Deducing protein composition from complex protein preparations by MALDI without peptide separation. . TP #419 Kenneth C. Parker SimulTof Corporation, Sudbury , MA Introduction How best to characterize a proteome of intermediate complexity from a large number of distinct samples? Investigate the following: 1.) Digest with trypsin, and collect MALDI spectra. 2.) Collect msms spectra from the mixture. 11 18 13 56 80 81 1 MYH1 2 ACTA1 3 MYL3 4 CKM 5 ACTN2 6 MYH2 7 ALDOC 8 MYLPF 9 PK 10 MYL1 11 CKS 12 PGK 13 HSPB 14 GAPDH 15 ENO 16 TPM 1 1 1 1 1 1 1 2 Table 4. MSMS searches 31 27 56 43 70 65 83 84 96 76 78 86 85 100 105 110 120 Figure 2. Two overlapping precursors at mz 1869.94 (#76): This precursor mapped to myosin, but was off by 37 ppm. Two prominent components are visible at higher resolution; one component is very close. Only 2 of 12 putative correct IDs that are off by > 10 ppm cannot be so readily explained. 37 peptides matched to < 10 ppm even from low resolution parent spectra. How to tell correct from incorrect MS-MS IDs without cheating ? (but rules deduced by cheating)? 1. 2. 3. Length Protein Name Pyruvate Kinase Myosin light chain 1, cardiac muscle Creatine kinase S-type Phosphoglycerate kinase Heat shock protein beta-1 Glyceraldehyde-3-phosphate DH Enolase Tropomyosin alpha 82 86 Table 1. Summary of PMF protein level results Peptide Count Score %CM %IM ppw All PMF(u) PMF (t) msms 1941 Myosin heavy chain fast isoform 3 423 59 61 15 360759 35.9 20.1 8.0 377 Actin, alpha skeletal muscle 56 12 12 9 135126 36.0 16.7 3.6 150 Myosin light chain 3 38 7 7 4 36041 47.9 5.3 3.6 381 Creatine kinase M-type 64 11 14 3 31889 35.1 2.8 4.4 897 Alpha-actinin-2 174 20 29 1 11944 19.0 4.4 12.4 761 Myosin heavy chain 198 15 34 3 6449 18.2 5.8 15.8 772 Glucocorticoid receptor 111 12 13 4816 20.8 2.3 10.9 180 Uncharacterized protein 27 5 6 2266 32.7 1.4 4.9 362 Fructose Bisphosphate aldolase mouse 75 5 8 1 1787 19.3 1.1 12.1 205 UPF0454 protein C12orf49 homolog 37 4 5 889 22.2 1.2 9.3 152 Acetylcholinesterase 18 3 3 875 20.8 0.8 4.3 212 Fibroblast growth factor 10 40 7 8 626 26.6 1.8 13.8 157 Calcimedin, 32K 23 3 4 429 22.7 0.5 4.4 498 Nuclear factor 1 57 5 5 319 21.0 1.0 13.5 168 Myosin regulatory light chain 2 32 3 6 2 304 31.9 0.3 8.6 10 47 62 60 79 24 40 31 1. 2. 3. 4. 5. 6. Symbol Green-> correct by PMF Blue-> Correct by MSMS but not PMF # Methods I Table 3. Peptide level comparison 8 6 1 What are the limitations? 