lagoon, and the
contamination migrates towards the central of the lagoon. Seven elements are
found in this pattern: Al, Cr, Co, Fe, Mn, Ni, and V. The concentration of five
metals, Al, Cr, Co, Mn, and V, indicates above or around the threshold value in the
‘plateau’ zone. The ‘plateau’ zone corresponds to the area of clay and organic
matters distribution zone (Ouakad, 2000) which shows high cation exchange
capacity ( Hamdi et al., 2002 in this volume). It means these metal elements have
been adsorbed by the clay mineral and/or complexed with organic matters.
The others patter. The variation of Hg concentration basically shows ‘peak’ pattern
but it also enhances near the southeastern part of the lagoon basin. The peak values
exceed the threshold value. One of the pollution sources can attribute to the
Menzel Bourguiba landfill, but the other is probably due to a non-point pollution
of Hg contained agro-medicals such as pesticides in the eastward-southward
agricultural zone.
Consequently, sediment contamination by 11 PTEs, Ba, Pb, Zn, As, Se, Al, Cr, Co,
Mn, V, and Hg, can be recognized in the Bizerte lagoon, of which concentrations indicate
toxic level (Table 2).
(i) ‘peak’ type
(ii) ‘plateau’ type
(iii) other
Table 2: Summary of PTEs contamination in Bizerte lagoon.
Constituting
Toxic level of
Possible
PTEs
concentration
source(s)
Sb, As, Ba, Cd,
Ba, Pb, Zn, As,
Menzel Bourguiba
Cu, Pb, Mo, Se,
Se
landfill
Ag, Tl, U, and Zn
Al, Cr, Co, Fe, Mn, Al, Cr, Co, Mn, Menzel Bourguiba,
Ni, and V
and V
Tinja, and its north
Hg
Hg
Menzel Bourguiba
landfill and souther
and eastern
agricultural zone
21
Migration
in the basin
Local pollution,
not widely spread
Widely spread into
lagoon basin,
adsorption by clay
and organic
matters
Local pollution,
Not widely spread
Upper Layer sediments
1669.031
3338.062
5007.092
6676.123
8345.153
10014.184
11683.214
13352.246
15021.276
16690.306
above
Lower Layer sediments
1515.070
3030.139
4545.209
6060.278
7575.348
9090.418
10605.487
12120.556
13635.625
15150.696
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(a): The special variation of aqua regia extracted Al concentration (AET=180000).
22
N
Upper Layer sediments
0.207
0.329
0.451
0.573
0.695
0.817
0.939
1.061
1.183
1.305
above
Lower Layer sediments
0.466
0.649
0.831
1.014
1.196
1.379
1.561
1.744
1.926
2.109
above
Bizerte
Menzel Bourguiba
N
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(b): The special variation of aqua regia extracted Sb concentration (AET=9.3).
23
Upper Layer sediments
4.129
8.259
12.388
16.517
20.646
24.776
28.905
33.034
37.163
41.293
above
Lower Layer sediments
5.298
10.595
15.893
21.191
26.488
31.786
37.083
42.381
47.679
52.976
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(c): The special variation of aqua regia extracted As concentration (AET=35).
24
N
Upper Layer sediments
62.425
79.705
96.985
114.265
131.545
148.825
166.105
183.385
200.665
217.945
above
Lower Layer sediments
79.299
110.137
140.974
171.812
202.650
233.488
264.325
295.163
326.001
356.839
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(d): The special variation of aqua regia extracted Ba concentration (AET=48).
25
N
Upper Layer sediments
0.369
0.505
0.640
0.776
0.912
1.048
1.184
1.320
1.456
1.592
above
Lower Layer sediments
0.366
0.491
0.616
0.741
0.866
0.991
1.116
1.241
1.366
1.492
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(e): The special variation of aqua regia extracted Cd concentration (AET=3).
26
N
Upper Layer sediments
4.620
9.240
13.860
18.480
23.100
27.720
32.340
36.960
41.580
46.200
above
Lower Layer sediments
4.989
9.978
14.966
19.955
24.944
29.933
34.921
39.910
44.899
49.888
above
Bizerte
Menzel Bourguiba
N
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(f): The special variation of aqua regia extracted Cr concentration (AET=62).
27
Upper Layer sediments
0.869
1.738
2.607
3.476
4.345
5.214
6.083
6.952
7.821
8.690
above
Lower Layer sediments
0.962
1.924
2.885
3.847
4.809
5.771
6.733
7.695
8.656
9.618
above
Bizerte
Menzel Bourguiba
N
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(g): The special variation of aqua regia extracted Co concentration (AET=10).
28
Upper Layer sediments
8.597
17.193
25.790
34.386
42.983
51.579
60.176
68.772
77.369
85.966
above
Lower Layer sediments
7.538
15.077
22.615
30.153
37.692
45.230
52.768
60.306
67.845
75.383
above
Bizerte
Menzel Bourguiba
N
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(h): The special variation of aqua regia extracted Cu concentration (AET=390).
29
Upper Layer sediments
5108.210
10216.420
15324.630
20432.840
25541.050
30649.260
35757.470
40865.683
45973.890
51082.100
above
Lower Layer sediments
6548.389
13096.780
19645.167
26193.556
32741.945
39290.335
45838.720
52387.113
58935.503
65483.890
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(i): The special variation of aqua regia extracted Fe concentration (AET=220000).
30
N
Upper Layer sediments
35.857
71.715
107.572
143.429
179.287
215.144
251.002
286.859
322.716
358.574
above
Lower Layer sediments
49.262
98.524
147.786
197.048
246.310
295.572
344.834
394.096
443.359
492.621
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(j): The special variation of aqua regia extracted Pb concentration (AET=400).
31
N
Upper Layer sediments
56.877
113.754
170.631
227.509
284.386
341.263
398.140
455.017
511.894
568.771
above
Lower Layer sediments
114.915
229.829
344.744
459.658
574.573
689.487
804.402
919.316
1034.231
1149.145
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(k): The special variation of aqua regia extracted Mn concentration (AET=1100).
32
N
Upper Layer sediments
1.469
2.373
3.278
4.183
5.087
5.992
6.897
7.802
8.706
9.611
above
Lower Layer sediments
1.920
3.299
4.677
6.055
7.433
8.811
10.189
11.567
12.945
14.323
above
Bizerte
Menzel Bourguiba
N
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(l): The special variation of aqua regia extracted Mo concentration (N.Test Threshold=40).
33
Upper Layer sediments
0.074
0.112
0.151
0.189
0.228
0.266
0.304
0.343
0.381
0.420
above
Lower Layer sediments
0.088
0.158
0.229
0.299
0.369
0.439
0.509
0.579
0.649
0.720
above
Bizerte
Menzel Bourguiba
N
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(m): The special variation of aqua regia extracted Hg concentration (AET=0.41).
34
Upper Layer sediments
2.247
4.494
6.740
8.987
11.234
13.481
15.728
17.975
20.221
22.468
above
Lower Layer sediments
2.433
4.867
7.300
9.733
12.167
14.600
17.033
19.467
21.900
24.333
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(n): The special variation of aqua regia extracted Ni concentration (AET=110).
35
N
Upper Layer sediments
0.233
0.467
0.700
0.933
1.166
1.400
1.633
1.866
2.100
2.333
above
Lower Layer sediments
0.863
1.047
1.231
1.415
1.598
1.782
1.966
2.150
2.334
2.518
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(o): The special variation of aqua regia extracted Se concentration (AET=1).
36
N
Upper Layer sediments
0.103
0.178
0.253
0.329
0.404
0.479
0.555
0.630
0.705
0.780
above
Lower Layer sediments
0.069
0.139
0.208
0.277
0.347
0.416
0.485
0.554
0.624
0.693
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(p): The special variation of aqua regia extracted Ag concentration (AET=3.1).
37
N
Upper Layer sediments
0.044
0.088
0.132
0.176
0.220
0.264
0.308
0.351
0.395
0.439
above
Lower Layer sediments
0.045
0.091
0.136
0.182
0.227
0.272
0.318
0.363
0.409
0.454
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(q): The special variation of aqua regia extracted Tl concentration.
38
N
Upper Layer sediments
0.218
0.436
0.653
0.871
1.089
1.307
1.524
1.742
1.960
2.178
above
Lower Layer sediments
0.799
1.253
1.706
2.160
2.613
3.067
3.520
3.974
4.427
4.881
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(r): The special variation of aqua regia extracted U concentration.
39
N
Upper Layer sediments
5.850
11.699
17.549
23.399
29.249
35.098
40.948
46.798
52.647
58.497
above
Lower Layer sediments
6.651
13.303
19.954
26.606
33.257
39.909
46.560
53.212
59.863
66.515
above
Bizerte
Menzel Bourguiba
N
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(s): The special variation of aqua regia extracted V concentration (AET=57).
40
Upper Layer sediuments
242.339
423.151
603.963
784.775
965.587
1146.399
1327.211
1508.023
1688.835
1869.647
above
Lower Layer sediments
231.300
437.849
644.397
850.945
1057.494
1264.042
1470.590
1677.138
1883.687
2090.235
above
Bizerte
Menzel Bourguiba
Menzel Abderahmen
Bizerte Lagoon
Menzel Jmil
Figure 5(t): The special variation of aqua regia extracted Zn concentration (AET=410).
41
N
V. Conclusions
(1) The bottom sediments of Bizerte lagoon are basically divided into two layers, the Upper
Layer (oxidized surface sediments) and the Lower Layer (anoxic sediment repository). The
PTEs in the former are not completely settled but those in the later are relatively stabilized as
sulfides under an anoxic condition.
(2) The pattern of PTEs distribution in the lagoon bottom sediments is classified into three
types, (i) ‘peak’ type, (ii) ‘plateau’ type, and (iii) the other.
(3) The contamination with 11 PTEs, Ba, Pb, Zn, As, Se, Al, Cr, Co, Mn, V, and Hg, could be
recognized in the lagoon bottom sediments, of which concentration levels are above the
threshold values of toxicity.
