General Catalog

Couplings
General Catalog
Superior Coupling Technology
www.renold.com
Renold Hi-Tec Couplings has been a world leader in the design and manufacture of flexible couplings for over 40 years.
• World class
manufacturing
•Measurement of torsional
stiffness up to 162,300 ft.lb
•Full scale radial
and axial stiffness
measurement
• Total quality system
• Latest machining
and tooling
technology
•Misalignment
testing of couplings
up to 69 inches in
diameter
• Static and
dynamic
balance
capability
•Noise attenuation
testing
• Integrated cellular
manufacturing
•Latest CAD technology
•Torsional vibration
analysis
• Synchronized work
flow
RENOLD Hi-Tec Couplings
www.renold.com
2
Contents
Page No
DCB Coupling
Features & benefits
Typical applications
Series 6
Series 8
Technical data
Design variations
HTB Coupling
Features & benefits
Typical applications
Flywheel mounted
Technical data
Design variations
RB Coupling
Features & benefits
Typical applications
Shaft to shaft
Flywheel mounted
Technical data
Design variations
PM Coupling
Features & benefits
Typical applications
Shaft to shaft
Technical data
Technical data standard blocks
Design variations
Selection Procedure
Selection Checklist
Selection Procedure
Driven equipment service factors
Selection examples
Transient analysis
Rubber information
Damping characteristics
NEW DCB GS Coupling
4
RENOLD Hi-Tec Couplings
5
7
8
10
13
20
21
22
23
24
25
28
29
30
31
32
34
38
41
42
43
44
45
47
48
50
51
52
53
54
55
56
57
58
59
www.renold.com
3
Product Range
The product range comprises of rubber in compression couplings, developed over 40 years for the complete range of diesel
and industrial applications. In particular, our design capability and innovation is recognized in customizing couplings to meet
customers specific requirements
R
ENOLD Hi -Tec Couplings deliver the durability, reliability and long life that customers demand.
RENO
LD Hi-Tec Couplings is “the complete solution”.
DCB Range
The unrivalled quality and endurance capability designed into every DCB coupling
make it ideally suited for marine propulsion, power generation and reciprocating
compressor applications where long life, fail safe operation and control of resonant
torsional vibrations are essential. Maximum torque range 4,000,000 ft.lb.
Applications
● Marine Propulsion
● High Power Generator Sets
● Reciprocating Compressors
● Rail Traction
HTB Range
The HTB Coupling is a high temperature blind assembly coupling designed for
mounting inside bell housings
Applications
● Marine Propulsion
● Generator and Pump Sets
● Compressors
● Rail Traction
RB Range
General purpose, cost effective range available in either shaft to shaft or flywheel to
shaft configurations with a maximum torque of 30,240 ft.lb.
Applications
● Generator and Pump Sets
● Compressors
● Metal Manufacture
● Bulk Handling
● Pulp and Paper Industry
● General Industrial Applications
PM Range
This range of couplings is specially designed for heavy industrial applications
providing exceptional protection against severe shock loads and vibration.
Maximum torque 4,350,000 ft.lb.
Applications
● Metal Manufacture
● Pumps, Fans and Compressors
● Power Generation
● General Heavy Duty Industrial
Applications
● Mining
● Cranes and Hoists
● Pulp and Paper Industry
MSC Range
This innovative coupling has been designed to satisfy a vast spectrum of diesel drive
and compressor applications providing low linear stiffness and control of resonant
torsional vibration with intrinsically fail safe operation. Maximum torque 272,000 ft.lb.
Applications
● Marine Propulsion
● High Power Generator Sets
● Compressors
RENOLD Hi-Tec Couplings
www.renold.com
4
4
RENOLD Hi-Tec
Couplings.
Tel: + 44 (0) 1422 255000 Fax: + 44 (0) 1422 255100 E-Mail: [email protected]
RENOLD
Hi-Tec
Couplings
www.renold.com
5
DCB Flexible Coupling
Fail safe coupling for use on reciprocating machinery
up to 4,000,000 ft.lb.
The Standard Coupling Arrangements
•
•
•
•
Flywheel to shaft
Flywheel to flange
Flywheel to U-joint
Shaft to shaft
Applications
•
•
•
•
Marine propulsion
High power generator sets
Reciprocating compressors
Mining
Features
Benefits
● Intrinsically fail safe
● Ensuring continuous operation of the driveline in the unlikely
event of rubber damage.
● Control of resonant torsional vibration
● Achieving low vibratory loads in the driveline components by
selection of optimum stiffness characteristics.
● Severe shock load protection
● Avoiding failure of the driveline under short circuit and other
transient conditions.
● Maintenance free
● With no lubrication or adjustment required resulting in low
running costs.
● Misalignment capability
● Allows axial and radial misalignment between the driving and
driven machines.
● Noise attenuation
● Giving quiet running conditions in sensitive applications by
the elimination of metal to metal contact.
● Selection of Rubber
Construction Details
8
3
5.5
● Variety of rubber materials and hardness are available for
optimum reduction of drive vibration and maximum block life.
Each rubber element would be 5.5
inch diameter.
Each cavity would house three rubber
elements.
•
•
•
•
Eight rubber element cavities radially
spaced around coupling diameter
referred to as “Series 8” coupling.
Available options are: Series 6, Series 8, Series 10, Series16.
2, 3, 4 or 5 rubber elements per cavity are available.
Rubber elements up to 15” diameter are manufactured.
The inner and outer members are manufactured in steel to BS3100 Grade A1.
Some sizes are available in SG Iron Castings to BS2789 Grade 420/12.
RENOLD Hi-Tec Couplings
www.renold.com
6 6
DCB Typical Applications
Main propulsion. DCB819.5 and 1652.5’s couplings fitted between main engine and
gearbox, gearbox and thrust block, and between thrust black and propulsion unit.
Natural gas powered wartsila generator sets.
Bio-gas generator sets. DCB845.5’s couplings
fitted between gas engines and alternators.
4
Rail traction. Coupling fitted between diesel
engine and transmission via a universal joint
shaft.
Diesel generator sets. Couplings fitted between
diesel engines and alternators, to provide
electrical supply for ice breaker.
RENOLD Hi-Tec Couplings
www.renold.com
7
7
DCB Series 6
Full Coupling
Flex Half
Flex Half & Keep Plate
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
622.5 632.5 623.5 633.5 624.5 625.5 626.5 628.0
A
B
C
D
D1
E
F
G
DIMENSIONS
J
(inch)
K
L
Q (QTY)
R
S (QTY)
T
U
MAX. X
MAX. Y
MAXIMUM SPEED (rpm)(1)
W1
WEIGHT (3)
W2
(lb)
W3
W4
J1
INERTIA (3)
J2
(lb.in2)
J3
J4
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch)
CONICAL (degree)
638.0
11.02
5.55
0.12
2.72
2.72
3.23
10.04
8.86
0.55
0.33
3.19
6
M10
8
M10
0.41
1.97
1.97
4150
7.3
22.5
21.8
8.8
30
364
263
143
11.02
8.07
0.12
3.98
3.98
3.23
10.04
8.86
0.55
0.33
4.45
6
M10
12
M10
0.41
1.97
1.97
4150
11.0
32.0
24.7
8.8
45
518
287
143
14.57
7.64
0.16
3.74
3.74
4.41
13.58
12.40
0.55
0.39
4.29
6
M10
12
M10
0.41
2.76
2.76
3150
19.6
52.7
33.3
16.8
164
1557
556
481
14.57
11.10
0.16
5.47
5.47
4.41
13.58
12.40
0.55
0.39
6.02
6
M10
18
M10
0.41
2.76
2.76
3150
29.5
74.7
42.8
16.8
246
2209
823
481
17.91
9.72
0.20
4.76
4.76
5.59
16.93
15.75
0.55
0.45
5.43
6
M10
16
M10
0.41
3.54
3.54
2570
40.6
96.8
55.3
30.2
569
4486
1674
1329
22.24
12.05
0.24
5.91
5.91
7.09
20.87
19.29
0.71
0.63
6.77
6
M16
8
M16
0.67
4.33
4.33
2080
74.1
187.4
113.8
62.4
1550
13159
5159
4237
26.57
14.29
0.28
7.01
7.01
8.46
24.80
22.83
0.98
0.79
8.07
6
M20
8
M20
0.83
5.12
5.12
1730
127.2
322.1
216.3
111.1
3752
31946
14522
10798
31.89
17.48
0.31
8.58
8.58
10.24
30.12
28.15
0.98
0.91
9.80
6
M20
12
M20
0.83
6.50
6.50
1440
228.8
575.8
320.3
183.4
10347
84232
30139
25662
31.89
25.51
0.31
12.60
12.60
10.24
30.12
28.15
0.98
0.91
13.82
6
M20
18
M20
0.83
6.50
6.50
1440
343.3
817.0
367.5
183.4
15520
119497
31095
25662
0.06
0.06
0.7
0.06
0.06
0.7
0.08
0.08
0.7
0.08
0.08
0.7
0.10
0.10
0.7
0.12
0.12
0.7
0.14
0.14
0.7
0.16
0.16
0.7
0.16
0.16
0.7
(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is
recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery
should be calculated to ensure that these do not exceed the manufacturers allowables.
(3) Weights and inertias are based on the maximum bore size.
RENOLD Hi-Tec Couplings
www.renold.com
8
DCB Series 6
Full Coupling
Flex Half
Flex Half & Keep Plate
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
A
B
C
D
D1
E
F
G
DIMENSIONS
J
(inch)
K
L
Q (QTY)
R
S (QTY)
T
U
MAX. X
MAX. Y
MAXIMUM SPEED (rpm)(1)
W1
WEIGHT (3)
W2
(lb)
W3
W4
J1
INERTIA (3)
J2
(lb.in2)
J3
J4
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch)
CONICAL (degree)
629.5
39.17
20.87
0.39
10.24
10.24
12.20
36.61
33.46
1.38
1.12
11.77
6
M30
8
M30
1.22
7.68
7.68
1180
390
1023
634
351
24.9
215.7
94.7
73.8
639.5
39.17
30.39
0.39
15.00
15.00
12.20
36.61
33.46
1.38
1.12
16.54
6
M30
12
M30
1.22
7.68
7.68
1180
585
1452
714
351
37.3
306.2
96.7
73.8
6211.0
44.69
24.25
0.47
11.89
11.89
14.37
42.13
38.98
1.38
1.34
13.98
6
M30
12
M30
1.22
9.06
9.06
1030
609
1485
889
644
52.6
444.2
163.0
176.7
6311.0
44.69
29.76
0.47
17.40
17.40
14.37
42.13
38.98
1.38
1.34
19.49
6
M30
18
M30
1.22
9.06
9.06
1030
914
2106
1033
644
79.9
594.6
172.6
176.7
6213.0
53.74
28.58
0.63
13.98
13.98
16.77
50.00
45.87
2.17
1.61
16.22
6
M42
8
M42
1.69
10.55
10.55
860
978
2691
1797
935
116.0
1086.7
546.7
369.1
6313.0
53.74
35.08
0.63
20.47
20.47
16.77
50.00
45.87
2.17
1.61
22.72
6
M42
12
M42
1.69
10.55
10.55
860
1490
3892
2028
935
179.0
1568.5
570.7
369.1
6215.0
61.42
33.07
0.79
16.14
16.14
19.49
57.68
53.46
2.17
1.93
18.86
6
M42
12
M42
1.69
12.20
12.20
750
1553
4266
2502
1455
248.8
2272.4
902.1
751.8
6315.0
61.42
40.55
0.79
23.62
23.62
19.49
57.68
53.46
2.17
1.93
26.34
6
M42
18
M42
1.69
12.20
12.20
750
2390
5642
2851
1455
388.5
3010.5
926.0
751.8
0.20
0.20
0.7
0.20
0.20
0.7
0.24
0.24
0.7
0.24
0.24
0.7
0.31
0.31
0.7
0.31
0.31
0.7
0.39
0.39
0.7
0.39
0.39
0.7
(1) For operation above 80% of the declared maximum coupling4
speed, it is recommended that the coupling is dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is
recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery
should be calculated to ensure that these do not exceed the manufacturers allowables.
(3) Weights and inertias are based on the maximum bore size.
RENOLD Hi-Tec Couplings
www.renold.com
9
9
DCB Series 8
Full Coupling
Flex Half
Flex Half & Keep Plate
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
A
B
C
D
D1
E
F
G
DIMENSIONS
J
(inch)
K
L
Q (QTY)
R
S (QTY)
T
U
MAX. X
MAX. Y
MAXIMUM SPEED (rpm)(1)
W1
WEIGHT (3)
W2
(lb)
W3
W4
J1
INERTIA (3)
J2
(lb.in2)
J3
J4
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch)
CONICAL (degree)
822.5
823.5
16.73
7.64
0.16
3.74
3.74
6.89
15.75
14.57
0.55
0.39
4.25
8
M10
12
M10
0.41
4.25
4.25
2760
35.2
66.8
53.4
18.5
823.5
SAE14
18.37
0.16
3.74
17.24
14.57
0.55
0.39
4.25
8
M10
8
0.53
4.25
2760
35.2
67.2
22.9
12.80
5.47
0.12
2.68
2.68
5.12
11.81
10.63
0.55
0.31
3.11
8
M10
8
M10
0.41
3.15
3.15
3600
13.5
28.0
26.9
9.7
95
666
420
228
464
3277
1370
748
0.06
0.06
0.6
0.08
0.08
0.6
833.5
824.5
16.73
11.10
0.16
5.47
5.47
6.89
15.75
14.57
0.55
0.39
6.02
8
M10
24
M10
0.41
4.25
4.25
2760
52.5
85.1
64.8
18.5
833.5
SAE14
18.37
0.16
5.47
17.24
14.57
0.55
0.39
6.02
8
M10
8
0.53
4.25
2760
52.5
89.9
22.9
21.65
9.80
0.20
4.80
4.80
8.86
20.28
18.70
0.71
0.49
5.51
8
M16
8
M16
0.67
5.51
5.51
2130
76.3
123.9
113.3
44.5
824.5
SAE18
22.50
0.20
4.80
21.38
18.70
0.71
0.49
5.51
8
M16
6
0.67
5.51
2130
76.3
129.6
48.7
464
3632
1100
697
4127
1664
748
697
4479
1100
1681
9544
4920
3034
0.08
0.08
0.6
0.08
0.08
0.6
0.08
0.08
0.6
0.10
0.10
0.6
834.5
21.65
14.29
0.20
7.05
7.05
8.86
20.28
18.70
0.71
0.49
7.76
8
M16
16
M16
0.67
5.51
5.51
2130
114.0
170.4
137.6
44.5
834.5
SAE18
22.50
0.20
7.05
21.38
18.70
0.71
0.49
7.76
8
M16
6
0.67
0.00
5.51
2130
114.0
176.1
48.7
844.5
844.5
SAE18
22.50
0.20
9.29
21.38
18.70
0.71
0.49
10.00
8
M16
6
0.67
5.51
2130
151.9
214.1
48.7
21.65
16.54
0.20
7.05
9.29
8.86
20.28
18.70
0.71
0.49
10.00
8
M16
16
M16
0.67
5.51
5.51
2130
151.9
208.3
137.6
44.5
1681
10063
3553
2525
12089
5228
3034
2525
12609
3553
3379
14666
5228
3034
3379
15185
0.10
0.10
0.6
0.10
0.10
0.6
0.10
0.10
0.6
0.10
0.10
0.6
0.10
0.10
0.6
3553
(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is
recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery
should be calculated to ensure that these do not exceed the manufacturers allowables.
(3) Weights and inertias are based on the maximum bore size.
RENOLD Hi-Tec Couplings
www.renold.com
10 10
DCB Series 8
Full Coupling
Flex Half
Flex Half & Keep Plate
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
825.5
835.5
25.98
11.97
0.24
5.87
5.87
10.83
24.61
23.03
0.71
0.61
6.73
8
M16
12
M16
0.67
6.77
6.77
1800
157.0
229.9
180.8
78.5
4640
23858
10593
7722
825.5
SAE21
26.50
0.24
5.87
25.25
23.03
0.71
0.61
6.73
8
M16
12
0.67
6.77
1800
157.0
232.4
82.2
4640
24541
8371
A
B
C
D
D1
E
F
G
DIMENSIONS
J
(inch)
K
L
Q (QTY)
R
S (QTY)
T
U
MAX. X
MAX. Y
MAXIMUM SPEED (rpm)(1)
W1
WEIGHT (3)
W2
(lb)
W3
W4
J1
INERTIA (3)
J2
(lb.in2)
J3
J4
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch)
CONICAL (degree)
25.98
17.48
0.24
8.62
8.62
10.83
24.61
23.03
0.71
0.61
9.49
8
M16
24
M16
0.67
6.77
6.77
1800
207.5
303.6
224.4
78.5
7029
31509
11481
7722
835.5
SAE21
26.50
0.24
8.62
25.25
23.03
0.71
0.61
9.49
8
M16
12
0.069
6.77
1800
207
308
82
7029
32192
8371
0.12
0.12
0.6
0.12
0.12
0.6
25.98
20.24
0.24
8.62
11.38
10.83
24.61
23.03
0.71
0.61
12.24
8
M16
24
M16
0.69
6.77
6.77
1800
258
377
224
78
9386
39160
11481
7722
0.12
0.12
0.6
0.12
0.12
0.6
0.12
0.12
0.6
4
845.5
845.5 855.5
855.5
SAE21
SAE21
26.50 25.98 26.50
22.99
0.24
0.24
0.24
8.62
11.38 14.13 14.13
10.83
25.25 24.61 25.25
23.03 23.03 23.03
0.71
0.71
0.71
0.61
0.61
0.61
12.24 15.00 15.00
8
8
8
M16
M16
M16
12
24
12
M16
0.69
0.69
0.69
6.77
6.77
6.77
6.77
1800 1800 1800
258
308
308
382
451
455
224
82
78
82
9386 11744 11744
39843 46746 47429
11481
8371 7722 8371
0.12
0.12
0.6
0.12
0.12
0.6
0.12
0.12
0.6
826.5
836.5
846.5
30.91
14.06
0.28
6.89
6.89
12.80
29.13
27.17
0.98
0.69
7.87
8
M20
12
M20
0.86
8.07
8.07
1490
354
370
324
125
10716
53717
28430
17393
30.91
20.59
0.28
10.16
10.16
12.80
29.13
27.17
0.98
0.69
11.14
8
M20
24
M20
0.86
8.07
8.07
1490
466
489
396
125
16207
70837
30583
17393
30.91
23.82
0.28
10.16
13.39
12.80
29.13
27.17
0.98
0.69
14.37
8
M20
24
M20
0.86
8.07
8.07
1490
577
606
396
125
25785
87717
30583
17393
0.14
0.14
0.6
0.14
0.14
0.6
0.14
0.14
0.6
(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that
initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure
that these do not exceed the manufacturers allowables.
(3) Weights and inertias are based on the maximum bore size.