1. Dynamic range / protein complexity 2. Overlapping peptides / incomplete precursor isolation. 3. Incomplete database Buy chicken meat from grocery store. Mince, solubilize, reduce, alkylate, precipitate, trypsin digest. Dilute into matrix and collect MALDI spectra. Database used : chicken NCBI with 15148 sequences. Perform PMF on the digest (using proprietary software). Collect 120 MS-MS spectra in triplicate on precursors between mz 700-3200, and consider up to 1 missed cleavage. 7. Compare results with PMF and to previous data collected following the standard HPLC-MSMS approach. 8. All identifications considered to be false if protein is not known to be abundant. 9. How many correct IDs at the protein and peptide level can be obtained? 10. What explains false identifications? Rank . Figure 1. The below parent spectrum should be color-coded according to success of msms. Green-> all 3 correct, Blue-> 2 correct; yellow-1 correct, red-> incorrect, grey-> no id Data on individual spectra are listed in Table 4. amu peptides peaks I 1 269 68 1 269 68 1 269 68 1 269 68 1 269 68 1 2 3 4 5 Pep MZ ppm Sequence TrS Symb 1869.87 27.3 aSSDAEMAIFGEAAPYLR 1995 MYHsk_k 1870.08 -83.4 DLLLQTRLINDVTSIR 758 RyR3 1869.97 -27.1 DLIELQALIDSHFEAR 642 TNNT3 1869.98 -31.1 DLYALFEQILEKTMR 591 MYO9A 1869.91 3.7 SQYVPYDGIPFVNAGSR 562 ALS2CR8 1 1 1 1 1 269 269 269 269 269 29 29 29 29 29 1 2 3 4 5 1869.87 1869.97 1869.91 1870.08 1869.95 27.3 aSSDAEMAIFGEAAPYLR -27.1 DLIELQALIDSHFEAR 3.2 YHAIVYPMKFMQGER -83.4 DLLLQTRLINDVTSIR -15.1 SSEVETTVFYIPGVDVK 1748 MYHsk_k 976 TNNT3 817 NPSR1 774 RyR3 617 KIAA1109 5 5 5 5 5 1384 1384 1384 1384 1384 29 29 29 29 29 1 2 3 4 5 1869.87 27.3 aSSDAEMAIFGEAAPYLR 1869.97 -27.1 DLIELQALIDSHFEAR 1867.87 1093.9 SIGEDVYEKPMSELDR 1869.91 3.2 YHAIVYPMKFMQGER 1868.84 579.1 DNEQLSHLNQEQEER 1748 MYHsk_k 976 TNNT3 893 FILIP1 817 NPSR1 816 GOLGA2 20 20 20 20 20 5675 5675 5675 5675 5675 29 29 29 29 29 1 2 3 4 5 1869.87 27.3 aSSDAEMAIFGEAAPYLR 1869.97 -27.1 DLIELQALIDSHFEAR 1867.87 1093.9 SIGEDVYEKPMSELDR 1869.91 3.2 YHAIVYPMKFMQGER 1868.84 579.1 DNEQLSHLNQEQEER 1748 MYHsk_k 976 TNNT3 893 FILIP1 817 NPSR1 816 GOLGA2 4. 5. 6. 7. High mass accuracy. Mass accuracy becomes an important filter (20 ppm filters out 2/3 of 1 amu wrong IDs) even when the resolution is between 5K and 10 K as in Figure 1. Complexity of the parent mass region. Much stronger parent masses 10 amu away may interfere. Consistency of identification between replicate MSMS spectra (Only 3 wrong but consistent IDs with score > 805 