Heteroskedasticity Prepared by Vera Tabakova, East Carolina University 8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.4 Detecting Heteroskedasticity Principles of Econometrics, 3rd Edition Slide 8-2 E ( y ) 1 2 x ei yi E ( yi ) yi 1 2 xi yi 1 2 xi ei Principles of Econometrics, 3rd Edition (8.1) (8.2) (8.3) Slide 8-3 Figure 8.1 Heteroskedastic Errors Principles of Econometrics, 3rd Edition Slide 8-4 E (ei ) 0 var(ei ) 2 cov(ei , e j ) 0 var( yi ) var(ei ) h( xi ) (8.4) yˆi 83.42 10.21 xi eˆi yi 83.42 10.21xi Principles of Econometrics, 3rd Edition Slide 8-5 Figure 8.2 Least Squares Estimated Expenditure Function and Observed Data Points Principles of Econometrics, 3rd Edition Slide 8-6 The existence of heteroskedasticity implies: The least squares estimator is still a linear and unbiased estimator, but it is no longer best. There is another estimator with a smaller variance. The standard errors usually computed for the least squares estimator are incorrect. Confidence intervals and hypothesis tests that use these standard errors may be misleading. Principles of Econometrics, 3rd Edition Slide 8-7 yi 1 2 xi ei var(b2 ) var(ei ) 2 (8.5) 2 N ( xi x ) 2 (8.6) i 1 yi 1 2 xi ei Principles of Econometrics, 3rd Edition var(ei ) i2 (8.7) Slide 8-8 N N var(b2 ) wi2i2 i 1 2 2 ( x x ) i i i 1 2 ( xi x ) i 1 N 2 (8.8) N N var(b2 ) wi2eˆi2 i 1 Principles of Econometrics, 3rd Edition 2 2 ( x x ) eˆi i i 1 2 ( xi x ) i 1 N 2 (8.9) Slide 8-9 yˆi 83.42 10.21xi (27.46) (1.81) (White se) (43.41) (2.09) (incorrect se) White: b2 tcse(b2 ) 10.21 2.024 1.81 [6.55, 13.87] Incorrect: b2 tcse(b2 ) 10.21 2.024 2.09 [5.97, 14.45] Principles of Econometrics, 3rd Edition Slide 8-10 yi 1 2 xi ei (8.10) E (ei ) 0 Principles of Econometrics, 3rd Edition var(ei ) i2 cov(ei , e j ) 0 Slide 8-11 yi y xi i var ei i2 2 xi (8.11) 1 xi ei yi 1 2 x x xi xi i i (8.12) 1 x xi i1 Principles of Econometrics, 3rd Edition xi ei x xi ei xi xi i2 (8.13) Slide 8-12 yi 1xi1 2 xi2 ei (8.14) ei 1 1 2 var(e ) var var(ei ) xi 2 x xi xi i (8.15) i Principles of Econometrics, 3rd Edition Slide 8-13 To obtain the best linear unbiased estimator for a model with heteroskedasticity of the type specified in equation (8.11): 1. Calculate the transformed variables given in (8.13). 2. Use least squares to estimate the transformed model given in (8.14). Principles of Econometrics, 3rd Edition Slide 8-14 The generalized least squares estimator is as a weighted least squares estimator. Minimizing the sum of squared transformed errors that is given by: 2 N e 2 i ei x ( xi 1/2ei )2 i 1 i 1 i i 1 N When N xi is small, the data contain more information about the regression function and the observations are weighted heavily. When xi is large, the data contain less information and the observations are weighted lightly. Principles of Econometrics, 3rd Edition Slide 8-15 yˆi 78.68 10.45 xi (se) (23.79) (1.39) (8.16) ˆ 2 tcse(ˆ 2 ) 10.451 2.024 1.386 [7.65,13.26] Principles of Econometrics, 3rd Edition Slide 8-16 var(ei ) i2 2 xi (8.17) ln(i2 ) ln(2 ) ln( xi ) i2 exp ln( 2 ) ln( xi ) (8.18) exp(1 2 zi ) Principles of Econometrics, 3rd Edition Slide 8-17 i2 exp(1 2 zi 2 s ziS ) ln(i2 ) 1 2 zi (8.19) (8.20) yi E ( yi ) ei 1 2 xi ei Principles of Econometrics, 3rd Edition Slide 8-18 ln(eˆi2 ) ln(i2 ) vi 1 2 zi vi (8.21) ˆ i2 ) .9378 2.329 zi ln( ˆ1 ˆ 1zi ) ˆ i2 exp( yi 1 xi ei 1 2 i i i i Principles of Econometrics, 3rd Edition Slide 8-19 ei 1 1 2 var 2 var(ei ) 2 i 1 i i i yi y ˆ i i 1 x ˆ i i1 xi x ˆ i yi 1xi1 2 xi2 ei Principles of Econometrics, 3rd Edition i2 (8.22) (8.23) (8.24) Slide 8-20 yi 1 2 xi 2 k xiK ei var(ei ) i2 exp(1 2 zi 2 Principles of Econometrics, 3rd Edition s ziS ) (8.25) (8.26) Slide 8-21 The steps for obtaining a feasible generalized least squares estimator for 1 , 2 , , K are: 1. Estimate (8.25) by least squares and compute the squares of the least squares residuals eˆi2 . 2. Estimate 1 , 2 , , S by applying least squares to the equation ln eˆi2 1 2 zi 2 Principles of Econometrics, 3rd Edition S ziS vi Slide 8-22 3. Compute variance estimates ˆ i2 exp(ˆ 1 ˆ 2 zi 2 ˆ S ziS. ) 4. Compute the transformed observations defined by (8.23), including xi3 , , xiK if K 2. 5. Apply least squares to (8.24), or to an extended version of (8.24) if K 2 . yˆi 76.05 10.63x (se) (9.71) Principles of Econometrics, 3rd Edition (.97) (8.27) Slide 8-23 WAGE 9.914 1.234EDUC .133EXPER 1.524METRO (se) (1.08) (.070) (.015) WAGEMi M 1 2 EDUCMi 3 EXPERMi eMi WAGERi R1 2 EDUCRi 3 EXPERRi eRi (.431) i 1, 2, i 1, 2, (8.28) , N M (8.29a) , NR (8.29b) bM 1 9.914 1.524 8.39 Principles of Econometrics, 3rd Edition Slide 8-24 var(eMi ) 2M ˆ 2M 31.824 var(eRi ) 2R ˆ 2R 15.243 bM 1 9.052 bM 2 1.282 bM 3 .1346 bR1 6.166 bR 2 .956 bR 3 .1260 Principles of Econometrics, 3rd Edition (8.30) Slide 8-25 WAGEMi 1 M 1 M M EDUCMi EXPERMi eMi 2 3 M M M i 1, 2, , NM WAGERi 1 EDUCRi EXPERRi eRi 2 3 R1 R R R R R i 1, 2, Principles of Econometrics, 3rd Edition (8.31a) (8.31b) , NR Slide 8-26 Feasible generalized least squares: 1. Obtain estimated ˆ M and ˆ R by applying least squares separately to the metropolitan and rural observations. ˆ M when METROi 1 2. ˆ i ˆ R when METROi 0 3. Apply least squares to the transformed model WAGEi 1 EDUCi EXPERi METROi ei 2 3 R1 ˆ ˆ ˆ ˆ ˆ i i i i i ˆ i Principles of Econometrics, 3rd Edition (8.32) Slide 8-27 WAGE 9.398 1.196 EDUC .132 EXPER 1.539METRO (se) (1.02) (.069) Principles of Econometrics, 3rd Edition (.015) (.346) (8.33) Slide 8-28 Remark: To implement the generalized least squares estimators described in this Section for three alternative heteroskedastic specifications, an assumption about the form of the heteroskedasticity is required. Using least squares with White standard errors avoids the need to make an assumption about the form of heteroskedasticity, but does not realize the potential efficiency gains from generalized least squares. Principles of Econometrics, 3rd Edition Slide 8-29 8.4.1 Residual Plots Estimate the model using least squares and plot the least squares residuals. With more than one explanatory variable, plot