RENOLD Hi-Tec Couplings
www.renold.com
11 11
DCB Series 8
Full Coupling
Flex Half
Flex Half & Keep Plate
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
827.5 837.5 847.5 857.5 828.0 838.0 848.0
A
35.04
B
16.30
C
0.31
D
7.99
D1
7.99
E
14.96
F
33.27
G
31.30
DIMENSIONS
J
0.98
(inch)
K
0.83
L
9.09
8
Q (QTY)
R
M20
S (QTY)
16
T
M20
U
0.86
MAX. X 9.45
MAX. Y 9.45
MAXIMUM SPEED (rpm)(1) 1315
W1
345
WEIGHT (3)
W2
557
(lb)
W3
458
W4
177
J1
21.4
INERTIA (3)
J2
105.1
(lb.in2)
J3
49.5
J4
31.9
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
0.16
AXIAL (inch)
0.16
CONICAL (degree)
0.6
858.0 829.5
839.5 849.5 859.5 8211.0
35.04
23.86
0.31
11.77
11.77
14.96
33.27
31.30
0.98
0.83
12.87
8
M20
32
M20
0.86
9.45
9.45
1315
513
740
571
177
32.0
140.3
53.6
31.9
35.04
27.60
0.31
11.77
15.51
14.96
33.27
31.30
0.98
0.83
16.61
8
M20
32
M20
0.86
9.45
9.45
1315
680
922
571
177
42.6
174.8
53.6
31.9
35.04
31.34
0.31
11.77
19.25
14.96
33.27
31.30
0.98
0.83
20.35
8
M20
32
M20
0.86
9.45
9.45
1315
848
1103
571
177
53.2
209.6
53.6
31.9
37.01
17.32
0.31
8.50
8.50
15.55
35.24
33.27
0.98
0.83
9.65
8
M20
16
M20
0.86
9.84
9.84
1240
423
649
520
207
29.5
137.9
61.5
41.7
37.01
25.35
0.31
12.52
12.52
15.55
35.24
33.27
0.98
0.83
13.66
8
M20
32
M20
0.86
9.84
9.84
1240
633
866
520
207
44.4
185.0
66.6
41.7
37.01
29.37
0.31
12.52
16.54
15.55
35.24
33.27
0.98
0.83
17.68
8
M20
32
M20
0.83
9.84
9.84
1240
843
1,084
650
207
59.4
231.8
66.6
41.7
37.01
33.39
0.31
12.52
20.51
15.55
35.24
33.27
0.98
0.83
21.65
8
M20
32
M20
0.83
9.84
9.84
1240
1,053
1,299
650
207
74.4
278.2
666.3
41.7
45.67
20.79
0.39
10.20
10.20
18.70
43.11
39.96
1.38
1.10
11.69
8
M30
12
M30
1.22
11.81
11.81
1010
735
1,224
1,008
423
73.4
382.7
191.4
129.2
45.67
30.31
0.39
14.96
14.96
18.70
43.11
39.96
1.38
1.10
16.46
8
M30
24
M30
1.22
11.81
11.81
1010
1,099
1,609
1,230
423
110.6
502.3
204.3
129.2
45.67
35.08
0.39
14.96
19.72
18.70
43.11
39.96
1.38
1.10
21.22
8
M30
24
M30
1.22
11.81
11.81
1010
1,463
1,993
1,230
423
147.8
621.9
204.3
129.2
45.67
39.84
0.39
14.96
24.49
18.70
43.11
39.96
1.38
1.10
26.22
8
M30
24
M30
1.22
11.81
11.81
1010
18.47
2,377
1,230
423
185.0
741.5
204.3
129.2
52.36
24.09
0.47
11.81
11.81
22.05
49.80
46.65
1.38
1.30
13.58
8
M30
16
M30
1.22
13.78
13.78
880
1,151
1,909
1,466
648
156.0
799.6
345.1
261.4
0.16
0.16
0.6
0.16
0.16
0.6
0.16
0.16
0.6
0.16
0.16
0.6
0.16
0.16
0.6
0.16
0.16
0.6
0.16
0.16
0.6
0.20
0.20
0.6
0.20
0.20
0.6
0.20
0.20
0.6
0.20
0.20
0.6
0.24
0.24
0.6
(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial
alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do
not exceed the manufacturers allowables.
(3) Weights and inertias are based on the maximum bore size.
RENOLD Hi-Tec Couplings
www.renold.com
12 12
DCB Technical Data
1.1
Torque Capacity - Diesel
Engine Drives
2.1
Axial Stiffness
When subject to axial misalignment, the coupling will
have an axial resistance which gradually reduces due to
the effect of vibratory torque.
The full torque capacity of the coupling for
transient vibration while passing through major
criticals on run up is published as the Maximum
Torque TKMAX
(TKMAX = 3 x TKN.)
The axial stiffness of the coupling is torque dependent.
The variation is as shown in the Technical Data
There is additional torque capacity built within the
coupling for transient shock.
2.2
Radial Stiffness
The radial stiffness of the coupling is torque dependent,
and is as shown in the Technical Data
The published “Vibratory Torque, TKW ”, relates to
the amplitude of the permissible continous torque
fluctuation. The vibratory torque values shown in
the Technical Data are at a frequency of 10Hz.
The measure of acceptability of the coupling
for vibrating drives is published as “Allowable
Dissipated Heat at Ambient Temperature 86°F”.
The torsional stiffness of the coupling is dependent
upon applied torque and temperature as shown in the
Technical Data
1.2
2.4
2.3
Transient Torques
Prediction of transient torques in marine drives can
be complex. Normal installations are well provided
for by selecting couplings based on the “Nominal
Torque TKN .” Transients, such as start up and
clutch maneuver, are usually within the “Maximum
Torque, TKMAX” for the coupling.
2.4.1 Use the torsional stiffness, as published in the
catalog, which is based upon data measured
at 86˚F ambient temperature.
2.4.2 Repeat the calculation made in 2.4.1 but using
the maximum temperature correction factor
St212, and dynamic magnifier correction factor,
M212, for the selected rubber. Use tables to
adjust values for both torsional stiffness and
dynamic magnifier. ie, CT212 = CTdynX St212
Sudden torque applications of propulsion
devices, such as thrusters or waterjets, need
to be considered when designing the coupling
connection.
Stiffness Properties
The Renold Hi-Tec Coupling remains fully flexible
under all torque conditions. The DCB series is a
non-bonded type operating with the Rubber-inCompression principle.
Prediction of the System
Torsional Vibration
Characteristics.
An adequate prediction of the system’s torsional
vibration characteristics, can be made by the following
method.
Care needs to be taken in the design of couplings
with shaft brakes, to ensure coupling torques are
not increased by severe deceleration.
2.0
Torsional Stiffness
4
RENOLD Hi-Tec Couplings
2.4.3 Review calculations 2.4.1 and 2.4.2 and if the
speed range is clear of criticals which do not
exceed the allowable heat dissipation value
as published in the catalog then the coupling
is considered suitable for the application, with
respect to the torsional vibration characteristics.
If there is a critical in the speed range, then the
actual temperature of the coupling should be
calculated at this speed.
www.renold.com
13 13
DCB Technical Data
2.6
Rubber
Grade
Tempmax
°F
NM 45
SM 50
SM 60
SM 70
SM 80
212
212
212
212
212
Temperature Correction Factor
St
St212
St212
St212
St212
St212
=
=
=
=
=
0.71
0.65
0.61
0.44
0.37
SM 60 is considered “standard”
Rubber
Grade
NM 45
SM 50
SM 60
SM 70
SM 80
Dynamic
Magnifier
at 86ºF
(M86)
Dynamic
Magnifier
at 212ºF
(M212)
15
10
8
6
4
21.1
15.4
13.1
13.6
10.8
Rubber Temperature (ϑ) ˚F
SM 60 is considered “standard”
2.7
2.5
Prediction of the Actual
Coupling Temperature and
Torsional Stiffness
Dynamic Magnifier Correction
Factor
The Dynamic Magnifier of the rubber is subject to temperature
variation in the same way as the torsional stiffness.
2.5.1 Use the torsional stiffness as published in the
catalog. This is based upon data measured at 86˚F
and the dynamic magnifier at 86˚F. (M86)
2.5.2 Compare the synthesis value of the calculated heat
load in the coupling (PK) at the speed of interest, to
the “Allowable Heat Dissipation” (PKW).
The coupling temperature rise = ∆F
∆F = Tempcoup = PK x 126
PKW
( )
Th
e coupling temperature =
ϑ
ϑ = Tempcoup + Ambient Temp.
MT = M86
St
Rubber
Grade
ψT = ψ86 x St
Dynamic
Magnifier
(M86)
Relative
Damping
ψ86
NM 45
15
0.42
SM 50
10
0.63
SM 60
8
0.78
SM 70
6
1.05
SM 80
4
1.57
SM 60 is considered “standard”
2.5.3 Calculate the temperature correction factor, St, from
2.6 (if the coupling temperature > 212ºF, then use
St212). Calculate the dynamic Magnifier as per 2.7.
Repeat the calculation with the new value of coupling
stiffness and dynamic magnifier.
2.5.4 Calculate the coupling temperature as per 2.5. Repeat
calculation until the coupling temperature agrees
with the correction factors for torsional stiffness and
dynamic magnifier used in the calculation.
RENOLD Hi-Tec Couplings
www.renold.com
14 14
DCB Series 6 Technical Data
End View - Series 6
COUPLING SIZE
NOMINAL TORQUE TKN (lb.ft)
MAXIMUM TORQUE TKMAX (lb.ft)
VIBRATORY TORQUE TKW (lb.ft)
ALLOWABLE
NM 45
DISSIPATED
SM 50
HEAT AT AMB.
SM 60
TEMP. 86°F. (W)
SM 70
SM 80
MAXIMUM SPEED (rpm) (1)
DYNAMIC TORSIONAL
STIFFNESS CTdyn (lb.in/rad x 106)
NM 45
SM 50
SM 60
@ 0.25 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 0.5 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 0.75 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 1.0 TKN
SM 70
SM 80
NM 45
RADIAL STIFFNESS
SM 50
NO LOAD (lb/in x 103)
SM 60
SM 70
SM 80
NM 45
RADIAL STIFFNESS
SM 50
SM 60
@ TKN (lb/in x 103)
SM 70
SM 80
NM 45
AXIAL STIFFNESS
SM 50
(lb/in x 103)
SM 60
SM 70
SM 80
NM 45
MAXIMUM AXIAL (2)
SM 50
LOAD AT POINT
SM 60
SM 70
OF SLIP @ TKN (lb)
622.5
632.5
623.5
633.5
624.5
625.5
626.5
628.0
638.0
376
1,121
140
69
77
87
98
108
4,150
561
1,682
214
103
115
130
147
162
4,150
1,025
3,054
384
97
108
122
137
152
3,150
1,534
4,580
575
146
162
183
206
228
3,150
2,139
6,395
797
125
139
158
176
195
2,570
3,909
11,727
1,468
153
170
193
215
238
2,080
6,468
19,472
2,449
181
201
228
254
282
1,730
12,170
36,509
4,588
223
248
281
314
347
1,440
18,292
54,727
6,881
335
372
422
471
521
1,440
0.027
0.027
0.035
0.044
0.080
0.035
0.044
0.053
0.062
0.115
0.053
0.062
0.071
0.089
0.159
0.071
0.089
0.097
0.106
0.212
4.17
4.76
7.14
9.51
11.18
7.21
7.14
9.51
11.90
16.65
1.63
1.92
3.08
4.26
9.64
88
106
146
189
0.035
0.044
0.053
0.071
0.124
0.053
0.071
0.080
0.097
0.177
0.071
0.097
0.106
0.133
0.239
0.106
0.133
0.142
0.159
0.319
6.25
7.14
10.71
14.27
16.77
10.79
10.71
14.27
17.85
24.98
2.44
2.88
4.63
6.40
14.46
133
160
220
283
0.062
0.071
0.089
0.124
0.212
0.097
0.124
0.142
0.168
0.319
0.133
0.177
0.204
0.230
0.451
0.195
0.239
0.266
0.301
0.584
5.82
6.63
9.98
13.32
15.65
10.06
9.99
13.32
16.65
23.30
2.28
2.68
4.33
5.96
13.49
121
4148
207
265
0.089
0.106
0.133
0.186
0.319
0.142
0.186
0.212
0.257
0.478
0.204
0.266
0.310
0.345
0.682
0.292
0.363
0.398
0.451
0.876
8.74
9.95
14.97
19.97
23.47
15.09
14.99
19.97
24.98
34.94
3.43
4.03
6.49
8.94
20.23
182
223
310
398
0.133
0.159
0.186
0.266
0.443
0.204
0.266
0.301
0.354
0.673
0.292
0.381
0.425
0.487
0.956
0.407
0.522
0.566
0.637
1.239
7.49
8.56
12.85
17.13
20.13
12.97
12.85
17.13
21.41
29.98
2.94
3.45
5.57
9.94
17.30
153
211
270
337
0.195
0.239
0.310
0.496
0.664
0.319
0.425
0.469
0.558
0.859
0.496
0.611
0.682
0.770
1.195
0.752
0.850
0.903
1.027
1.629
9.14
10.45
15.70
20.93
24.61
15.84
15.70
20.93
26.16
36.63
3.60
4.32
6.81
12.14
21.13
187
259
328
411
0.327
0.398
0.504
0.823
1.089
0.522
0.699
0.770
0.920
1.416
0.823
1.009
1.124
1.275
1.965
1.239
1.407
1.496
1.690
2.699
10.83
12.37
18.56
24.74
29.07
18.73
18.56
24.74
30.92
43.29
4.25
5.08
8.05
14.34
24.96
220
306
387
486
0.690
0.743
0.938
1.540
2.027
0.974
1.301
1.434
1.717
2.646
1.540
1.876
2.098
2.381
3.664
2.310
2.620
2.788
3.160
5.027
13.33
15.22
22.84
30.45
35.78
23.04
22.84
30.45
38.06
53.29
5.23
6.28
9.90
17.66
30.72
270
378
477
598
0.982
1.168
1.513
2.319
3.231
1.558
1.903
2.195
2.726
4.204
2.425
2.815
3.169
3.673
5.824
3.602
3.965
4.231
4.788
7.815
19.98
22.84
34.26
45.68
53.67
34.54
34.26
45.68
57.10
79.94
7.85
9.42
14.85
26.48
46.08
405
567
715
897
(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.
(2) The Renold Hi-Tec Coupling will “slip” axially when the maximum axial force is reached.
RENOLD Hi-Tec Couplings
www.renold.com
15 15
DCB Series 6 Technical Data
End View - Series 6
COUPLING SIZE
NOMINAL TORQUE TKN (lb.ft)
MAXIMUM TORQUE TKMAX (lb.ft)
VIBRATORY TORQUE TKW (lb.ft)
ALLOWABLE
NM 45
DISSIPATED
SM 50
HEAT AT AMB.
SM 60
TEMP. 86°F. (W)
SM 70
SM 80
MAXIMUM SPEED (rpm) (1)
DYNAMIC TORSIONAL
STIFFNESS CTdyn (lb.in/rad x 106)
NM 45
SM 50
SM 60
@ 0.25 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 0.5 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 0.75 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 1.0 TKN
SM 70
SM 80
NM 45
RADIAL STIFFNESS
SM 50
NO LOAD (lb/in x 103) SM 60
SM 70
SM 80
NM 45
RADIAL STIFFNESS
SM 50
SM 60
@ TKN (lb/in x 103)
SM 70
SM 80
NM 45
AXIAL STIFFNESS
SM 50
(lb/in x 103)
SM 60
SM 70
SM 80
NM 45
MAXIMUM AXIAL (2)
SM 50
LOAD AT POINT
SM 60
SM 70
OF SLIP @ TKN (lb)
629.5
639.5
6211.0
6213.0
6313.0
6215.0
6315.0
20,283
60,923
7,671
265
294
333
372
412
1,180
30,461
91,458
11,506
398
441
500
558
618
1,180
31,789
95,883
11,948
306
340
386
431
477
1,030
47,720
143,087
17,923
459
510
579
646
716
1,030
6311.0
52,662
157,838
19,693
362
402
456
510
563
860
78,919
236,757
29,502
543
603
684
765
845
860
81,132
244,133
30,461
418
464
526
588
650
750
122,435
366,568
45,729
627
696
789
882
975
750
1.03
1.25
1.58
2.58
3.40
1.62
2.19
2.40
2.89
4.43
2.58
3.14
3.51
3.98
6.14
3.87
4.39
4.66
5.28
8.42
15.8
18.1
27.1
36.1
42.5
27.4
27.1
36.1
45.2
63.3
6.21
7.46
11.76
20.97
36.49
321
447
567
710
1.65
1.96
2.53
3.89
5.41
2.61
3.19
3.67
4.56
7.05
4.05
4.72
5.30
6.16
9.75
6.04
6.64
7.09
8.02
13.09
23.7
27.1
40.7
54.2
63.7
41.1
40.7
54.2
67.8
94.9
9.32
11.19
17.63
31.45
54.73
481
674
850
1066
1.58
1.94
2.44
4.00
5.28
2.52
3.39
3.72
4.48
6.87
3.99
4.87
5.45
6.19
9.53
6.00
6.81
7.24
8.21
13.06
18.3
20.9
31.4
41.9
49.2
31.7
31.4
41.9
52.3
73.3
7.19
8.63
13.61
24.28
42.25
373
517
656
823
2.55
3.04
3.93
6.05
8.41
4.05
4.95
5.71
7.08
10.94
6.30
7.32
8.23
9.56
15.14
9.36
10.30
11.01
12.44
20.33
27.5
31.4
47.1
62.8
73.8
47.5
47.1
62.8
78.5
109.9
10.79
12.95
20.42
36.42
63.38
562
776
985
1236
2.62
3.20
4.04
6.59
8.72
4.16
5.59
6.14
7.39
11.34
6.59
8.04
9.00
10.21
15.74
9.91
11.24
11.95
13.55
21.56
21.7
24.7
37.1
49.4
58.1
37.4
37.1
49.4
61.8
86.6
8.50
10.20
16.09
28.69
49.93
441
611
776
971
4.20
5.02
6.48
9.97
13.85
6.69
8.17
9.43
11.68
18.05
10.40
12.08
13.59
15.77
24.99
15.46
17.01
18.18
20.54
33.55
32.5
37.1
55.7
74.1
87.2
56.2
55.7
74.2
92.8
129.9
12.76
15.30
24.14
43.04
74.89
661
917
1165
1457
4.02
4.91
6.20
10.13
13.39
6.39
8.59
9.43
11.36
17.42
10.13
12.35
13.83
15.42
24.17
15.22
17.26
18.36
20.82
33.12
25.1
28.5
42.8
57.1
67.1
43.3
42.8
57.1
71.4
99.9
9.81
11.77
18.56
33.11
57.61
508
706
899
1124
6.46
7.71
9.96
15.32
21.27
10.28
12.56
14.48
17.94
27.73
15.97
18.56
20.88
24.23
38.39
23.75
26.13
27.92
31.56
51.56
37.7
42.8
64.2
85.6
100.6
64.9
64.2
85.6
107.1
149.9
14.71
17.64
27.84
49.68
86.42
764
1057
1349
1686
(1)
For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.
(2)
The Renold Hi-Tec Coupling will “slip” axially when the maximum axial force is reached.
RENOLD Hi-Tec Couplings
www.renold.com
16 16
DCB Series 8 Technical Data
End View - Series 8
COUPLING SIZE
NOMINAL TORQUE TKN (lb.ft)
MAXIMUM TORQUE TKMAX (lb.ft)
VIBRATORY TORQUE TKW (lb.ft)
ALLOWABLE
NM 45
DISSIPATED
SM 50
HEAT AT AMB.
