Couplings General Catalog Superior Coupling Technology www.renold.com Renold Hi-Tec Couplings has been a world leader in the design and manufacture of flexible couplings for over 40 years. • World class manufacturing •Measurement of torsional stiffness up to 162,300 ft.lb •Full scale radial and axial stiffness measurement • Total quality system • Latest machining and tooling technology •Misalignment testing of couplings up to 69 inches in diameter • Static and dynamic balance capability •Noise attenuation testing • Integrated cellular manufacturing •Latest CAD technology •Torsional vibration analysis • Synchronized work flow RENOLD Hi-Tec Couplings www.renold.com 2 Contents Page No DCB Coupling Features & benefits Typical applications Series 6 Series 8 Technical data Design variations HTB Coupling Features & benefits Typical applications Flywheel mounted Technical data Design variations RB Coupling Features & benefits Typical applications Shaft to shaft Flywheel mounted Technical data Design variations PM Coupling Features & benefits Typical applications Shaft to shaft Technical data Technical data standard blocks Design variations Selection Procedure Selection Checklist Selection Procedure Driven equipment service factors Selection examples Transient analysis Rubber information Damping characteristics NEW DCB GS Coupling 4 RENOLD Hi-Tec Couplings 5 7 8 10 13 20 21 22 23 24 25 28 29 30 31 32 34 38 41 42 43 44 45 47 48 50 51 52 53 54 55 56 57 58 59 www.renold.com 3 Product Range The product range comprises of rubber in compression couplings, developed over 40 years for the complete range of diesel and industrial applications. In particular, our design capability and innovation is recognized in customizing couplings to meet customers specific requirements R ENOLD Hi -Tec Couplings deliver the durability, reliability and long life that customers demand. RENO LD Hi-Tec Couplings is “the complete solution”. DCB Range The unrivalled quality and endurance capability designed into every DCB coupling make it ideally suited for marine propulsion, power generation and reciprocating compressor applications where long life, fail safe operation and control of resonant torsional vibrations are essential. Maximum torque range 4,000,000 ft.lb. Applications ● Marine Propulsion ● High Power Generator Sets ● Reciprocating Compressors ● Rail Traction HTB Range The HTB Coupling is a high temperature blind assembly coupling designed for mounting inside bell housings Applications ● Marine Propulsion ● Generator and Pump Sets ● Compressors ● Rail Traction RB Range General purpose, cost effective range available in either shaft to shaft or flywheel to shaft configurations with a maximum torque of 30,240 ft.lb. Applications ● Generator and Pump Sets ● Compressors ● Metal Manufacture ● Bulk Handling ● Pulp and Paper Industry ● General Industrial Applications PM Range This range of couplings is specially designed for heavy industrial applications providing exceptional protection against severe shock loads and vibration. Maximum torque 4,350,000 ft.lb. Applications ● Metal Manufacture ● Pumps, Fans and Compressors ● Power Generation ● General Heavy Duty Industrial Applications ● Mining ● Cranes and Hoists ● Pulp and Paper Industry MSC Range This innovative coupling has been designed to satisfy a vast spectrum of diesel drive and compressor applications providing low linear stiffness and control of resonant torsional vibration with intrinsically fail safe operation. Maximum torque 272,000 ft.lb. Applications ● Marine Propulsion ● High Power Generator Sets ● Compressors RENOLD Hi-Tec Couplings www.renold.com 4 4 RENOLD Hi-Tec Couplings. Tel: + 44 (0) 1422 255000 Fax: + 44 (0) 1422 255100 E-Mail: [email protected] RENOLD Hi-Tec Couplings www.renold.com 5 DCB Flexible Coupling Fail safe coupling for use on reciprocating machinery up to 4,000,000 