found) Robustness of ID as a function of peak detection. Robustness of ID as a function of precursor mass accuracy. Difference in score between top hit and highest incorrect hit (Table 2) Longer peptides are more reliable. Short homologous wrong peptides often get high scores. See Table 5. <-Table 2 From this msms spectrum, the program correctly identifies myosin, starting with either 29 or 65 peaks detected, when searched against the chicken database considering a 1 amu search window, a 5 amu window, or a 20 amu window. With the shorter peak list (with less confounding noise), the 2nd hit is a troponin peptide, known from HPLC MSMS to be abundant in chicken muscle preparations. It may explain the 2nd parent mass visible in the high resolution spectrum. Table 5. Hits to spectrum #1 PepMW mz ppm Sequence Score PIM PCM Symbol 774.40 774.32 104.1 EEIDIR 3360 84 56 774.40 774.32 104.1 EEVEIR 3360 84 56 C9orf64 774.45 774.32 175.3 EILMIR 2835 70 63 774.35 774.32 34.1 &DIDIR 2386 79 47 ACTA1 774.40 774.32 104.1 EIEDLR 2280 70 57 774.40 774.32 105.3 qMIMIR 2131 65 51 CUL4B 774.45 774.32 165.7 EQTKLR 2099 71 46 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 msms 774.32 779.37 795.45 917.47 942.46 945.55 948.47 976.44 992.52 1000.49 1010.52 1028.54 1045.53 1053.54 1060.53 1093.55 1107.63 1130.56 1153.57 1156.66 1170.55 1173.55 1188.66 1192.60 1200.69 1217.62 1233.62 1243.66 1253.61 1269.59 1296.66 1314.71 1338.66 1342.69 1359.68 1373.73 1382.67 1386.74 1391.76 1398.76 1401.76 1421.72 1473.78 1483.69 1488.73 1501.71 1512.70 1515.74 1521.73 1532.78 1540.73 1553.75 1556.81 1559.83 1566.78 1605.76 1609.78 1611.78 1618.80 1657.84 1660.81 1702.83 1724.85 1730.91 1749.78 1765.89 1768.98 1772.89 1778.93 1790.89 1803.88 1812.93 1816.91 1825.00 1854.89 1869.94 1885.89 1896.90 1924.94 1956.05 1974.92 1986.90 1992.96 2013.91 2070.92 2199.05 2215.05 2246.02 2256.05 2262.05 2277.06 2289.09 2298.11 2307.09 2313.11 2320.11 2329.13 2336.07 2365.10 2374.09 2386.10 2393.11 2425.12 2436.11 2448.19 2460.13 2464.12 2478.12 2494.14 2499.12 2539.17 2563.20 2634.19 2689.12 2704.29 2777.15 2784.15 2838.19 3067.58 3100.39 ppm 180.1 21.1 25.4 -0.4 58.6 1.2 10.4 10.6 -33.0 0.2 8.9 17.1 36.8 -37.3 -8.4 -26.9 0.1 -10.7 61.7 -5.7 86.5 -3.8 -39.8 -3.1 -59.4 -2.5 -21.3 -8.4 4.4 -22.3 -7.7 15.3 57.7 4.2 -18.1 10.1 12.2 -63.9 -29.0 2.5 -65.1 32.7 -5.8 -5.8 -17.5 -18.0 -1.0 -5.0 8.4 9.7 6.3 -3.6 0.3 -21.9 -92.6 -19.7 3.0 -7.1 -33.1 -1.1 16.7 0.1 70.1 -4.4 4.8 28.6 -45.2 0.2 35.7 0.9 -12.7 1.1 6.7 -33.0 43.5 -37.4 13.3 2.5 45.2 -4.8 2.2 1.6 0.6 -0.5 -8.2 0.7 -0.1 -1.2 53.1 -30.8 58.0 -10.3 17.4 69.6 -66.1 -3.3 26.8 8.4 45.3 129.9 37.4 44.4 40.3 42.5 1.8 70.3 10.2 -19.4 102.9 67.2 66.6 -3.4 100.2 101.5 40.9 97.4 88.4 89.3 -1.8 -302.2 Correct; Score > 805 Wrong; Score > 805 sc < 10 ppm > 805 10 ppm <20 ppm Total Distinct 0 3 3 2 2 3 3 1 1 1 0 1 1 1 3 1 3 3 3 3 0 2 2 1 3 1 3 1 1 1 3 3 1 2 2 3 3 3 1 2 1 1 1 1 3 1 3 1 1* 3 1 2 1 1 1 1 1 0 0 3 1 3 3 1 1 1 2 2 0 1 1 1 0 2 1 2 1 1 1 0 0 1 3 1 1 1 1 1 3 2 3 3* 3 1 1 2 1 0 3 1 3 1 2 1 3 1 1 3 2 1 3 1 1 3 2 1 1 1 1 1 3 3 3 1 2 1 1 1 3 3 3 1 3 1 2 1 3 2 1 1 1 1 1 1 0 0 0 0 1 1 2 1 1 1 2 1 2 2 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 3 3 1 3 1 1 0 1 3 37 116 15 2 2 PepMW Seq 3103 1418 2215 1144 1207 5006 1195 2989 1540 5208 3733 920 1109 650 2040 649 1239 1980 1284 1903 1170 801 925 2415 1137 4935 1180 1918 566 741 1861 949 875 801 732 826 910 1296 947 2263 1696 707 825 3974 1269 1228 6715 660 850 913 736 2056 1178 984 897 1615 1368 4983 441 1142 1155 4401 623 2363 2320 515 508 494 664 5839 1012 1008 838 481 555 2391 658 2536 486 4680 5406 2325 840 1650 547 3208 1882 5666 672 572 640 650 499 763 536 2214 650 741 632 675 584 799 432 466 1244 330 519 431 526 447 734 829 580 408 956 633 673 600 1968 722 774.46 779.39 795.47 917.47 942.52 945.55 948.48 976.45 992.48 1000.49 1010.53 1028.55 1045.56 1053.50 1060.52 1093.52 1107.63 1130.55 1153.64 1156.66 1170.65 1173.55 1188.62 1192.60 1200.62 1217.62 1233.59 1243.65 1253.62 1269.56 1296.65 1314.73 1338.73 1342.70 1359.66 1373.74 1382.69 1386.65 1391.72 1398.76 1401.66 1421.77 1473.77 1483.68 1488.71 1501.68 1512.70 1515.73 1521.74 1532.80 1540.74 1553.75 1556.81 1559.79 1566.64 1605.73 1609.78 1611.77 1618.75 1657.83 1660.83 1702.83 1724.97 1730.90 1749.79 1765.94 1768.90 1772.89 1778.99 1790.89 1803.85 1812.93 1816.92 1824.94 1854.97 1869.87 1885.91 1896.91 1925.02 1956.04 1974.93 1986.90 1992.96 2013.91 2070.90 2199.05 2215.05 2246.02 2256.17 2261.98 2277.19 2289.07 2298.15 2307.25 2312.96 2320.10 2329.19 2336.09 2365.20 2374.40 2386.19 2393.22 2425.22 2436.21 2448.19 2460.30 2464.15 2478.07 2494.39 2499.28 2539.34 2563.19 2634.45 2689.40 2704.40 2777.42 2784.39 2838.44 3067.57 3099.45 TGTARIR ALzYPR IIAPPER ELSNGLER AIGHFELR AVFPSIVGR MLQIzAGR AGFAGDDAPR ETLVSQzR &NGVLEGIR EAFLLFDR TIPWLENR SSEGVQGILR MNYIEDLR NASQTRNNR GIEEDEFVR VPPPLPQFGR GYSFVTTAER IVLPDVMNPR LVIIEGDLER ELTPQVVSAAR GYSLPPHzSR QPMSATLRER EAFTVIDQNR ASPEVEQTALR