SM 60
TEMP. 86°F. (W)
SM 70
SM 80
MAXIMUM SPEED (rpm) (1)
DYNAMIC TORSIONAL
STIFFNESS CTdyn (lb.in/rad x 106)
NM 45
SM 50
SM 60
@ 0.25 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 0.5 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 0.75 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 1.0 TKN
SM 70
SM 80
NM 45
RADIAL STIFFNESS
SM 50
NO LOAD (lb/in x103)
SM 60
SM 70
SM 80
NM 45
RADIAL STIFFNESS
SM 50
SM 60
@ TKN (lb/in x103)
SM 70
SM 80
NM 45
AXIAL STIFFNESS
SM 50
(lb/in x103)
SM 60
SM 70
SM 80
NM 45
MAXIMUM AXIAL (2)
SM 50
LOAD AT POINT
SM 60
SM 70
OF SLIP @ TKN (lb)
823.5
833.5
824.5
834.5
844.5
825.5
612
1,859
229
93
103
117
131
144
3,600
822.5
1,660
4,971
620
130
144
163
182
202
2,760
2,486
7,449
929
195
216
245
274
303
2,760
3,570
10,709
1,335
166
185
210
234
260
2,130
5,355
16,064
2,014
250
278
315
352
390
2,130
7,140
21,419
2,677
332
370
420
468
520
2,130
6,623
19,870
2,486
204
227
257
287
317
1,800
9,935
29,812
3,725
306
340
385
430
475
1,800
835.5
0.053
0.062
0.089
0.142
0.221
0.080
0.106
0.133
0.168
0.274
0.124
0.159
0.186
0.230
0.372
0.177
0.221
0.248
0.301
0.496
5.55
6.34
9.51
12.69
14.90
9.61
9.51
12.69
15.86
22.20
2.17
2.56
4.12
5.68
12.85
117
142
196
252
0.142
0.177
0.230
0.372
0.602
0.221
0.292
0.354
0.460
0.735
0.327
0.425
0.505
0.620
0.991
0.478
0.584
0.673
0.814
1.345
7.77
8.85
13.30
17.76
20.87
13.42
13.32
17.76
22.20
31.06
3.05
3.59
5.77
7.95
17.99
162
198
274
353
0.212
0.266
0.354
0.566
0.894
0.327
0.434
0.531
0.690
1.098
0.487
0.628
0.752
0.938
1.496
0.717
0.876
1.009
1.221
2.018
11.65
13.28
19.96
26.64
31.30
20.13
19.98
26.64
33.30
46.59
4.57
5.38
8.65
11.91
26.98
4 243
297
411
531
0.345
0.416
0.522
0.788
1.337
0.505
0.690
0.841
1.053
2.027
0.726
1.000
1.168
1.443
2.885
1.018
1.363
1.567
1.876
3.744
9.99
11.42
17.13
22.84
26.84
17.30
17.13
22.84
28.55
39.97
3.92
4.61
7.42
13.25
23.07
205
281
360
450
0.505
0.566
0.779
1.195
2.195
0.717
0.929
1.213
1.620
2.992
1.053
1.372
1.708
2.195
4.071
1.478
1.912
2.301
2.850
5.364
14.99
17.13
25.69
34.26
40.25
25.95
25.69
34.26
42.82
59.95
5.88
6.91
11.13
19.87
34.60
310
423
540
674
0.620
0.735
0.974
1.567
2.815
0.903
1.204
1.514
2.018
3.620
1.319
1.761
2.124
2.717
4.859
1.912
2.461
2.877
3.567
6.426
19.98
22.84
34.26
45.68
53.67
34.60
34.26
45.68
57.10
79.94
7.85
9.22
14.85
26.49
46.14
409
562
719
899
0.531
0.673
0.885
1.505
2.036
0.823
1.151
1.328
1.682
2.638
1.283
1.637
1.930
2.310
3.647
1.912
2.275
2.549
3.054
4.983
12.22
13.95
20.93
27.91
32.80
21.13
20.93
27.91
34.89
48.85
4.80
5.63
9.07
16.19
28.19
250
344
450
549
0.797
1.000
1.363
2.222
3.178
1.266
1.629
1.983
2.602
4.142
1.965
2.407
2.859
3.514
5.735
2.930
3.390
3.824
4.576
7.700
18.33
20.93
31.40
41.86
49.20
31.69
31.40
41.86
52.33
73.27
7.19
8.45
13.60
24.28
42.31
373
515
674
823
(1) For operation above 80% of the declared maxiumum coupling speed, it is recommended that the coupling is dynamically balanced.
(2) The Renold Hi-Tec Coupling will “slip” axially when the maximum axial force is reached.
RENOLD Hi-Tec Couplings
www.renold.com
17 17
DCB Series 8 Technical Data
End View - Series 8
COUPLING SIZE
NOMINAL TORQUE TKN (lb.ft)
MAXIMUM TORQUE TKMAX (lb.ft)
VIBRATORY TORQUE TKW (lb.ft)
ALLOWABLE
NM 45
DISSIPATED
SM 50
HEAT AT AMB.
SM 60
TEMP. 86°F. (W)
SM 70
SM 80
MAXIMUM SPEED (rpm) (1)
DYNAMIC TORSIONAL
STIFFNESS CTdyn (lb.in/rad x 106)
NM 45
SM 50
SM 60
@ 0.25 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 0.5 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 0.75 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 1.0 TKN
SM 70
SM 80
NM 45
RADIAL STIFFNESS
SM 50
NO LOAD (lb/in x 103)
SM 60
SM 70
SM 80
NM 45
RADIAL STIFFNESS
SM 50
SM 60
@ TKN (lb/in x 103)
SM 70
SM 80
NM 45
AXIAL STIFFNESS
SM 50
(lb/in x 103)
SM 60
SM 70
SM 80
NM 45
MAXIMUM AXIAL (2)
SM 50
LOAD AT POINT
SM 60
SM 70
OF SLIP @ TKN (lb)
845.5
855.5
826.5
836.5
846.5
827.5
837.5
847.5
13,247
39,747
4,971
409
454
514
574
634
1,800
16,558
49,682
6,210
510
566
642
716
792
1,800
10,820
32,460
4,057
241
268
304
340
375
1,490
16,234
48,694
6,085
363
402
456
510
563
1,490
21,640
64,927
8,113
482
536
608
680
750
1,490
16,499
49,490
6,188
278
309
351
392
433
1,315
24,745
74,236
9,265
418
464
526
588
650
1,315
32,991
98,981
12,369
556
618
702
784
866
1,315
1.062
1.301
1.823
2.992
4.682
1.682
2.204
2.620
3.452
5.638
2.540
3.231
3.709
4.585
7.506
3.815
4.443
4.965
6.028
10.046
24.44
27.91
41.86
55.82
65.60
42.25
41.86
55.82
69.77
97.70
9.59
11.26
18.13
32.38
56.38
499
688
899
1097
1.275
1.664
2.222
3.602
5.443
2.036
2.629
3.186
4.328
6.939
3.133
3.903
4.585
5.718
9.488
4.726
5.399
6.125
7.435
13.082
30.55
34.89
52.33
69.77
81.99
52.82
52.33
69.77
87.22
122.12
11.99
14.07
22.67
40.47
70.47
625
859
1124
1371
0.929
1.124
1.505
2.425
3.868
1.407
1.868
2.275
2.983
4.735
2.115
2.726
3.239
4.027
6.435
3.098
3.779
4.328
5.257
8.683
14.43
16.49
24.74
32.99
38.76
24.99
24.74
32.99
41.27
57.73
5.66
6.66
10.72
19.13
33.32
294
405
531
652
1.390
1.691
2.266
3.629
5.797
2.107
2.797
3.408
4.470
7.099
3.169
4.080
4.859
6.036
9.656
4.629
5.665
6.497
7.886
13.020
21.7
24.7
37.1
49.5
58.1
37.5
37.1
49.5
61.8
86.6
8.5
10.0
16.1
28.7
50.0
443
607
798
975
1.850
2.257
3.018
4.841
7.736
2.806
3.735
4.549
5.957
9.462
4.222
5.443
6.470
8.046
12.869
6.178
7.559
8.665
10.515
17.366
28.9
33.0
49.5
66.0
77.5
50.0
49.5
66.0
82.5
115.5
11.3
13.3
21.4
38.3
66.6
589
809
1061
1324
1.416
1.726
2.310
3.709
5.912
2.151
2.859
3.478
4.558
7.240
3.231
4.160
4.948
6.151
9.842
4.726
5.780
6.629
8.046
13.277
17.1
19.5
29.2
39.0
45.8
29.5
29.2
39.0
48.7
68.2
6.5
7.7
12.4
22.1
38.4
342
468
611
749
2.124
2.584
3.461
5.558
8.878
3.222
4.284
5.213
6.842
10.860
4.841
6.249
7.426
9.232
14.763
7.090
8.674
9.940
12.064
19.924
25.6
29.2
43.9
58.5
68.7
44.3
43.9
58.5
73.1
102.3
9.8
11.5
18.6
33.1
57.7
513
704
922
1124
2.832
3.452
4.611
7.408
11.834
4.293
5.709
6.957
9.117
14.480
6.461
8.329
9.904
12.312
19.685
9.453
11.559
13.250
16.091
26.562
34.1
39.0
58.5
78.0
91.6
59.0
58.5
78.
97.5
136.4
13.1
15.4
24.7
44.1
76.9
683
935
1223
1497
(1)
For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.
(2)
The Renold Hi-Tec Coupling will “slip” axially when the maximum axial force is reached.
RENOLD Hi-Tec Couplings
www.renold.com
18 18
DCB Series 8 Technical Data
End View - Series 8
COUPLING SIZE
NOMINAL TORQUE TKN (lb.ft)
MAXIMUM TORQUE TKmax (lb.ft)
VIBRATORY TORQUE TKW (lb.ft)
ALLOWABLE
NM 45
DISSIPATED
SM 50
HEAT AT AMB.
SM 60
TEMP. 86°F. (W)
SM 70
SM 80
MAXIMUM SPEED (rpm) (1)
DYNAMIC TORSIONAL
STIFFNESS CTdyn (lb.in/rad x 106)
NM 45
SM 50
SM 60
@ 0.25 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 0.5 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 0.75 TKN
SM 70
SM 80
NM 45
SM 50
SM 60
@ 1.0 TKN
SM 70
SM 80
NM 45
RADIAL STIFFNESS
SM 50
SM 60
NO LOAD (lb/in x 103)
SM 70
SM 80
NM 45
RADIAL STIFFNESS
SM 50
SM 60
@ TKN (lb/in x 103)
SM 70
SM 80
NM 45
AXIAL STIFFNESS
SM 50
SM 60
(lb/in x 103)
SM 70
SM 80
MAXIMUM AXIAL (2)
SM 45
LOAD AT POINT
SM 50
SM 60
OF SLIP @ TKN (N)
SM 70
857.5
828.0
849.5
859.5
8211.0
41,244
123,726
15,467
696
773
877
980
1083
1,315
19,936
59,816
7,678
297
330
374
418
462
1,240
29,908 39,873
89,717 119,625
11,218 14,950
446
594
495
660
561
748
627
836
693
924
1,240
1,240
838.0
848.0
49,844 33,766 50,648
149,533 101,297 151,945
18,690 12,782 18,992
743
353
529
825
392
588
935
444
666
1045
497
745
1155
550
823
1,240
1,010
1,010
858.0
829.5
67,531
202,593
25,328
706
784
888
994
1,100
1,010
84,451
253,352
27,954
883
980
1,110
1,243
1,375
1,010
53,060
159,180
19,899
409
454
515
575
635
880
3.540
4.310
5.762
9.258
14.790
5.373
7.143
8.692
11.400
18.100
8.072
10.409
12.374
15.392
24.606
11.816
14.454
16.569
20.109
33.200
42.7
48.7
73.1
97.5
114.5
73.8
73.1
97.5
121.8
170.6
16.3
19.2
30.9
55.2
96.1
854
1169
1529
1873
1.726
2.107
2.815
4.523
7.222
2.620
3.487
4.248
5.567
8.842
3.939
5.080
6.045
7.514
12.020
5.771
7.054
8.090
9.825
16.215
17.8
20.3
30.4
40.6
47.7
30.7
30.4
40.6
50.7
71.1
7.0
8.2
13.2
23.5
41.0
364
499
638
798
2.593
3.461
3.160
4.213
4.222
5.629
6.789
9.046
10.834 14.445
3.939
5.249
5.231
6.975
6.373
8.488
8.346 11.135
13.259 17.675
5.912
7.886
7.630 10.170
9.063 12.090
11.276 15.029
18.029 24.039
8.656 11.542
10.586 14.117
12.135 16.180
14.737 19.649
24.323 32.430
26.7
35.5
30.4
40.6
45.7
60.9
60.9
81.2
71.5
95.4
46.1
61.4
45.7
60.9
60.9
81.2
76.1
101.5
106.6
142.1
10.5
13.9
12.3
16.4
19.8
26.4
35.3
47.1
61.5
82.0
546
728
749 4 998
958
1277
1198
1596
4.319
5.257
7.037
11.312
18.056
6.559
8.718
10.612
13.914
22.101
9.860
12.710
15.109
18.791
30.049
14.416
17.640
20.225
24.562
40.538
44.4
50.7
76.1
101.5
119.3
76.8
76.1
101.5
126.9
177.6
17.4
20.5
33.0
58.9
102.5
910
1248
1596
1996
5.797
7.063
9.444
15.171
24.225
8.798
11.701
14.241
18.667
29.642
13.223
17.056
20.278
25.208
40.307
19.348
23.676
27.137
32.952
54.389
42.2
48.2
72.3
96.4
113.3
73.0
72.3
96.4
120.5
168.7
16.6
19.4
31.3
55.9
97.4
863
1187
1520
1897
7.249
8.824
11.807
18.968
30.279
10.993
14.622
17.799
23.340
37.059
16.534
21.322
25.340
31.510
50.389
24.190
29.589
33.917
41.184
67.985
52.8
60.2
90.4
120.5
141.6
91.2
90.4
120.5
150.6
210.9
20.7
24.3
39.2
69.9
121.7
1079
1484
1900
2372
4.532
5.514
7.382
11.860
18.941
6.877
9.143
11.135
14.595
23.172
10.338
13.330
15.852
19.702
31.510
15.126
18.507
21.216
25.756
42.511
24.4
27.9
41.9
55.8
65.6
42.3
41.9
55.8
69.8
97.7
9.6
11.3
18.1
32.4
56.4
499
688
879
1097
2.903
3.532
4.726
7.585
12.177
4.399
5.851
7.125
9.338
14.825
6.612
8.524
10.134
12.604
20.154
9.674
11.834
13.569
16.472
27.190
21.1
24.1
36.2
48.2
56.6
36.5
36.2
48.2
60.3
84.4
8.3
9.7
15.7
28.0
48.7
432
593
760
949
839.5
4.346
5.293
7.081
11.382
18.171
6.594
8.771
10.683
14.002
22.234
9.922
12.790
15.206
18.906
30.235
14.516
17.755
20.348
24.712
40.785
31.7
36.1
54.2
72.3
85.0
54.7
54.2
72.3
90.4
126.5
12.4
14.6
23.5
42.0
73.0
647
890
1140
1423
(1)
For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced.
(2)
The Renold Hi-Tec Coupling will “slip” axially when the maximum axial force is reached.
RENOLD Hi-Tec Couplings
www.renold.com
19 19
DCB Design Variations
The DCB coupling can be adapted to meet customer requirements, as can be seen from the design
variations shown below. For a more comprehensive list contact Renold Hi-Tec.
Cardan Shaft Coupling
Universal Joint Shaft Coupling
Cardan shaft coupling to give high misalignment
capability, low axial and angular stiffness and
high noise attenuation.
Coupling for use with a universal joint shaft. The
coupling has radial and axial bearings to accept
the sinusoidal loads from the universal joint
shaft.
Clutch Coupling
Limited End Float Coupling
Clutch coupling to allow the drive to be engaged
and disengaged.
Limited end float coupling for use on
applications where axial restraint is required,
such as alternators with sleeve bearings.
Stub Shaft Coupling
Stub shaft coupling for flywheel to flange
application or when increased distance between
the driving and driven machines is required.
Adaptor Plate Coupling
Adaptor plate coupling for adapting the standard
DCB coupling to meet customer requirements.
RENOLD Hi-Tec Couplings
www.renold.com
20 20
4
RENOLD Hi-Tec Couplings
www.renold.com
21
HTB Flexible Coupling
blind assembly,
blind assembly,
coupling
coupling
High temperature
High temperature
designed
designed
for bellfor
housing
bell housing
applications.
applications.
Standard
Standard
Coupling
Coupling
Arrangements
Arrangements
•
•
•
•
Flywheel
• Flywheel
to Shaft
to Shaft
Shaft• to
Shaft
Shaft
to Shaft
Flywheel
• Flywheel
to U-joint
to U-joint
Flywheel
• Flywheel
to Flange
to Flange
Applications
Applications
•
•
•
•
•
Marine
• Marine
propulsion
propulsion
Generator
• Generator
sets sets
Pump
• Pump
sets sets
Compressors
• Compressors
Rail/People
• Rail/People
movingmoving
Features
Features
Benefits
Benefits
● Unique
● Unique
blind assembly
blind assembly
● Allows
● Allows
easy assembly
easy assembly
for applications
for applications
in bell in bell
housings.
housings.
● Allows
● Allows
operation
operation
in bell in
housings
bell housings
where where
ambient
ambient
● High
● temperature
High temperature
capability
capability
(up to (up
400°F)
to 400°F)
temperatures
temperatures
can becan
high.
be high.
● Avoiding
● Avoiding
failure failure
of the of
driveline
the driveline
under short
under short
● Severe
● Severe
shock shock
load protection
load protection
circuit circuit
and other
and transient
other transient
conditions.
conditions.
● Intrinsically
● Intrinsically
fail safe
fail safe
● Ensuring
● Ensuring
continuous
continuous
operation
operation
of the of
driveline
the driveline
in
in
the unlikely
the unlikely
event of
event
rubber
of rubber
damage.
damage.
● Low●maintenance
Low maintenance
● Easy
● block
Easy removal
block removal
● Noise
● attenuation
Noise attenuation
● Giving
● Giving
quiet running
quiet running
conditions
conditions
in sensitive
in sensitive
applications
applications
by the by
elimination
the elimination
of metal
of to
metal
metal
to metal
contact.
contact.
Construction
Construction
Details
Details
• Spheroidal
• Spheroidal
Iron Graphite
Iron Graphite
to BS 2789
to BSGrade
2789 Grade
420/12.420/12.
• High•temperature
High temperature
elastomer
elastomer
with a with
400°F
a 400°F
temperature
temperature
capability.
capability.
• Keep• plate
Keepintegral
plate integral
with outer
withmember.
outer member.
• Steel•Hub
Steelmanufactured
Hub manufactured
to meettoapplication
meet application
requirements.
requirements.
RENOLD Hi-Tec Couplings
www.renold.com
22 22
HTB Typical Applications
Diesel electric main propulsion. Coupling fitted between electric motors and the reintjes
gearboxes to kort nozzle propellors.
Diesel generator sets. Coupling fitted between
diesel engine and alternator.
4
Main propulsion. Coupling fitted between Guascor
engine and Twin Disc gearbox.