ft.lb. The Standard Coupling Arrangements • • • • Flywheel to shaft Flywheel to flange Flywheel to U-joint Shaft to shaft Applications • • • • Marine propulsion High power generator sets Reciprocating compressors Mining Features Benefits ● Intrinsically fail safe ● Ensuring continuous operation of the driveline in the unlikely event of rubber damage. ● Control of resonant torsional vibration ● Achieving low vibratory loads in the driveline components by selection of optimum stiffness characteristics. ● Severe shock load protection ● Avoiding failure of the driveline under short circuit and other transient conditions. ● Maintenance free ● With no lubrication or adjustment required resulting in low running costs. ● Misalignment capability ● Allows axial and radial misalignment between the driving and driven machines. ● Noise attenuation ● Giving quiet running conditions in sensitive applications by the elimination of metal to metal contact. ● Selection of Rubber Construction Details 8 3 5.5 ● Variety of rubber materials and hardness are available for optimum reduction of drive vibration and maximum block life. Each rubber element would be 5.5 inch diameter. Each cavity would house three rubber elements. • • • • Eight rubber element cavities radially spaced around coupling diameter referred to as “Series 8” coupling. Available options are: Series 6, Series 8, Series 10, Series16. 2, 3, 4 or 5 rubber elements per cavity are available. Rubber elements up to 15” diameter are manufactured. The inner and outer members are manufactured in steel to BS3100 Grade A1. Some sizes are available in SG Iron Castings to BS2789 Grade 420/12. RENOLD Hi-Tec Couplings www.renold.com 6 6 DCB Typical Applications Main propulsion. DCB819.5 and 1652.5’s couplings fitted between main engine and gearbox, gearbox and thrust block, and between thrust black and propulsion unit. Natural gas powered wartsila generator sets. Bio-gas generator sets. DCB845.5’s couplings fitted between gas engines and alternators. 4 Rail traction. Coupling fitted between diesel engine and transmission via a universal joint shaft. Diesel generator sets. Couplings fitted between diesel engines and alternators, to provide electrical supply for ice breaker. RENOLD Hi-Tec Couplings www.renold.com 7 7 DCB Series 6 Full Coupling Flex Half Flex Half & Keep Plate Dimensions, Weight, Inertia and Alignment COUPLING SIZE 622.5 632.5 623.5 633.5 624.5 625.5 626.5 628.0 A B C D D1 E F G DIMENSIONS J (inch) K L Q (QTY) R S (QTY) T U MAX. X MAX. Y MAXIMUM SPEED (rpm)(1) W1 WEIGHT (3) W2 (lb) W3 W4 J1 INERTIA (3) J2 (lb.in2) J3 J4 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) CONICAL (degree) 638.0 11.02 5.55 0.12 2.72 2.72 3.23 10.04 8.86 0.55 0.33 3.19 6 M10 8 M10 0.41 1.97 1.97 4150 7.3 22.5 21.8 8.8 30 364 263 143 11.02 8.07 0.12 3.98 3.98 3.23 10.04 8.86 0.55 0.33 4.45 6 M10 12 M10 0.41 1.97 1.97 4150 11.0 32.0 24.7 8.8 45 518 287 143 14.57 7.64 0.16 3.74 3.74 4.41 13.58 12.40 0.55 0.39 4.29 6 M10 12 M10 0.41 2.76 2.76 3150 19.6 52.7 33.3 16.8 164 1557 556 481 14.57 11.10 0.16 5.47 5.47 4.41 13.58 12.40 0.55 0.39 6.02 6 M10 18 M10 0.41 2.76 2.76 3150 29.5 74.7 42.8 16.8 246 2209 823 481 17.91 9.72 0.20 4.76 4.76 5.59 16.93 15.75 0.55 0.45 5.43 6 M10 16 M10 0.41 3.54 3.54 2570 40.6 96.8 55.3 30.2 569 4486 1674 1329 22.24 12.05 0.24 5.91 5.91 7.09 20.87 19.29 0.71 0.63 6.77 6 M16 8 M16 0.67 4.33 4.33 2080 74.1 187.4 113.8 62.4 1550 13159 5159 4237 26.57 14.29 0.28 7.01 7.01 8.46 24.80 22.83 0.98 0.79 8.07 6 M20 8 M20 0.83 5.12 5.12 1730 127.2 322.1 216.3 111.1 3752 31946 14522 10798 31.89 17.48 0.31 8.58 8.58 10.24 30.12 28.15 0.98 0.91 9.80 6 M20 12 M20 0.83 6.50 6.50 1440 228.8 575.8 320.3 183.4 10347 84232 30139 25662 31.89 25.51 0.31 12.60 12.60 10.24 30.12 28.15 0.98 0.91 13.82 6 M20 18 M20 0.83 6.50 6.50 1440 343.3 817.0 367.5 183.4 15520 119497 31095 25662 0.06 0.06 0.7 0.06 