the least squares residuals against each explanatory variable, or against yˆ i , to see if those residuals vary in a systematic way relative to the specified variable. Principles of Econometrics, 3rd Edition Slide 8-30 8.4.2 The Goldfeld-Quandt Test ˆ 2M 2M F 2 2 ˆ R R F( NM KM , N R K R ) H0 : 2M 2R against H0 : 2M 2R (8.34) (8.35) ˆ 2M 31.824 F 2 2.09 ˆ R 15.243 Principles of Econometrics, 3rd Edition Slide 8-31 8.4.2 The Goldfeld-Quandt Test ˆ 12 3574.8 ˆ 22 12,921.9 ˆ 22 12,921.9 F 2 3.61 ˆ 1 3574.8 Principles of Econometrics, 3rd Edition Slide 8-32 8.4.3 Testing the Variance Function yi E ( yi ) ei 1 2 xi 2 K xiK ei var( yi ) i2 E(ei2 ) h(1 2 zi 2 h(1 2 zi 2 (8.36) S ziS ) S ziS ) exp(1 2 zi 2 (8.37) S ziS ) h(1 2 zi ) exp ln(2 ) ln( xi ) Principles of Econometrics, 3rd Edition Slide 8-33 8.4.3 Testing the Variance Function h(1 2 zi 2 S ziS ) 1 2 zi 2 h(1 2 zi 2 H 0 : 2 3 S ziS (8.38) S ziS ) h(1 ) S 0 (8.39) H1 : not all the s in H 0 are zero Principles of Econometrics, 3rd Edition Slide 8-34 8.4.3 Testing the Variance Function var( yi ) i2 E(ei2 ) 1 2 zi 2 ei2 E(ei2 ) vi 1 2 zi 2 eˆi2 1 2 zi 2 2 N R 2 Principles of Econometrics, 3rd Edition S ziS (8.40) S ziS vi (8.41) S ziS vi (8.42) (2S 1) (8.43) Slide 8-35 8.4.3a The White Test E ( yi ) 1 2 xi 2 3 xi 3 z2 x2 Principles of Econometrics, 3rd Edition z3 x3 z4 x22 z5 x32 Slide 8-36 8.4.3b Testing the Food Expenditure Example SST 4,610,749,441 SSE 3,759,556,169 SSE R 1 .1846 SST 2 2 N R 2 40 .1846 7.38 2 N R 2 40 .18888 7.555 Principles of Econometrics, 3rd Edition p-value .023 Slide 8-37 Breusch-Pagan test generalized least squares Goldfeld-Quandt test heteroskedastic partition heteroskedasticity heteroskedasticity-consistent standard errors homoskedasticity Lagrange multiplier test mean function residual plot transformed model variance function weighted least squares White test Principles of Econometrics, 3rd Edition Slide 8-38 Principles of Econometrics, 3rd Edition Slide 8-39 yi 1 2 xi ei E (ei ) 0 var(ei ) i2 cov(ei , e j ) 0 (i j ) b2 2 we i i wi Principles of Econometrics, 3rd Edition (8A.1) xi x xi x 2 Slide 8-40 E b2 E 2 E wi ei 2 wi E ei 2 Principles of Econometrics, 3rd Edition Slide 8-41 var b2 var wi ei wi2 var ei wi w j cov ei , e j i j w 2 i 2 i (8A.2) 2 2 ( x x ) i i 2 2 ( xi x ) Principles of Econometrics, 3rd Edition Slide 8-42 var(b2 ) Principles of Econometrics, 3rd Edition 2 xi x 2 (8A.3) Slide 8-43 eˆi2 1 2 zi 2 S ziS vi (8B.1) ( SST SSE ) / ( S 1) F SSE / ( N S ) N SST eˆi2 eˆ2 i 1 Principles of Econometrics, 3rd Edition 2 (8B.2) N and SSE vˆi2 i 1 Slide 8-44 SST SSE ( S 1) F SSE / ( N S ) 2 SSE var(e ) var(vi ) N S 2 i 2 SST SSE 2 i (2S 1) (8B.3) (8B.4) (8B.5) var(e ) Principles of Econometrics, 3rd Edition Slide 8-45 SST SSE 2ˆ e4 2 ei2 var 2 2 e 1 2 var( e i )2 4 e 1 N 2 2 2 SST var(e ) (eˆi eˆ ) N i 1 N 2 i Principles of Econometrics, 3rd Edition (8B.6) var(ei2 ) 2e4 (8B.7) Slide 8-46 SST SSE SST / N 2 SSE N 1 SST (8B.8) N R2 Principles of Econometrics, 3rd Edition Slide 8-47
© Copyright 2026 Paperzz