RENOLD Hi-Tec Couplings
Main propulsion coupling HTB fitted between
3508 Cat engine and Twin Disc 540 gearbox.
www.renold.com
23 23
HTB Standard SAE Flywheel to Shaft
HTB1200 - HTB10000
HTB4500
HTB12000 - HTB20000
MxN
W2
J2
W2
J2
MxN
B
L
L
B2
J
W1
J1
UxV
UxV
SxT
W-3
SxT
W1
J1
QxR
C
QxR
W2
J2
B
J
C
MxN
B
L
J
UxV
SxT
W1
J1
QxR
W3
J3
W3
J3
C
D
A
F
D
Y
E
Y
A F G
G
E
G
A
F
D
Y
E G
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
1200
SAE11.5 SAE14
A
B
B2
C
D
E
F
G
DIMENSIONS
J
(inch)
L
M (QTY)
N
Q (QTY)
R
S (QTY)
T
U (QTY)
V
Y (MAX)
Y (MIN)
Z
RUBBER
Per Cavity
ELEMENTS
Per Coupling
MAXIMUM SPEED (rpm) (1)
WEIGHT
W1
(lb)
W2
W3
TOTAL (W1+W2)
INERTIA
J1
(lb.in2)
J2
J3
ALLOWABLE MISALIGNMENT
RADIAL (inch)
ALIGN
MAX
AXIAL (inch)
ALIGN
MAX
CONICAL (degree)
13.875
1.97
0.16
3.94
6.14
13.13
11.97
0.39
4.20
8
0.41
12
M12
6
M6
6
M12
3.15
1.57
0.63
1
12
3730
6
22
26
28
102
649
136
0.01
0.04
0.04
0.08
0.5
3000
SAE14
SAE18
4500
SAE14
18.375 18.375 22.5 18.375 22.5
1.97
2.64
2.64
2.74 2.74
0.79 0.79
0.16
0.16
0.16
0.16 0.16
3.94
4.53
4.53
5.16 5.16
6.14
8.27
8.27
8.27 8.27
17.25 17.25 21.37 17.25 21.37
11.97 16.10 16.10 16.10 16.10
0.39
0.47
0.47
0.47 0.47
4.20
4.72
4.72
5.35 5.35
8
8
6
8
6
0.53
0.53
0.67
0.53 0.67
12
12
12
16
16
M12
M16 M16
M16 M16
6
6
6
6
6
M6
M8
M8
M8
M8
6
6
6
6
6
M12
M14 M14
M14 M14
3.15
4.53
4.53
4.53 4.53
1.57
1.97
1.97
1.97 1.97
0.63
0.79
0.79
0.00 0.00
1
1
1
2
2
12
12
12
24
24
2820 2820 2300 2820 2300
6
15
15
23
23
33
48
64
58
76
26
50
50
50
50
40
64
79
81
99
102
307
307
512
512
1435 2562 3177 3007 3143
136
478
478
580
580
0.01
0.04
0.04
0.08
0.5
0.02
0.06
0.04
0.10
0.5
0.02
0.06
0.04
0.10
0.5
0.02
0.06
0.04
0.10
0.5
6000
SAE18 SAE18
0.02
0.06
0.04
0.10
0.5
RENOLD Hi-Tec Couplings
10000
SAE21
SAE21
22.5
3.31
0.20
5.91
10.08
21.37
19.88
0.63
5.91
6
0.67
12
M20
6
M10
6
M16
5.91
2.36
1.14
1
12
2300
35
95
92
103
888
7722
1264
26.5
3.31
0.20
5.91
10.08
25.25
19.88
0.63
5.91
12
0.67
12
M20
6
M10
6
M16
5.91
2.36
1.14
1
12
1950
35
121
92
156
888
11447
1264
26.5
4.06
0.20
6.85
12.13
25.25
23.62
0.79
7.09
12
0.67
12
M24
6
M10
6
M20
6.69
2.36
1.42
1
12
1950
53
0.02
0.06
0.04
0.10
0.5
0.02
0.06
0.04
0.10
0.5
12000
SAE18
SAE21
22.5
5.55
0.20
8.07
10.08
21.37
19.88
0.63
8.07
6
0.67
12
M20
6
M10
6
M16
5.91
2.36
1.14
2
24
2300
91
171
129
102
143
225
221
2186 3348
18418 9533
3417 1981
26.5
5.55
0.20
7.64
10.08
25.25
19.88
0.63
8.07
12
0.67
12
M20
6
M10
6
M16
5.91
2.36
1.14
2
24
1950
91
155
143
247
3348
13497
1981
0.02
0.06
0.04
0.10
0.5
0.02
0.06
0.04
0.10
0.5
0.02
0.06
0.04
0.10
0.5
20000 40000
SAE21
26.5 33.858
6.81
8.46
0.20
0.28
9.61 10.87
12.13 16.38
25.25 32.28
23.62 30.63
0.79
0.87
9.84 11.81
12
32
0.67
0.83
12
16
M24
M24
6
M10
6
6
M20
M24
6.69
8.66
2.36
4.33
1.42
1.42
2
2
24
24
1950 1500
123
216
247
440
252
578
370
656
6560 20400
22655 80917
5023 20366
0.02
0.06
0.04
0.10
0.5
0.02
0.06
0.04
0.10
0.5
www.renold.com
24 24
HTB Technical Data
2.1
1.1 Torque Capacity - Diesel
Engine Drives
When subject to axial misalignment, the coupling will
have an axial resistance which gradually reduces due to
the effect of vibratory torque.
The HTB Coupling is selected on the “Nominal
Torque, TKN” without service factors.
The axial stiffness of the coupling is torque dependent,
the variation is as shown in the Technical Data.
The full torque capacity of the coupling for
transient vibration whilst passing through major
criticals on run up is published as the Maximum
Torque TKMAX.
(TKMAX = 3 x TKN).
2.2
The published “Vibratory Torque TKW”, relates to
the amplitude of the permissible continous torque
fluctuation. The vibratory torque values shown in
the technical data are at the frequency of 10Hz.
The measure of acceptability of the coupling
for vibrating drives is published as “Allowable
Dissipated Heat at Ambient Temperature 86°F.
2.3
2.4
Transient Torques
Prediction of the System
Torsional Vibration
Characteristics
An adequate prediction of the systems torsional vibration
characteristics, can be made by the following method:
2.4.1 Use the torsional stiffness, as published in the
catalog which is based upon data measured
at 86˚F ambient temperature.
2.4.2 Repeat the calculation made as 2.4.1, but using
the maximum temperature correction factor
St212, and dynamic magnifier correction factor,
M212, for the selected rubber. Use tables on page
4 to adjust values for both torsional stiffness and
dynamic magnifier. ie. CT212 = CTdyn X St212
Care needs to be taken in the design of couplings
with shaft brakes, to ensure coupling torques are
not increased by severe deceleration.
Sudden torque applications of propulsion
devices such as thrusters or waterjets, need
to be considered when designing the coupling
connection.
Stiffness Properties
The Renold Hi-Tec Coupling remains fully flexible
under all torque conditions. The HTB series is a
non-bonded type operating with the Rubber-inCompression principle.
Torsional Stiffness
The torsional stiffness of the coupling is dependent upon
applied torque and temperature as shown in the Technical
Data.
Prediction of transient torques in marine drives can
be complex. Normal installations are well provided
for by selecting couplings based on the “Nominal
Torque TKN”. Transients, such as start up and clutch
maneuver, are usually within the “Maximum Torque
TKMAX” for the coupling.
2.0
Radial Stiffness
The radial stiffness of the coupling is torque dependent,
and is as shown in the Technical Data.
There is additional torque capacity built within the
coupling for transient and shock torques.
1.2
Axial Stiffness
4
RENOLD Hi-Tec Couplings
2.4.3 Review calculations 2.4.1 and 2.4.2 and if the
speed range is clear of criticals which do not
exceed the allowable heat dissipation value
as published in the catalog, then the coupling
is considered suitable for the application with
respect to the torsional vibration characteristics.
If there is a critical in the speed range, then the
actual temperature of the coupling should be
calculated at this speed.
www.renold.com
25 25
HTB Technical Data
2.6 Temperature Correction Factor - Si-70
Tempmax
St
°F
St212 = 0.79
212
Si 70
Si 70 is considered “standard”
Rubber
Grade
Dynamic
Magnifier
at 86ºF
(M86)
Dynamic
Magnifier
at 212ºF
(M212)
ϑ
Temperature Correction Factor St
Rubber
Grade
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
77
7.5
Si 70
9.70
Si 70 is considered “standard”
2.5
Prediction of the Actual
CouplingTemperature and
Torsional Stiffness
2.5.1 Use the torsional stiffness as published in the
catalog. This is based upon data measured at
86˚F and the dynamic magnifier at 86˚F (M86)
122
167
212
257
302
347
Rubber
Temperature (ϑ) ˚F
R
392
2.7 Dynamic Magnifier Correction
Factor
The Dynamic Magnifier of the rubber is subject to
temperature variation in the same way as the
torsional stiffness.
MT = M86
St
2.5.2 Compare the synthesis value of the calculated
heat load in the coupling (PK) at the speed of
interest, to the “Allowable Heat Dissipation”
(PKW).
Rubber
Grade
ψT = ψ86 x St
Dynamic
Magnifier
(M86)
Relative
Damping
ψ86
Si 70
7.5
0.83
Si 70 is considered “standard”
The coupling temperature rise = ∆F
∆F = Tempcoup = PK x 306
PKW
The coupling temperature = ϑ
( )
ϑ
= Tempcoup + Ambient Temp.
2.5.3 Calculate the temperature correction factor, St,
from 2.6 (if the coupling temperature > 212ºF,
then use St212). Calculate the dynamic Magnifier
as per 2.7. Repeat the calculation with the new
value of coupling stiffness and dynamic magnifier
2.5.4 Calculate the coupling temperature as per 2.5.2
Repeat calculation until the coupling temperature
agrees with the correction factors for torsional
stiffness and dynamic magnifier used in the
calculation.
RENOLD Hi-Tec Couplings
www.renold.com
26 26
HTB Technical Data
End view
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
1200
SAE11.5
3000
SAE14
SAE14
4500
SAE18
SAE14
6000
10000
12000
20000 40000
SAE18
SAE18 SAE21
SAE21
SAE18
SAE21
SAE21
SAE21
Nominal Torque TKN (ft.lb)
885
885
2213
2213
3319
3319
4425
4425
7376
8851
8851
14751
29,500
Maximum Torque TKMAX (ft.lb)
2655
2655
6638
6638
9957
9957
13276
13276
22127
26552
26552
44254
88,500
Vibratory Torque TKW (ft.lb)
295
295
738
738
1106
1106
1475
1475
2434
2950
2950
4868
9,832
Stiffness CTdyn (lb.in/radx106)
10% Nominal Torque
0.027
0.027
0.071
0.071
0.106
0.106
0.133
0.133
0.239
0.266
0.266
0.478
1.036
25% Nominal Torque
0.071
0.071
0.186
0.186
0.283
0.283
0.354
0.354
0.637
0.708
0.708
1.266
2.744
50% Nominal Torque
0.195
0.195
0.496
0.496
0.761
0.735
0.929
0.929
1.664
1.859
1.859
3.328
7.249
75% Nominal Torque
0.381
0.381
0.965
0.965
1.434
1.434
1.814
1.814
3.248
3.629
3.629
6.496
14.135
100% Nominal Torque
0.655
0.655
1.575
1.575
2.345
2.345
2.965
2.965
5.310
5.930
5.930
10.621
23.092
Allowable Heat Loading @ 86°F (W)
430
430
600
600
760
760
735
735
900
1150
1150
1425
1800
Dynamic Magnifier (M)
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
3730
2820
2820
2300
2820
2300
2300
1950
1950
2300
1950
1950
1500
@ No Load
2.969
2.969
4.054
4.054
5.995
5.995
5.139
5.139
5.938
10.278
10.278
11.877
13.875
@ TKN
9.450
9.450
12.990
12.990
19.185
19.185
16.416
16.416
18.985
32.775
32.775
37.914
44.252
@ No Load
1.113
1.113
1.570
1.570
2.941
2.941
1.970
1.970
2.370
5.596
5.596
6.566
15.132
@ TKN
4.796
4.796
6.738
6.738
12.619
12.619
8.508
8.508
10.221
24.153
24.153
27.236
48.875
Maximum Speed (RPM)
Radial Stiffness (lb/in x 103):
Axial Stiffness (lb/in x 103):
4
RENOLD Hi-Tec Couplings
www.renold.com
27 27
HTB Design Variations
The HTB coupling can be adapted to meet customer requirements, as can be seen from some of the
design variations below. For a more comprehensive list contact Renold Hi-Tec.
Coupling to Suit Existing Hub
Existing hub fitment. Coupling inner
member designed to suit existing hub
design.
Shaft to Shaft Coupling
Shaft to Shaft Coupling. Designed for use
on electric motor drives and power take
off applications.
Reversed Inner Member Coupling
Coupling with reversed inner member to
increase distance between flywheel face
and shaft end.
Spacer Coupling
Spacer coupling. Used to increase the
distance between shaft ends and allow easy
access to driven and driving machine.
RENOLD Hi-Tec Couplings
www.renold.com
28 28
4
RENOLD Hi-Tec Couplings
www.renold.com
29
RB Flexible Coupling
General purpose, cost effective coupling range
manufactured from SG iron for torques up to 30,240 lb-ft.
Standard Coupling Arrangements
Shaft to shaft
Shaft to shaft with increased shaft engagement
Flywheel to shaft
Flywheel to shaft with increased shaft engagement
•
•
•
•
Applications
•
•
•
•
•
•
•
•
•
Features
Generator sets
Pump sets
Compressors
Wind turbines
Metal manufacture
Bulk handling
Pulp and paper industry
Marine propulsion
General heavy duty industrial applications
Benefits
●
Intrinsically fail safe
●
Ensures continuous operation of the driveline in
the unlikely event of rubber damage.
●
Control of resonant torsional vibration
●
Achieves low vibratory loads in the driveline
components by selection of optimum stiffness
characteristics.
●
Maintenance free
●
No lubrication or adjustment required resulting in
low running costs.
●
Severe shock load protection
●
Avoids failure of the driveline under short circuit
and other transient conditions.
●
Misalignment capability
●
Allows axial, angular and radial misalignments
between the driving and driven machines.
●
Zero backlash
●
Eliminates torque amplifications through
pre-compression of the rubber elements.
●
Low cost
●
The RB coupling gives the lowest lifetime cost.
●
Selection of Rubber
●
Variety of rubber materials and hardness
are available for optimum reduction of drive
vibration and maximun block life.
Construction details
• Spheroidal graphite iron to BS 2789
Grade 420/12
• Separate rubber elements with a choice of
grade and hardness, styrene butadiene with
70 shore hardness (SM70) is standard.
• Rubber elements which are totally enclosed
and loaded in compression.
RENOLD Hi-Tec Couplings
www.renold.com
30
RB Typical Applications
RB 0.24 flywheel mounted coupling on a Deutz
TD 229 - 6 diesel generator set in Spain.
RB 2.15 flywheel mounted coupling on a
Detroit Diesel driven Peerless pump
RB 0.37 flywheel mounted coupling on an
ADE - HML ground power unit.
RB 0.73 flywheel mounted coupling on a diesel
engine driven Weir pump.
RB 2.15 shaft to shaft coupling on a Howden
Donkin blower.
RB 0.73 Cardan shaft and RB 0.73 shaft to
shaft couplings with long boss inner members
on wind turbines in the Netherlands.
4
RB 1.15 flywheel mounted coupling on an
FG Wilson diesel generator set.
RB 3.86 flywheel mounted coupling on an
Aggreko rental diesel generator set.
RENOLD Hi-Tec Couplings
www.renold.com
31
31
RB Shaft to Shaft
Rigid half / Flex half
Features
Benefits
●
Can accommodate a
wide range of shaft
diameters
●
Allows the optimum
coupling to be
selected
●
Easy disconnection
of the outer member
and driving flange
●
Allows the driving
and driven machines
to be disconnected
●
Coupling available
with limited end float
●
Provides axial
location for motors
with sleeve bearings
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
0.12
0.2
0.24
0.37
0.73
1.15
2.15
3.86
5.5
A
B
C
D
D1
E
F
G
DIMENSIONS
J
(inch)
Q (QTY)
R
S (QTY)
T
MAX. X
MAX. Y
MIN. X & Y
RUBBER
Per Cavity
ELEMENTS
Per Coupling
MAXIMUM SPEED (rpm)(1)
WEIGHT (3)
W1
(lb)
W2
W3
TOTAL
INERTIA (3)
J1
(lb.in2)
J2
J3
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch) ±
CONICAL (degree)
7.87
4.13
0.13
2.00
2.00
3.13
7.00
6.16
0.50
5
M8
6
M8
1.97
2.17
1.18
1
10
5250
6.2
8.8
9.0
24.0
15
79
52
8.75
4.38
0.13
2.13
2.13
3.75
7.87
7.01
0.56
6
M8
6
M8
2.36
2.76
1.38
1
12
4725
8.9
11.1
12.8
32.8
28
128
92
9.37
4.87
0.13
2.37
2.37
4.00
8.37
7.34
0.63
6
M8
6
M10
2.56
2.95
1.57
1
12
4410
11.7
14.1
16.4
42.2
44
186
135
10.25
5.37
0.13
2.63
2.63
4.75
9.25
8.27
0.69
6
M10
8
M10
3.15
3.35
1.57
1
12
4035
16.5
17.9
23.0
57.4
79
303
220
12.13
6.87
0.13
3.37
3.37
6.00
11.00
9.88
0.75
6
M10
8
M12
3.74
3.74
2.17
1
12
3410
28.3
29.3
39.7
97.3
192
683
504
14.13
7.63
0.13
3.75
3.75
7.25
12.75
11.61
0.75
6
M12
10
M12
4.53
4.53
2.17
1
12
2925
51.6
40.6
60.3
152.5
478
1255
977
18.37
9.19
0.19
4.50
4.50
8.75
17.25
14.25
0.75
6
M12
16
M12
5.51
5.51
2.76
1
12
2250
79.1
74.9
104.6
258.6
1102
3770
2733
20.00
10.25
0.25
5.00
5.00
11.00
18.50
17.13
0.87
7
M12
12
M16
6.69
6.69
3.15
1
14
2070
138.5
96.7
166.2
401.4
2900
6547
5166
22.5
11.25
0.25
5.50
5.50
13.00
21.375
19.74
1.00
8
M12
12
M16
8.27
8.27
3.54
1
16
1820
225.1
130.1
249.8
605
6708
0.03
0.06
0.5
0.03
0.06
0.5
0.03
0.06
0.5
0.03
0.06
0.5
0.04
0.06
0.5
0.06
0.06
0.5
0.06
0.08
0.5
0.06
0.12
0.5
0.06
0.12
0.5
11751
10181
(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling be dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is
recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery
should be calculated to ensure that they do not exceed the manufacturers allowables.
(3) Weights and inertias are based on the minimum bore size.