0.06 0.7 0.08 0.08 0.7 0.08 0.08 0.7 0.10 0.10 0.7 0.12 0.12 0.7 0.14 0.14 0.7 0.16 0.16 0.7 0.16 0.16 0.7 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables. (3) Weights and inertias are based on the maximum bore size. RENOLD Hi-Tec Couplings www.renold.com 8 DCB Series 6 Full Coupling Flex Half Flex Half & Keep Plate Dimensions, Weight, Inertia and Alignment COUPLING SIZE A B C D D1 E F G DIMENSIONS J (inch) K L Q (QTY) R S (QTY) T U MAX. X MAX. Y MAXIMUM SPEED (rpm)(1) W1 WEIGHT (3) W2 (lb) W3 W4 J1 INERTIA (3) J2 (lb.in2) J3 J4 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) CONICAL (degree) 629.5 39.17 20.87 0.39 10.24 10.24 12.20 36.61 33.46 1.38 1.12 11.77 6 M30 8 M30 1.22 7.68 7.68 1180 390 1023 634 351 24.9 215.7 94.7 73.8 639.5 39.17 30.39 0.39 15.00 15.00 12.20 36.61 33.46 1.38 1.12 16.54 6 M30 12 M30 1.22 7.68 7.68 1180 585 1452 714 351 37.3 306.2 96.7 73.8 6211.0 44.69 24.25 0.47 11.89 11.89 14.37 42.13 38.98 1.38 1.34 13.98 6 M30 12 M30 1.22 9.06 9.06 1030 609 1485 889 644 52.6 444.2 163.0 176.7 6311.0 44.69 29.76 0.47 17.40 17.40 14.37 42.13 38.98 1.38 1.34 19.49 6 M30 18 M30 1.22 9.06 9.06 1030 914 2106 1033 644 79.9 594.6 172.6 176.7 6213.0 53.74 28.58 0.63 13.98 13.98 16.77 50.00 45.87 2.17 1.61 16.22 6 M42 8 M42 1.69 10.55 10.55 860 978 2691 1797 935 116.0 1086.7 546.7 369.1 6313.0 53.74 35.08 0.63 20.47 20.47 16.77 50.00 45.87 2.17 1.61 22.72 6 M42 12 M42 1.69 10.55 10.55 860 1490 3892 2028 935 179.0 1568.5 570.7 369.1 6215.0 61.42 33.07 0.79 16.14 16.14 19.49 57.68 53.46 2.17 1.93 18.86 6 M42 12 M42 1.69 12.20 12.20 750 1553 4266 2502 1455 248.8 2272.4 902.1 751.8 6315.0 61.42 40.55 0.79 23.62 23.62 19.49 57.68 53.46 2.17 1.93 26.34 6 M42 18 M42 1.69 12.20 12.20 750 2390 5642 2851 1455 388.5 3010.5 926.0 751.8 0.20 0.20 0.7 0.20 0.20 0.7 0.24 0.24 0.7 0.24 0.24 0.7 0.31 0.31 0.7 0.31 0.31 0.7 0.39 0.39 0.7 0.39 0.39 0.7 (1) For operation above 80% of the declared maximum coupling4 speed, it is recommended that the coupling is dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables. (3) Weights and inertias are based on the maximum bore size. RENOLD Hi-Tec Couplings www.renold.com 9 9 DCB Series 8 Full Coupling Flex Half Flex Half & Keep Plate Dimensions, Weight, Inertia and Alignment COUPLING SIZE A B C D D1 E F G DIMENSIONS J (inch) K L Q (QTY) R S (QTY) T U MAX. X MAX. Y MAXIMUM SPEED (rpm)(1) W1 WEIGHT (3) W2 (lb) W3 W4 J1 INERTIA (3) J2 (lb.in2) J3 J4 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) CONICAL (degree) 822.5 823.5 16.73 7.64 0.16 3.74 3.74 6.89 15.75 14.57 0.55 0.39 4.25 8 M10 12 M10 0.41 4.25 4.25 2760 35.2 66.8 53.4 18.5 823.5 SAE14 18.37 0.16 3.74 17.24 14.57 0.55 0.39 4.25 8 M10 8 0.53 4.25 2760 35.2 67.2 22.9 12.80 5.47 0.12 2.68 2.68 5.12 11.81 10.63 0.55 0.31 3.11 8 M10 8 M10 0.41 3.15 3.15 3600 13.5 28.0 26.9 9.7 95 666 420 228 464 3277 1370 748 0.06 0.06 0.6 0.08 0.08 0.6 833.5 824.5 16.73 11.10 0.16 5.47 5.47 6.89 15.75 14.57 0.55 0.39 6.02 8 M10 24 M10 0.41 4.25 4.25 2760 52.5 85.1 64.8 18.5 833.5 SAE14 18.37 0.16 5.47 17.24 14.57 0.55 0.39 6.02 8 M10 8 0.53 4.25 2760 52.5 89.9 22.9 21.65 9.80 0.20 4.80 4.80 8.86 20.28 18.70 0.71 0.49 5.51 8 M16 8 M16 0.67 5.51 5.51 2130 76.3 123.9 113.3 44.5 824.5 SAE18 22.50 0.20 4.80 21.38 18.70 0.71 0.49 5.51 8 M16 6 0.67 5.51 2130 76.3 129.6 48.7 464 3632 1100 697 4127 1664 748 697 4479 1100 1681 9544 4920 3034 0.08 0.08 0.6 0.08 0.08 0.6 0.08 0.08 0.6 0.10 0.10 0.6 834.5 21.65 14.29 0.20 7.05 7.05 8.86 20.28 18.70 0.71 0.49 7.76 8 M16 16 M16 0.67 5.51 5.51 2130 114.0 170.4 137.6 44.5 834.5 SAE18 22.50 0.20 7.05 21.38 18.70 0.71 0.49 7.76 8 M16 6 0.67 0.00 5.51 2130 114.0 176.1 48.7 844.5 844.5 SAE18 22.50 0.20 9.29 21.38 18.70 0.71 0.49 10.00 8 M16 6 0.67 5.51 2130 151.9 214.1 48.7 21.65 16.54 0.20 7.05 9.29 8.86 20.28 18.70 0.71 0.49 10.00 8 M16 16 M16 0.67 5.51 5.51 2130 151.9 208.3 137.6 44.5 1681 