Acknowledgements
We thank Ahmed Ghrabi and all the members of RPP-SEPMCL leg Bizerte2002, for their
supports in various ways. This collaborative work is one of the outcomes by the technical
cooperation programme between INRST and JICA (2000-2002).
References
Alloway, B.J., 1995(ed.), Heavy Metals in Soils, 2nd Edition. Blackie Academic &
Professional, Chapman & Hall, London, 368p.
Edwards, R., Lepp, N.W. and Jones, K.C., 1995, Other less abundant elements of potential
environmental significance. In Alloway (ed.), Heavy Metals in Soils, 2nd Edition. 306352, Blackie Academic & Professional, Chapman & Hall, London, 368p.
de Groot, A.J., 1995, Metals and sediments: A global perspective. In Allen, H.E. (ed.), Metal
Contaminated Aquatic Sediments, 1-20, Ann Arbor Press, 292p.
Hamdi, H., Jedidi, N., Yoshida, M., Mosbahi, M. and Ghrabi, A., 2002, Quelques propriétés
physico-chimiques des sédiments du Lac Bizerte. (in this volume)
NOAA, 1999, Screening Quick Reference Tables (SQuiRTs). Coastal Protection &
Restoration Division, NOAA, USA.
Ouakad, M., 2000, Caractères sédimentologiques et géochimiques des dépôts superficiels de
la lagune de Bizerte (Tunisie septentrionale). p.187-194.
Shipboard Scientists Team RPP-SEPMCL leg Bizerte2002, 2002, Off-shore Sampling Survey
of Bizerte Lagoon, March 2002 - Leg-related information and in situ observation data.
(in this volume)
Ure, A.M., 1995, Methods of analysis for heavy metals in soils. In Alloway (ed.), Heavy
Metals in Soils, 2nd Edition. 58-102, Blackie Academic & Professional, Chapman &
Hall, London, 368p.
42
Appendix 1: Results of aqua regia extracted pseudo-total chemical composition of the Lower Layer’s sediments
in Bizerte lagoon (LB-01L to 50L).
ELEMENT
unit
Detec.Limit
LB-01L
LB-02L
LB-03L
LB-04L
LB-05L
LB-06L
LB-07L
LB-08L
LB-09L
LB-10L
LB-11L
LB-12L
LB-13L
LB-14L
LB-15L
LB-16L
LB-17L
LB-18L
LB-19L
LB-20L
LB-21L
LB-22L
LB-23L
LB-24L
LB-25L
LB-26L
LB-27L
LB-28L
LB-29L
LB-30L
LB-31L
LB-32L
LB-33L
LB-34L
LB-35L
LB-36L
LB-37L
LB-38L
LB-39L
LB-40L
LB-41L
LB-42L
LB-43L
LB-44L
LB-45L
LB-46L
LB-47L
LB-48L
LB-49L
LB-50L
B
ppm
1
46
46
37
35
33
40
43
62
51
53
108
136
95
44
47
39
41
46
40
36
37
38
30
43
35
44
40
36
39
41
44
39
51
85
71
59
56
85
54
55
29
49
38
47
40
43
49
44
43
34
Na
%
0.001
2.487
2.234
2.321
2.255
2.124
2.048
2.495
2.650
1.947
1.292
2.133
2.969
2.267
1.198
2.256
2.369
2.238
2.318
2.125
1.513
2.569
2.617
1.660
2.000
1.800
1.991
1.939
1.951
1.781
1.861
2.467
1.964
1.648
4.044
1.723
2.053
1.535
1.856
1.050
1.138
1.639
1.984
1.482
1.991
1.524
1.727
1.819
1.994
1.536
1.488
Mg
%
0.01
0.80
0.79
0.72
0.75
0.76
0.70
0.75
0.80
0.69
0.55
1.08
1.15
0.92
0.75
0.78
0.71
0.80
0.79
0.76
0.61
0.75
0.74
0.63
0.71
0.76
0.77
0.71
0.75
0.74
0.77
0.76
0.75
0.62
0.89
0.71
0.73
0.81
0.87
0.64
0.62
0.44
0.77
0.70
0.76
0.73
0.76
0.76
0.76
0.72
0.57
Al
%
0.01
1.35
1.66
1.33
1.49
1.40
1.44
1.56
1.41
1.42
0.59
1.20
1.18
0.96
1.66
1.71
1.26
1.44
1.69
1.52
1.08
1.41
1.42
0.49
1.41
1.55
1.49
1.44
1.57
1.41
1.60
1.52
1.45
0.80
1.34
1.11
1.41
0.92
0.73
0.93
0.66
0.56
1.56
1.44
1.47
1.55
1.62
1.58
1.53
1.48
1.13
P
%
0.001
0.078
0.088
0.068
0.074
0.074
0.064
0.066
0.071
0.060
0.052
0.088
0.090
0.089
0.072
0.072
0.058
0.070
0.068
0.063
0.071
0.068
0.066
0.038
0.078
0.089
0.074
0.061
0.066
0.065
0.069
0.066
0.069
0.059
0.068
0.066
0.065
0.093
0.066
0.083
0.072
0.037
0.066
0.056
0.068
0.060
0.068
0.067
0.065
0.066
0.051
S
%
0.01
0.73
0.64
0.58
0.33
0.45
0.38
0.44
1.20
0.92
0.72
2.05
2.28
1.48
0.30
0.40
1.19
0.51
0.50
0.44
0.31
0.36
0.42
0.47
0.49
0.72
0.44
0.39
0.39
0.43
0.36
0.45
0.34
0.84
1.70
1.05
1.42
0.43
1.10
1.11
0.73
0.46
0.39
0.36
0.38
0.35
0.51
0.32
0.34
0.38
0.51
K
%
0.01
0.56
0.62
0.57
0.61
0.61
0.58
0.60
0.56
0.54
0.30
0.49
0.57
0.59
0.60
0.65
0.54
0.62
0.62
0.63
0.41
0.57
0.57
0.22
0.55
0.58
0.59
0.56
0.60
0.58
0.62
0.63
0.60
0.35
0.61
0.43
0.57
0.33
0.30
0.32
0.22
0.23
0.63
0.52
0.61
0.58
0.62
0.60
0.58
0.57
0.44
Ca
%
0.01
8.33
7.28
6.82
6.95
7.35
6.03
6.16
9.08
8.95
10.86
12.66
12.55
14.69
11.03
8.15
9.21
6.66
7.04
6.80
11.10
8.58
7.63
21.54
11.43
9.85
8.71
7.96
8.16
7.58
7.94
7.87
8.30
18.40
7.82
14.41
9.97
15.20
13.78
10.88
12.44
22.90
8.80
8.39
8.96
8.40
8.89
9.09
8.93
9.08
16.75
Sc
Ti
ppm
%
0.1 0.001
3.5 0.001
4.0 0.001
3.6 0.001
4.0 0.001
3.9 0.001
3.8 0.001
4.1 0.001
3.7 0.002
3.5 0.001
1.0 0.003
2.6 0.003
2.9 0.002
2.1 0.002
4.7 0.002
4.4 0.002
3.4 0.001
3.7 0.001
4.2 0.001
3.9 0.001
3.1 0.002
3.9 0.001
3.7 0.001
1.1 0.001
3.6 0.001
4.0 0.001
4.0 0.001
3.7 0.001
4.3 0.001
3.7 0.001
4.1 0.001
4.0 0.001
3.9 0.001
1.9 0.001
3.3 0.001
2.6 0.001
3.5 0.001
2.0 0.001
2.1 0.001
2.5 0.002
1.7 0.002
1.2 < .001
3.9 0.001
3.5 0.001
3.9 0.001
4.0 0.001
4.4 0.001
4.0 0.002
4.2 0.001
4.0 0.001
2.9 0.001
43
V
ppm
2
47
54
43
49
49
46
48
47
49
28
72
64
52
47
51
38
49
53
48
37
48
47
18
46
45
49
45
50
46
51
48
48
28
41
38
43
36
26
31
21
17
48
44
47
45
49
49
47
48
38
Cr
ppm
0.5
39.4
45.4
37.7
41.7
39.6
39.6
41.6
39.7
38.7
21.3
59.3
47.6
31.6
46.0
45.6
37.0
40.4
46.2
42.4
32.0
38.4
39.5
12.0
38.7
48.5
41.1
39.0
43.5
38.7
43.3
41.0
40.8
24.1
36.5
32.4
40.1
23.8
25.8
33.5
25.5
14.0
41.1
36.9
40.1
39.5
43.2
40.9
40.5
40.5
29.3
Mn
ppm
1
353
330
290
327
349
296
287
264
312
866
1495
685
618
276
325
401
400
320
305
376
356
328
245
370
247
333
321
284
331
295
278
285
228
212
203
214
300
191
154
134
198
273
241
284
285
334
295
283
294
246
Fe
%
0.01
2.41
2.70
2.35
2.49
2.55
2.37
2.52
2.71
2.79
3.70
7.64
4.75
3.62
2.57
2.75
2.39
2.49
2.58
2.46
2.14
2.50
2.47
0.80
2.55
2.60
2.57
2.40
2.57
2.42
2.56
2.41
2.44
1.50
2.40
2.05
2.45
2.18
1.41
1.99
1.50
0.84
2.38
2.19
2.39
2.32
2.56
2.51
2.47
2.50
1.93
Co
ppm
0.1
9.0
9.7
8.9
10.5
10.5
9.1
9.7
10.3
9.0
3.9
9.4
9.7
6.5
10.9
10.1
9.2
9.8
10.3
10.0
7.2
9.7
9.2
2.9
9.1
9.9
9.8
9.1
10.5
9.4
10.5
9.6
9.7
6.1
7.5
5.9
8.2
5.1
3.9
5.7
3.7
3.6
9.3
8.4
9.5
9.3
10.0
9.3
9.4
9.6
8.0
Ni
ppm
0.1
22.3
24.7
20.9
24.0
23.9
21.6
23.1
24.6
20.8
9.4
26.0
25.7
15.6
28.8
25.3
21.1
22.6
23.5
24.0
17.3
22.3
22.1
5.1
21.6
26.4
22.6
21.8
24.6
21.7
24.3
22.9
22.9
13.5
21.3
16.7
21.0
10.7
11.2
17.8
13.3
6.3
22.2
20.4
22.7
21.5
23.8
22.6
22.8
22.9
16.0
Cu
Zn
ppm
ppm
0.01
0.1
21.73 178.3
21.78 192.6
17.84 162.7
17.17 182.4
16.21 172.0
16.69 159.8
16.95 170.8
40.46 217.1
23.04 219.9
18.80 579.1
70.64 2452.3
67.02 1321.2
25.52 621.1
16.44 168.2
16.96 176.9
18.78 200.2
17.39 174.5
16.58 175.4
15.25 165.4
11.50 150.8
15.21 173.0
14.40 168.1
6.58
72.9
15.82 176.2
16.97 136.0
15.70 179.6
14.00 158.7
15.27 175.4
14.60 160.2
15.88 180.3
14.86 164.8
15.50 178.8
15.24 115.5
26.27 188.6
18.17 186.5
20.02 143.6
11.41 119.5
17.93 153.0
19.11 144.8
17.57 253.0
6.27
62.4
15.09 163.6
13.80 155.0
14.87 168.5
13.67 153.5
14.24 165.3
14.44 170.2
14.47 171.6
15.21 176.4
12.32 129.1
Appendix 1 (continued): Results of aqua regia extracted pseudo-total chemical composition of the Lower
Layer’s sediments in Bizerte lagoon (LB-01L to 50L).