RENOLD Hi-Tec Couplings
www.renold.com
32
RB Shaft to Shaft with Increased Shaft Engagement
Rigid half / Flex half
Features
●
Benefits
Long boss inner
member
●
Allows small
diameter, long length
shafts to be used
●
Reduces key stress
●
Allows increased
distances between
shaft ends
●
Full shaft
engagement avoids
the need for spacer
collars
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
0.12
0.2
0.24
0.37
0.73
1.15
2.15
3.86
5.5
A
B1
B2
C
D
D2
E
F
G
DIMENSIONS
J
(inch)
Q (QTY)
R
S (QTY)
T
MAX. X
MAX. Y
MIN. X & Y
RUBBER
PER CAVITY
ELEMENTS
PER COUPLING
MAXIMUM SPEED (rpm)(1)
WEIGHT (3)
W1
(lb)
W2
W3
TOTAL
INERTIA (3)
J1
(lb.in2)
J2
J3
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch) ±
CONICAL (degree)
7.87
5.47
2.13
0.13
2.00
3.35
3.13
7.00
6.16
0.50
5
M8
6
M8
1.97
2.17
1.18
1
10
5250
9.3
8.8
9.0
27.1
20
79
52
8.75
5.99
2.25
0.13
2.13
3.74
3.75
7.87
7.01
0.56
6
M8
6
M8
2.36
2.76
1.38
1
12
4725
14.2
11.1
12.8
38.1
41
128
92
9.37
6.83
2.50
0.13
2.37
4.33
4.00
8.37
7.34
0.63
6
M8
6
M10
2.56
2.95
1.57
1
12
4410
19.1
14.1
16.4
49.6
65
186
135
10.25
7.48
2.75
0.13
2.63
4.72
4.75
9.25
8.27
0.69
6
M10
8
M10
3.15
3.35
1.57
1
12
4035
26.1
17.9
23.0
67
111
303
220
12.13
9.21
3.50
0.13
3.37
5.71
6.00
11.00
9.88
0.75
6
M10
8
M12
3.74
3.74
2.17
1
12
3410
42.8
29.3
39.7
111.8
263
683
504
14.13
10.57
3.87
0.13
3.75
6.69
7.25
12.75
11.61
0.75
6
M12
10
M12
4.53
4.53
2.17
1
12
2925
77.8
40.6
60.3
178.7
647
1255
977
18.37
12.17
4.69
0.19
4.50
7.48
8.75
17.25
14.25
0.75
6
M12
16
M12
5.51
5.51
2.76
1
12
2250
118.6
74.9
104.6
298.1
1485
3770
2733
20.00
13.52
5.25
0.25
5.00
8.27
11.00
18.50
17.13
0.87
7
M12
12
M16
6.69
6.69
3.15
1
14
2070
210.5
96.7
166.2
473.4
4043
6547
5166
22.50
15.20
5.75
0.25
5.50
9.45
13.00
21.375
19.74
1.00
8
M12
12
M16
8.27
8.27
3.54
1
16
1820
358.9
130.1
249.8
738.8
9893
11751
10181
0.03
0.06
0.5
0.03
0.06
0.5
4 0.03
0.03
0.06
0.5
0.04
0.06
0.5
0.06
0.06
0.5
0.06
0.08
0.5
0.06
0.12
0.5
0.06
0.12
0.5
0.06
0.5
RENOLD Hi-Tec Couplings
www.renold.com
33
RB SAE Flywheel to Shaft
0.24 to 1.15
Features
Benefits
●
Wide range of adaptor
plates
●
Allows the coupling to
be adapted to suit most
engine flywheels
●
Choice of rubber
compound and
hardness
●
Allows control of the
torsional vibration
system
●
Short axial length
●
Allows the coupling
to fit in bell housed
applications
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
A
C
D1
F
G
DIMENSIONS
J
(inch)
L
Q (QTY)
R
S (QTY)
U
MAX. Y
MIN. Y
RUBBER
Per Cavity
ELEMENTS
Per Coupling
MAXIMUM SPEED (rpm) (1)
WEIGHT (3)
W1
(lb)
W2
TOTAL
INERTIA (3)
J1
(lb.in2)
J2
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch) ±
CONICAL (degree)
0.24
0.37
0.73
SAE 10 SAE 11.5 SAE 11.5
SAE 14 SAE 11.5 SAE 14
12.375
13.875
13.875
18.375
13.875
18.375
0.13
0.13
0.13
0.13
0.13
0.13
2.37
2.38
2.63
2.63
3.37
3.37
11.625
13.125
13.125
17.25
13.125
17.25
7.34
7.34
8.27
8.27
9.88
9.88
0.79
0.79
0.79
0.79
0.79
0.79
3.13
3.13
3.38
3.38
4.13
4.13
6
6
6
6
6
6
M8
M8
M10
M10
M10
M10
8
8
8
8
8
8
0.41
0.41
0.41
0.53
0.41
0.53
2.95
2.95
3.35
3.35
3.74
3.74
1.57
1.57
1.57
1.57
2.17
2.17
1
1
1
1
1
1
12
12
12
12
12
12
3710
3305
3305
2500
3310
2500
11.7
11.7
16.5
16.5
28.3
28.3
34.6
37.7
44.0
63.4
52.9
77.8
46.3
49.4
60.5
79.9
81.2
106.1
44
44
79
79
192
192
656
870
1054
2558
1366
3041
0.03
0.06
0.5
0.03
0.06
0.5
0.03
0.06
0.5
0.03
0.06
0.5
0.04
0.06
0.5
0.04
0.06
0.5
1.15
SAE 14 SAE 18
18.375
22.50
0.13
0.13
3.75
3.75
17.25
21.375
11.61
11.61
0.79
1.10
4.50
4.82
6
6
M12
M12
8
6
0.53
0.66
4.53
4.53
2.17
2.17
1
1
12
12
2500
2040
51.6
51.6
86.0
134.5
137.6
186.1
478
478
3510
8192
0.06
0.06
0.5
0.06
0.06
0.5
(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling be dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is
recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery
should be calculated to ensure that they do not exceed the manufacturers allowables.
(3) Weights and inertias are based on the minimum bore size.
RENOLD Hi-Tec Couplings
www.renold.com
34
RB SAE Flywheel to Shaft
2.15 - 5.5
Keep Plate (2.15 SAE 14 and 5.5 SAE 18)
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
2.15
SAE 14 SAE 18 SAE 21
3.86
SAE 18 SAE 21 SAE 24
5.5
SAE 18 SAE 21 SAE 24
A
C
D1
F
G
DIMENSIONS
J
(inch)
L
Q (QTY)
R
S (QTY)
U
MAX. Y
MIN. Y
RUBBER
Per Cavity
ELEMENTS
Per Coupling
MAXIMUM SPEED (rpm)(1)
WEIGHT (3)
W1
(lb)
W2
TOTAL
INERTIA (3)
J1
(lb.in2)
J2
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch) ±
CONICAL (degree)
18.375 22.50
0.19
0.19
4.50
4.50
17.25 21.375
14.25 14.25
1.38
1.10
5.32
5.63
6
6
M12
M12
8
6
0.52
0.66
5.51
5.51
2.76
2.76
1
1
12
12
2500
2040
79.1
79.1
111.2 174.5
190.3 253.6
1102
1102
5650 11254
26.50
0.19
4.50
25.25
14.25
1.10
5.63
6
M12
12
0.66
5.51
2.76
1
12
1800
79.1
203.2
282.3
1102
17063
22.50
0.25
5.00
21.375
17.13
1.10
6.20
7
M12
6
0.66
6.69
3.15
1
14
2040
138.5
190.6
329.1
2900
13484
22.50
0.25
5.50
21.375
19.74
1.63
6.38
8
M12
12
0.68
8.27
3.54
1
16
2040
225.1
174.5
399.6
6708
15610
26.50
0.25
5.50
25.25
19.74
1.10
6.69
8
M12
12
0.67
8.27
3.54
1
16
1800
225.1
258.4
483.5
6708
25044
28.875
0.25
5.50
27.25
19.74
1.22
6.81
8
M12
12
0.87
8.27
3.54
1
16
1590
225.1
298.6
523.7
6708
33040
0.06
0.08
0.5
0.06
0.12
0.5
0.06
0.12
0.5
0.06
0.12
0.5
0.06
0.12
0.5
0.06
0.08
0.5
0.06
0.08
0.5
26.50 28.875
0.25
0.25
5.00
5.00
25.25 27.25
17.13 17.13
1.22
1.22
6.32
6.32
7
7
M12
M12
12
12
0.66
0.87
6.69
6.69
3.15
3.15
1
1
14
14
1800 1590
138.5 138.5
243.3 265.3
381.8 403.8
2900 2900
22095 27836
0.06
0.12
0.5
0.06
0.12
0.5
(1) For operation above 80% of the declared maximum coupling4speed, it is recommended that the coupling be dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is
recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery
should be calculated to ensure that they do not exceed the manufacturers allowables.
(3) Weights and inertias are based on the minimum bore size.
RENOLD Hi-Tec Couplings
www.renold.com
35
RB SAE Flywheel to Shaft with Increased Shaft Engagement
0.24 - 1.15
Features
L1
L
●
SxU
J
Benefits
Long boss inner
members
●
Allows small
diameter long length
shafts to be used
●
Reduces key stress
●
Allows increased
distance between
shaft end and
flywheel
●
Full shaft
engagement avoids
the need for spacer
collars
W2
J2
QxR
C
W1
J1
D2
A F
Y G
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
0.24
SAE 10
A
C
D2
F
G
J
DIMENSIONS
L
(inch)
L1
Q (QTY)
R
S (QTY)
U
MAX. Y
MIN. Y
RUBBER
PER CAVITY
ELEMENTS
PER COUPLING
MAXIMUM SPEED (rpm)(1)
WEIGHT (3)
W1
(lb)
W2
TOTAL
INERTIA (3)
J1
(lb.in2)
J2
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch) ±
CONICAL (degree)
0.37
SAE 11.5 SAE 11.5
0.73
1.15
SAE 14 SAE 11.5
SAE 14
SAE 14
SAE 18
12.375
0.13
4.33
11.625
7.34
0.79
3.13
5.09
6
M8
8
0.41
2.95
1.57
1
12
3710
19.1
34.6
53.7
65
656
13.875
0.13
4.33
13.125
7.34
0.79
3.13
5.09
6
M8
8
0.41
2.95
1.57
1
12
3305
19.1
37.7
56.8
65
870
13.875
0.13
4.72
13.125
8.27
0.79
3.38
5.48
6
M10
8
0.41
3.35
1.57
1
12
3305
26.1
44.0
70.1
111
1054
18.375
0.13
4.72
17.25
8.27
0.79
3.38
5.48
6
M10
8
0.53
3.35
1.57
1
12
2500
26.1
63.4
89.5
111
2558
13.875
0.13
5.71
13.125
9.88
0.79
4.13
6.46
6
M10
8
0.41
3.74
2.17
1
12
3305
42.8
52.9
95.7
263
1366
18.375
0.13
5.71
17.25
9.88
0.79
4.13
6.46
6
M10
8
0.53
3.74
2.17
1
12
2500
42.8
77.8
120.6
263
3041
18.375
0.13
6.69
17.25
11.61
0.79
4.50
7.45
6
M12
8
0.53
4.53
2.17
1
12
2500
77.8
86.0
163.8
647
3510
22.50
0.13
6.69
21.375
11.61
1.10
4.82
7.76
6
M12
6
0.66
4.53
2.17
1
12
2040
77.8
134.5
212.3
647
8192
0.03
0.06
0.5
0.03
0.06
0.5
0.03
0.06
0.5
0.03
0.06
0.5
0.04
0.06
0.5
0.04
0.06
0.5
0.06
0.06
0.5
0.06
0.06
0.5
(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling be dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is
recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery
should be calculated to ensure that they do not exceed the manufacturers allowables.
(3) Weights and inertias are based on the minimum bore size.
RENOLD Hi-Tec Couplings
www.renold.com
36
RB SAE Flywheel to Shaft with Increased Shaft Engagement
2.15 - 5.5
Keep Plate (2.15 SAE 14 and 5.5 SAE 18)
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
A
C
D2
F
G
J
DIMENSIONS
L
(inch)
L1
Q (QTY)
R
S (QTY)
U
MAX. Y
MIN. Y
RUBBER
Per Cavity
ELEMENTS
Per Coupling
MAXIMUM SPEED (rpm) (1)
WEIGHT (3)
W1
(lb)
W2
TOTAL
INERTIA (3)
J1
(lb.in2 )
J2
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch) ±
CONICAL (degree)
2.15
3.86
5.5
SAE 14 SAE 18 SAE 21
SAE 18 SAE 21 SAE 24
SAE 18 SAE 21 SAE 24
18.375
0.19
7.48
17.25
14.25
1.38
5.32
8.30
6
M12
8
0.53
5.51
2.76
1
12
2500
118.6
111.2
229.8
1485
5650
22.50
0.19
7.48
21.375
14.25
1.10
5.63
8.66
6
M12
6
0.66
5.51
2.76
1
12
2040
118.6
174.5
293.1
1485
11254
0.06
0.08
0.5
0.06
0.08
0.5
4
RENOLD Hi-Tec Couplings
26.50
0.19
7.48
25.25
14.25
1.10
5.63
8.66
6
M12
12
0.66
5.51
2.76
1
12
1800
118.6
203.2
321.8
1485
17063
22.50
0.25
8.27
21.375
17.13
1.10
6.20
9.47
7
M12
6
0.66
6.69
3.15
1
14
2040
210.5
190.6
401.1
4043
13484
26.50
0.25
8.27
25.25
17.13
1.22
6.32
9.59
7
M12
12
0.66
6.69
3.15
1
14
1800
210.5
243.3
453.8
4043
22095
28.875
0.25
8.27
27.25
17.13
1.22
6.32
9.59
7
M12
12
0.87
6.69
3.15
1
14
1590
210.5
265.3
475.8
4043
27836
22.50
0.25
9.45
21.375
19.74
1.63
6.38
10.34
8
M12
12
0.68
8.27
3.54
1
16
2040
358.9
174.5
533.4
9893
15610
26.50
0.25
9.45
25.25
19.74
1.10
6.69
10.69
8
M12
12
0.67
8.27
3.54
1
16
1800
358.9
258.4
617.3
9893
25044
28.875
0.25
9.45
27.25
19.74
1.22
6.81
10.77
8
M12
12
0.87
8.27
3.54
1
16
1590
358.9
298.6
657.5
9893
33040
0.06
0.08
0.5
0.06
0.12
0.5
0.06
0.12
0.5
0.06
0.12
0.5
0.06
0.12
0.5
0.06
0.12
0.5
0.06
0.12
0.5
www.renold.com
37
RB Technical Data
1.1
Diesel Engine Drives
The RB coupling is selected using the “nominal
torque (TKN)” without service factors for diesel drive
applications.
The full torque capacity of the coupling for transient
vibration while passing through major criticals on
run up is published as the maximum torque (TKMAX).
(TKMAX = 3 x TKN).
There is an additional torque capacity built into the
coupling for short circuit and shock torques equal to
3 x TKMAX.
The published “Vibratory torque (TKW)” is a fatigue
function according to DIN740 and not significant
in diesel engine drives. The vibratory torque values
shown in the Technical Data are at the frequency
of 10Hz. The measure used for acceptability of the
coupling under vibratory torque is heat dissipation
of the rubber elements. The maximum allowable
heat dissipation shown in the Technical Data is at a
86°F ambient temperature.
1.2
Industrial Drives
For industrial electrical motor applications, refer to
the “Selection Procedure” and base the selection on
TKmax with the appropriate service factors.
The service factors used in the “Selection
Procedure” are based upon 40 years experience
of drives and their shock frequency/amplitude.
The stated TKMAX quoted should not be exceeded
by design without reference to Renold Hi-Tec
Couplings.
Care needs to be taken in the design of couplings
with shaft brakes to ensure the coupling torques are
not increased by severe deceleration.
2.0
Stiffness Properties
The Renold Hi-Tec coupling remains fully flexible
under all torque conditions because of its nonbonded “Rubber-in-Compression” style of design.
2.1
Axial Stiffness
When subject to misalignment forces in the axial
direction, the coupling will have an axial resistance
which gradually reduces due to the effect of
vibratory torques.
Given sufficient axial force as shown in the catalog,
the coupling will slip to its new position immediately.
2.2 Radial Stiffness
The radial stiffness of the coupling is torque
dependent, and is as shown in the “Technical Data”.
2.3 Torsional Stiffness
The torsional stiffness of the coupling is dependent
upon applied torque (see “Technical Data”) and
temperature.
2.4 Prediction of the System
Torsional Vibration Characteristics
An adequate prediction of the system torsional vibration
characteristics can be made by the following method.
2.4.1 Use the torsional stiffness as published in
the catalog (K86) which is based upon data
measured at a 86˚F ambient temperature.
2.4.2 Repeat the calculation made in 2.4.1, but
use the maximum temperature correction
factor St212 and M212 for the rubber
selected for both torsional stiffness and
dynamic magnifier from the tables.
K212 = K86 x St212
2.4.3 Review the calculations 2.4.1 and 2.4.2. If
the speed range is clear of criticals which
do not exceed the allowable heat dissipation
value as published in the catalog, then
the coupling is considered suitable for the
application with respect to the torsional
vibration characteristics. If there is a critical
in the speed range, the actual temperature
of the coupling will need to be calculated at
this speed.
RENOLD Hi-Tec Couplings
www.renold.com
38
RB Technical Data
Rubber
Grade
Tempmax
St
SM 60
SM 70
SM 80
212
212
212
St212 = 0.75
St212 = 0.63
St212 = 0.58
2.6
KT = K86 x St
2.7
SM 70 is considered “standard”
Rubber
Grade
Dynamic
Magnifier
at 86ºF
(M86)
Dynamic
Magnifier
at 212ºF
(M212)
SM 60
SM 70
SM 80
8
6
4
10.7
9.5
6.9
Temperature Correction Factor
Dynamic Magnifier Correction
Factor
The dynamic magnifier of the rubber is subject
to temperature variation in the same way as the
torsional stiffness.
SM 70 is considered “standard”
2.5
Prediction of the Actual
Coupling Temperature and
Torsional Stiffness
2.5.1 Use the torsional stiffness as published in
the catalog (K86), which is based upon data
measured at 86˚F and the dynamic magnifier
(M86) at 86˚F.
2.5.2 Compare the synthesis value of the
calculated heat load in the coupling (PK) at
the speed of interest to the “Allowable Heat
Dissipation (PKW).”
The coupling temperature rise = ∆F
∆F = Tempcoup = PK x 126
PKW
The coupling temperature = ϑ
( )
Rubber Temperature (ϑ) ˚F
MT = M86
St
Rubber
Grade
SM 60
SM 70
SM 80
ϕT = ϕ 86 x St
Dynamic
Magnifier
(M86)
Relative
Damping
8
6
4
0.78
1.05
1.57
ϕ86
SM 70 is considered “standard”
ϑ = Tempcoup + Ambient Temp.
2.5.3 Calculate the temperature correction factor
(St) from 2.6 (if the coupling temperature >
212ºF, then use St212). Calculate the dynamic
magnifier as per 2.7. Repeat the calculation
with the new value of coupling stiffness (KT)
and dynamic magnifier (MT).
2.5.4 Calculate the coupling temperature as per
2.5. Repeat calculation until the coupling
temperature agrees with the correction
factors for torsional stiffness and dynamic
magnifier used in the calculation.