10063 3553 2525 12089 5228 3034 2525 12609 3553 3379 14666 5228 3034 3379 15185 0.10 0.10 0.6 0.10 0.10 0.6 0.10 0.10 0.6 0.10 0.10 0.6 0.10 0.10 0.6 3553 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables. (3) Weights and inertias are based on the maximum bore size. RENOLD Hi-Tec Couplings www.renold.com 10 10 DCB Series 8 Full Coupling Flex Half Flex Half & Keep Plate Dimensions, Weight, Inertia and Alignment COUPLING SIZE 825.5 835.5 25.98 11.97 0.24 5.87 5.87 10.83 24.61 23.03 0.71 0.61 6.73 8 M16 12 M16 0.67 6.77 6.77 1800 157.0 229.9 180.8 78.5 4640 23858 10593 7722 825.5 SAE21 26.50 0.24 5.87 25.25 23.03 0.71 0.61 6.73 8 M16 12 0.67 6.77 1800 157.0 232.4 82.2 4640 24541 8371 A B C D D1 E F G DIMENSIONS J (inch) K L Q (QTY) R S (QTY) T U MAX. X MAX. Y MAXIMUM SPEED (rpm)(1) W1 WEIGHT (3) W2 (lb) W3 W4 J1 INERTIA (3) J2 (lb.in2) J3 J4 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) CONICAL (degree) 25.98 17.48 0.24 8.62 8.62 10.83 24.61 23.03 0.71 0.61 9.49 8 M16 24 M16 0.67 6.77 6.77 1800 207.5 303.6 224.4 78.5 7029 31509 11481 7722 835.5 SAE21 26.50 0.24 8.62 25.25 23.03 0.71 0.61 9.49 8 M16 12 0.069 6.77 1800 207 308 82 7029 32192 8371 0.12 0.12 0.6 0.12 0.12 0.6 25.98 20.24 0.24 8.62 11.38 10.83 24.61 23.03 0.71 0.61 12.24 8 M16 24 M16 0.69 6.77 6.77 1800 258 377 224 78 9386 39160 11481 7722 0.12 0.12 0.6 0.12 0.12 0.6 0.12 0.12 0.6 4 845.5 845.5 855.5 855.5 SAE21 SAE21 26.50 25.98 26.50 22.99 0.24 0.24 0.24 8.62 11.38 14.13 14.13 10.83 25.25 24.61 25.25 23.03 23.03 23.03 0.71 0.71 0.71 0.61 0.61 0.61 12.24 15.00 15.00 8 8 8 M16 M16 M16 12 24 12 M16 0.69 0.69 0.69 6.77 6.77 6.77 6.77 1800 1800 1800 258 308 308 382 451 455 224 82 78 82 9386 11744 11744 39843 46746 47429 11481 8371 7722 8371 0.12 0.12 0.6 0.12 0.12 0.6 0.12 0.12 0.6 826.5 836.5 846.5 30.91 14.06 0.28 6.89 6.89 12.80 29.13 27.17 0.98 0.69 7.87 8 M20 12 M20 0.86 8.07 8.07 1490 354 370 324 125 10716 53717 28430 17393 30.91 20.59 0.28 10.16 10.16 12.80 29.13 27.17 0.98 0.69 11.14 8 M20 24 M20 0.86 8.07 8.07 1490 466 489 396 125 16207 70837 30583 17393 30.91 23.82 0.28 10.16 13.39 12.80 29.13 27.17 0.98 0.69 14.37 8 M20 24 M20 0.86 8.07 8.07 1490 577 606 396 125 25785 87717 30583 17393 0.14 0.14 0.6 0.14 0.14 0.6 0.14 0.14 0.6 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables. (3) Weights and inertias are based on the maximum bore size. RENOLD Hi-Tec Couplings www.renold.com 11 11 DCB Series 8 Full Coupling Flex Half Flex Half & Keep Plate Dimensions, Weight, Inertia and Alignment COUPLING SIZE 827.5 837.5 847.5 857.5 828.0 838.0 848.0 A 35.04 B 16.30 C 0.31 D 7.99 D1 7.99 E 14.96 F 33.27 G 31.30 DIMENSIONS J 0.98 (inch) K 0.83 L 9.09 8 Q (QTY) R M20 S (QTY) 16 T M20 U 0.86 MAX. X 9.45 MAX. Y 9.45 MAXIMUM SPEED (rpm)(1) 1315 W1 345 WEIGHT (3) W2 557 (lb) W3 458 W4 177 J1 21.4 INERTIA (3) J2 105.1 (lb.in2) J3 49.5 J4 31.9 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) 0.16 AXIAL (inch) 0.16 CONICAL (degree) 0.6 858.0 829.5 839.5 849.5 859.5 8211.0 35.04 23.86 0.31 11.77 11.77 14.96 33.27 31.30 0.98 0.83 12.87 8 M20 32 M20 0.86 9.45 9.45 1315 513 740 571 177 32.0 140.3 53.6 31.9 35.04 27.60 0.31 11.77 15.51 14.96 33.27 31.30 0.98 0.83 16.61 8 M20 32 M20 0.86 9.45 9.45 1315 680 922 571 177 42.6 174.8 53.6 31.9 35.04 31.34 0.31 11.77 19.25 14.96 33.27 31.30 0.98 0.83 20.35 8 M20 32 M20 0.86 9.45 9.45 1315 848 1103 571 177 53.2 209.6 53.6 31.9 37.01 17.32 0.31 8.50 8.50 15.55 35.24 33.27 0.98 0.83 9.65 8 M20 16 M20 0.86 9.84 9.84 1240 423 649 520 207 29.5 137.9 61.5 41.7 37.01 25.35 0.31 12.52 12.52 15.55 35.24 33.27 0.98 0.83 13.66 8 M20 32 M20 0.86 9.84 9.84 1240 633 866 520 207 44.4 185.0 66.6 41.7 37.01 29.37 0.31 12.52 16.54 15.55 35.24 33.27 0.98 0.83 17.68 8 M20 32 M20 0.83 9.84 9.84 1240 843 1,084 650 207 59.4 231.8 66.6 41.7 37.01 33.39 0.31 12.52 20.51 15.55 35.24 33.27 0.98 0.83 21.65 8 M20 32 M20 0.83 9.84 9.84 