DLFDPVIQDR EGNGTVMGAELR IQLVEEELDR DSIMVQEYIR ELTYQSEEDR DTQIHLDDALR TVVPARzGVTVR eFGFLATRLFR NGASALPRHTYR MLHAYNPSRDR YTLPPGVEATAVR LGESQLSGPAHMR DPLEIPDSGSGGSR ADALTEEINFLR ANLLQAEIEELR IDQASLDYSYAR TQzLQYLRALR qAFTQQIEELKR qEYDEAGPSIVHR IEELEEEIEAER DTGTYEDFVEGLR DQGTFEDFVEGLR GDHTNRDGIIFDR TSSTFEPSPKPSEK GTFTPVVTDPITER QTPTREYVDFER VVIGMDVAASEFzR VPTPNVSVVDLTzR ETTADPSELEAIKR zSPETSLMPDzNR qPAHDAWAEDVDLR SFLTAASPGEKGSSDR SFLEELLTTQzDR PHMQASPQQPNNNR TFLVWVNEEDHLR AGMEKTSAITAAAADPR LQNEVEDLMIDVER LAAGFLLLFQFLSER TPGAMEHELVLHQLR LVSWYDNEFGYSNR qPLRPPzVLAFVTER HIPGSPFTAKITDDNR DILSPDMISPPLGDFR ITPVSPVHHPPLSELR SYELPDGQVITIGNER &QENADPQKMAFLLR AzANPAnGSVILLENLR DISDGFPPGDATIVTRR SAGVHQPKFAAEIAENR EGDRIIQInGIEVQNR aSSDAEMAIFGEAAPYLR ETEGFVARDFTMLVDR HADSTAELGEQIDNLQR GENLAIGFDIHKVELNR VAPEEHPTLLTEAPLNPK YPIEhGIITNWDDMEK MEGDLNEMEIQLSHANR GTGGVDTAAVGAVFDISNADR MEGDLNEMEIQLNHANR FzGWYDADLSPAGQQEAR NDLQLQVQAEADALADAEER NDLQLQVQAEADSLADAEER DLYANNVMSGGTTMYPGIADR IDDVPPIKFELSQGSPQMVR SSSSEzSLKEDLQTzMFPR GGSLLzGTSAAKAVLTLSTQADR DLTPLSDGDVGSSTSSHSSQRR DEMAHVTGRVLPAPMLQYGGR NPNSLKAMAPLSSGVNLPLLDR SSLTPSSQDDSSNQEDGQESSK LETDIAQIQSEMEDTIQEAR qAASTPALSPAGPAASPPGAGSGKAAR LETDISQIQSEMEDTIQEAR DADVFPIEVDLARTTLNYGQK FGLPVIPPTIPFQRGLAPLNVK QPPSVPnGPSSPITESAPELPQR eEAADSPELSPALEELIQKVSR ASPSAIGSSQPPSVTPASSPSKEQK GPPGPVGPSGKDGSNGMPGPIGPPGPR KLETDIAQIQSEMEDTIQEAR YHYTSSSLPRNLPINITNTIR GEDGDPGQPGPPGPSGEAGPPGPPGKR DINEzALDPDIzSNGIzENLR SPFPVTVAPPLQLDKVSVQGLSSK VEVLPPIETKGLTSDDVSDLTDR EVPPSPALSTGTVLPNADLTYQLR qEAPPHIFSISDNAYQFMLTDR PEVPSHVPFLLIGGGTAAFAAARSIR TPLHTNELNDIQSQPGGYHLLTLK qPPPPARPAAALGPDPGVPGAPMGFSLR MPILEHPAYPPATLLzLESLVPzR ePPRYMAPFSVVSNLSTIHIDWSR GALGQPGPAGEQGMRGPQGPPGQIGTPGIR TVPPAVPGVTFLSGGQSEEEASLNLNAINR PEPPPAQGPALALzHYSDLSNNNDFYVL Acc MYHsk_k ACT ACT CENPM ACT MYHsk_k MYL1sk ACTN1 ZCCHC11 CKMT2 ACTA1 ZBTB43 TPM1 VCL CKM C10orf78 MYLPF RHBDF2 CKM MYL_K TPM1 JAK MYH3 MYHsk_k BRAF KIAA0922 HSPB1 RERE HOXA2 MYH3 MYH3 ACTA1 MYHsk_k MYL_K MYL1sk MPRIP ENO3 GAPDH LD FLCN PKM2 MYLPF CKM DCLK2 MYH3 PLXDC2 MYHsk_k GAPDH NPNT CDC42EP3 ACT CENPL PGK LAO PTPRJ PDZRN3 MYHsk_k2 PEX1 MYHsk_k CAPN5 ACTA1 ACTA1 MYHsk_k CKM MYH2f_k PGAM1 MYH2f_k MYHsk_k ACTA1 KIAA0922 KIAA1244 C6 EIF2C3 EPHB2 RPS6KC1 MYH2f_k cDtx2 MYH_N127 PICK1 RAR-gamma2 CAPRIN2 COL2A1 MYH2f_k AGPAT2 CD1.1 MYHsk_k OBSCN LVRN USH2A COL6A3 ALDOC Int 73 86 62 41 82 7 83 21 11 29 81 89 16 52 12 58 70 87 68 25 28 31 67 38 48 65 77 100 47 75 99 35 54 57 94 24 13 34 98 26 39 6 56 43 22 2 79 49 59 23 61 