ELEMENT
unit
Detec.Limit
LB-01L
LB-02L
LB-03L
LB-04L
LB-05L
LB-06L
LB-07L
LB-08L
LB-09L
LB-10L
LB-11L
LB-12L
LB-13L
LB-14L
LB-15L
LB-16L
LB-17L
LB-18L
LB-19L
LB-20L
LB-21L
LB-22L
LB-23L
LB-24L
LB-25L
LB-26L
LB-27L
LB-28L
LB-29L
LB-30L
LB-31L
LB-32L
LB-33L
LB-34L
LB-35L
LB-36L
LB-37L
LB-38L
LB-39L
LB-40L
LB-41L
LB-42L
LB-43L
LB-44L
LB-45L
LB-46L
LB-47L
LB-48L
LB-49L
LB-50L
Ga
ppm
0.1
4.6
5.6
4.5
5.1
4.9
5.0
5.4
4.8
4.9
1.9
4.2
4.1
3.3
6.0
5.9
4.5
5.0
5.8
5.3
3.8
4.9
5.0
1.5
4.9
5.7
5.3
5.1
5.5
4.9
5.6
5.4
5.1
2.7
4.4
3.7
5.0
3.2
2.5
3.3
2.3
1.8
5.7
5.0
5.4
5.6
6.0
5.8
5.6
5.3
4.1
As
ppm
0.1
15.0
20.0
14.7
15.2
14.0
13.2
14.0
20.2
18.7
22.3
58.3
39.2
29.7
15.4
15.4
17.5
13.2
17.3
13.6
15.2
14.9
13.4
10.4
17.5
13.3
16.1
13.2
15.8
13.3
14.5
15.5
12.6
15.2
15.0
20.3
24.0
31.2
15.6
16.5
15.5
9.2
12.8
12.1
13.1
14.6
16.8
13.2
13.3
13.0
14.6
Se
ppm
0.1
0.9
1.1
0.9
0.8
1.0
0.8
0.5
0.7
0.8
1.1
2.0
2.0
1.2
0.7
0.6
1.2
0.9
1.0
0.8
0.8
0.6
0.8
1.0
0.9
1.1
0.8
1.0
1.0
0.7
0.9
1.0
0.9
1.3
1.5
1.2
1.3
0.9
1.0
1.2
1.0
0.9
0.9
0.8
0.8
0.8
0.8
0.8
0.6
0.9
0.7
Sr
ppm
0.5
436.1
367.3
331.3
319.0
303.1
264.1
314.6
609.2
478.4
984.1
734.3
998.7
1490.9
425.8
352.2
561.9
280.5
328.3
300.7
618.6
536.5
353.8
1551.9
553.8
443.6
421.5
354.2
332.6
312.2
322.0
374.2
410.2
1414.9
376.3
837.2
554.1
1742.3
1082.0
595.1
769.3
2027.5
387.9
357.1
387.8
333.5
374.9
397.4
373.8
377.5
1262.1
Mo
ppm
0.01
1.34
1.44
1.26
0.95
1.10
0.98
1.30
4.38
3.02
3.99
10.55
11.14
10.73
1.70
1.03
2.06
1.14
1.08
0.97
0.99
0.89
0.91
2.81
1.15
1.29
0.93
1.10
0.89
0.98
0.92
0.97
0.89
1.92
4.80
1.84
2.08
0.87
4.69
2.08
1.02
1.07
0.96
0.93
0.98
0.88
1.16
0.90
0.93
1.05
1.19
Ag
ppb
2
191
186
155
137
125
118
140
214
201
123
576
673
193
80
114
109
133
132
117
78
112
114
49
114
141
114
102
108
105
114
112
117
108
167
177
175
91
264
238
174
51
119
103
119
106
108
104
107
117
99
Cd
ppm
0.01
0.37
0.34
0.29
0.30
0.27
0.28
0.28
0.36
0.41
0.46
1.48
1.14
0.68
0.46
0.30
0.36
0.28
0.28
0.27
0.26
0.28
0.30
0.13
0.29
0.31
0.29
0.26
0.29
0.27
0.27
0.27
0.26
0.29
0.47
0.43
0.37
0.16
0.49
0.43
0.39
0.16
0.26
0.26
0.28
0.28
0.31
0.25
0.30
0.33
0.25
Sb
ppm
0.02
0.38
0.38
0.33
0.39
0.36
0.34
0.33
0.66
0.54
0.79
1.80
1.81
0.98
0.43
0.35
0.31
0.31
0.35
0.32
0.33
0.33
0.33
0.29
0.34
0.27
0.31
0.31
0.33
0.29
0.32
0.34
0.32
0.37
0.42
0.43
0.41
0.29
0.52
0.35
0.31
0.24
0.33
0.31
0.36
0.33
0.32
0.31
0.33
0.34
0.31
Te
ppm
0.02
0.05
0.06
0.05
0.04
0.05
0.04
0.05
0.07
0.05
0.09
0.12
0.14
0.14
0.07
0.04
0.05
0.05
0.06
0.04
0.09
0.07
0.05
0.12
0.07
0.05
0.05
0.05
0.07
0.05
0.03
0.05
0.05
0.12
0.04
0.08
0.07
0.13
0.10
0.05
0.06
0.13
0.05
0.04
0.06
0.03
0.05
0.04
0.04
0.05
0.10
44
Ba
ppm
0.5
76.0
75.0
66.3
57.6
54.1
48.9
53.7
72.5
67.0
37.6
74.5
61.1
61.4
106.1
57.3
71.8
56.5
62.8
56.2
112.2
52.8
51.6
40.1
62.1
81.8
60.3
51.1
54.9
50.3
55.1
56.0
52.6
56.7
51.1
96.7
70.5
60.1
76.4
94.8
89.1
53.8
53.5
51.3
57.1
50.9
53.7
53.2
52.0
54.0
61.4
La
ppm
0.5
9.9
10.3
9.1
10.5
9.9
9.3
9.8
9.4
9.8
4.1
7.5
8.0
6.8
11.9
10.9
8.8
9.5
10.4
9.6
8.9
9.9
10.0
6.3
10.3
12.9
10.3
9.9
10.4
9.5
10.6
10.1
10.1
8.4
7.9
9.5
9.5
7.8
8.8
9.5
8.6
7.1
9.8
9.2
10.2
9.5
10.2
10.2
10.2
10.0
10.1
W
ppm
0.2
0.1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
0.2
0.4
0.2
0.2
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
Au
ppb
0.2
5.4
4.0
2.6
2.3
1.8
2.5
1.9
2.3
2.0
4.9
25.4
21.4
7.6
1.2
1.9
1.6
3.3
2.0
1.7
2.5
1.9
1.5
0.8
1.4
2.1
0.9
1.6
1.9
1.1
1.9
1.8
2.5
5.6
11.6
12.8
3.5
3.6
9.6
17.8
9.5
1.2
2.9
2.9
3.1
2.0
1.4
2.7
2.2
1.4
1.5
Hg
ppb
5
128
129
110
92
81
73
97
169
165
102
449
351
145
45
106
168
107
104
85
101
90
97
45
86
186
120
83
93
86
97
100
99
79
104
181
389
94
200
211
157
42
92
93
99
99
114
91
94
95
93
Tl
ppm
0.02
0.15
0.17
0.14
0.15
0.14
0.14
0.17
0.19
0.18
0.13
0.41
0.42
0.19
0.20
0.17
0.16
0.14
0.16
0.15
0.11
0.14
0.14
0.09
0.13
0.12
0.15
0.14
0.14
0.14
0.15
0.15
0.14
0.18
0.21
0.12
0.15
0.07
0.11
0.12
0.13
0.11
0.14
0.13
0.15
0.15
0.15
0.15
0.15
0.14
0.12
Pb
ppm
0.01
68.74
96.09
66.97
99.22
69.92
60.06
65.38
68.88
69.62
136.56
532.84
369.77
159.94
44.39
67.89
97.08
64.64
103.46
67.98
47.42
66.50
64.38
21.05
55.90
44.02
62.45
60.54
69.61
64.37
69.56
68.49
63.57
39.06
55.14
51.74
56.57
40.55
47.25
41.01
39.38
21.87
59.15
54.31
61.84
58.24
64.22
60.71
59.59
59.55
45.19
Bi
ppm
0.02
0.34
0.36
0.32
0.34
0.32
0.27
0.29
0.28
0.33
0.52
2.77
1.66
0.47
0.16
0.32
0.26
0.31
0.36
0.32
0.21
0.31
0.30
0.08
0.26
0.22
0.32
0.30
0.35
0.32
0.35
0.35
0.33
0.19
0.25
0.27
0.25
0.19
0.20
0.20
0.17
0.10
0.34
0.32
0.34
0.33
0.35
0.32
0.30
0.29
0.22
Th
ppm
0.1
3.8
4.3
3.9
4.4
4.2
3.8
4.4
3.8
3.8
0.9
2.7
3.0
1.8
4.0
4.4
3.6
3.8
4.2
4.1
3.1
3.8
3.9
1.1
3.7
4.5
3.9
3.8
4.2
3.8
4.1
4.0
3.8
1.5
3.4
2.9
3.7
2.0
2.6
3.3
2.3
1.2
3.8
3.4
3.9
3.9
4.3
4.3
4.0
4.0
3.1
U
ppm
0.1
1.3
1.6
1.4
1.6
1.5
1.2
1.4
2.4
2.0
1.2
3.6
4.7
2.6
1.0
1.5
1.5
1.4
1.7
1.6
0.9
1.3
1.4
1.2
1.4
1.6
1.2
1.5
1.6
1.5
1.6
1.6
1.6
1.6
1.8
1.6
2.0
1.1
2.7
1.6
1.2
1.3
1.4
1.4
1.5
1.8
1.7
1.3
1.3
1.3
1.5
Appendix 2: Results of aqua regia extracted pseudo-total chemical composition of the Lower Layer’s sediments
in Bizerte lagoon (LB-51L to 100L).