1240 1,053 1,299 650 207 74.4 278.2 666.3 41.7 45.67 20.79 0.39 10.20 10.20 18.70 43.11 39.96 1.38 1.10 11.69 8 M30 12 M30 1.22 11.81 11.81 1010 735 1,224 1,008 423 73.4 382.7 191.4 129.2 45.67 30.31 0.39 14.96 14.96 18.70 43.11 39.96 1.38 1.10 16.46 8 M30 24 M30 1.22 11.81 11.81 1010 1,099 1,609 1,230 423 110.6 502.3 204.3 129.2 45.67 35.08 0.39 14.96 19.72 18.70 43.11 39.96 1.38 1.10 21.22 8 M30 24 M30 1.22 11.81 11.81 1010 1,463 1,993 1,230 423 147.8 621.9 204.3 129.2 45.67 39.84 0.39 14.96 24.49 18.70 43.11 39.96 1.38 1.10 26.22 8 M30 24 M30 1.22 11.81 11.81 1010 18.47 2,377 1,230 423 185.0 741.5 204.3 129.2 52.36 24.09 0.47 11.81 11.81 22.05 49.80 46.65 1.38 1.30 13.58 8 M30 16 M30 1.22 13.78 13.78 880 1,151 1,909 1,466 648 156.0 799.6 345.1 261.4 0.16 0.16 0.6 0.16 0.16 0.6 0.16 0.16 0.6 0.16 0.16 0.6 0.16 0.16 0.6 0.16 0.16 0.6 0.16 0.16 0.6 0.20 0.20 0.6 0.20 0.20 0.6 0.20 0.20 0.6 0.20 0.20 0.6 0.24 0.24 0.6 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that these do not exceed the manufacturers allowables. (3) Weights and inertias are based on the maximum bore size. RENOLD Hi-Tec Couplings www.renold.com 12 12 DCB Technical Data 1.1 Torque Capacity - Diesel Engine Drives 2.1 Axial Stiffness When subject to axial misalignment, the coupling will have an axial resistance which gradually reduces due to the effect of vibratory torque. The full torque capacity of the coupling for transient vibration while passing through major criticals on run up is published as the Maximum Torque TKMAX (TKMAX = 3 x TKN.) The axial stiffness of the coupling is torque dependent. The variation is as shown in the Technical Data There is additional torque capacity built within the coupling for transient shock. 2.2 Radial Stiffness The radial stiffness of the coupling is torque dependent, and is as shown in the Technical Data The published “Vibratory Torque, TKW ”, relates to the amplitude of the permissible continous torque fluctuation. The vibratory torque values shown in the Technical Data are at a frequency of 10Hz. The measure of acceptability of the coupling for vibrating drives is published as “Allowable Dissipated Heat at Ambient Temperature 86°F”. The torsional stiffness of the coupling is dependent upon applied torque and temperature as shown in the Technical Data 1.2 2.4 2.3 Transient Torques Prediction of transient torques in marine drives can be complex. Normal installations are well provided for by selecting couplings based on the “Nominal Torque TKN .” Transients, such as start up and clutch maneuver, are usually within the “Maximum Torque, TKMAX” for the coupling. 2.4.1 Use the torsional stiffness, as published in the catalog, which is based upon data measured at 86˚F ambient temperature. 2.4.2 Repeat the calculation made in 2.4.1 but using the maximum temperature correction factor St212, and dynamic magnifier correction factor, M212, for the selected rubber. Use tables to adjust values for both torsional stiffness and dynamic magnifier. ie, CT212 = CTdynX St212 Sudden torque applications of propulsion devices, such as thrusters or waterjets, need to be considered when designing the coupling connection. Stiffness Properties The Renold Hi-Tec Coupling remains fully flexible under all torque conditions. The DCB series is a non-bonded type operating with the Rubber-inCompression principle. Prediction of the System Torsional Vibration Characteristics. An adequate prediction of the system’s torsional vibration characteristics, can be made by the following method. Care needs to be taken in the design of couplings with shaft brakes, to ensure coupling torques are not increased by severe deceleration. 