4
RENOLD Hi-Tec Couplings
www.renold.com
39
RB Technical Data
COUPLING
COUPLING
SIZE SIZE
0.12 0.12 0.2 0.2 0.24 0.24 0.37 0.370.73 0.731.15 1.15 2.15 2.15 3.86 3.86 5.5 5.5
NOMINAL
NOMINAL
TORQUE
TORQUE
TKN (lb-ft)
TKN (lb-ft)
232 232 356 356 420 420 648 6481276127620142014 37733773 6755675596259625
MAXIMUM
MAXIMUM
TORQUE
TORQUE
TKMAX
T(lb-ft)
KMAX(lb-ft) 682 6821051 10511269 12691943 19433946 39465974 5974 11287
1128720209
20209
30240
30240
HP/rpm
HP/rpm
0.13 0.130.20 0.200.24 0.24 0.37 0.370.75 0.751.14 1.14 2.15 2.15 3.85 3.855.76 5.76
VIBRATORY
VIBRATORY
TORQUE
TORQUE
TKW (lb-ft)
TKW (lb-ft) 90 90 139 139 164 164 252 252 496 496 783 783 14671467 2626262637433743
ALLOWABLE
ALLOWABLE
DISSIPATED
DISSIPATED
SM 60
SM 60 90 90 112 112 125 125 140 140 185 185 204 204 246 246 336 336 426 426
HEATHEAT
AT 86°F
AT AMBIENT
86°F AMBIENT
TEMPTEMP
SM 70
SM 7098 98 123 123 138 138 155 155 204 204 224 224 270 270 369 369 465 465
PKWPKW
(W) (W)
SM 80
SM 80100 100 138 138 154 154 173 173 228 228 250 250 302 302 410 410 520 520
DYNAMIC
DYNAMIC
TORSIONAL
TORSIONAL
6 lb-in/rad)
STIFFNESS
STIFFNESS
(x106(x10
lb-in/rad)
0.0800.080
SM 60
SM 60
0.0620.062
0.0890.0890.1420.142
0.2830.283
0.4340.4340.8230.8231.2571.257
1.6461.646
0.1240.124
25% 25%
TKN TKN
SM 70
SM 70
0.0970.097
0.1500.1500.2300.230
0.4600.460
0.6990.6991.3281.3282.0362.036
2.6552.655
0.1860.186
SM 80
SM 80
0.1420.142
0.2210.2210.3450.345
0.6990.699
1.0531.0531.9911.9913.0623.062
4.0094.009
0.1860.186
SM 60
SM 60
0.1420.142
0.2210.2210.3360.336
0.6900.690
1.0441.0441.9741.9743.0363.036
3.9743.974
0.2480.248
50% 50%
TKN TKN
SM 70
SM 70
0.1950.195
0.3010.3010.4600.460
0.9290.929
1.4071.4072.6552.6554.0714.071
5.3285.328
0.2920.292
SM 80
SM 80
0.2300.230
0.3540.3540.5490.549
1.1061.106
1.6731.6733.1693.1694.8594.859
6.3646.364
0.3980.398
SM 60
SM 60
0.3100.310
0.4780.4780.7260.726
1.4781.478
2.2392.2394.2404.2406.5056.505
8.5148.514
0.4870.487
75% 75%
TKN TKN
SM 70
SM 70
0.3810.381
0.5840.5840.8940.894
1.8141.814
2.7442.7445.1875.1877.9667.966
10.426
10.426
0.5580.558
SM 80
SM 80
0.4340.434
0.6730.6731.0361.036
2.1062.106
3.1863.1866.0186.0189.2319.231
12.090
12.090
0.6460.646
SM 60
SM 60
0.5040.504
0.7790.7791.1861.186
2.4162.416
3.6553.6556.9046.90410.594
10.594
13.869
13.869
0.7520.752
100%100%
TKN TKN
SM 70
SM 70
0.5840.584
0.9120.9121.3901.390
2.8232.823
4.2754.2758.0728.07212.391
12.391
16.22316.223
0.8850.885
SM 80
SM 80
0.6900.690
1.0711.0711.6371.637
3.3373.337
5.0455.0459.5329.53214.630
14.630
19.153
19.153
RADIAL
RADIAL
STIFFNESS
STIFFNESS
SM 60
SM 605.82 5.827.19 7.198.19 8.19 9.10 9.1012.0812.08
13.1913.1916.3816.3821.3521.35
26.9926.99
3 lb/in) SM 70
NO LOAD
NO LOAD
(x103(x10
lb/in)
SM 707.16 7.168.85 8.8510.0710.0711.2011.20
14.7614.76
16.2416.2420.1520.1526.2626.26
33.1733.17
SM 80
SM 809.86 9.8612.1912.19
13.8713.8715.4115.41
20.8620.86
22.3522.3527.7527.7536.1436.14
45.7245.72
14.4814.48
Radial
Radial
Stiffness
Stiffness
SM 60
SM 60
11.6811.68
16.4416.4418.3118.31
24.2624.26
26.5526.5533.0033.0042.9442.94
54.3054.30
3 lb/in)
15.0615.06
@TKN@T
(x10
KN3(x10
lb/in)
SM 70
SM 70
12.1812.18
17.1317.1319.6119.61
25.1025.10
27.6027.6034.2634.2644.6544.65
56.4756.47
16.3016.30
SM 80
SM 80
13.1913.19
18.5518.5520.6120.61
27.8927.89
29.8929.8937.1137.1148.3348.33
61.0961.09
AXIAL
AXIAL
STIFFNESS
STIFFNESS
SM 60
SM 605.88 5.887.13 7.137.99 7.99 9.13 9.1311.9611.96
13.1913.1916.2716.2721.1221.12
26.8326.83
3 lb/in) SM 70
NO LOAD
NO LOAD
(x103(x10
lb/in)
SM 70
6.2816.2817.70 7.708.62 8.62 9.76 9.7612.5612.56
14.2714.2717.7017.7023.4123.41
29.6929.69
21.0721.07
SM 80
SM 80
16.7816.78
23.1823.1826.3826.38
34.6034.60
38.2538.2546.9346.9361.4461.44
77.5477.54
MAX MAX
AXIAL
AXIAL
FORCE
FORCE
(1) (1) SM 60
SM 60243 243 303 303 337 337 382 382 495 495 553 553 674 674 877 8771,1241,124
(lb) @T
(lb)
KN@TKN
SM 70
SM 70259 259 324 324 360 360 405 405 531 531 584 584 719 719 922 9221,1911,191
SM 80
SM 80292 292 360 360 396 396 450 450 584 584 652 652 787 787 1,0341,034
1,3041,304
Note.Note.
SM70SM70
is supplied
is supplied
as the
asstandard
the standard
rubber
rubber
grade.
grade.
Options
Options
of rubber
of rubber
grades
grades
SM60SM60
or SM80
or SM80
are available
are available
if
if
thesethese
are considered
are considered
a better
a better
solution
solution
to a dynamic
to a dynamic
application
application
problem.
problem.
It should
It should
be noted
be noted
that for
thatoperation
for operation
aboveabove
80% 80%
of theofdeclared
the declared
maximum
maximum
coupling
coupling
speed,
speed,
the coupling
the coupling
should
should
be dynamically
be dynamically
balanced.
balanced.
(1) The
(1) Renold
The Renold
Hi-Tec
Hi-Tec
coupling
coupling
will “slip”
will “slip”
axially
axially
whenwhen
the maximum
the maximum
axial axial
forceforce
is reached.
is reached.
RENOLD Hi-Tec Couplings
www.renold.com
40
RB Design Variations
The RB coupling range can be adapted to meet customer needs. Below are some of the
arrangements that have been produced. For more a comprehensive list, contact Renold HiTec Couplings.
Spacer Coupling
Cardan Shaft Coupling
Spacer coupling used to increase the
distance between shaft ends and allow easy
access to the driven and driving machines.
Cardan shaft coupling used to increase
the misalignment capability and halve the
torsional stiffness.
Coupling with Long Boss Inner Member
Coupling with large boss driving flange
and long boss inner member for vertical
applications.
4
RENOLD Hi-Tec Couplings
Brake Drum Coupling
Coupling with brake drum for use on cranes,
fans and conveyor drives.
www.renold.com
41
RENOLD Hi-Tec Couplings
www.renold.com
42
PM Flexible Coupling
Heavy duty steel coupling with unlimited torque capacity
Standard Coupling Arrangements
•
•
•
•
Shaft to shaft
Flange to shaft
Limited end float coupling
Drop out spacer
Applications
•
•
•
•
•
•
•
Metal manufacture
Mining and mineral processing
Pumps and compressors
Fans
Cranes and hoists
Pulp and paper industry
General heavy duty industrial applications
Benefits
Features
●
Severe shock load protection
●
Gives protection and avoids failure of the driveline
under high transient torques.
●
Intrinsically fail safe
●
Ensures continuous operation of the driveline in
the unlikely event of rubber failure or damage.
●
Maintenance free
●
No lubrication or adjustment required resulting in
low running costs.
●
Vibration control
●
●
Zero backlash
Achieves low vibratory loads in the driveline
components by selection of optimum stiffness
characteristics.
●
Misalignment capability
●
Eliminates torque amplifications through
pre-compression of the rubber elements.
●
Selection of Rubber
●
Allows axial, angular and radial misalignment
between the driving and driven machines.
●
Variety of rubber materials and hardness are
available for optimum reduction of drive vibration
and maximum block life
Construction Details
• PM couplings up to and including PM600 are
manufactured from steel. Driving flanges up to
and including PM60 are steel forgings to BS970
grade 070 M55. Driving flanges PM90 to PM600
and all inner and outer members up to PM600
are steel casting to BS 3100 grade A4.
• PM couplings above PM900 are made from
spheroidal graphite iron to BS2789 grade
420/12 unless otherwise specified.
• Separate rubber elements with a choice of
grade and hardness, styrene butadiene with 60
shore hardness (SM60) is standard.
• Rubber elements loaded in compression.
• Rubber elements are totally enclosed.
4
RENOLD Hi-Tec Couplings
www.renold.com
43
PM Typical Applications
PM 130 spacer coupling on an IHI Turbo
compressor in Japan.
PM 0.7 brake drum coupling and a PM 0.7 spacer
coupling on a John Henderson coal charging car
at CORUS Dawes Lane.
PM 40 spacer coupling, PM 40 LEF coupling and
PM 40 cardan shaft couplings on electric motor
driven Sulzer pumps in Egypt.
PM 90 coupling fitted between electric motor and
Maag gearbox on grinding mills.
PM 18 and PM 27 coupling on a Hallden-Robertson
type 56 flying shear in Portugal.
Two PM 600 Couplings on a nickel grinding mill
at Leinster in Western Australia.
RENOLD Hi-Tec Couplings
www.renold.com
44
44
PM Shaft to Shaft PM 0.4 to PM 130 Data
0.7 - 60
90 - 130
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
0.4
0.7
1.3
3
6
8
12
18
27
40
60
90
130
A
B
C
D
D1
E
F
G
DIMENSIONS
J
(inch)
Q (QTY)
R
S (QTY)
T
W
MAX. X & Y (4)
MIN. X (5)
MIN. Y
RUBBER
Per Cavity
ELEMENTS
Per Coupling
MAXIMUM SPEED (rpm) (1)
W1
WEIGHT (3)
W2
(lb)
W3
TOTAL
INERTIA (3)
J1
(lb.in2)
J2
J3
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch) ±
CONICAL (degree)
6.37
7.37
8.50
10.25
10.24
11.89
13.31
15.43
17.32
19.29
22.36
25.12
28.66
4.06
4.33
5.12
5.63
6.89
7.60
8.72
10.00
11.44
12.95
14.86
17.03
19.17
0.04
0.08
0.08
0.12
0.12
0.12
0.14
0.16
0.18
0.20
0.22
0.26
0.28
2.01
2.13
2.52
2.76
3.39
3.74
4.29
4.92
5.63
6.38
7.32
8.39
9.45
2.01
2.13
2.52
2.76
3.39
3.74
4.29
4.92
5.63
6.38
7.32
8.39
9.45
2.99
3.62
4.25
4.80
5.31
5.83
6.61
7.68
8.66
9.92
11.42
12.99
14.69
5.75
6.75
7.75
9.25
9.45
10.87
12.28
14.17
16.02
18.03
20.79
23.54
26.77
5.24
6.18
7.13
8.70
8.74
9.65
11.02
12.60
14.45
16.46
18.86
21.57
24.41
0.37
0.43
0.47
0.57
0.43
0.53
0.55
0.63
0.73
0.83
0.94
1.04
1.22
5
5
6
6
8
8
8
8
8
8
8
8
8
M8
M8
M8
M8
M8
M10
M12
M16
M16
M16
M20
M20
M24
8
8
8
8
12
12
12
12
12
16
12
16
16
M8
M8
M8
M8
M8
M12
M12
M16
M16
M16
M20
M20
M24
1.42
1.54
1.81
2.36
3.19
3.50
4.02
4.65
5.28
6.01
6.85
7.87
8.90
1.61
2.01
2.52
2.88
3.35
3.74
4.29
4.93
5.63
6.38
7.33
8.39
9.46
1.06
1.06
1.38
1.46
1.97
2.44
2.68
3.15
3.55
4.14
4.73
5.52
6.30
1.06
1.06
1.46
1.58
1.97
2.17
2.56
2.76
3.35
4.14
4.33
5.52
6.30
1
1
1
1
1
1
1
1
1
1
1
2
2
10
10
12
12
16
16
16
16
16
16
16
32
32
7200
6300
5400
4500
4480
3860
3450
2975
2650
2380
2050
1830
1600
4.2
6.2
9.9
15.2
19.6
25.6
39.1
59.5
88.6
131.2
197.2
291.0
421.3
4.4
6.4
10.1
13.2
14.4
24.1
35.0
54.2
77.9
111.3
171.5
246.8
364.3
6.2
9.5
14.6
22.0
23.9
33.4
46.8
72.8
105.4
152.8
230.7
334.6
490.3
14.8
22.0
34.6
50.5
58.0
83.1
120.8
186.5
271.8
395.3
599.4
872.4
1275.8
6
13
27
62
88
171
345
693
1339
2583
5094
9814
18213
21
48
165
167
246
509
932
1913
3557
6485
13214
24562
46746
17
45
85
171
198
396
662
1387
2556
4596
9291
16931
32684
0.03
0.03
0.03
0.05
0.06
0.06
0.06
0.06
0.07
0.08
0.09
0.11
0.13
0.03
0.05
0.05
0.05
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.13
0.14
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling be dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended
that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated
to ensure that they do not exceed the manufacturers allowables. 4
(3) Weights and inertias are calculated with mean bore for couplings up to and including PM600 and with maximum bore for PM900 and above.
(4) Oversize shafts can be accommodated in large boss driving flanges manufactured to customer’s requirements.
(5) PM0.7 - PM3 driving flanges are available with solid bores on request.
RENOLD Hi-Tec Couplings
www.renold.com
45
PM Shaft to Shaft PM 180 to PM 7000 Data
180 - 600
850 - 7000
Dimensions, Weight, Inertia and Alignment
COUPLING SIZE
A
B
C
D
D1
E
F
DIMENSIONS
J
(inch)
Q (QTY)
R
S (QTY)
T
W
MAX. X&Y (4)
MIN. X
MIN. Y
RUBBER
Per Cavity
ELEMENTS
Per Coupling
MAXIMUM SPEED (rpm) (1)
W1
WEIGHT (3)
W2
(lb)
W3
TOTAL
INERTIA (3)
J1
2
3
(lb.in x 10 )
J2
J3
ALLOWABLE MISALIGNMENT (2)
RADIAL (inch)
AXIAL (inch)±
CONICAL (degree)
180
31.42
21.42
0.31
10.55
10.55
16.34
29.53
1.32
12
M24
20
M24
9.92
10.55
6.57
6.70
2
32
1,460
578
588
656
1,822
31.23
98.41
52.45
270
36.42
24.53
0.35
12.09
12.09
18.70
34.06
1.42
12
M30
20
M30
11.36
12.09
7.56
7.68
2
32
1,260
858
913
964
2,734
61.09
202.6
102.1
400
41.93
27.97
0.41
13.78
13.78
21.34
39.06
1.69
12
M36
20
M36
12.91
13.78
9.13
9.26
2
32
1,090
1,240
1,396
1,436
4,072
116.3
408.3
207.3
600
47.05
31.97
0.47
15.75
15.75
24.41
44.17
2.05
12
M36
24
M36
14.80
15.75
11.23
11.23
2
32
975
1,793
2,004
2,087
5,884
224.0
752.5
395.4
850
45
32.72
0.25
15.98
15.98
25.5
42
1.75
20
M30
20
M36
16.75
15.75
13.5
13.5
2
48
1,000
2,337
1,565
2,050
5,952
355.3
560.0
358.8
1200
52
34.21
0.25
16.73
16.73
30
458.8
2
20
M30
20
M36
17.5
18
15
15
3
78
870
3,600
2,127
3,062
8,790
756.4
1048
725.3
2000
62
40.75
0.25
20
20
38
58
2.5
20
M36
20
M45
20.25
22
18
18
3
84
725
5,721
3,684
5,800
15,205
1687
2540
2008
3500
794
49.02
0.5
20
20
40
74.5
3
24
M36
24
M48
20.5
24.1
21
21
3
96
580
11,603
6,023
9,228
26,854
5650
7092
5011
4700
79
56.97
0.5
28
28
48
74.5
3
24
M36
24
M48
25.3
28
24
24
4
128
580
14,221
8,645
15,864
38,730
7332
10444
9013
7000
79
73.90
0.5
34.4
34.4
53.9
74.5
3
24
M36
24
M48
39.5
32
27
27
6
192
580
19,057
10,794
17,070
46,921
10470
12835
10004
0.14
0.16
0.5
0.15
0.18
0.5
0.18
0.21
0.5
0.20
0.24
0.5
0.11
0.13
0.5
0.13
0.13
0.5
0.13
0.19
0.5
0.13
0.25
0.5
0.13
0.25
0.5
0.13
0.25
0.5
(1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling be dynamically balanced.
(2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is
recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery
should be calculated to ensure that they do not exceed the manufacturers allowables.
(3) Weights and inertias are calculated with mean bore for couplings up to and including PM600 and with maximum bore for PM900 and
above.
(4) Oversize shafts can be accommodated in large boss driving flanges manufactured to customer’s requirements.
RENOLD Hi-Tec Couplings
www.renold.com
46
PM Technical Data
1.1
Prediction of the System
Torsional Vibration
Characteristics.
1.2.2 Compare the synthesis value of the calculated
heat load in the coupling (PK) at the speed of
interest to the “Allowable Heat Dissipation (PKW)”.
A prediction of the system torsional vibration
characteristics can be made by the following method.
The coupling temperature rise = ∆F
∆F = Tempcoup = PK x 126
PKW
The coupling temperature = ϑ
( )
1.1.1 Use the torsional stiffness as published in
the catalog, (K86) which is based upon data
measured at a 86˚F ambient temperature.
1.1.2 Repeat the calculation made in 1.1.1, but
use the maximum temperature correction
factor St212 and M212 for the rubber
selected for both torsional stiffness and
dynamic magnifier from the tables below.
1.2.3 Calculate the temperature correction factor
(St) from 1.3 (if the coupling temperature
> 212ºF, then use St212). Calculate the
dynamic Magnifier as per 1.4. Repeat the
calculation with the new value of coupling
stiffness (KT) and dynamic magnifier (MT).
K212 = K86 x St212
Rubber
Grade
SM 60
SM 70
SM 80
Tempmax
St
212
212
212
St212 = 0.60
St212 = 0.44
St212 = 0.37
1.2.4 Calculate the coupling temperature as per
1.2. Repeat calculation until the coupling
temperature agrees with the correction
factors for torsional stiffness and dynamic
magnifier used in the calculation.
1.3
SM 60 is considered “standard”
Rubber
Grade
Dynamic
Magnifier
at 86ºF
(M86)
ϑ = Tempcoup + Ambient Temp.
Temperature Correction Factor
Dynamic
Magnifier
at 212ºF
(M212)
SM 60
8
10.67
SM 70
6
9.53
SM 80
4
6.9
SM 60 is considered “standard”
1.1.3 Review the calculations 1.1.1 and 1.1.2. If
the speed range is clear of criticals
which do not exceed the allowable heat
dissipation value as published in the
catalog, the coupling is then considered
suitable for the application with respect
to the torsional vibration characteristics. If
there is a critical in the speed range, the
actual temperature of the coupling will need
to be calculated at this speed.
1.2
Rubber Temperature (ϑ) ˚F
KT=K86xSt
1.4
Dynamic Magnifier Correction
Factor
The dynamic magnifier of the rubber is subject
to temperature variation in the same way as the
torsional stiffness.
ϕT =ϕ86 x St
MT = M86
St
Prediction of the Actual
Coupling Temperature and
Torsional Stiffness
Rubber
Grade
1.2.1 Use the torsional stiffness as published
in the catalog (K86), which is based upon
data of measured at 86˚F and the dynamic
magnifier (M86) at 86˚F.
4
RENOLD Hi-Tec Couplings
Dynamic
Magnifier
(M86)
Relative
Damping
ϕ86
SM 60
8
0.78
SM 70
6
1.05
SM 80
4
1.57
SM 60 is considered “standard”
www.renold.com
47
PM Technical Data - Standard Blocks
PM
PM
0.4
0.4
- PM
- PM
130
130
COUPLING
COUPLING
SIZE
SIZE
0.40.4 0.70.7 1.31.3
164 164
3 3
NOMINAL
NOMINAL
TORQUE
TORQUE
(ft.lb)(ft.lb)
(1) (1)
106 106
HP/RPM
HP/RPM
0. 0.09 09 0.180.18 0.420.42
0.060.06
319 319 737 737
TORQUE
TORQUE
TKMAX
TKMAX
(ft.lb)(ft.lb)
MAXIMUM
MAXIMUM
317 317
TORQUE
TORQUE
TKW T(ft.lb)
(2) (2)
VIBRATORY
VIBRATORY
KW (ft.lb)
6 6
8 8
12 12
18 18
27 27
40 40
60 60 90 90 130130
1,475
1,475 1,966
1,966 2,833
2,833 4,425
4,425 6,638
6,638 9,834
9,834 14,751
14,751 22,127
22,12731,961
31,961
0.840.84
1.121.12
494 494
959 959 2,213
2,213
40 40
62 62
120 120 277 277
553 553
738 738
DISSIPATED
DISSIPATED
HEAT(PKW)
HEAT(PKW) 266 266
ALLOWABLE
ALLOWABLE
322 322
365 365 458 458
564 564
562 562
1.681.68
2.532.53
3.793.79
5.625.62
8.428.42 12.64
12.64 18.26
18.26
4,425
4,425 5,900
5,900 8,851
8,851 13,276
13,276 19,914
19,914 29,502
29,502 44,254
44,254 66,381
66,38195,883
95,883
1,106
1,106 1,660
1,660 2,489
2,489 3,688
3,688
670 670
798 798
870 870
55325532 8,298
8,298 11,985
11,985
1,018
1,018 1,159
1,159 1,209
1,209 1,369
1,369
AT 86°F
AT 86°F
AMB.