ELEMENT
unit
Detec.Limit
LB-51L
LB-52L
LB-53L
LB-54L
LB-55L
LB-56L
LB-57L
LB-58L
LB-59L
LB-60L
LB-61L
LB-62L
LB-63L
LB-64L
LB-65L
LB-66L
LB-67L
LB-68L
LB-69L
LB-70L
LB-71L
LB-72L
LB-73L
LB-74L
LB-75L
LB-76L
LB-77L
LB-78L
LB-79L
LB-80L
LB-81L
LB-82L
LB-83L
LB-84L
LB-85L
LB-86L
LB-87L
LB-88L
LB-89L
LB-90L
LB-91L
LB-92L
LB-93L
LB-94L
LB-95L
LB-96L
LB-97L
LB-98L
LB-99L
LB-100L
B
ppm
1
27
31
33
38
39
51
43
38
46
39
73
50
62
37
50
45
29
39
35
40
25
28
29
35
34
45
44
54
68
58
34
89
29
95
89
27
50
46
52
49
98
193
103
50
90
78
80
133
19
101
Na
%
0.001
1.070
0.586
1.144
1.299
1.338
2.059
1.661
1.730
1.690
1.552
1.453
1.484
2.009
1.607
2.352
1.638
1.214
1.411
1.060
0.812
0.475
0.893
0.540
0.857
1.030
0.985
1.714
2.373
1.792
1.258
1.182
1.664
0.878
1.616
2.428
0.910
2.271
2.113
2.149
2.136
3.157
2.929
2.487
2.310
2.751
2.542
1.810
3.473
0.718
2.696
Mg
%
0.01
0.29
0.49
0.64
0.68
0.64
0.79
0.72
0.72
0.71
0.67
0.45
0.31
0.63
0.49
0.82
0.69
0.67
0.70
0.59
0.63
0.48
0.38
0.50
0.61
0.59
0.67
0.67
0.80
0.44
0.33
0.46
0.61
0.15
0.49
0.71
0.26
0.65
0.86
0.85
0.85
0.95
0.75
0.84
0.84
0.90
0.72
0.53
0.91
0.12
0.80
Al
%
0.01
0.50
0.72
1.21
1.41
1.32
1.55
1.40
1.34
1.27
0.94
0.62
0.37
0.61
0.68
1.57
1.32
1.17
1.30
1.07
1.19
0.63
0.37
0.70
0.99
1.09
1.25
1.19
1.43
0.61
0.36
0.60
1.19
0.13
0.67
1.30
0.51
1.26
1.81
1.80
1.85
1.66
1.37
1.72
1.86
1.75
1.48
1.01
1.76
0.17
1.32
P
%
0.001
0.025
0.042
0.064
0.065
0.060
0.086
0.064
0.068
0.068
0.046
0.041
0.032
0.052
0.037
0.079
0.063
0.059
0.063
0.054
0.059
0.046
0.037
0.050
0.061
0.057
0.059
0.058
0.067
0.043
0.032
0.041
0.075
0.019
0.051
0.063
0.025
0.055
0.070
0.071
0.066
0.066
0.068
0.063
0.062
0.065
0.051
0.050
0.057
0.015
0.065
S
%
0.01
0.38
0.52
0.31
0.38
0.32
0.38
0.44
0.34
0.35
0.62
0.59
0.50
0.51
0.48
0.41
0.42
0.36
0.37
0.43
0.42
0.26
0.27
0.27
0.32
0.33
0.48
0.62
0.76
0.68
0.47
0.56
0.81
0.11
0.70
1.27
0.48
0.97
0.63
0.47
0.69
1.09
0.85
1.49
1.65
1.47
1.83
1.11
2.07
0.12
1.46
K
%
0.01
0.19
0.24
0.46
0.55
0.47
0.63
0.55
0.51
0.49
0.36
0.33
0.23
0.32
0.28
0.64
0.54
0.44
0.49
0.43
0.45
0.22
0.14
0.25
0.37
0.43
0.49
0.47
0.60
0.33
0.19
0.25
0.56
0.10
0.33
0.55
0.21
0.51
0.66
0.70
0.65
0.59
0.55
0.61
0.67
0.64
0.57
0.45
0.69
0.09
0.54
Ca
%
0.01
18.76
12.81
10.25
10.36
9.20
10.07
9.87
9.65
15.41
20.82
20.64
21.85
23.92
23.22
10.33
10.50
11.03
12.07
12.94
12.28
14.88
14.44
14.36
13.61
12.14
11.58
12.70
11.82
20.34
11.40
22.23
12.12
1.56
12.04
14.12
13.05
17.53
6.99
6.62
6.83
7.35
9.68
6.51
7.17
7.87
8.32
17.92
6.42
8.68
13.06
45
Sc
Ti
ppm
%
0.1 0.001
1.3 0.001
2.8 0.002
3.7 0.001
3.9 0.001
3.6 0.001
4.1 0.002
4.0 0.001
3.6 0.001
2.8 0.001
2.1 0.001
1.5 0.001
1.0 < .001
1.3 0.001
1.6 0.001
4.0 0.001
3.7 0.001
3.6 0.001
3.8 0.001
3.5 0.002
3.9 0.002
2.7 0.002
1.8 0.003
2.9 0.002
3.4 0.001
3.5 0.002
3.7 0.002
3.1 0.001
3.7 0.001
1.6 0.001
1.0 0.001
1.5 0.001
2.9 0.001
0.4 0.001
1.6 0.001
3.0 0.001
1.2 0.001
3.1 0.001
4.6 0.001
4.7 0.002
4.7 0.002
4.1 0.002
3.3 0.001
4.3 0.001
4.7 0.001
4.2 0.001
3.7 0.001
2.6 0.001
4.5 0.001
0.4 0.001
3.3 0.001
V
ppm
2
18
24
37
45
37
49
44
42
38
30
20
15
18
20
46
41
38
41
36
39
26
15
27
34
34
38
35
43
22
13
17
31
7
23
43
18
40
54
54
54
53
47
53
55
56
47
35
55
8
47
Cr
ppm
0.5
13.5
20.2
31.3
37.7
34.6
42.6
38.1
37.0
32.6
24.2
17.4
11.1
15.8
18.0
41.9
36.8
31.3
34.0
30.1
33.4
20.6
13.5
21.9
28.0
30.6
34.5
32.0
37.7
19.2
11.6
16.6
36.1
5.2
19.6
36.1
13.8
34.5
46.4
45.7
47.2
42.4
37.0
42.6
49.0
44.8
39.2
28.3
47.1
4.8
37.9
Mn
ppm
1
144
282
263
281
271
429
284
322
271
280
190
129
226
214
318
256
259
278
263
287
280
191
268
276
251
258
224
232
138
91
160
138
30
127
179
94
200
283
301
274
247
201
208
261
233
202
163
212
34
198
Fe
%
0.01
0.93
1.76
2.23
2.40
2.12
2.58
2.39
2.26
1.81
1.39
0.96
0.66
0.84
0.95
2.48
2.18
2.20
2.30
2.01
2.28
1.77
1.01
1.72
2.03
1.95
2.19
2.00
2.27
1.05
0.65
1.01
1.72
0.21
1.11
2.09
0.82
2.04
2.91
2.83
2.95
2.81
2.12
2.94
3.15
2.92
2.57
1.85
2.87
0.21
2.41
Co
ppm
0.1
3.7
8.1
8.9
9.5
8.2
9.6
9.1
8.8
7.0
6.6
4.3
3.8
3.3
4.5
9.5
8.6
8.4
7.9
7.7
7.8
5.0
3.1
5.6
6.9
7.4
7.4
7.4
8.1
5.0
2.7
4.7
5.8
0.7
4.3
6.8
3.1
8.6
10.8
10.7
10.5
10.5
8.4
10.8
11.7
11.4
8.9
7.0
10.7
0.5
8.2
Ni
ppm
0.1
7.4
15.0
21.8
22.5
19.1
23.6
23.4
21.8
16.4
12.2
10.7
7.2
7.5
7.4
23.5
20.4
19.9
19.2
17.8
19.0
12.7
7.8
13.1
16.1
17.2
18.7
18.0
21.0
12.2
7.9
8.9
22.6
2.7
11.5
18.7
6.6
18.4
26.3
25.4
25.6
25.0
21.4
26.4
27.7
24.8
22.3
15.5
24.8
1.9
20.6
Cu
ppm
0.01
8.20
8.57
14.62
15.33
12.40
15.29
14.47
15.32
13.16
10.12
10.63
8.64
8.75
7.69
16.74
15.25
13.65
13.74
12.49
13.86
9.60
5.87
9.30
12.12
12.08
14.45
15.93
20.67
13.14
9.20
10.57
35.45
6.48
16.17
19.00
8.13
16.09
20.14
18.35
19.68
24.23
19.68
20.49
20.15
21.55
17.69
12.89
21.56
3.02
21.00
Zn
ppm
0.1
70.2
107.2
141.2
162.2
144.6
175.1
155.7
161.4
138.4
96.8
73.0
45.7
70.5
70.2
177.2
156.8
158.2
175.0
144.4
163.3
136.1
82.0
133.6
159.4
144.8
153.3
151.8
184.9
83.3
61.3
86.6
154.4
32.6
104.7
166.2
71.0
148.9
198.7
191.1
191.3
198.5
159.0
191.4
185.7
205.1
168.8
122.3
208.8
23.2
181.0
Appendix 2 (continued): Results of aqua regia extracted pseudo-total chemical composition of the Lower
Layer’s sediments in Bizerte lagoon (LB-51L to 100L).
