Moscow State University, Russia Faculty of physics and International Laser Center RAMAN AND ATR FTIR SPECTROSCOPY IN THE STUDY OF CHEMICAL REACTION RATES I.A. Balakhnina, N.N. Brandt, A.Yu. Chikishev, A.A. Mankova, I.G. Shpachenko How to measure reaction rate? Reaction rate = Rate of changes in reagent (product) concentration Optical methods Disadvantages PHOTOMETRY Overlapping absorption bands POLARIMETRY Optically active substrate or product FLUORIMETRY Overlapping absorption bands and concentrational limitations Universal method is unavailable Task: Experimentally prove the applicability of vibrational spectroscopy in the measurements of chemical reaction rates Reaction of alkaline hydrolysis of ethyl acetate: Raman spectroscopy of the components CH 3COOK C2 H 5OH KOH CH 3COOC2 H 5 k1 k1 ** * Reaction Approximation CH3COOK KOH CH3COOC2H5 Frequency сm-1 Component 637 852 880 929 1345 1413 CH3COOC2H5 CH3COOC2H5 C2H5OH CH3COOK CH3COOK CH3COOK 1453 CH3COOC2H5 , C2H5OH 1736 CH3COOC2H5 C2H5OH 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 -1 см Raman spectrum of the reaction and its approximation with linear combination of Raman spectra of the components: ethyl acetate (CH3COOC2H5), ethanol (C2H5OH) , potassium acetate (CH3COOK), and KOH. Intensity kinetics 900 1000 1100 1200 1300 1400 1500 1600 Raman intensity Интенсивность КР, отн.ед. Processing of Raman data series 1700 * 0 200 400 600 800 Time, s 900 1000 1100 1200 1300 , см A B C D A t 0 a, B t 0 b a k 1400 1500 1600 1700 -1 C b e kt a b 1 b kt a b e 1 a Reaction rate 1000 Effect of background subtraction and scaling Raman band area y t B e b a kt b b a kt e 1 a 2,0 2,0 1,8 1,8 -- Error -- Value -1,5E-5 Chi-Sqr 1,6 1,4 K 0,09 0,003 B 0,259 0,002 C 1,756 0,003 1,6 1,4 1,2 1,2 1,0 1,0 0 200 400 600 Time, s 800 C 1 1000 0 Value Error Chi-Sqr 6E-5 K 0,09 0,003 B 0,519 0,005 C 1,513 0,006 200 400 600 Time, s 800 1000 Temperature dependence of reaction rates T = 42 °С T = 31 °С T = 22 °С * k, М-1с-1 T = 22 °C 840 860 880 900 920 940 -1 cm Raman spectra of the reaction mixture (hydrolysis of ethyl acetate), measured at 14-2110 s from the beginning of reaction at a temperature of 22 °C 0 200 400 22°С 42°С 0,048±0,004 0,28±0,02 600 800 1000 1200 1400 Time, s Time dependence of the integral Raman intensity of the band at 880 cm-1 measured at different temperatures An increase in temperature leads to an increase in reaction rate Reaction rate and activation energy Arrhenius equation : k Ae This work Kuheli Das et al., 2011 Schneider et al., 2005 Tsujikawa et al., 1966 Jensen et al., 1951 Amis et al., 1950 Smith et al., 1939 Terry et al., 1927 Warder, 1881 Approximation 0,30 0,25 0,20 -1 -1 k, М s Ea RT 0,15 А – const Еа – activation energy R – gas constant Т – temperature 0,10 0,05 0,00 15 20 25 30 35 40 45 Т, °С Reaction rates of ethyl acetate hydrolysis at different temperatures Reaction rate and activation energy -0,5 -1,0 k Ae Ea RT ln k ln A Ea 1 R T -2,0 0,30 -2,5 0,25 -3,0 0,20 k, М-1s-1 -1 -1 ln(k), ln(M s ) -1,5 -3,5 0,15 This work Kuheli Das et al., 2011 Schneider et al., 2005 Tsujikawa et al., 1966 Jensen et al., 1951 Amis et