2.0 Torsional Stiffness 4 RENOLD Hi-Tec Couplings 2.4.3 Review calculations 2.4.1 and 2.4.2 and if the speed range is clear of criticals which do not exceed the allowable heat dissipation value as published in the catalog then the coupling is considered suitable for the application, with respect to the torsional vibration characteristics. If there is a critical in the speed range, then the actual temperature of the coupling should be calculated at this speed. www.renold.com 13 13 DCB Technical Data 2.6 Rubber Grade Tempmax °F NM 45 SM 50 SM 60 SM 70 SM 80 212 212 212 212 212 Temperature Correction Factor St St212 St212 St212 St212 St212 = = = = = 0.71 0.65 0.61 0.44 0.37 SM 60 is considered “standard” Rubber Grade NM 45 SM 50 SM 60 SM 70 SM 80 Dynamic Magnifier at 86ºF (M86) Dynamic Magnifier at 212ºF (M212) 15 10 8 6 4 21.1 15.4 13.1 13.6 10.8 Rubber Temperature (ϑ) ˚F SM 60 is considered “standard” 2.7 2.5 Prediction of the Actual Coupling Temperature and Torsional Stiffness Dynamic Magnifier Correction Factor The Dynamic Magnifier of the rubber is subject to temperature variation in the same way as the torsional stiffness. 2.5.1 Use the torsional stiffness as published in the catalog. This is based upon data measured at 86˚F and the dynamic magnifier at 86˚F. (M86) 2.5.2 Compare the synthesis value of the calculated heat load in the coupling (PK) at the speed of interest, to the “Allowable Heat Dissipation” (PKW). The coupling temperature rise = ∆F ∆F = Tempcoup = PK x 126 PKW ( ) Th e coupling temperature = ϑ ϑ = Tempcoup + Ambient Temp. MT = M86 St Rubber Grade ψT = ψ86 x St Dynamic Magnifier (M86) Relative Damping ψ86 NM 45 15 0.42 SM 50 10 0.63 SM 60 8 0.78 SM 70 6 1.05 SM 80 4 1.57 SM 60 is considered “standard” 2.5.3 Calculate the temperature correction factor, St, from 2.6 (if the coupling temperature > 212ºF, then use St212). Calculate the dynamic Magnifier as per 2.7. Repeat the calculation with the new value of coupling stiffness and dynamic magnifier. 2.5.4 Calculate the coupling temperature as per 2.5. Repeat calculation until the coupling temperature agrees with the correction factors for torsional stiffness and dynamic magnifier used in the calculation. RENOLD Hi-Tec Couplings www.renold.com 14 14 DCB Series 6 Technical Data End View - Series 6 COUPLING SIZE NOMINAL TORQUE TKN (lb.ft) MAXIMUM TORQUE TKMAX (lb.ft) VIBRATORY TORQUE TKW (lb.ft) ALLOWABLE NM 45 DISSIPATED SM 50 HEAT AT AMB. SM 60 TEMP. 86°F. (W) SM 70 SM 80 MAXIMUM SPEED (rpm) (1) DYNAMIC TORSIONAL STIFFNESS CTdyn (lb.in/rad x 106) NM 45 SM 50 SM 60 @ 0.25 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 0.5 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 0.75 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 1.0 TKN SM 70 SM 80 NM 45 RADIAL STIFFNESS SM 50 NO LOAD (lb/in x 103) SM 60 SM 70 SM 80 NM 45 RADIAL STIFFNESS SM 50 SM 60 @ TKN (lb/in x 103) SM 70 SM 80 NM 45 AXIAL STIFFNESS SM 50 (lb/in x 103) SM 60 SM 70 SM 80 NM 45 MAXIMUM AXIAL (2) SM 50 LOAD AT POINT SM 60 SM 70 OF SLIP @ TKN (lb) 622.5 632.5 623.5 633.5 624.5 625.5 626.5 628.0 638.0 376 1,121 140 69 77 87 98 108 4,150 561 1,682 214 103 115 130 147 162 4,150 1,025 3,054 384 97 108 122 137 152 3,150 1,534 4,580 575 146 162 183 206 228 3,150 2,139 6,395 797 125 139 158 176 195 2,570 3,909 11,727 1,468 153 170 193 215 238 2,080 6,468 19,472 2,449 181 201 228 254 282 1,730 12,170 36,509 4,588 223 248 281 314 347 1,440 18,292 54,727 6,881 335 372 422 471 521 1,440 0.027 0.027 0.035 0.044 0.080 0.035 0.044 0.053 0.062 0.115 0.053 0.062 0.071 0.089 0.159 0.071 0.089 0.097 0.106 0.212 4.17 4.76 7.14 9.51 11.18 7.21 7.14 9.51 11.90 16.65 1.63 1.92 3.08 4.26 9.64 88 106 146 189 0.035 0.044 0.053 0.071 0.124 0.053 0.071 0.080 0.097 0.177 0.071 0.097 0.106 0.133 0.239 0.106 0.133 0.142 0.159 0.319 6.25 7.14 10.71 14.27 16.77 10.79 10.71 14.27 17.85 24.98 2.44 2.88 4.63 6.40 14.46 133 160 220 283 0.062 0.071 0.089 0.124 0.212 0.097 0.124 0.142 0.168 0.319 0.133 0.177 0.204 0.230 0.451 0.195 0.239 0.266 0.301 0.584 5.82 6.63 9.98 13.32 15.65 10.06 9.99 13.32 16.65 23.30 2.28 2.68 4.33 5.96 13.49 