ELEMENT
unit
Detec.Limit
LB-51L
LB-52L
LB-53L
LB-54L
LB-55L
LB-56L
LB-57L
LB-58L
LB-59L
LB-60L
LB-61L
LB-62L
LB-63L
LB-64L
LB-65L
LB-66L
LB-67L
LB-68L
LB-69L
LB-70L
LB-71L
LB-72L
LB-73L
LB-74L
LB-75L
LB-76L
LB-77L
LB-78L
LB-79L
LB-80L
LB-81L
LB-82L
LB-83L
LB-84L
LB-85L
LB-86L
LB-87L
LB-88L
LB-89L
LB-90L
LB-91L
LB-92L
LB-93L
LB-94L
LB-95L
LB-96L
LB-97L
LB-98L
LB-99L
LB-100L
Ga
ppm
0.1
1.7
2.6
4.6
5.2
4.9
5.7
5.2
4.9
4.5
3.4
2.2
1.3
2.1
2.5
5.7
4.8
3.9
4.2
3.8
4.2
2.2
1.3
2.4
3.5
3.9
4.3
4.0
4.9
2.1
1.1
2.0
4.1
0.5
2.4
4.4
1.7
4.4
6.2
6.5
6.3
5.4
4.8
5.8
6.5
6.0
5.1
3.5
6.2
0.5
4.5
As
ppm
0.1
9.4
10.8
11.0
13.9
12.9
16.5
14.2
13.5
10.0
11.3
11.6
9.0
9.0
9.4
14.2
13.7
13.9
13.1
14.1
12.6
9.8
6.0
10.0
12.4
12.1
13.1
13.7
13.4
12.4
7.1
11.8
13.8
2.5
9.7
19.4
8.9
18.6
15.8
13.9
17.2
14.6
16.4
19.3
23.5
20.6
19.6
18.6
19.2
4.8
23.0
Se
ppm
0.1
0.8
0.7
0.7
0.9
0.6
0.8
0.8
0.7
0.8
1.0
1.0
1.9
1.0
0.8
1.0
0.8
1.3
0.7
1.3
0.8
0.5
0.8
1.2
1.1
0.6
0.6
1.1
1.6
1.9
0.9
1.5
1.5
< .1
0.6
1.2
1.0
1.1
0.4
0.4
1.0
0.8
1.1
1.0
1.1
1.2
1.1
1.0
1.0
0.2
0.9
Sr
ppm
0.5
1691.1
644.6
427.1
442.2
432.1
476.5
418.1
437.5
1017.2
1846.6
1214.9
1300.7
1757.4
2868.1
503.1
497.4
462.6
526.0
625.9
542.5
798.8
899.9
708.3
647.2
571.3
509.8
625.5
671.7
1138.8
531.2
1927.3
624.9
86.6
760.9
916.9
729.2
1386.6
290.4
282.8
300.4
475.2
579.1
342.6
352.1
512.7
433.2
1018.1
319.9
584.8
785.4
Mo
ppm
0.01
0.91
2.37
1.14
1.02
0.89
1.00
1.22
0.90
0.75
1.46
3.29
1.53
1.72
1.07
0.89
1.00
0.89
1.15
1.09
1.35
1.09
1.32
0.98
0.98
1.02
1.31
1.29
1.68
2.91
3.15
1.57
4.58
0.49
6.04
5.42
2.56
2.12
1.35
1.14
1.54
3.90
5.61
10.77
3.64
7.48
11.96
4.55
15.90
0.41
6.16
Ag
ppb
2
51
53
85
119
93
104
117
108
111
73
75
78
65
71
127
118
104
104
107
96
60
36
65
96
95
107
124
168
78
54
77
154
30
94
161
71
135
168
145
195
209
154
158
170
182
139
88
157
23
180
Cd
ppm
0.01
0.16
0.28
0.31
0.30
0.25
0.30
0.28
0.27
0.21
0.20
0.26
0.22
0.21
0.15
0.27
0.30
0.29
0.28
0.28
0.32
0.30
0.23
0.28
0.32
0.29
0.31
0.28
0.34
0.28
0.22
0.23
0.42
0.07
0.29
0.41
0.18
0.30
0.32
0.29
0.35
0.47
0.42
0.44
0.46
0.47
0.44
0.29
0.54
0.06
0.46
Sb
ppm
0.02
0.27
0.31
0.30
0.30
0.27
0.31
0.34
0.28
0.27
0.30
0.55
0.48
0.32
0.26
0.31
0.30
0.32
0.35
0.38
0.40
0.35
0.35
0.35
0.37
0.32
0.36
0.32
0.34
0.71
0.59
0.32
0.69
0.22
0.62
0.49
0.27
0.42
0.31
0.34
0.32
0.54
0.72
0.58
0.37
0.55
0.46
0.43
0.55
0.15
0.63
Te
ppm
0.02
0.13
0.06
0.04
0.04
0.04
0.04
0.02
0.02
0.06
0.16
0.09
0.07
0.13
0.19
0.05
0.03
0.04
0.07
0.06
0.06
0.08
0.08
0.06
0.07
0.06
0.06
0.03
0.05
0.08
0.05
0.13
0.03
< .02
0.05
0.04
0.06
0.11
0.02
< .02
0.04
0.03
0.03
< .02
0.03
0.03
0.02
0.07
< .02
0.03
0.05
46
Ba
ppm
0.5
57.7
189.3
50.5
60.3
51.6
56.1
61.9
54.7
48.3
52.8
88.0
75.4
40.8
70.0
58.1
61.4
62.4
68.4
82.2
91.5
138.1
180.6
155.2
107.4
81.1
87.2
55.5
58.6
71.2
70.3
70.4
182.4
25.4
53.7
62.2
28.2
56.6
55.3
57.4
58.2
61.0
55.3
56.3
57.1
56.5
50.0
48.9
51.0
22.0
63.9
La
ppm
0.5
7.8
7.5
9.7
10.0
8.9
10.4
10.1
9.1
8.6
8.3
8.7
7.3
7.0
8.3
10.1
9.1
10.0
10.3
9.5
10.1
8.1
7.4
8.6
9.5
9.1
10.0
9.0
10.1
8.3
4.9
9.3
12.0
1.5
7.3
11.8
7.1
12.7
10.7
11.4
11.1
10.6
10.0
10.1
11.2
11.0
9.9
12.7
10.5
5.6
10.7
W
ppm
0.2
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
Au
ppb
0.2
0.9
1.5
1.0
0.9
0.7
2.3
2.1
3.2
3.5
1.2
5.2
7.7
2.7
1.4
4.7
2.9
1.9
1.8
0.6
1.2
2.6
0.8
1.4
4.0
1.2
3.3
7.6
5.2
5.2
7.5
5.2
45.4
5.8
8.4
5.1
1.9
2.1
1.7
3.2
1.1
2.7
1.8
2.5
2.1
2.8
1.2
1.5
1.3
1.2
4.2
Hg
ppb
5
58
270
45
94
99
112
106
106
88
70
52
35
48
52
91
98
90
102
90
104
146
498
191
86
90
95
78
110
76
37
67
91
15
64
118
58
98
110
94
95
104
71
88
79
111
63
62
89
9
154
Tl
ppm
0.02
0.10
0.09
0.12
0.14
0.13
0.15
0.14
0.12
0.12
0.13
0.12
0.14
0.09
0.13
0.14
0.13
0.11
0.13
0.12
0.12
0.08
0.06
0.08
0.11
0.12
0.13
0.13
0.16
0.14
0.09
0.15
0.21
0.03
0.13
0.18
0.11
0.19
0.18
0.18
0.19
0.23
0.19
0.22
0.21
0.22
0.21
0.17
0.28
0.04
0.20
Pb
ppm
0.01
21.36
25.13
36.85
59.72
49.83
61.63
62.45
56.00
45.85
32.99
25.73
18.56
22.35
25.16
59.72
56.34
57.26
54.21
50.89
51.24
33.12
19.73
35.37
44.86
49.38
50.50
49.74
59.17
34.04
16.06
25.91
56.13
10.94
74.36
55.61
23.84
55.25
72.81
73.65
71.62
68.83
53.34
66.52
77.20
70.88
62.26
39.82
72.64
7.94
63.15
Bi
ppm
0.02
0.09
0.11
0.19
0.33
0.26
0.33
0.36
0.31
0.23
0.16
0.13
0.09
0.10
0.12
0.33
0.36
0.36
0.28
0.26
0.24
0.14
0.09
0.17
0.22
0.28
0.27
0.26
0.30
0.15
0.07
0.13
0.22
0.04
0.15
0.25
0.10
0.22
0.31
0.31
0.30
0.27
0.19
0.26
0.29
0.27
0.22
0.14
0.24
0.02
0.29
Th
ppm
0.1
1.4
2.8
3.5
4.0
3.4
4.1
3.9
3.5
2.3
1.9
1.6
1.3
1.1
1.6
3.9
3.6
3.5
3.4
3.1
3.5
2.5
2.1
2.6
2.9
3.2
3.4
2.8
3.4
1.6
1.1
1.5
3.5
0.4
1.4
3.3
1.5
3.4
4.8
4.9
5.0
4.6
3.3
4.8
5.2
4.9
4.2
3.2
5.0
0.9
3.4
U
ppm
0.1
1.1
1.0
1.1
1.5
1.0
1.1
1.7
1.2
1.0
1.4
2.2
1.2
1.3
1.6
1.3
1.4
1.3
1.3
1.4
1.4
0.8
1.0
0.9
1.1
1.2
1.5
1.6
1.8
1.7
1.4
1.6
1.6
0.2
2.1
2.1
1.0
1.7
1.6
1.5
1.5
2.7
2.3
3.6
2.0
3.3
3.0
1.5
3.8
0.4
3.0
Appendix 3: Results of aqua regia extracted pseudo-total chemical composition of the Upper Layer’s sediments
in Bizerte lagoon.
