LiDAR Remote Sensing for Natural Resource Management Paul Treitz Department of Geography, Queen’s University Murray Woods Ontario Ministry of Natural Resources Kevin Lim Lim Geomatics Inc. Valerie Thomas Department of Forestry, Virginia Tech Harry McCaughey Department of Geography, Queen’s University Light Detection and Ranging (LiDAR) Active remote sensing system Up to 200,000 pulses of laser light per second Pulses strike the objects/surface of the earth and with each pulse the sensor receives a measurement of the time and angle of each return. As the laser pulse strikes a surface, it will produce range and intensity measurements (multiple). Canopy Height Models Digital Surface Model (DSM) Digital Terrain Model (DTM) Canopy Height Model (CHM) LiDAR’s Contribution to Forest Inventory Detailed Surface Models – Digital Surface Models – Digital Terrain Models – Canopy Height Models Road layout using least cost path analysis techniques. Destination Detailed Digital Terrain Model – Supporting Value Added Identifying surficial geology Hydrological modelling Wetland identification Predictive ecosystem mapping Operational considerations – road construction – skid trail layout – water crossings Profile from DEM Origin DEM 2m Slope Predicting Forest Inventory Variables Swan Lake Research Forest tolerant hardwood forest no– harvest/single tree selection. Petawawa Research Forest plantation, natural unharvested, and silviculturally treated conifer stands. Nippising Forest Sites young yellow birch red oak conditions; and natural white pine conditions Woods, M., K. Lim, and P. Treitz. 2008. Predicting forest stand variables from LiDAR data in the Great Lakes St. Lawrence Forest of Ontario, Forestry Chronicle, 84(6): 827-839. 55 Forest Stand Characteristics 6 Forest Variables Top Height (m)(TOPHT) Calculated as the average of the largest 100 stems per hectare. Average Height (m)(AVGHT) Calculated as the average height of all trees. Density (stems ha-1)(DENSITY) Number of live trees. Quadratic Mean Diameter (cm)(QMDBH) DBH 2 n Basal Area (m2 ha-1)(SUMBA) DBH2 * 0.00007854 Gross Total Volume (m3 ha-1)(SUMGTV) Honer et al. (1983) equations. 77 LiDAR Predictors Derived from all returns Statistical Mean, Standard Deviation Percentiles Deciles (p10 … p90) Maximum Height Density d1 … d9 • Range of heights divided into 10 equal intervals. • Cumulative proportion of returns starting from the lowest interval. Da : Number of first returns divided by all returns. Concept of Canopy Height Metrics ACFL Data sorted into 10 equal parts with each part representing 1/10th of the sample or population 30 q(ht) q(ht) q(ht) q(ht) q(ht) q(ht) 25 height q(ht) 15 10 5 4.2971e+5 4.2970e+5 4.2969e+5 4.2968e+5 4.2967e+5 4.2966e+5 4.681400e+6 q(ht) q(ht) ata XD Z Data 20 0 4.681435e+6 4.681430e+6 4.681425e+6 4.681420e+6 4.681415e+6 4.681410e+6 4.681405e+6 Y Data 0 P 1 LiDAR Vertical Structure in Forest Conditions Plot 94a 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 429960 20.00+ 10.01-20.00 Height Class Height m 94a 6.01-10.00 3.01-6.00 1.31-3.00 0.51-1.30 429965 429970 429975 429980 429985 X position 429990 429995 430000 430005 0 5 10 15 20 25 30 35 % Vegetation Returns Vertical profile indicates vegetation between 0.5 and 1.3m with most of the vegetation present in the 6-10 & 10-20m class. 