On optimal solution error in the variational data assimilation problem for the ocean thermodynamics model Victor Shutyaev, Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia. E-mail: [email protected] Auxiliary minimization problem Thermodynamics equations T L(T ) T t T S ( Q) Tt (U Grad )T Div ( aˆ T Grad T ) fT in D (t0 t1 ) T T0 for t t0 on D T T Q on S (t0 t1 ) z T 0 on wc (t0 t1 ) NT T Un inf S (Q) Q t L(T ) Bv in D (t0 t1 ) 0 for t t0 ( )t ( L (T )) B m0 in D (t0 t1 ) 0 for t t1 Hv v on (t0 t1 ) t (t0 t1 ) for t t0 Error control equation H Q R11 R2 2 R1 E R2 2 z 0 and L, F, B, are defined by ( LT Tˆ ) (TDiv(UTˆ )) D ˆ TTd U () n wop ˆ )dD ˆ a Grad ( T ) Grad ( T T ( )t ( L (T )) B m0 2 in D (t0 t1 ) D ˆ ( BQ Tˆ ) QTˆ d ˆ f TdD ˆ (Tt Tˆ ) TTdD (QT U d )TdT t z 0 T ( ) n T wop for t t0 Hessian of the functional S 1 ˆ ˆ ˆ ˆ ˆ (Tt T ) ( LT T ) F (T ) ( BQ T ) T W2 ( D) 0 t1 in a week sense: F (Tˆ ) in D (t0 t1 ) 1 1 2 S ( Q) Q 1 d dt m0 T z 0 2 2 d dt 2 t0 2 t0 T 0 on H (t0 t1 ) NT T T0 B Q t1 T U n dT QT on wop (t0 t1 ) NT Tt LT F BQ D D 0 for t t1 The optimal solution error: Q T11 T22 1 1 T1 H R1 T2 H R2 Sensitivity coefficients T LT t T J (Q) F BQ in D (t0 t1 ) T0 r1 for t t0 inf J (Q) r1 min Q t1 t1 1 1 (0) 2 2 J (Q) Q Q d dt m0 T z 0 Tobs d dt 2 t0 2 t0 r2 T1*T1 , r2 (T )t L T B m0 (T Tobs ) in D (t0 t1 ) T 0 for t t1 (Q Q (0) ) T 0 on (t0 t1 ) k 0 for t t0 k k 0 for t t1 vk k k vk on (t0 t1 ) T T0 for t t0 in D (t0 t1 ) ( ) L B m0k in D (t0 t1 ) k t Tt LT F BQ in D (t0 t1 ) ( H E ) H 2 Fundamental control functions (k )t Lk Bvk T2*T2 Singular vectors: 1 T T w w wk k z 0 k 2 2 k 2 k k k 1 2… 2 k Numerical examples (Indian Ocean) Q (0) Q 1 Tobs T z 0 2 where T T T Q Q Q and T t LT F BQ in D (t0 t1 ) T T0 for t t0 Tt L(T ) T B Q in D (t0 t1 ) T 0 for t t0 t=24h t=240h (T )t ( L(T )) T B m0 ( T 2 ) in D (t0 t1 ) T 0 for t t1 ( Q 1 ) T 0 on (t0 t1 ) 1. Dimet, F.-X., Shutyaev, V.P. On deterministic error analysis in variational data assimilation. Nonlinear Processes in Geophysics (2005). 2. Gejadze I., Le Dimet F.-X., Shutyaev V. On analysis error covariances in variational data assimilation. SIAM J. Sci. Computing (2008). Hessian eigenvalues (t=1month) k . 2 k
© Copyright 2026 Paperzz