ELEMENT
unit
Detec.Limit
B
ppm
1
Na
%
0.001
Mg
%
0.01
Al
%
0.01
P
%
0.001
S
%
0.01
K
%
0.01
Ca
%
0.01
Sc
ppm
0.1
Ti
%
0.001
V
ppm
2
Cr
ppm
0.5
Mn
ppm
1
Fe
%
0.01
Co
ppm
0.1
Ni
ppm
0.1
Cu
ppm
0.01
Zn
ppm
0.1
LB-1u
LB-2u
LB-3u
LB-4u
LB-5u
LB-6u
LB-7u
LB-8u
LB-9u
LB-12u
LB-14u
LB-15u
LB-16u
LB-17u
LB-18u
LB-19u
LB-20u
LB-21u
LB-22u
LB-24u
LB-25u
LB-26u
LB-27u
LB-28u
LB-29u
LB-30u
LB-32u
LB-33u
LB-34u
LB-35u
LB-36u
LB-38u
LB-40u
LB-42u
LB-43u
LB-44u
LB-45u
LB-46u
LB-47u
LB-48u
LB-49u
LB-50u
LB-53u
LB-54u
LB-55u
LB-56u
LB-57u
LB-58u
LB-59u
LB-65u
LB-66u
LB-67u
LB-68u
LB-69u
LB-70u
LB-71u
LB-73u
LB-74u
LB-75u
LB-76u
LB-77u
LB-78u
LB-81u
LB-84u
LB-85u
LB-86u
LB-87u
LB-88u
LB-89u
LB-90u
LB-91u
LB-92u
LB-93u
LB-94u
LB-95u
LB-96u
LB-97u
LB-98u
LB-99u
LB-100u
67
64
74
54
65
54
58
64
76
161
50
57
54
54
52
57
47
55
49
57
47
68
57
55
56
55
55
63
94
71
70
122
85
59
58
61
55
55
57
53
50
40
45
51
48
40
53
53
53
59
66
46
59
46
44
25
29
35
37
53
67
66
31
70
107
26
47
55
64
50
129
115
95
57
134
105
54
151
12
111
3.403
2.891
3.814
3.244
3.671
3.268
3.207
3.113
3.383
2.939
2.308
3.060
2.869
3.263
3.161
3.299
2.878
3.361
3.092
2.799
2.355
3.217
2.871
2.262
3.067
3.318
3.337
2.035
4.767
2.255
2.407
1.878
1.869
3.005
2.423
3.134
2.623
2.827
2.280
2.650
2.441
1.807
2.171
2.457
2.343
2.065
2.620
2.161
2.656
3.055
2.678
1.973
2.496
1.596
1.483
0.821
1.003
1.314
1.604
2.078
2.424
3.315
1.124
1.578
3.199
1.005
1.794
2.957
3.060
2.834
3.678
3.139
2.869
3.409
4.285
3.140
1.531
3.837
0.612
3.400
0.92
0.86
0.93
0.91
0.97
0.92
0.91
0.97
0.93
1.04
0.82
0.89
0.85
0.99
0.97
1.04
0.97
0.96
0.97
0.84
0.86
0.99
0.97
0.89
0.97
0.98
0.97
0.61
1.01
0.57
0.78
0.88
0.91
0.95
0.88
0.97
0.92
0.95
0.89
0.93
0.89
0.60
0.85
0.89
0.88
0.87
0.91
0.84
0.85
0.98
0.86
0.80
0.85
0.65
0.63
0.44
0.48
0.61
0.69
0.80
0.85
0.90
0.35
0.61
0.80
0.26
0.53
0.91
0.98
0.91
1.02
0.80
0.88
0.93
1.06
0.92
0.41
1.02
0.12
0.97
1.56
1.65
1.70
1.75
1.78
1.83
1.75
1.53
1.53
1.33
1.63
1.68
1.58
1.69
1.73
1.88
1.81
1.63
1.69
1.56
1.66
1.86
1.89
1.81
1.83
1.75
1.60
0.87
1.34
0.87
1.25
0.70
1.00
1.57
1.60
1.58
1.66
1.71
1.71
1.74
1.72
1.09
1.52
1.57
1.57
1.61
1.62
1.54
1.30
1.68
1.47
1.56
1.49
1.13
1.08
0.56
0.65
0.98
1.21
1.36
1.49
1.35
0.40
0.85
1.22
0.40
0.95
1.79
1.86
1.63
1.39
1.22
1.48
1.51
1.46
1.60
0.81
1.57
0.17
1.39
0.062
0.063
0.074
0.066
0.072
0.066
0.066
0.066
0.074
0.093
0.065
0.069
0.060
0.080
0.094
0.121
0.072
0.083
0.078
0.077
0.078
0.076
0.073
0.066
0.076
0.072
0.077
0.055
0.078
0.054
0.078
0.060
0.091
0.073
0.066
0.072
0.067
0.069
0.069
0.070
0.076
0.052
0.071
0.075
0.070
0.067
0.073
0.067
0.067
0.072
0.072
0.057
0.062
0.053
0.050
0.037
0.041
0.046
0.055
0.063
0.064
0.064
0.033
0.051
0.066
0.021
0.042
0.067
0.080
0.070
0.074
0.062
0.066
0.067
0.074
0.060
0.038
0.062
0.011
0.067
0.67
0.45
0.44
0.32
0.37
0.39
0.33
0.73
0.56
1.71
0.31
0.32
0.61
0.39
0.42
0.36
0.33
0.33
0.35
0.37
0.43
0.37
0.30
0.27
0.35
0.33
0.35
0.52
1.20
0.53
0.60
0.48
0.67
0.36
0.29
0.37
0.31
0.37
0.29
0.32
0.37
0.29
0.36
0.35
0.31
0.28
0.36
0.29
0.31
0.36
0.34
0.24
0.28
0.22
0.27
0.18
0.18
0.21
0.28
0.32
0.34
0.50
0.29
0.48
0.79
0.24
0.48
0.41
0.43
0.48
0.60
0.45
0.60
0.65
0.84
0.88
0.51
1.00
0.09
0.77
0.60
0.58
0.62
0.59
0.61
0.65
0.59
0.54
0.54
0.53
0.58
0.59
0.55
0.65
0.62
0.62
0.63
0.59
0.64
0.54
0.55
0.63
0.61
0.61
0.64
0.63
0.59
0.35
0.60
0.34
0.48
0.27
0.31
0.60
0.61
0.61
0.58
0.68
0.63
0.60
0.59
0.39
0.53
0.55
0.53
0.56
0.61
0.56
0.47
0.60
0.53
0.49
0.52
0.37
0.35
0.16
0.18
0.28
0.42
0.49
0.53
0.58
0.16
0.32
0.53
0.15
0.32
0.62
0.73
0.62
0.57
0.45
0.53
0.52
0.63
0.59
0.32
0.67
0.07
0.54
7.47
7.05
6.61
6.55
5.98
6.56
5.88
8.01
7.42
8.67
9.50
8.57
9.97
6.90
7.39
7.68
7.20
7.27
7.57
12.02
9.77
8.30
8.94
8.46
8.10
7.58
8.86
14.26
6.70
13.73
11.41
12.05
10.91
7.55
8.82
8.35
8.44
8.45
8.51
7.98
9.58
18.68
9.94
11.22
10.35
9.35
9.31
8.81
13.62
7.98
10.49
9.55
9.21
11.67
12.76
13.85
13.02
11.91
11.48
10.22
10.36
9.48
19.18
12.24
9.55
13.47
19.90
6.30
6.21
6.47
6.38
7.94
5.90
7.97
6.04
6.02
19.26
5.78
5.75
9.24
3.7
3.7
4.0
4.0
4.2
4.4
4.2
3.6
3.9
3.2
4.2
4.0
3.7
3.9
3.9
4.1
4.0
4.0
4.1
3.5
3.9
4.2
4.1
4.1
4.2
4.0
3.9
1.8
3.1
2.1
2.8
1.8
2.3
3.6
3.9
3.9
4.0
4.1
4.1
4.1
4.0
2.6
3.9
4.1
3.8
3.8
3.9
3.5
2.7
3.7
3.7
3.6
3.5
3.0
2.9
1.9
2.0
2.5
3.2
3.1
3.0
3.0
0.9
1.6
2.8
0.8
2.0
3.9
4.4
3.8
3.3
2.8
3.4
3.4
3.5
3.6
1.7
3.5
0.4
3.0
0.002
0.002
0.002
0.002
0.002
0.001
0.001
0.001
0.001
0.002
0.001
0.001
0.001
0.002
0.001
0.002
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.002
0.002
0.002
0.001
0.002
0.002
0.002
0.001
0.002
0.003
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.001
0.002
0.002
0.002
0.002
0.001
0.001
0.001
0.001
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.001
0.002
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
43
47
48
51
50
50
49
47
47
65
43
47
42
51
53
54
54
51
52
46
47
54
53
52
54
49
49
29
39
31
39
24
30
48
49
48
51
52
51
53
49
36
45
46
46
47
46
44
39
46
42
45
44
36
34
20
25
31
36
40
39
38
12
24
40
14
31
52
55
50
42
40
45
45
44
45
24
43
6
42
43.5
41.6
47.8
45.4
46.6
49.3
46.7
41.3
43.2
52.7
41.5
42.4
41.6
46.5
44.6
48.6
46.4
41.3
45.1
39.0
46.8
47.9
45.6
45.3
46.7
44.8
41.1
24.2
36.5
25.6
36.2
21.1
36.1
39.9
41.5
40.3
40.7
42.7
41.9
44.6