69 97 74 46 80 5 93 19 45 96 44 17 9 55 15 72 3 32 78 1 37 88 91 64 95 53 10 40 27 30 66 63 92 20 18 8 60 33 51 84 85 14 50 42 76 4 36 71 90 Mass 211 196 240 328 202 997 200 525 800 437 207 186 744 278 792 260 215 192 220 495 443 432 224 354 286 228 209 173 290 211 175 414 270 261 182 500 780 416 175 456 332 1209 264 315 509 2723 207 285 255 507 243 220 177 211 304 207 1483 184 587 304 180 304 656 873 265 756 213 2539 430 208 7311 391 192 185 228 182 275 850 331 446 437 227 234 185 547 598 925 244 423 279 200 199 775 284 317 210 2090 401 214 185 747.39 774.32 779.37 795.45 917.47 945.55 948.47 976.44 1000.49 1010.52 1028.54 1045.53 1060.53 1107.63 1130.56 1156.66 1171.59 1174.60 1192.60 1200.69 1201.68 1217.62 1233.62 1243.66 1296.66 1314.71 1316.65 1338.66 1342.69 1359.68 1377.67 1382.67 1385.76 1386.74 1390.70 1391.76 1398.76 1401.76 1412.76 1421.72 1473.78 1483.69 1487.74 1488.73 1501.71 1512.70 1515.74 1516.75 1532.78 1553.75 1556.81 1559.83 1567.79 1570.89 1605.76 1609.78 1611.78 1618.80 1657.84 1660.81 1663.82 1701.84 1702.83 1730.91 1744.86 1749.78 1768.98 1772.89 1778.93 1781.91 1790.89 1795.90 1803.88 1810.95 1816.91 1825.00 1854.89 1869.94 1885.89 1890.86 1896.90 1902.91 1924.94 1936.93 1956.05 1974.92 1986.90 1992.96 2013.91 2070.92 2115.12 2131.12 2199.05 2215.05 2228.04 2244.08 2246.02 2320.11 2322.09 3067.58 ProtR symbol 1 1 MYHsk_k 10 ACTA1 1 2 ACTA1 1 2 ACTA1 1 MYHsk_k 3 MYL1sk 5 ACTN1 28 1 MYHsk_k 33 CKMT2 2 1 2 5 7 MYLPF 3 1 4 3 5 TPM1 1 MYHsk_k 7 12 14 7 6 19 1 5 27 7 8 1 MYH3 6 6 5 1 MYH3 2 ACTA1 14 1 MYHsk_k 12 MYL_K 3 MYL1sk 2 34 1 17 ENO3 11 GAPDH 1 34 29 28 PKM2 16 2 MYLPF 1 4 CKM 1 13 27 1 MYH3 1 MYHsk_k 29 32 GAPDH 38 6 1 25 2 ACTA1 24 9 23 1 8 31 22 MYHsk_k2 28 21 1 MYHsk_k 45 1 14 2 ACTA1 2 ACTA1 1 MYHsk_k 4 CKM 38 MYH2f_k 31 28 35 28 MYH2f_k 1 MYHsk_k 25 10 2 ACTA1 1 MYH2f_k 35 9 ALDOC ppm Sequence -16.4 SEIDRK msms -21.1 ALzYPR 6.2 QHLLER 0.5 AALEQTER -1.2 AVFPSIVGR 14.3 TEELEEAK -10.6 AGFAGDDAPR -0.2 &NGVLEGIR -8.9 EAFLLFDR -17.1 TIPWLENR -23.5 ADAPVKWMK 15.2 ANSEVAQWR 13.8 LNNNIKYTK 10.7 GYSFVTTAER -13.6 NLRNTQAVLK 15.7 HQGVMVGMGQK -7.6 EGLLLWzQR -15.5 IMSTLNMLGGR -1.2 ITLSQVGDIVR 15.5 AGLLGLLEEMR 2.5 DLFDPVIQDR 21.3 EGNGTVMGAELR 16.5 HRPDLIDYSK 7.7 DTQIHLDDALR 7.3 INDRGDLLPSSK -15.8 SYNHLQGDVRK -23.6 RSLPSTSSTSSTK -12.3 HMLMVARELSR -10.7 GRLQTENGELSR -19.9 TLFFRYMSQGK 9.4 IQHELEEAEER -24.6 LASELLEWIRR 10.5 LDTTHHPRQPGK 6.6 zLQAGMNLEARK 2.8 GDAVTEIGITFLR -2.5 ANLLQAEIEELR 23.9 LAEQELLEATER -8.9 NNLLLAEVEELR 11.0 