al., 1950 Smith et al., 1939 Terry et al., 1927 Warder, 1881 Approximation 0,10 -4,0 3,0 0,05 3,1 3,2 3,3 3 1/T*10 , 1/K 3,4 3,5 Reaction rates of alkaline hydrolysis of ethyl acetate determined using different spectral lines Time dependences of Raman intensity of the bands at 880, 929, and 852 сm-1 at a temperature of 25 °C and their approximations -1 852 сm -1 880 сm 840 860 880 900 920 -1 940 929 сm -1 сm Raman spectra of the reaction of ethyl acetate hydrolysis, measured at 20-600 seconds from the beginning of reaction at a temperature of 25 °C Mean value of the reaction rate is 0 100 200 300 Time, s k = 0,088 ± 0,006 M-1s-1 400 500 600 Raman spectroscopy of spontaneous and enzymatic hydrolysis 14°С pH 7,8 Raman spectra of the reaction of enzymatic hydrolysis of 2,4-dinitrophenylacetate (DNPA) in the presence of chymotrypsin, measured at 100 s - 260 min from the beginning of reaction * Enzymatic hydrolysis: 800 900 1000 1100 1200 1300 1400 -1 Raman intensity at 1318 cm -1 сm Enzymatic reaction k1 k2 ES E S E P k1 P P S t K ln 1 0 M S 0 Spontaneous hydrolysis: kh S P Spontaneous reaction P S 0 1 e k t h 0 100 200 Time, s 300 400 KM = (39,55±0,01)10-4 M kh = (1,26±0,01)10-5 s-1 S – substrate; E – enzyme; P – product; ES – enzyme-substrate complex ATR FTIR geometry Evanescent wave 4,0 d Penetration depth d, m 3,5 3,0 Incident IR light ATR crystal (diamond) Reflected IR light 2,5 2,0 d 1,5 2 n12 sin 2 n22 1,0 0,5 0,0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 Wavenumbers, cm -1 Reaction of alkaline hydrolysis of ethyl acetate: ATR FTIR spectroscopy of the components k1 CH 3COOK C2 H 5OH KOH CH 3COOC2 H 5 k1 900 1000 1100 1200 1300 1400 1500 Frequency сm-1 Component 1022 CH3COOK 1050 CH3COOC2H5 C2H5OH 1265 CH3COOC2H5 CH3COOK 1380 EtOAc 1414 CH3COOK 1553 CH3COOK 1600 -1 Wave number, сm ATR FTIR spectrum of the reaction mixture at 17 s and the spectra of the components: ethyl acetate (CH3COOC2H5), ethanol (C2H5OH) , potassium acetate (CH3COOK), and KOH -1 Reaction rates: ATR FTIR spectroscopy 1100 1200 1300 1400 1500 1600 Wave number, сm ATR FTIR spectra of the reaction of ethyl acetate hydrolysis, measured at 13-300 s from the beginning of reaction at a temperature of 27,4 °C Raman T, °C k103, М-1с-1 T, °C k103, М-1с-1 1,6 1,4 1,2 1,0 0,8 800 1000 1200 1400 1600 1800 2000 -1 Wave number, сm 0 -1 ATR FTIR Penetration depth, m Raman intensity at 1265 cm * 1000 1,8 50 100 150 200 250 Time, s Time dependence of the area under the band at 1265cm-1 measured at 27.4 °C and its approximation 25,6 25,6 27,4 27,8 490±10 540±10 830±10 480±10 25 27,4 89±8 94±8 ATR FTIR time-dependence: liquid-in-liquid solution * ATR-FTIR absorbance 1,2 1045 cm 0,8 Benzoic ether -1 * * Ethanol * * 0,4 * * Benzoic ether in ethanol (3 M) * ** 0,0 0,08 1000 Concentration changes are obvious 1200 1400 1600 Solvent evaporation? Solution (200 s) - solution (5 s) OD 0,04 0,00 Benzoic ether (200 s) - benzoic ether (5 s) -0,04 -0,08 Molar ratio: Ethanol / Benzoic ether = 5 1000 Ethanol (200 s) - ethanol (5 s) 1200 1400 , cm -1 1600 Interaction with ATR crystal surface? 