43.4
26.9
39.0
40.0
39.6
39.6
41.7
39.7
33.7
41.2
39.8
39.8
35.8
29.5
28.5
15.5
18.0
23.9
31.8
34.4
37.3
36.5
11.4
22.3
33.9
10.1
23.0
44.1
51.0
43.6
37.7
32.6
39.6
38.8
39.1
40.0
21.2
41.7
4.7
37.0
511
420
519
505
750
423
447
319
458
675
379
462
550
637
629
639
412
803
567
485
378
538
533
445
460
663
557
261
251
247
350
217
188
477
334
484
418
486
354
522
390
349
349
482
454
364
458
561
478
625
509
325
521
393
338
297
322
366
312
340
330
324
145
192
234
111
274
415
365
396
309
359
303
464
348
215
200
229
33
259
2.39
2.52
2.66
2.71
2.77
2.79
2.74
2.64
3.08
5.19
2.66
2.72
2.47
2.73
2.77
3.04
2.83
2.79
2.86
2.58
2.52
2.86
2.87
2.70
2.79
2.76
2.70
1.42
2.21
1.53
2.22
1.25
1.92
2.54
2.50
2.59
2.60
2.72
2.67
2.73
2.69
1.85
2.60
2.67
2.64
2.59
2.72
2.62
2.09
2.72
2.57
2.46
2.57
2.10
2.06
1.43
1.60
1.97
2.17
2.37
2.33
2.19
0.68
1.27
2.08
0.68
1.62
2.81
2.95
2.75
2.34
2.11
2.49
2.60
2.42
2.57
1.32
2.49
0.23
2.22
7.8
8.1
9.0
8.6
9.5
10.0
9.0
8.0
8.2
8.0
8.8
8.9
8.6
9.2
9.3
9.7
9.9
9.1
9.8
8.1
8.3
9.0
9.1
9.0
9.5
8.8
9.0
5.3
6.7
4.5
6.1
3.1
4.3
8.0
8.3
8.5
8.4
8.7
8.6
8.6
8.3
6.8
7.6
8.3
8.6
8.7
8.3
7.8
6.7
8.3
7.4
7.6
7.3
6.5
5.8
3.8
4.4
4.9
6.5
6.4
6.7
6.6
3.0
3.5
5.5
2.0
5.7
7.7
9.0
7.7
6.4
5.9
6.7
7.3
7.1
6.9
4.0
7.1
0.5
5.5
19.6
19.2
22.9
21.4
21.0
23.3
22.0
20.6
20.9
23.4
22.2
23.1
20.0
23.1
23.3
24.7
24.7
23.3
25.8
21.4
23.3
24.8
24.6
23.0
25.0
24.3
23.4
13.2
21.2
12.2
16.5
9.1
17.6
22.6
24.0
22.6
22.9
23.4
23.4
22.8
24.6
14.1
22.3
22.3
22.0
24.4
23.7
22.4
18.0
22.6
21.9
22.0
20.5
16.7
15.4
7.9
10.4
13.2
18.2
19.5
20.5
19.2
5.3
11.7
16.6
3.5
10.7
21.9
25.7
22.9
19.6
17.1
20.6
20.3
20.4
20.8
9.3
19.5
1.7
17.3
21.54
20.65
21.71
17.27
16.46
18.62
18.79
31.20
32.08
77.31
18.08
16.44
20.91
18.97
17.76
17.48
16.77
15.90
17.65
15.59
19.47
16.52
14.62
15.09
15.77
15.53
16.82
15.81
24.30
15.88
19.59
17.16
27.64
16.43
17.21
15.36
14.14
14.16
14.62
14.61
16.88
11.89
17.79
16.38
15.93
15.58
15.50
16.14
13.71
16.06
17.46
14.69
14.32
12.67
13.06
8.44
9.33
10.92
13.86
17.69
19.99
19.66
7.72
17.48
19.05
6.51
11.38
18.39
20.79
21.13
21.85
17.09
19.75
18.52
20.31
20.20
18.75
20.18
2.61
20.67
194.5
197.9
205.0
204.2
202.1
202.4
196.9
242.3
284.9
1704.8
207.6
192.4
241.1
213.7
208.5
219.6
213.6
196.2
204.9
178.5
203.6
196.0
194.7
189.3
195.8
192.9
195.9
113.3
168.4
126.7
172.3
145.6
376.3
180.7
182.7
185.8
180.1
184.7
185.2
184.4
193.2
130.2
190.5
190.2
184.3
189.7
196.8
195.0
157.0
204.4
191.0
182.3
186.3
153.2
167.6
137.6
160.2
151.9
167.5
190.4
193.5
182.3
63.8
115.4
180.3
63.6
114.2
202.8
227.0
211.5
181.7
153.8
192.7
193.8
208.3
210.2
90.4
210.8
19.7
203.6
47
Appendix 3 (continued): Results of aqua regia extracted pseudo-total chemical composition of the Upper
Layer’s sediments in Bizerte lagoon.
ELEMENT
unit
Detec.Limit
LB-1u
LB-2u
LB-3u
LB-4u
LB-5u
LB-6u
LB-7u
LB-8u
LB-9u
LB-12u
LB-14u
LB-15u
LB-16u
LB-17u
LB-18u
LB-19u
LB-20u
LB-21u
LB-22u
LB-24u
LB-25u
LB-26u
LB-27u
LB-28u
LB-29u
LB-30u
LB-32u
LB-33u
LB-34u
LB-35u
LB-36u
LB-38u
LB-40u
LB-42u
LB-43u
LB-44u
LB-45u
LB-46u
LB-47u
LB-48u
LB-49u
LB-50u
LB-53u
LB-54u
LB-55u
LB-56u
LB-57u
LB-58u
LB-59u
LB-65u
LB-66u
LB-67u
LB-68u
LB-69u
LB-70u
LB-71u
LB-73u
LB-74u
LB-75u
LB-76u
LB-77u
LB-78u
LB-81u
LB-84u
LB-85u
LB-86u
LB-87u
LB-88u
LB-89u
LB-90u
LB-91u
LB-92u
LB-93u
LB-94u
LB-95u
LB-96u
LB-97u
LB-98u
LB-99u
LB-100u
Ga
ppm
0.1
As
ppm
0.1
Se
ppm
0.1
Sr
ppm
0.5
Mo
ppm
0.01
Ag
ppb
2
Cd
ppm
0.01
Sb
ppm
0.02
Te
ppm
0.02
Ba
ppm
0.5
La
ppm
0.5
W
ppm
0.2
Au
ppb
0.2
Hg
ppb
5
Tl
ppm
0.02
Pb
ppm
0.01
Bi
ppm
0.02
Th
ppm
0.1
U
ppm
0.1
5.2
5.3
5.9
5.6
5.7
6.3
5.8
5.1
5.3
4.5
5.5
5.5
5.2
5.5
5.5
5.9
5.8
5.3
5.7
5.0
5.5
5.9
5.9
5.8
5.9
5.7
5.0
2.8
4.2
2.7
3.9
1.9
3.0
5.0
5.2
4.9
5.2
5.4
5.5
5.5
5.6
3.4
4.9
5.1
4.9
5.1
5.2
4.8
4.1
5.1
4.9
4.7
4.6
3.6
3.4
1.7
2.0
2.8
3.9
4.2
4.6
4.2
1.3
2.4
3.8
1.2
2.8
5.6
6.1
5.0
4.6
4.0
4.8
4.7
4.8
5.0
2.5
4.9
0.4
4.3
15.8
17.4
21.5
19.5
22.9
17.0
19.4
15.7
22.1
41.1
17.8
17.5
18.1
18.6
20.4
25.5
17.3
21.0
18.9
17.5
15.2
18.5
18.7
15.4
17.0
19.4
17.0
12.0
14.2
14.6
22.7
14.1
19.3
16.0
12.8
16.1
15.5
16.9
15.8
16.6
15.5
14.4
16.0
16.9
16.0
13.4
17.6
19.0
14.6
18.8
19.3
12.6
17.5
13.6
12.8
9.1
9.9
11.3
12.9
15.0
14.5
13.7
9.0
8.6
17.8
7.0
16.8
18.1
20.7
18.3
16.6
15.6
15.5
17.9
15.0
16.9
12.5
14.3
4.2
17.5
0.9
0.9
0.9
0.8
0.8
0.8
0.8
0.9
0.9
2.1
0.7
0.7
0.9
0.9
0.8
0.8
0.6
0.7
0.7
0.7
0.7
0.7
0.6
0.7
0.7
0.7
0.7
0.9
1.5
0.7
1.0
0.8
1.1
0.8
0.8
0.8
0.7
0.7
0.7
0.6
0.7
0.7
0.8
0.7
0.7
0.6
0.8
0.8
0.8
0.8
0.9
0.7
0.7
0.6
0.6
0.4
0.4
0.5
0.6
0.8
0.9
1.0
0.7
0.9
1.0
0.4
0.7
0.7
0.8
0.7
1.0
1.0
1.0
0.9
1.1
1.0
0.8
1.1
0.2
1.1
416.0
326.6
323.7
295.0
262.2
297.8
276.5
522.7
417.4
496.7
441.0
373.4
503.5
273.0
292.2
304.3
289.2
281.3
327.6
549.3
423.2
343.7
360.1
348.9
334.4
306.6
405.1
960.9
314.2
687.3
563.6
769.1
569.4
304.3
348.6
326.3
363.2
330.1
346.7
305.4
384.8
1316.3
423.3
473.2
430.4
346.2
403.7
363.5
866.1
331.3
498.2
387.9
380.4
575.7
624.4
825.8
663.8
527.4
552.2
462.8
462.0
523.7
1622.8
665.6
533.8
776.3
1326.8
285.5
290.8
328.2
490.4
448.9
307.5
461.9
443.0
342.4
949.2
316.0
321.3
643.7
0.84
0.95
0.95
0.84
0.87
0.87
0.86
1.71
1.27
5.34
1.06
0.85
1.22
0.80
0.83
0.87
0.77
0.96
0.92
0.97
0.89
0.92
0.86
0.86
0.87
0.89
0.99
1.06
2.01