GYEEWLLNEIR 5.8 qAFTQQIEELKR 5.8 qEYDEAGPSIVHR -4.8 AFAYTWFNLQAR 17.5 IEELEEEIEAER -16.9 HnGRQMFVALnGR 1.0 DQGTFEDFVEGLR -7.7 IWHHTFYNELR -7.2 SQKTPTSSPSPGSQK -9.7 LLSSIDVDhTQYK 9.7 GQNHNVQGFHPYR -8.0 GIASYLNVWYSRK -1.5 IVESLQSSLDAEIR 17.1 EQDTDSINKQVYK 17.3 QVPPQFLETVEKR -20.9 DFzSAQLSVKEPPK 18.6 &PFAHGEFPDPKPK 2.2 qEYDEAGPSIVHRK 18.4 LEEAGGATAAQIDMNK 1.1 TFLVWVNEEDHLR -8.0 NAYEESLDHLQTLK -1.6 GMGTDEEEILILTSR -9.4 SQDGEELAISGGGGLRR -0.1 LQNEVEDLMIDVER 4.4 TPGAMEHELVLHQLR -6.5 QWQMNIEGVNDVALK -12.9 RSISzPSzNGLAEGNK -6.6 PILQRYISLLMEHR -18.5 DLQMRLDEAEQIALK -6.7 DLQHRLDEAEQLALK -2.6 KDVDGAYMTKVDLQAK -0.9 SYELPDGQVITIGNER 9.7 DVFLGmFLYEYARR -14.1 &PLPRPWALTFSYGR 16.1 VPFTFLTSPSWEPFR 1.7 RQAEEAEELSNVNLSK 1.3 ELFVLTYGALVAQLzK 16.7 QALLHzQDFHDQSQK 6.7 SADLTAMSDNKELYLAK 11.8 GYIVEMQDEGSTDWKK -1.1 YGSGGGSKGGSLSGGGYGSGGG -2.5 HADSTAELGEQIDNLQR 6.3 KQDEYHMVHLVzTSR 12.2 YETDAIQRTEELEEAK -17.9 VSASHHAPDRPPDPFPPL 4.8 VAPEEHPTLLTEAPLNPK -2.2 YPIEhGIITNWDDMEK -1.6 MEGDLNEMEIQLSHANR -0.6 GTGGVDTAAVGAVFDISNADR -9.6 SQLDSRNSSSSSSLASSEGK -24.4 LIQEQYLQTESzSSAGEK -1.1 IIAEAEISDTPLLTSEEKR 4.6 ASIQLPMEKAIETALDzLK -17.2 zSITTTEKSzILEILDSTK 0.1 NDLQLQVQAEADSLADAEER 2.5 LDSELKNMQDMVEDYRNK -10.1 FLNRAAMAFQNLFMAVEDR 1.2 DLYANNVMSGGTTMYPGIADR 3.3 LETDIAQIQSEMEDTIQEAR 3.7 FLzNMTFLKEYMEEEIPK 1.8 TVPPAVPGVTFLSGGQSEEEASL ALzYPR IIAPPER AVFPSIVGR AGFAGDDAPR &NGVLEGIR EAFLLFDR TIPWLENR ANSEVAQWR VPPPLPQFGR GYSFVTTAER EAFTVIDQNR ITLSQVGDIVR DLFDPVIQDR EGNGTVMGAELR IQLVEEELDR DTQIHLDDALR ANLLQAEIEELR qAFTQQIEELKR qEYDEAGPSIVHR IEELEEEIEAER DTGTYEDFVEGLR DQGTFEDFVEGLR VVIGMDVAASEFzR VPTPNVSVVDLTzR qPAHDAWAEDVDLR SFLEELLTTQzDR TFLVWVNEEDHLR LQNEVEDLMIDVER TPGAMEHELVLHQLR LVSWYDNEFGYSNR SYELPDGQVITIGNER aSSDAEMAIFGEAAPYLR HADSTAELGEQIDNLQR VAPEEHPTLLTEAPLNPK YPIEhGIITNWDDMEK MEGDLNEMEIQLSHANR GTGGVDTAAVGAVFDIS MEGDLNEMEIQLNHANR NDLQLQVQAEADALADAEER NDLQLQVQAEADSLADA DLYANNVMSGGTTMYP LETDIAQIQSEMEDTIQEA TVPPAVPGVTFLSGGQSE 49 Conclusions: 4th hit obviously correct •Using PMF, can identify most abundant proteins •Samples like chicken muscle, plasma, whole blood lysate, saliva have a rather small number of abundant proteins that can be compared by the means shown here. • Confirmation of PMF by MSMS can be performed directly on unseparated digests, resulting in ~15 protein IDs from whole chicken muscle. •Failures usually due to weak precursors close to strong precursors, or mixtures. •Similar analyses have been successfully performed on human biofluids , (not shown)
© Copyright 2026 Paperzz