121 4148 207 265 0.089 0.106 0.133 0.186 0.319 0.142 0.186 0.212 0.257 0.478 0.204 0.266 0.310 0.345 0.682 0.292 0.363 0.398 0.451 0.876 8.74 9.95 14.97 19.97 23.47 15.09 14.99 19.97 24.98 34.94 3.43 4.03 6.49 8.94 20.23 182 223 310 398 0.133 0.159 0.186 0.266 0.443 0.204 0.266 0.301 0.354 0.673 0.292 0.381 0.425 0.487 0.956 0.407 0.522 0.566 0.637 1.239 7.49 8.56 12.85 17.13 20.13 12.97 12.85 17.13 21.41 29.98 2.94 3.45 5.57 9.94 17.30 153 211 270 337 0.195 0.239 0.310 0.496 0.664 0.319 0.425 0.469 0.558 0.859 0.496 0.611 0.682 0.770 1.195 0.752 0.850 0.903 1.027 1.629 9.14 10.45 15.70 20.93 24.61 15.84 15.70 20.93 26.16 36.63 3.60 4.32 6.81 12.14 21.13 187 259 328 411 0.327 0.398 0.504 0.823 1.089 0.522 0.699 0.770 0.920 1.416 0.823 1.009 1.124 1.275 1.965 1.239 1.407 1.496 1.690 2.699 10.83 12.37 18.56 24.74 29.07 18.73 18.56 24.74 30.92 43.29 4.25 5.08 8.05 14.34 24.96 220 306 387 486 0.690 0.743 0.938 1.540 2.027 0.974 1.301 1.434 1.717 2.646 1.540 1.876 2.098 2.381 3.664 2.310 2.620 2.788 3.160 5.027 13.33 15.22 22.84 30.45 35.78 23.04 22.84 30.45 38.06 53.29 5.23 6.28 9.90 17.66 30.72 270 378 477 598 0.982 1.168 1.513 2.319 3.231 1.558 1.903 2.195 2.726 4.204 2.425 2.815 3.169 3.673 5.824 3.602 3.965 4.231 4.788 7.815 19.98 22.84 34.26 45.68 53.67 34.54 34.26 45.68 57.10 79.94 7.85 9.42 14.85 26.48 46.08 405 567 715 897 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced. (2) The Renold Hi-Tec Coupling will “slip” axially when the maximum axial force is reached. RENOLD Hi-Tec Couplings www.renold.com 15 15 DCB Series 6 Technical Data End View - Series 6 COUPLING SIZE NOMINAL TORQUE TKN (lb.ft) MAXIMUM TORQUE TKMAX (lb.ft) VIBRATORY TORQUE TKW (lb.ft) ALLOWABLE NM 45 DISSIPATED SM 50 HEAT AT AMB. SM 60 TEMP. 86°F. (W) SM 70 SM 80 MAXIMUM SPEED (rpm) (1) DYNAMIC TORSIONAL STIFFNESS CTdyn (lb.in/rad x 106) NM 45 SM 50 SM 60 @ 0.25 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 0.5 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 0.75 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 1.0 TKN SM 70 SM 80 NM 45 RADIAL STIFFNESS SM 50 NO LOAD (lb/in x 103) SM 60 SM 70 SM 80 NM 45 RADIAL STIFFNESS SM 50 SM 60 @ TKN (lb/in x 103) SM 70 SM 80 NM 45 AXIAL STIFFNESS SM 50 (lb/in x 103) SM 60 SM 70 SM 80 NM 45 MAXIMUM AXIAL (2) SM 50 LOAD AT POINT SM 60 SM 70 OF SLIP @ TKN (lb) 629.5 639.5 6211.0 6213.0 6313.0 6215.0 6315.0 20,283 60,923 7,671 265 294 333 372 412 1,180 30,461 91,458 11,506 398 441 500 558 618 1,180 31,789 95,883 11,948 306 340 386 431 477 1,030 47,720 143,087 17,923 459 510 579 646 716 1,030 6311.0 52,662 157,838 19,693 362 402 456 510 563 860 78,919 236,757 29,502 543 603 684 765 845 860 81,132 244,133 30,461 418 464 526 588 650 750 122,435 366,568 45,729 627 696 789 882 975 750 1.03 1.25 1.58 2.58 3.40 1.62 2.19 2.40 2.89 4.43 2.58 3.14 3.51 3.98 6.14 3.87 4.39 4.66 5.28 8.42 15.8 18.1 27.1 36.1 42.5 27.4 27.1 36.1 45.2 63.3 6.21 7.46 11.76 20.97 36.49 321 447 567 710 1.65 1.96 2.53 3.89 5.41 2.61 3.19 3.67 4.56 7.05 4.05 4.72 5.30 6.16 9.75 6.04 6.64 7.09 8.02 13.09 23.7 27.1 40.7 54.2 63.7 41.1 40.7 54.2 67.8 94.9 9.32 11.19 17.63 31.45 54.73 481 674 850 1066 1.58 1.94 2.44 4.00 5.28 2.52 3.39 3.72 4.48 6.87 3.99 4.87 5.45 6.19 9.53 6.00 6.81 7.24 8.21 13.06 18.3 20.9 31.4 41.9 49.2 31.7 31.4 41.9 52.3 73.3 7.19 8.63 13.61 24.28 42.25 373 517 656 823 2.55 3.04 3.93 6.05 8.41 4.05 4.95 5.71 7.08 10.94 6.30 7.32 8.23 9.56 15.14 9.36 10.30 11.01 12.44 20.33 27.5 31.4 47.1 62.8 73.8 47.5 47.1 62.8 78.5 109.9 10.79 12.95 20.42 36.42 63.38 562 776 985 1236 2.62 3.20 4.04 6.59 8.72 4.16 5.59 6.14 7.39 11.34 6.59 8.04 9.00 10.21 15.74 9.91 11.24 11.95 13.55 21.56 21.7 24.7 37.1 49.4 58.1 37.4 37.1 49.4 61.8 86.6 8.50 10.20 16.09 28.69 49.93 441 611 776 971 4.20 5.02 6.48 9.97 13.85 6.69 8.17 9.43 11.68 18.05 10.40 12.08 13.59 15.77 24.99 15.46 17.01 18.18 20.54 33.55 32.5 37.1 55.7 74.1 