1.06
1.04
1.14
1.14
0.91
0.90
0.91
0.92
0.93
0.80
0.98
0.91
0.86
0.99
1.03
0.90
0.82
0.92
0.96
0.76
0.94
0.98
0.77
0.85
0.80
0.90
0.69
0.74
0.76
0.74
0.85
0.85
0.88
0.58
1.47
1.42
0.63
1.04
0.91
0.76
0.90
1.25
1.49
1.72
1.18
2.17
2.10
1.18
2.05
0.21
1.41
158
160
169
117
120
135
147
237
245
692
111
110
96
142
138
112
119
102
119
115
124
117
101
104
114
100
127
107
153
129
158
170
244
112
126
119
101
97
100
104
125
88
118
122
117
107
107
111
100
110
134
107
100
92
106
69
71
85
105
128
149
161
57
104
154
60
94
156
155
176
167
121
138
158
160
148
66
122
20
184
0.30
0.31
0.31
0.26
0.24
0.28
0.25
0.44
0.46
1.42
0.37
0.33
0.33
0.26
0.26
0.26
0.25
0.24
0.28
0.30
0.32
0.25
0.26
0.24
0.28
0.22
0.25
0.23
0.42
0.25
0.30
0.33
0.53
0.23
0.25
0.24
0.24
0.24
0.27
0.27
0.33
0.21
0.32
0.30
0.29
0.27
0.26
0.25
0.18
0.22
0.26
0.26
0.23
0.23
0.30
0.24
0.26
0.24
0.27
0.28
0.29
0.28
0.19
0.25
0.41
0.12
0.19
0.27
0.31
0.31
0.36
0.26
0.38
0.32
0.36
0.47
0.20
0.45
0.04
0.39
0.31
0.31
0.33
0.29
0.26
0.37
0.27
0.46
0.40
1.22
0.38
0.34
0.31
0.34
0.34
0.29
0.41
0.32
0.31
0.30
0.30
0.26
0.28
0.31
0.35
0.27
0.35
0.30
0.35
0.26
0.33
0.32
0.37
0.31
0.37
0.34
0.36
0.33
0.35
0.31
0.32
0.30
0.34
0.30
0.28
0.31
0.29
0.29
0.25
0.25
0.27
0.30
0.25
0.26
0.27
0.22
0.24
0.24
0.27
0.30
0.29
0.23
0.18
0.29
0.29
0.14
0.26
0.26
0.29
0.28
0.30
0.30
0.29
0.26
0.32
0.27
0.23
0.29
0.07
0.32
0.05
0.05
0.07
0.07
0.07
0.06
0.05
0.07
0.05
0.09
0.06
0.07
0.09
0.07
0.07
0.05
0.04
0.03
0.05
0.06
0.06
0.05
0.06
0.05
0.05
0.06
0.07
0.11
0.05
0.10
0.07
0.06
0.07
0.04
0.06
0.05
0.05
0.07
0.04
0.06
0.07
0.14
0.06
0.08
0.07
0.06
0.08
0.05
0.09
0.04
0.06
0.05
0.05
0.08
0.07
0.08
0.08
0.07
0.08
0.06
0.04
0.04
0.13
0.06
0.05
0.07
0.14
0.04
0.04
0.02
0.03
0.04
0.04
0.03
0.04
0.03
0.09
< .02
0.03
0.06
72.0
68.4
62.3
51.0
51.9
53.7
50.1
59.0
58.4
60.2
53.7
49.2
69.7
52.8
57.3
56.3
52.9
52.1
52.6
59.1
62.0
55.9
49.3
49.1
54.0
49.5
50.4
46.6
47.7
63.0
71.1
52.5
97.2
49.8
52.9
50.1
50.6
50.4
51.9
48.6
57.2
66.4
57.4
63.6
58.8
52.2
58.0
60.5
49.9
58.0
74.8
62.5
58.7
72.5
83.4
118.9
116.4
82.1
79.9
72.6
62.6
54.4
57.0
49.2
52.7
26.2
50.2
55.4
59.7
54.9
58.9
52.7
53.4
51.4
50.6
59.2
38.8
51.9
15.1
69.1
9.1
9.2
9.8
9.5
9.2
10.7
9.7
8.7
9.4
7.4
11.0
10.4
8.7
9.8
10.3
10.2
10.3
10.5
10.8
10.7
11.9
10.7
10.5
10.0
11.0
10.2
10.2
7.1
8.3
8.0
9.5
7.0
9.5
9.5
10.5
9.4
10.4
10.5
10.6
10.5
10.6
10.5
9.8
10.6
10.5
10.2
10.2
9.8
8.7
9.3
10.3
9.8
9.8
8.7
8.5
6.2
6.5
7.6
9.1
8.7
8.8
8.5
7.6
6.5
9.1
6.8
10.5
9.6
10.9
9.4
8.3
8.2
8.8
8.6
8.4
9.3
10.1
8.2
3.8
8.7
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
0.3
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
< .1
6.5
5.6
3.7
3.0
3.5
2.8
2.4
2.8
3.3
22.7
1.8
1.8
2.9
5.9
4.7
4.4
3.5
3.1
2.5
2.4
2.0
1.4
1.7
2.0
2.6
2.9
4.2
6.1
7.6
5.2
5.8
8.6
16.6
4.1
4.0
3.0
3.1
1.9
1.9
1.8
2.3
2.2
2.5
2.2
2.9
2.0
5.4
7.2
3.3
5.5
7.4
2.3
2.1
1.5
3.0
2.2
3.3
2.7
3.3
7.3
10.2
6.3
4.5
15.9
3.0
1.3
1.6
3.1
2.9
1.6
2.5
1.5
1.9
2.1
1.4
1.5
1.8
2.1
0.3
5.0
138
145
124
107
97
101
100
203
205
388
70
100
283
121
112
117
101
102
112
100
111
108
98
100
98
90
99
76
90
158
245
153
201
98
116
97
87
117
104
92
91
81
73
116
109
98
92
89
78
97
104
102
84
84
104
169
95
66
90
86
99
98
41
59
110
48
72
99
105
99
90
64
84
91
84
61
38
66
12
124
0.16
0.16
0.17
0.16
0.15
0.17
0.16
0.19
0.19
0.42
0.18
0.16
0.16
0.16
0.17
0.18
0.17
0.15
0.17
0.16
0.15
0.17
0.17
0.17
0.18
0.15
0.15
0.17
0.23
0.12
0.14
0.12
0.17
0.15
0.18
0.16
0.16
0.16
0.17
0.17
0.17
0.15
0.16
0.16
0.15
0.16
0.16
0.16
0.13
0.15
0.15
0.14
0.14
0.12
0.12
0.08
0.08
0.10
0.13
0.14
0.15
0.15
0.14
0.13
0.20
0.09
0.16
0.16
0.20
0.19
0.19
0.15
0.19
0.16
0.20
0.26
0.15
0.29
0.02
0.21
67.44
73.73
78.75
75.14
73.53
72.23
73.30
73.73
84.37
339.15
59.47
63.54
64.70
75.06
75.55
76.69
74.53
75.07
79.01
64.43
60.65
70.49
71.82
71.21
80.07
70.64
71.56
39.28
55.26
48.82
64.83
43.07
57.92
65.90
68.62
62.98
63.82
66.01
65.88
65.55
67.41
46.42
56.79
66.02
66.41
65.37
65.39
64.96
53.16
59.98
63.07
57.75
58.92
47.34
47.42
31.27
35.47
41.91
51.79
56.38
59.17
53.92
19.87
33.17
56.40
18.70
39.23
74.69
76.37
65.45
56.77
49.87
59.73
62.99
62.82
64.42
32.42
63.41
6.46
62.22
0.31
0.32
0.33
0.32
0.31
0.31
0.30
0.30
0.35
1.83
0.23
0.26
0.27
0.33
0.33
0.33
0.32
0.34
0.35
0.26
0.25
0.33
0.32
0.33
0.36
0.33
0.34
0.17
0.23
0.22
0.26
0.16
0.23
0.34
0.36
0.31
0.31
0.31
0.32
0.30
0.30
0.19
0.24
0.30
0.31
0.31
0.33
0.32
0.25
0.30
0.31
0.31
0.28
0.22
0.21
0.13
0.14
0.18
0.24
0.27
0.28
0.26
0.09
0.13
0.21
0.08
0.14
0.28
0.32
0.26
0.21
0.18
0.21
0.24
0.23
0.20
0.10
0.20
0.02
0.24
3.4
3.7
3.9
3.9
3.9
4.3
4.0
3.6
3.9
2.7
3.7
3.6
3.4
3.8
3.9
4.2
3.8
3.9
4.0
3.3
3.9
4.1
4.0
3.8
4.3
3.7
3.7
1.4
3.2
2.1
3.2
1.9
2.5
3.6
3.7
3.4
3.5
3.8
3.9
3.8
3.6
2.4
3.3
3.5
3.4
3.7
3.7
3.5
2.2
3.2
3.2
3.3
3.1
2.7
2.4
1.7
1.8
2.1
2.8
2.8
3.0
2.7
0.9
1.3
3.0
1.0
2.2
4.1
4.5
3.9
3.3
2.9
3.7
3.7
3.8
4.0
2.0
3.6
0.8
3.0
1.1
1.0
1.0
0.9
0.7
1.1
0.8
1.4
1.0
2.1
0.9
0.9
0.9
0.9
1.1
0.8
0.9
0.8
0.9
0.9
1.1
0.8
0.8
1.0
1.1
0.7
0.9
0.9
1.0
0.8
1.0
1.2
1.2
0.8
1.3
0.7
0.9
0.8
0.9
0.7
1.0
0.9
0.8
0.9
0.8
1.0
0.9
0.8
0.7
0.7
0.8
1.0
0.6
0.7
0.8
0.5
0.5
0.5
0.9
0.8
0.9
0.8
1.0
0.9
0.8
0.5
0.9
0.8
0.9
0.8
0.9
0.8
0.9
0.9
1.0
0.8
0.8
0.8
0.2
0.9
48
© Copyright 2026 Paperzz