AMB.
TEMP.
TEMP.
(W) (W)
MAXIMUM
MAXIMUM
SPEED
SPEED
(rpm)(rpm)
6,300 5,400
5,400 4,500
4,500
7200
7200 6,300
4,480
4,480 3,860
3,860 3,450
3,450 2,975
2,975 2,650
2,650 2,380
2,380 2,050
2,050 1,830
1,830 1,600
1,600
DYNAMIC
DYNAMIC
TORSIONAL
TORSIONAL
(3) (3)
6 lb-in/rad)
6 lb-in/rad)
STIFFNESS
STIFFNESS
(x10(x10
@ 0.25
@ 0.25
TKN TKN
@ 0.50
@ 0.50
TKN TKN
SM
SM SM
@ 0.75
@ 0.75
TKN TKN
SM SM
KN TKN
@ 1.0
@T
1.0
SM SM
SM SM
60 60 0.030.03 0.040.04 0.110.11 0.260.26
SM SM
0.650.65
0.860.86
1.291.29 1.931.93
2.902.90
4.294.29
6.446.44 9.669.66 13.96
13.96
SM SM
70 70 0.040.04 0.070.07 0.160.16 0.380.38
0.920.92
1.221.22
1.831.83 2.752.75
4.124.12
6.126.12
9.179.17 13.75
13.75 19.87
19.87
80 80 0.080.08 0.120.12 0.270.27 0.640.64
SM SM
1.191.19
1.581.58
2.382.38 3.573.57
5.355.35
7.937.93 11.90
11.90 17.84
17.84 25.77
25.77
SM SM
60 60 0.040.04 0.070.07 0.170.17 0.410.41
0.920.92
1.221.22
1.831.83 2.752.75
4.124.12
6.126.12
SM
70 70 0.060.06 0.090.09 0.220.22 0.510.51
1.231.23
1.641.64
2.452.45 3.683.68
5.525.52
8.188.18 12.27
12.27 18.40
18.40 26.58
26.58
9.179.17 13.75
13.75 19.87
19.87
80 80 0.090.09 0.130.13 0.320.32 0.760.76
1.601.60
2.132.13
3.203.20 4.804.80
7.207.20 10.66
10.66 15.98
15.98 23.98
23.98 34.63
34.63
SM SM
60 60 0.070.07 0.110.11 0.260.26 0.610.61
1.361.36
1.811.81
2.732.73 4.094.09
6.136.13
SM SM
70 70 0.080.08 0.120.12 0.290.29 0.690.69
1.761.76
2.352.35
3.523.52 5.285.28
7.927.92 11.73
11.73 17.60
17.60 26.39
26.39 38.12
38.12
4.684.68 7.037.03 10.54
10.54 15.61
15.61 23.42
23.42 35.13
35.13 50.74
50.74
9.099.09 13.63
13.63 20.45
20.45 29.53
29.53
80 80 0.110.11 0.160.16 0.380.38 0.900.90
2.352.35
3.123.12
SM SM
60 60 0.100.10 0.160.16 0.380.38 0.900.90
1.981.98
2.652.65
3.973.97 5.955.95
70 70 0.110.11 0.160.16 0.390.39 0.930.93
2.452.45
3.273.27
4.904.90 7.367.36 11.04
11.04 16.36
16.36 24.53
24.53 36.80
36.80 53.16
53.16
80 80 0.120.12 0.190.19 0.450.45 1.081.08
3.383.38
4.514.51
6.766.76 10.15
10.15 15.22
15.22 22.55
22.55 33.83
33.83 50.74
50.74 73.29
73.29
8.928.92 13.21
13.21 19.83
19.83 29.74
29.74 42.95
42.95
RADIAL
RADIAL
STIFFNESS
STIFFNESS
SM SM
60 60 3.913.91 4.134.13 7.087.08 11.71
11.71 35.84
35.84 39.78
39.78 45.57
45.57 52.19
52.19 59.73
59.73 63.21
63.21 72.41
72.41 82.80
82.80 93.65
93.65
@ NO
@ NO
LOAD
LOAD
(lb/in
(lb/in
x 10x3)103)
SM SM
80 80 9.949.94 10.39
10.39 18.33
18.3329.64
29.64 65.10
65.10 72.23
72.23 82.80
82.80 94.79
94.79 108.49
108.49123.68
123.68 141.67
141.67161.03
161.03183.30
183.30
RADIAL
RADIAL
STIFFNESS
STIFFNESS
SM SM
60 60 8.178.17 8.628.62 14.85
14.8524.55
24.55 75.26
75.26 83.54
83.54 95.82
95.82 109.64
109.64125.45
125.45143.04
143.04 163.88
163.88187.41
187.41211.90
211.90
@ 50%
@ 50%
TKMAX
TKMAX
(lb/in
(lb/in
x 10x3)103)
SM SM
80 8014.33
15.13 25.58
25.5842.54
42.54 94.22
94.22 104.61
104.61119.80
119.80137.04
137.04157.03
157.03179.01
179.01 205.05
205.05234.69
234.69265.24
265.24
14.33 15.13
AXIAL
AXIAL
STIFFNESS
STIFFNESS
SM SM
60 60 2.622.62 2.872.87 4.084.08 5.545.54
6.056.05
@ NO
@ NO
LOAD
LOAD
(lb/in
(lb/in
x 10x3)103)
SM SM
70 70 4.304.30 4.734.73 6.746.74 9.199.19
15.69
15.69 17.42
17.42 19.96
19.96 22.84
22.84 26.15
26.15 29.81
29.81 34.15
34.15 39.06
39.06 44.20
44.20
SM SM
80 80 5.945.94 6.626.62 9.549.54 12.73
12.73 23.53
23.53 26.11
26.11 29.92
29.92 34.26
34.26 39.21
39.21 44.70
44.70 51.21
51.21 58.59
58.59 66.24
66.24
AXIAL
AXIAL
STIFFNESS
STIFFNESS
SM SM
60 60 5.255.25 6.006.00 8.798.79 11.53
11.53 13.13
13.13 14.28
14.28 16.67
16.67 18.90
18.90 21.87
21.87 24.90
24.90 28.44
28.44 32.66
32.66 36.89
36.89
@ 50%
@ 50%
TKMAX
TKMAX
(lb/in
(lb/in
x 10x3)103)
SM SM
80 80 7.147.14 8.288.28 11.76
11.7615.70
15.70 23.53
23.53 26.10
26.10 29.92
29.92 34.26
34.26 39.23
39.23 44.71
44.71 51.22
51.22 58.59
58.59 66.24
66.24
MAX.
MAX.
AXIAL
AXIAL
FORCE
FORCE
SM SM
60 60 14.814.8 16.216.2 22.922.9 28.828.8
337 337
375 375
430 430
490 490
562 562
640 640
734 734
838 838 948 948
(4) (4)
(lb) @
(lb)50%
@ 50%
TKMAX
TKMAX
SM SM
70 70 17.517.5 18.018.0 25.225.2 31.531.5
370 370
410 410
472 472
534 534
648 648
706 706
805 805
922 922 1,043
1,043
SM SM
80 80 19.119.1 23.823.8 33.333.3 41.641.6
303 303
558 558
640 640
732 732
838 838
959 959
SM SM
70 70 6.116.11 6.456.45 11.13
11.1318.50
18.50 47.97
47.97 53.22
53.22 60.98
60.98 69.84
69.84 79.94
79.94 91.13
91.13 104.38
104.38119.43
119.43135.02
135.02
SM SM
70 7010.05
10.62 18.27
18.2729.92
29.92 78.80
78.80 87.48
87.48 100.21
100.21114.77
114.77131.33
131.33149.72
149.72 171.53
171.53196.20
196.20221.84
221.84
10.05 10.62
6.726.72
7.697.69 8.818.81 10.08
10.08 11.48
11.48 13.17
13.17 15.06
15.06 17.02
17.02
SM SM
70 70 6.286.28 7.777.77 10.96
10.9614.90
14.90 15.70
15.70 17.42
17.42 19.99
19.99 22.84
22.84 26.15
26.15 29.81
29.81 34.15
34.15 39.06
39.06 44.20
44.20
1,094
1,094 1,253
1,253 1,416
1,416
(1) (1)
These
These
values
values
apply
apply
to systems
to systems
which
which
have
have
a service
a service
factor
factor
of 3;
of ie.
3; ie.
TKNT=
KNT=
KMAX
TKMAX
ForFor
other
other
applications
applications
seesee
“Selection
“Selection
Procedure”.
Procedure”.
3 3
(2) (2)
At 10Hz
At 10Hz
only,
only,
allowable
allowable
vibratory
vibratory
torque
torque
at higher
at higher
or lower
or lower
frequencies
frequencies
(fe)(fe)
= Vib.
= Vib.
Torque
Torque
10Hz
10Hz
fe fe
(3) (3)
These
These
values
values
should
should
be be
corrected
corrected
for for
rubber
rubber
temperature
temperature
as as
shown
shown
in the
in the
design
design
information
information
section.
section.
These
These
values
values
apply
apply
to conditions
to conditions
of low
of low
amplitude,
amplitude,
steady
steady
vibration
vibration
at aatmean
a mean
torque.
torque.
Consult
Consult
Renold
Renold
Hi-Tec
Hi-Tec
Couplings
Couplings
for for
values
values
applying
applying
to high
to high
amplitude
amplitude
transient
transient
vibration.
vibration.
(4) (4)
TheThe
couplings
couplings
willwill
‘slip’
‘slip’
axially
axially
when
when
thethe
maximum
maximum
axial
axial
force
force
is reached.
is reached.
RENOLD Hi-Tec Couplings
www.renold.com
48
PM Technical Data - Standard Blocks
P
PM 180 - PM 7000
COUPLING SIZE
NOMINAL TORQUE (ft.lb) (1)
HP/RPM
MAXIMUM TORQUE TKMAX, (ft.lb)
VIBRATORY TORQUE TKW (ft.lb) (2)
180
44,254
25.3
132,760
16,595
270
66,380
37.9
199,141
24,893
400
600
93,841 147,512
56.2
84.3
295,024 442,536
36,878 55,317
850
208,976
119.4
626,926
78,329
1200
295,024
168.5
885,073
110,634
2000
491,707
280.9
1,475,122
184,390
3500
860,488
491.5
2,581,463
322,683
4700
1,155,512
660.1
3,466,536
433,317
7000
1,720,976
983.0
5,162,927
645,366
ALLOWABLE DISSIPATED HEAT
AT AMB. TEMP. 86°F Pkw (W)
MAXIMUM SPEED (rpm)
DYNAMIC TORSIONAL (3)
STIFFNESS (x106 lb-in/rad)
@ 0.25 TKN
SM 60
SM 70
SM 80
@ 0.50 TKN
SM 60
SM 70
SM 80
@ 0.75 TKN
SM 60
SM 70
SM 80
@ 1.0 TKN
SM 60
SM 70
SM 80
RADIAL STIFFNESS SM 60
(lb/in x 103)
SM 70
@ NO LOAD
SM 80
RADIAL STIFFNESS SM 60
(lb/in x 103)
SM 70
SM 80
@ 50% TKMAX
AXIAL STIFFNESS
SM 60
(lb/in x 103)
SM 70
@ NO LOAD
SM 80
AXIAL STIFFNESS
SM 60
(lb/in x 103)
SM 70
@ 50% TKMAX
SM 80
MAX. AXIAL FORCE (lb) SM 60
@ 50% TKMAX (4)
SM 70
SM 80
1,526
1,735
1,985
2,168
1,460
1,260
1,090
975
1,000
870
725
580
580
580
19.3
27.5
35.7
27.5
36.8
48.0
40.9
52.8
70.3
59.5
73.6
101.5
104.3
150.5
204.1
236.1
247.2
295.5
19.0
49.2
73.8
41.1
49.2
73.8
1,059
1,160
1,577
29.0
41.3
53.5
41.3
55.2
71.9
59.5
79.2
105.4
89.2
110.4
152.2
119.5
172.3
233.8
270.4
283.0
338.4
21.7
56.4
84.5
47.0
56.4
84.5
1,213
1,330
1,804
43.0
60.5
79.3
60.5
81.8
106.6
90.9
117.3
156.1
132.2
163.6
225.5
136.0
196.1
266.1
307.7
322.2
385.2
24.7
64.1
96.2
53.6
64.1
96.2
1,378
1,513
2,055
64.4
91.7
119.0
91.7
122.7
159.8
136.3
176.0
234.4
198.3
245.3
338.3
155.9
224.8
304.9
352.8
369.3
441.5
28.4
73.5
110.3
61.4
73.5
110.3
1,.581
1,735
2,355
129.2
194.7
323.9
204.5
264.6
387.7
318.6
359.3
464.7
477.9
484.1
557.6
215.8
344.3
547.0
488.4
565.7
221.1
103.9
173.0
199.8
225.2
173.0
199.8
-
199.1
300.9
500.1
314.2
408.0
598.3
489.4
552.3
716.0
733.7
744.3
859.4
239.2
378.0
599.5
541.4
621.0
868.1
118.8
195.8
227.3
257.4
195.8
227.3
----
361.1
546.1
902.8
566.4
737.3
1,088.6
877.1
1,017.8
1,301.1
1,318.8
1,336.5
1,548.9
313.5
498.5
799.4
709.4
819.0
1,157.5
158.2
260.4
281.5
342.7
260.4
281.5
-
662.9
1,009.0
1,725.9
1,035.5
1,354.2
2,000.3
1,575.4
1,814.4
2,372.0
2,345.4
2,407.4
2,832.2
328.3
520.2
832.5
743.0
854.6
1,205.5
162.2
268.4
428.2
351.4
268.4
428.2
-
902.8
1,363.0
2,274.6
1,425.0
1,849.8
2,717.2
2,203.8
2,053.4
3,248.2
3,292.5
3,354.4
3,885.5
436.8
696.6
1,113.5
989.8
1,144.5
1,612.2
215.8
358.0
571.0
467.7
358.0
571.0
-
1,309.9
1,991.4
3,327.9
2,053.4
2,690.6
3,920.9
3,168.6
3,619.
4,726.3
4,717.4
4,832.5
5,646.8
656.6
1,039.2
1,661.6
1,486.0
1,707.4
2,406.1
323.8
536.7
856.5
701.6
536.7
856.5
(1) These values apply to systems which have a service factor of 3; ie.
For other applications see “Selection Procedure”.
TKN = TKMAX
3
(2) At 10Hz only, allowable vibratory torque at higher or lower frequencies (fe) = Vib. Torque
10Hz
fe
(3) These values should be corrected for rubber temperature as shown in the design information section. These values apply to
conditions of low amplitude, steady vibration at a mean torque. Consult Renold Hi-Tec Couplings for values applying to high
amplitude transient vibration.
4
(4) The couplings will ‘slip’ axially when the maximum axial force is reached.
RENOLD Hi-Tec Couplings
www.renold.com
49
PM Design Variations
The PM coupling range can be adapted to meet customer needs. Below are some of the arrangements
that have been produced. For a more comprehensive list contact Renold Hi-Tec Couplings.
Torque Limiting Coupling
Vertical Spacer Coupling
Combination with a torque limiting device to
prevent damage to driving and driven machines
under shock loads.
Brake Disk Coupling
Combination with a brake disc, for use on cranes,
fans and conveyor drives. (Brake drum couplings
also available).
Cardan Shaft Coupling
Cardan Shaft Coupling. Used to increase the
distance between shaft ends and give a higher
misalignment capability
Spacer Couplings. Used to increase the
distance between shaft ends and allow
access to driven and driving machine.
RENOLD Hi-Tec Couplings
www.renold.com
50
4
RENOLD Hi-Tec Couplings
www.renold.com
51
Coupling Selection
Coupling Selection Checklist
Photocopy this page and complete the following checklist to ensure the correct coupling selection
is achieved, then fax it to the Renold Hi-Tec Coupling Sales Fax Line below for a speedy response.
Customer:
Project:
Prime mover:
Service factor:
(see page 53)
Driven equipment:
Service factor:
(see page 54)
Continuous power:
Maximum power:
Operating speed:
Overspeed:
Driving shaft diameter:
Driven shaft diameter:
Driving shaft length:
Driven shaft length:
Flywheel location diameter:
Hole size and PCD:
Continuous misalignment:
Transient misalignment:
Diameter constraints:
Length constraints:
Distance between shaft ends:
If you require help with coupling selections contact Renold Hi-Tec Couplings:
Tel: 800-879-2529
Fax: (716) 326-8229
RENOLD Hi-Tec Couplings
www.renold.com
52
Selection Procedure
●
From the continuous Power (HP) and operating
Speed (n) calculate the Application Torque (T NORM)
from the formula:
T NORM = Application Torque (lb-ft)
HP x 5252
lb-ft
n
●
= Peak Application Torque (lb-ft)
T KN
= Nominal Coupling Rating (lb-ft) according
to DIN 740
(with service factor = 3 according to Renold Hi-Tec
Select Prime Mover Service Factor (Fp) from
table below.
●
Select Driven Equipment Service Factor (Fm)
from table on page 54 of this section.
●
The minimum Service Factor is 1.5.
●
Calculate T MAX from the formula:
Couplings standard)
T Kmax = Maximum Coupling Rating (lb-ft) according
to DIN 740
TMAX = TNORM (Fp + Fm)
●
Select Coupling such that T MAX < T Kmax
●
Check n < Coupling Maximum Speed (from
catalog data).
●
Check Coupling Bore Capacity such that
dmin < d < dmax.
●
T MAX
= Continuous Power to be transmitted by
coupling (HP)
n
= Speed of coupling application (rpm)
Fp
= Prime Mover Service Factor
Fm
= Driven Equipment Service Factor
dmax = Coupling Maximum Bore (in)
dmin
Note: If you are within 80% of maximum speed,
dynamic balancing is required.
Prime Mover Service Factors
Fp
*
*
2.5
2.0
1.8
1.7
1.5
1.5
1.5
0
0
0
1.5
1.0
0.5
0.5
0.5
1.5
= Coupling Minimum Bore (in)
It is the responsibility of the
system designer to ensure
that the application of the
coupling does not endanger
the other constituent
components in the system.
Service factors given are an initial
selection guide.
Consult the factory for alternatives if catalog limits
are exceeded.
Prime Mover Factors
Diesel Engine 1 Cylinder
2 Cylinder
3 Cylinder
4 Cylinder
5 Cylinder
6 Cylinder
More than
6 Cylinder
Vee Engine
Gasoline Engine
Turbine
Electric Motor
Induction Motor
Synchronous Motor
Variable Speed*
Synchronous Converter (LCI) - 6 pulse
- 12 pulse
PWM/Quasi Square
Cyclo Converter
Cascade Recovery (Kramer, Scherbius)
HP
*The application of these drive types is highly
specialized and it is recommended that Renold
Hi-Tec Couplings is consulted for further advice.