40 Statistical Analysis Best Subsets Regression A model-building technique that identifies subsets of variables that best predict responses on a dependent variable by linear or non-linear regression. Model Diagnosis Test for Normality: Shapiro-Wilks Test Test for Homoschedasticity: Modified Levene’s Test Multicollinearity: Variance Inflation Factors (VIF) < 10 Natural Logarithm Transformation Validation PRESS Procedure 11 11 Regression Models: Natural Hardwoods R2 p RMSE (%) PRESS RMSE (%) SUMBA (m2/ha) 0.82 < 0.001 3.46 (17.2) 3.99 (19.9) SUMGTV (m3/ha) 0.90 < 0.001 39.35 (21.9) 52.03 (29.0) DENSITY (stems/ha) 0.77 < 0.001 196.03 (43.7) 214.98 (47.9) QMDBH (cm) 0.82 < 0.001 3.07 (12.4) 4.17 (16.8) AVGHT (m) 0.87 < 0.001 1.10 (5.7) 1.25 (6.4) TOPHT (m) 0.96 < 0.001 0.80 (3.5) 0.89 (3.8) Variable Canopy Height Model (CHM) Petawawa Research Forest 14 14 LiDAR Data Acquisition Standards Goal: To develop standards for LiDAR data acquisition in support of modelling forest inventory variables. Objective(s): Examine the impact of changes in pulse densities on modelling forest inventory variables. LiDAR Data Acquisition Standards Natural Tolerant Hardwood RGB Image 0.5 pulses/m2 3 pulses/m2 Natural Conifer Shelterwood Conifer Plantation Preliminary Results Current Status Swan Lake – Tolerant Hardwoods Variable Decimation Level 0 Decimation Level 1 Decimation Level 2 R2 RMSE (%) R2 RMSE (%) R2 RMSE (%) SUMBA (m2/ha) .49 2.7 (10.6) .49 2.7 (10.7) .58 2.4 (9.7) SUMGTV (m3/ha) .59 25.4 (11.2) .60 24.9 (11.0) .61 24.8 (11.0) DENSITY (stems/ha) .84 42.8 (10.5) .86 39.8 (9.8) .83 43.7 (10.7) QMDBH (cm) .69 2.0 (7.3) .72 1.9 (7.0) .70 2.0 (7.1) AVGHT (m) .84 0.6 (3.4) .84 0.6 (3.4) .85 0.6 (3.2) TOPHT (m) .82 0.7 (3.0) .85 0.7 (2.8) .86 0.7 (2.7) SUMBIO (kg/ha) .46 24,795 (12.6) .50 23,811 (12.1) .58 23,811 (12.1) Preliminary Results Current Status Petawawa Research Forest – Great Lakes Pine Variable Decimation Level 0 Decimation Level 1 Decimation Level 2 R2 RMSE (%) R2 RMSE (%) R2 RMSE (%) SUMBA (m2/ha) .89 4.8 (13.3) .89 4.7 (13.2) .88 4.9 (13.7) SUMGTV (m3/ha) .93 56.1 (13.4) .94 51.2 (12.3) .92 60.0 (14.4) DENSITY (stems/ha) .74 207.8 (34.7) .72 214.9 (35.8) .68 226.9 (37.8) QMDBH (cm) .87 3.9 (12.7) .86 4.0 (12.9) .87 3.8 (12.3) AVGHT (m) .94 1.3 (5.7) .94 1.3 (6.0) .94 1.3 (5.7) TOPHT (m) .95 1.2 (4.4) .95 1.2 (4.5) .94 1.3 (4.7) SUMBIO (kg/ha) .74 29,818 (21.0) .76 28,743 (20.3) ,78 27,572 (19.4) Estimating forest canopy chlorophyll concentration using remote sensing technologies. Goal: To investigate the potential of combining lidar and hyperspectral data to improve estimates of canopy chlorophyll concentrations. Objectives: 1. 2. 3. To test hyperspectral indices at the canopy scale for estimating chlorophyll concentrations. To identify lidar structural metrics that are related to chlorophyll concentration. To combine lidar and hyperspectral indices to improve estimates of chlorophyll concentration. Thomas, V., P. Treitz, J.H. McCaughey, T. Noland and L. Rich, 2008. Canopy chlorophyll concentration estimation using hyperspectral and lidar data for a boreal mixedwood forest in northern Ontario, Canada. International Journal of Remote Sensing, 29(4): 1029-1052. Study Area Groundhog River Fluxnet Site (GRFS) Timmins, Ontario, Canada Lat/Long: 48 °N, 82 °W Boreal Mixedwood Site Trembling Aspen (TA) White Birch (WB) White Spruce (WS) Black Spruce (BS) Balsam Fir (BF) White Cedar (C) Plots 11.3 m radius; 400 m2 Height, dbh, crown width Calibration Plots (24) Validation Plots (9) Results – Lidar Data Lidar first return point clouds for: open black spruce canopy; and trembling aspen canopy with balsam fir understory. Results – Lidar Data Relationships between average total leaf chlorophyll concentration (a+b) and mean lidar height above ground during August 2003 (lidar data) and August 2004 (leaf chlorophyll concentration). Groundhog River Flux Site, August 2004, maps of mean of 25th percentile of lidar heights above ground (m). Results – Hyperspectral / Lidar Map of total chlorophyll (a+b) (μg/cm2) derived from the integrated lidar-hyperspectral model. Integrated lidar-hyperspectral model (lidar25/DCI) for average leaf total chlorophyll (a+b). Acknowledgements
© Copyright 2026 Paperzz