10 OD, *10 -3 ATR-FTIR absorbance, *10 -2 ATR FTIR time-dependence: solid-in-liquid solution 200 mM 2,4-dinitrophenyl acetate (DNPA) in acetonitrile * * Molar ratio: Acetonitrile / DNPA = 100 * 5 * 0 800 * * 1000 * * Acetonitrile * 1200 * 1400 1600 1400 1600 5 0 DNPA (200 s) - DNPA (5 s) -5 Acetonitrile (200 s) - acetonitrile (5 s) 800 1000 1200 , cm -1 In case of reaction: product increasing rate = reagent decreasing rate Reaction rates: ATR FTIR spectroscopy 3,6 0,24 -1 ATR-FTIR OD ATR-FTIR integral OD 1552 cm 0,18 -1 1265 cm 0,12 0,06 3,3 1000 1200 1400 -1 , cm 1600 Potassium acetate CH 3COOK C2 H 5OH KOH CH 3COOC2 H 5 k1 Ethyl acetate k1 3,0 0 50 100 Time, s 150 200 Reaction rates: ATR FTIR spectroscopy Pure ethyl acetate 19 18 1 1264, 1300, 1359, 1393, 2800-3100 cm-1 unchanged ATR-FTIR OD ATR-FTIR integral OD 20 607, 634, 785, 847, 916, 938, 1097, 1115, 1373 cm-1 – intensity 1 1045, 1238 cm-1 (skeletal) – intensity and width 17 0 600 0 800 1000 -1 , cm 50 1200 14003000 0 1200 100 Time, s 1250 150 1300 200 Ethyl acetate ordering (crystallization) on diamond surface Conclusions Raman spectroscopy makes it possible to locally measure the rates of chemical processes (including enzymatic) in experiments with liquids and solids in the absence of specific requirements to reagents (substrates) Raman measurements make it possible to determine rate constants using variations in intensities of several spectral bands, so that the accuracy of calculations can be increased In the case of ATR FTIR measurements, the phase transition of liquids into quasi-crystalline state on the surface of ATR crystal is possible (even for diamond) Взаимодействие гомогенных растворов с алмазом 0.10 0.7 Оптическая плотность Оптическая плотность 0.6 0.05 0.5 0.4 0.3 0.2 0.1 0.0 1000 1000 1500 Волновое число, см -1 1200 1400 Волновое число, см 1600 -1 ИК спектры 2,1 М этилового эфира бензойной ИК спектры 190 мМ раствора 2,4-динитрофенил кислоты (этилбензоата) в этиловом спирте из ацетата в ацетонитриле из серии, измеренные через серии, измеренные через 15(черная кривая), 100 3(черная кривая), 100 (красная кривая) и 200 секунд (синяя (красная кривая) и 200 секунд (синяя кривая) после кривая) после начала измерений на кристалле НПВО. начала измерений на кристалле НПВО. Оптическая плотность 0.4 0.3 0.2 0.1 0.0 800 1000 1200 1400 1600 1800 2800 3000 Волновое число, см -1 3200 3400 3600 3800 ИК спектры фосфатного буфера из серии, измеренные через 3 (черная кривая), 100 (красная кривая) и 200 секунд (синяя кривая) после начала измерений на кристалле НПВО. Все спектры совпадают. ATR FTIR spectroscopy of spontaneous and enzymatic hydrolysis k1 CH 3COOK C2 H 5OH KOH CH3COOC 2H5 IR absorption at 1380 cm -1 k1 * 1.0 5 Four reaction kinetics at 1380 см-1 4 3 2 1 0 100 200 300 400 500 600 Time, s 1000 1100 1200 1300 -1 1400 0.8 ATR FTIR spectra of spontaneous reaction of 100 mM ethyl acetate hydrolysis, measured at 11-600 s from the beginning of reaction at the temperature of 23,5 °C Оптическая плотность Wave number, сm 0.6 FTIR spectra of ethyl acetate ATR measured at 3, 100, and 200 s after the beginning of reaction 0.4 0.2 0.0 600 800 1000 1200 1400
© Copyright 2026 Paperzz