Review worksheet

SLO REVIEW WORKSHEET
Name:_________________________
GSE PRE-CALCULUS
Block:_________________________
Determinants:
x
1. Solve
3
4 x
2 6
2. Solve
1 x
 7x
2
 3 4  1 0
 x 6
Solve Det 
*


8
 2 2   3 2 
 x x
3. Challenge: 
Matrices:
4. If A3x2 is multiplied by B2x4, what are the dimensions of A*B
5. Use the inverse matrix to solve the linear system:
2x – y = -4
x + y = 13
 3 4  1 0
*

 2 2   3 2 
6. Solve 
Trig Functions:
7. Solve:
cos x  sin2 x  1
8.
9. Evaluate: arcsin

2
2
10. Evaluate sec  arcsin

3

5
11. Identify the inverse of y = arctanx
12. Given y = arcsinx, state the range:
Conics:
13. Find the vertices, foci and length of major axis of:
14. What is the equation of this graph:
15. What is the equation of this graph:
16. Classify the following conic sections:
( x  3)2 ( y  1) 2

1
16
49
x2  4 y 2  6 x  8 y  3
25 y 2  16 x2  64 x  50 y  439  0
3x 2  3 y 2  36 x  6 y  24  0
8 y 2  64 y  16 x  0
Vectors:
17. Find the component and position forms of the vector with the following characteristics.
a. Initial Point (3, -2); Terminal Point (-2, 5)
b. P (-2, -4); Q (-6, 7)
c. Magnitude: 12; Θ = 135°
18. Which vector pairs are orthogonal?
19. Given,
v1  2, 5
v2  1,10
v3  3, 4
Find the resultant vectors:
a.
2v1
b.
5v1  2v2
c.
v3  v2
Introduction to trigonometry:
20. Find the reference angles for the following:
a. 250o
b. -718o
e.
3𝜋
5
𝜋
f. − 23
c. 856o
g.
20𝜋
3
d. -504o
h.
−16𝜋
7
21. Find one positive and one negative co-terminal angles for the following:
a. 250o
b. -718o
c. 856o
d.
3𝜋
5
𝜋
f. − 23
g.
20𝜋
3
22. State the exact value for the following:
a. sin π/4
b. tan 120°
e. cos − 17π/3
f. sin 29π/6
Law of Sines and Cosines
23. Find length AB
24. Find length AC
25. Find BC
c. tan − 13π/6
g. sec 945°
d. cos −630°
d. -504o
h.
−16𝜋
7