The final selection should be made by Renold
Hi-Tec Couplings.
4
RENOLD Hi-Tec Couplings
For confirmation of coupling selection complete the
checklist and fax to Renold Hi-Tec Couplings.
Fax: (716) 326 - 8229
www.renold.com
53
Driven Equipment Service Factors
Application
Typical Driven
Equipment
Factor(Fm)
Agitators
Pure liquids
Liquids and solids
Liquids-variable density
1.5
2.0
2.0
Blowers
Centrifugal
Lobe (Roots type)
Vane
1.5
2.5
2.0
Brewing and Distilling
Bottling machinery
Lauter Tub
Briquetter machines
1.5
1.75
3.0
Can filling machines
1.5
Cane knives
3.0
Car dumpers
3.0
Car pullers - Intermittent Duty
2.5
Clay working machinery
2.5
Compressors
Axial Screw
Ce ntrifugal
Lobe
Reciprocating - multi-cylinder
Rotary
1.5
1.5
2.5
3.0
2.0
Conveyors - uniformly loaded or fed
Ap ron
Assembly
Belt
Bucket
Ch ain
Flight
Oven
Screw
2.0
1.5
1.5
2.0
2.0
2.0
2.5
2.0
Conveyors - heavy duty
not uniformly fed
Ap ron
Assembly
Belt
Bucket
Ch ain
Flight
Oven
Reciprocating
Screw
Shaker
2.0
2.0
2.0
2.5
2.5
2.5
2.5
3.0
3.0
4.0
Cranes & hoists
All motions
3.0
Crushers
Ore
Stone
Sugar
3.0
3.5
3.5
Dredgers
Ca ble reels
Conveyors
Cutter head drives
Jig drives
Maneuvring winches
Pumps
Screen drive
Stackers
Utility winches
2.5
2.0
3.5
3.5
3.0
3.0
3.0
3.0
2.0
Dynamometer
1.5
Elevators
Bucket
Centrifugal discharge
Escalators
Freight
Gravity discharge
3.0
2.0
1.5
2.0
2.0
Fans
Centrifugal
1.5
Cooling towers
2.0
Forced draft
2.0
Induced draft (without damper control) 2.0
Feeders
Apron
Belt
Disc
2.0
2.0
2.0
Application
Typical Driven
Equipment
Factor(Fm)
Reciprocating
Sc rew
3.0
2.0
Generators
Alternating
Not welding
Welding
1.5
1.5
2.2
Hammer mills
4.0
Lumber industry
Barkers - drum type
Ed ger feed
Live rolls
Lo g haul-incline
Log haul-well type
Off bearing rolls
Planer feed chains
Pl aner floor chains
Planer tilting hoist
Sawing machine
Slab conveyor
Sorting table
Trimmer feed
3.0
2.5
2.5
2.5
2.5
2.5
2.0
2.0
2.0
2.0
2.0
2.0
2.0
Metal manufacture
Bar reeling machine
Cr usher-ore
Feed rolls
Fo rging machine
Rolling machine
Roller table
Sh ears
Tube mill (pilger)
Wire Mill
2.5
4.0
*
2.0
*
*
3.0
*
2.0
Metal mills
Drawn bench - carriage
Drawn bench - main drive
Fo rming machines
Slitters
Ta ble conveyors - non-reversing
- reversing
Wire drawing and flattening machine
Wire winding machine
2.5
2.5
2.5
2.0
*
*
2.0
2.0
Metal rolling mills
Blooming mills
Co ilers - hot mill & cold mill
Co ld mills
Cooling mills
Door openers
Draw benches
Ed ger drives
Feed rolls, reversing mills
Fu rnace pushers
Ho t mills
Ingot cars
Manipulators
Merchant mills
Pi ercers
Pu shers rams
Reel drives
Reel drums
Bar mills
Roughing mill delivery table
Runout table
Saws - hot, cold
Screwdown drives
Skelp mills
Slitters
Slabbing mills
Soaking pit cover drives
Straighteners
Table transfer & runabout
Thrust block
Traction drive
Tube conveyor rolls
Unscramblers
Wire drawing
*
2.5
*
*
2.0
2.5
2.5
*
2.5
*
2.0
3.0
*
3.0
2.5
2.0
2.0
*
*
*
2.0
2.5
*
2.0
*
2.5
3.0
2.5
3.0
2.0
2.0
2.5
2.0
Mills, rotary type
Ball
Cement kilns
Dryers and coolers
Kilns
Hammer
Pebble
Pug
Rod
Tumbling barrels
2.5
2.5
2.5
2.5
3.5
2.5
3.0
2.5
2.5
RENOLD Hi-Tec Couplings
Application
Typical Driven
Equipment
Factor(Fm)
Mining
Conveyor - armoured face
- belt
- bucket
- chain
- screw
Dintheader
Fan - ventilation
Haulages
Lump breakers
Pulverizer
Pump - rotary
- ram
- reciprocating
- centrifugal
Roadheader
Shearer - Longwall
Winder Colliery
3.0
1.5
1.5
1.75
1.5
3.0
2.0
2.0
1.5
2.0
2.0
3.0
3.0
1.5
2.0
2.0
2.5
Mixers
Concrete mixers
Drum type
2.0
2.0
Oil industry
Chillers
Oil well pumping
Paraffin filter press
Rotary kilns
2.0
3.0
2.0
2.5
Paper mills
Barker-auxiliaries hydraulic
3.0
Barker-mechanical
3.5
Barking drum (Spur Gear only)
3.5
Beater and pulper
3.5
Bleacher
2.0
Calenders
2.0
Chippers
2.5
Coaters
2.0
Converting machine (not cutters, platers) 2.0
Couch
2.0
Cutters, platers
3.0
Cylinders
2.0
Dryers
2.0
Felt stretcher
2.0
Felt whipper
2.0
Jordans
2.25
Line shaft
2.0
Log haul
2.5
Presses
2.5
Pulp grinder
3.5
Reel
2.0
Stock chests
2.0
Suction roll
2.0
Washers and thickeners
2.0
Winders
2.0
Printing presses
2.0
Propeller
Marine - fixed pitch
- controllable pitch
2.0
2.0
Pullers
Barge haul
2.5
Pumps
Centrifugal
Reciprocating - double acting
single acting - 1 or 2 cylinders
3 or more cylinders
Rotary - gear, lobe, vane
1.5
3.0
3.0
3.0
2.0
Rubber industry
Mixed - banbury
Rubber calender
Rubber mill (2 or more)
Sheeter
Tire building machines
Tire and tube press openers
Tubers and strainer
3.0
2.0
2.5
2.5
2.5
2.0
2.5
Screens
Air washing
Grizzly
Rotary, stone or gravel
Travelling water intake
Vibrating
1.5
2.5
2.0
1.5
2.5
Sewage disposal equipment
2.0
Textile industry
2.0
Windless
2.5
* Use 1.75 with motor cut-out power rating
www.renold.com
54
Selection Examples
Example 1
●
Example 2
Selection of 6 cylinder diesel engine 1000 HP
at 900 rpm driving a centrifugal pump.
●
The coupling is flywheel mounted
pump shaft diameter = dm
HP = 1000HP
n
= 900 rpm
dm = 3.75in
temp = 86ºF
T NORM =
(HP/n) x 5252
= (1000/900) x 5252
= 5836 lb-ft
●
Selection of induction motor 1080 HP at
1498 rpm driving a rotary pump.
Motor shaft = dp
Pump shaft = dm
HP = 1080Hp
n
=
1498 rpm
dp
= 3.75in
dm =
3.375in
temp = 30ºC
Fp =
0
Fm = 2
T NORM = (HP/n) x 5252 lb-ft
= (1080/1498) x 5252 lb-ft
= 3786 lb-ft
T MAX = T NORM (Fp + Fm)
= 3786 (0 + 2) lb-ft
= 7572 lb-ft
The application is considered light industrial and
RB type coupling should be selected. Examination
of RB catalog shows RB 3.86 as:
T KN = 6755 lb-ft
which satisfies the condition
The application requires a steel coupling (by customer
specification) and PM type coupling should be
selected. Examination of PM catalog shows PM12 as:
●
T NORM < T KN (5836 < 6755) lb-ft
T Kmax = 8851 lb-ft
●
n < coupling maximum speed (900 < 2500) rpm
which satisfies the conditions:-
●
dmin < dm < dmax (3.15 < 3.75 < 6.70) in
●
●
T MAX < T Kmax (7572 < 8851) lb-ft
●
n < coupling maximum speed (1498 < 3450) rpm
●
dmin < dp < dmax (2.56 < 3.75 < 4.29) in
●
dmin < dm < dmax (2.56 < 3.375 < 4.29) in
●
A consultancy service is also available to customers
in the selection of the correct product for their specific
application.
●
Renold Hi-Tec Couplings is well known in the diesel
engine industry for its analysis techniques.
●
In the heavy industrial sector, Renold Hi-Tec
Couplings’ engineers have made many torsional
vibration analyses. For example, steady state,
transient and Torque Amplification Factors (TAF) on
electric motor drivelines in cement mills, rolling mills,
compressor drive trains, synchronous motor start ups
and variable frequency (LCI Kramer/Scherbius/PWM)
applications.
●
Two examples of torsional vibration analysis that
have been produced by Renold Hi-Tec Couplings’
engineers are shown on page 56 of this section.
Calculation Service
●
For over 40 years we have been a world leader in
torsional vibration analysis for all types of machinery
and have developed sophisticated in-house computer
programs specifically for this purpose.
4
RENOLD Hi-Tec Couplings
www.renold.com
55
Transient Analysis
Calculated Examples
Illustrated below are two different types of transient torsional vibration analysis that can be produced by Renold
Hi-Tec Couplings’ engineers.
This ensures optimum solutions are reached by the correct selection of torsional stiffness and damping
characteristics of the coupling.
Synchronous resonance and synchronous convertor (LCI) examples are shown, however, Renold Hi-Tec Couplings’
experience also includes: Diesel drives, Torque Amplification, electrical speed control devices, PWM, Scherbius/
Kramer, short-circuit and any re-connection of electrical circuits on the mechanical systems.
Example 1
Since June 1962 we have engineered flexible couplings for synchronous motor applications to reduce, by damping, the damaging
vibratory torques imposed into the system when accelerating through the first resonant frequency. See Tables A and B.
Speed - (RPM)
Table B
120 1620
60 1260
0 900
Coupling Torque (KNm)
Coupling Torque (KNm)
Speed - (RPM)
Table A
-60 540
-120 180
120 1620
60 1260
0 900
-60 540
-120 180
1.500 4.500 7.500 10.500 13.500 16.500 19.500 22.500
Acceleration time in seconds
1.500 4.500 7.500 10.500 13.500 16.500 19.500 22.500
Acceleration time in seconds
Table A shows vibrating torque experienced in the motor
shaft when the system is connected rigidly (or by a gear
or membrane coupling) to the driven system.
Table B shows the same system connected by a DCB
coupling. PM type couplings are also used in such
applications.
Example 2
Since 1981 we have been engineering flexible couplings for synchronous convertor (LCI) drives to control the forced mode conditions
through the first natural frequency by judicial selection of torsional stiffness and damping. See Tables C and D.
Speed - (RPM)
Table D
320 180
160 140
Coupling Torque Nm (*10**2)
Coupling Torque Nm (*10**2)
Speed - (RPM)
Table C
0 100
-160 60
-320 20
.250
.750
1.250 1.750 2.250 2.750 3.250
Acceleration time in seconds
3.750
Table C shows a typical motor/fan system connected
rigidly (or through a gear or membrane coupling) when
damaging torques would have been experienced in the
motor shaft.
320 180
160 140
0 100
-160 60
-320 20
.250
.750
1.250 1.750 2.250 2.750 3.250
Acceleration time in seconds
3.750
Table D shows the equivalent Renold Hi-Tec
Couplings’ engineered solution using a PM coupling.
RENOLD Hi-Tec Couplings
www.renold.com
56
Rubber Infor
Information
rmation
The rubber
ru
ubber blocks and elements used in Renold Hi-T
Hi-Tec
Tec Coup
Couplings
plings ar
are
e key elements in th
the
he coupling design.
Strict quality contr
control
ol is applied in the manufactur
manufacture,
e, and fr
frequent
equ
uent testing is part of the pr
production
o
oduction
pr
process.
ocess.
Rubber-in-Compression
Rubb
berr-in-Compression
These
T
hese d
designs
esigns u
use
se n
non-bonded
on-bonded c
components,
omponents, w
which
hich a
allows
llows ffor
or m
many
any ssynthetic
ynthetic elastomers
elastomers to
to be
be employed.
employed.
These
e elastomers offer
offfer considera
able advantages over others for specific applications, gi
ving Renold Hiconsiderable
giving
T
ec C
ouplings a distinctive lead in
n application engineering in specialized ar
eas.
Tec
Couplings
areas.
R
ubber iin
nS
hear
Rubber
Shear
These
e designs use high tear str
strength,
en
ngth, low cr
creep,
eep, natural rubb
rubber
ber developed for diesel eng
engine
gine drives. All
rubbe
rubber
er in shear couplings ar
are
e 100
100%
0% tested to ensur
ensure
e bond/m
bond/molding
molding integrity
integrity..
Rubber
Rubb
ber compound
Natural
Iden
Identification
ntification label
Red
((F
F, NM))
(F,
StyreneStyr
e
eneButad
diene
Butadiene
Gr
Green
een
((SM
M))
(SM)
Good
Excellent
Excellent
Excellent
Fair
Poor
Good
Good
1
176°F
76°F (8
(80ºC)
80ºC)
-58°F ((-50ºC))
Good
Goo
od
Good
Goo
od
Good
Goo
od
Good
Goo
od
Fair
Fair
Poor
Poo
or
Good
Goo
od
Good
Goo
od
212°F(100ºC)
212°F(100ºC)
-40°F ((-40ºC))
(-40ºC)
Resistance
Resis
stance to Compression
Compression Set
Resistance
Resis
stance to Flexing
Resistance
Resis
stance to Cutting
Resistance
Resis
stance to Abrasion
Resistance
Resis
stance to Oxidation
Resistance
Resis
stance to Oil & Gasoline
Resistance
Resis
stance to Acids
Resistance
Resis
stance to Water
Water Swelling
Service
Servi
ice Temp.
Temp. Maximum; Continuous
Continuou
us
Serv
ice T
emperatur
p
e Minimum
Service
Temperature
* Hig
gh Damping
High
Neoprene
Neopr
ene
Nit
Nitrile
trile
Y
Yellow
ellow
(
)
(CM)
Wh
White
hite
((A
AM))
(AM)
StryeneStr
ryeneButadiene
Blue*
( )
(S)
Fair
Good
Go
ood
Good
Good
Go
ood
Good
Good
Go
ood
Good
Good
Go
ood
Very
Good
Very Good
Go
ood
Good
Good
Go
ood
Fair
Fair
F
Good
Good
Go
ood
212°F
212°F (100ºC)
(100ºC) 212°F
212°F (100ºC)
(100ºC)
-22°F ((-30ºC)) -40°F (-40ºC)
(
)
Fair
Good
Fair
Good
Fair
Poor
Good
Good
212°F
212°F (100ºC)
(100ºC)
-40°F ((-40ºC))
Rubber Block
Block Types
Types
Rubber
DCB
D
C
CB
P
PM
M
NM
N
M
RB
R
B
SM/SB
SM/SB
Renold
R
enold
45
45
SPECIAL
S
PECIAL
WB
WB
SM
SM
Renold
R
enold
50
50
Renold
R
enold
60
60
Renold
R
enold
60
60
Renold
R
enold
70
70
Renold
R
enold
70
70
Renold
R
enold
80
80
CM
CM
4
RENOLD Hi-T
Hi-Tec
Tec Couplings
Renold
R
enold
80
80
A
AM
M
Renold
R
enold
50
50
Renold
R
enold
50
50
NCB
N
CB
A1976/7
A1976/7
Renold
R
enold
AA833/7
833/7
Renold
R
enold
70
70
Renold
R
enold
60
60
Renold
R
enold
60
60
Renold
R
enold
70
70
S
Renold
R
enold
70
70
Renold
R
enold
90
90
Renold
R
enold
80
80
www
.renold.com
www.renold.com
57
5
7
Damping Characteristics
Coupling damping varies directly with torsional
stiffness and inversely with frequency for a given
rubber grade. This relationship is conventionally
described by the dynamic magnifier (M), varying with
hardness for the various rubber types.
M=
K
Cω
iωt +
) ae
ω
ic
+
(k
δ
e=
Torqu
δ
=
Where
K
Cω
K
=
The rubber compound dynamic magnifier values are
shown in the table below.
Rubber grade
NM 45
SM 50
SM 60
SM 70
SM 80
Mid
Deflection
Torque
Deflection
=
= Phase Angle (Rad)
ψ = Damping Energy Ratio
AD
AD
Af
= Dynamic Magnifier
δ
I
M
Mid Torque
Mdm
=
= Torsional Stiffness (lb-ft/rad)
M
Af
ψ
C = Specific Damping (lb-ft s/rad)
ω = Frequency (Rad/s)
Deflection = aeiωt
tan δ
This property may also be expressed as the Damping
Energy Ratio or Relative Damping (ψ ), which is
the ratio of the damping energy (AD), produced
mechanically by the coupling during a vibration cycle
and converted into heat energy, to the flexible strain
energy (Af), with respect to the mean position.
M
15
10
8
6
4
2π
M
Health and Safety at Work
Customers are reminded that when purchasing Renold Hi-Tec Couplings
products, for use at work or otherwise, additional and up-to-date
information which is not possible to include in Renold Hi-Tec Couplings
publications is available from your local Sales Company in relation to:
(a) guidance on individual product suitability based on the various
existing applications of the extensive range of Renold Hi-Tec
Couplings products.
No representation warranty or condition is given that our products shall
meet the stated performance levels or tolerances for any given application
outside the controlled environment required by such tests.
Guidance Notes
While all reasonable care in compiling the information contained in this
catalog is taken, no responsibility is accepted for printing errors.
All information contained in this catalog is subject to change after the
date of publication.
(b) guidance on safe and proper use provided that full disclosure is
made of the precise details of the intended or existing application.
All relevant information should be passed on to the persons engaged
in, likely to be affected by, and those responsible for the use of the
product. Nothing contained in this publication shall constitute a part
of any contract, expressed or implied.
Illustrations - The illustrations used in this catalog represent the type of
product described but the goods supplied may vary in some detail from
those illustrated.
Product Performance
Renold Hi-Tec Couplings - Products can be supplied by Renold
Hi-Tec Couplings and Renold companies or representatives around the
world on the standard terms and conditions of sale of the company or
representative from which the products are purchased.
The performance levels and tolerances of our product stated in this
catalog (including without limitation, serviceability, wearlife, resistance
to fatigue, corrosion protection) have been shown in a program of
testing and quality control in accordance with Renold Hi-Tec Couplings,
independent and or international standard recommendations.
Specifications - The right is reserved to make modifications to design
and dimensions as published in this catalog to meet manufacturing
conditions and developments in design and materials.
Copyright - All matter in this publication is the copyright of Renold Inc.
and may not be reproduced in whole or part without written permission.
RENOLD Hi-Tec Couplings
www.renold.com
58
DCB-GS Coupling
The New
Generator Set
Coupling
59
N
W
E
Renold Couplings & Gears
100 Bourne Street
Westfield, NY 14787-9706
Tel: +1 800 879 2529
Fax: +1 716 326 8229
Web: www.renold.com
E-mail: [email protected]
112 Parkinson Lane
Halifax HX1 3QH
United Kingdom
Tel: +44 (0) 1422 255000
Fax: +44 (0) 1422 255100
E-mail: [email protected]
Superior Coupling Technology
3mDPI 5/07
PRINTED IN USA
www.renold.com