87.2 56.2 55.7 74.2 92.8 129.9 12.76 15.30 24.14 43.04 74.89 661 917 1165 1457 4.02 4.91 6.20 10.13 13.39 6.39 8.59 9.43 11.36 17.42 10.13 12.35 13.83 15.42 24.17 15.22 17.26 18.36 20.82 33.12 25.1 28.5 42.8 57.1 67.1 43.3 42.8 57.1 71.4 99.9 9.81 11.77 18.56 33.11 57.61 508 706 899 1124 6.46 7.71 9.96 15.32 21.27 10.28 12.56 14.48 17.94 27.73 15.97 18.56 20.88 24.23 38.39 23.75 26.13 27.92 31.56 51.56 37.7 42.8 64.2 85.6 100.6 64.9 64.2 85.6 107.1 149.9 14.71 17.64 27.84 49.68 86.42 764 1057 1349 1686 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced. (2) The Renold Hi-Tec Coupling will “slip” axially when the maximum axial force is reached. RENOLD Hi-Tec Couplings www.renold.com 16 16 DCB Series 8 Technical Data End View - Series 8 COUPLING SIZE NOMINAL TORQUE TKN (lb.ft) MAXIMUM TORQUE TKMAX (lb.ft) VIBRATORY TORQUE TKW (lb.ft) ALLOWABLE NM 45 DISSIPATED SM 50 HEAT AT AMB. SM 60 TEMP. 86°F. (W) SM 70 SM 80 MAXIMUM SPEED (rpm) (1) DYNAMIC TORSIONAL STIFFNESS CTdyn (lb.in/rad x 106) NM 45 SM 50 SM 60 @ 0.25 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 0.5 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 0.75 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 1.0 TKN SM 70 SM 80 NM 45 RADIAL STIFFNESS SM 50 NO LOAD (lb/in x103) SM 60 SM 70 SM 80 NM 45 RADIAL STIFFNESS SM 50 SM 60 @ TKN (lb/in x103) SM 70 SM 80 NM 45 AXIAL STIFFNESS SM 50 (lb/in x103) SM 60 SM 70 SM 80 NM 45 MAXIMUM AXIAL (2) SM 50 LOAD AT POINT SM 60 SM 70 OF SLIP @ TKN (lb) 823.5 833.5 824.5 834.5 844.5 825.5 612 1,859 229 93 103 117 131 144 3,600 822.5 1,660 4,971 620 130 144 163 182 202 2,760 2,486 7,449 929 195 216 245 274 303 2,760 3,570 10,709 1,335 166 185 210 234 260 2,130 5,355 16,064 2,014 250 278 315 352 390 2,130 7,140 21,419 2,677 332 370 420 468 520 2,130 6,623 19,870 2,486 204 227 257 287 317 1,800 9,935 29,812 3,725 306 340 385 430 475 1,800 835.5 0.053 0.062 0.089 0.142 0.221 0.080 0.106 0.133 0.168 0.274 0.124 0.159 0.186 0.230 0.372 0.177 0.221 0.248 0.301 0.496 5.55 6.34 9.51 12.69 14.90 9.61 9.51 12.69 15.86 22.20 2.17 2.56 4.12 5.68 12.85 117 142 196 252 0.142 0.177 0.230 0.372 0.602 0.221 0.292 0.354 0.460 0.735 0.327 0.425 0.505 0.620 0.991 0.478 0.584 0.673 0.814 1.345 7.77 8.85 13.30 17.76 20.87 13.42 13.32 17.76 22.20 31.06 3.05 3.59 5.77 7.95 17.99 162 198 274 353 0.212 0.266 0.354 0.566 0.894 0.327 0.434 0.531 0.690 1.098 0.487 0.628 0.752 0.938 1.496 0.717 0.876 1.009 1.221 2.018 11.65 13.28 19.96 26.64 31.30 20.13 19.98 26.64 33.30 46.59 4.57 5.38 8.65 11.91 26.98 4 243 297 411 531 0.345 0.416 0.522 0.788 1.337 0.505 0.690 0.841 1.053 2.027 0.726 1.000 1.168 1.443 2.885 1.018 1.363 1.567 1.876 3.744 9.99 11.42 17.13 22.84 26.84 17.30 17.13 22.84 28.55 39.97 3.92 4.61 7.42 13.25 23.07 205 281 360 450 0.505 0.566 0.779 1.195 2.195 0.717 0.929 1.213 1.620 2.992 1.053 1.372 1.708 2.195 4.071 1.478 1.912 2.301 2.850 5.364 14.99 17.13 25.69 34.26 40.25 25.95 25.69 34.26 42.82 59.95 5.88 6.91 11.13 19.87 34.60 310 423 540 674 0.620 0.735 0.974 1.567 2.815 0.903 1.204 1.514 2.018 3.620 1.319 1.761 2.124 2.717 4.859 1.912 2.461 2.877 3.567 6.426 19.98 22.84 34.26 45.68 53.67 34.60 34.26 45.68 57.10 79.94 7.85 9.22 14.85 26.49 46.14 409 562 719 899 0.531 0.673 0.885 1.505 2.036 0.823 1.151 1.328 1.682 2.638 1.283 1.637 1.930 2.310 3.647 1.912 2.275 2.549 3.054 4.983 12.22 13.95 20.93 27.91 32.80 21.13 20.93 27.91 34.89 48.85 4.80 5.63 9.07 16.19 28.19 250 344 450 549 0.797 1.000 1.363 2.222 3.178 1.266 1.629 1.983 2.602 4.142 1.965 2.407 2.859 3.514 5.735 2.930 3.390 3.824 4.576 7.700 18.33 20.93 31.40 41.86 49.20 31.69 31.40 41.86 52.33 73.27 7.19 8.45 13.60 24.28 42.31 373 515 674 823 (1) For operation above 80% of the declared maxiumum coupling speed, it is recommended that the coupling is dynamically balanced. (2) The Renold Hi-Tec Coupling will “slip” axially when the maximum axial force is reached. RENOLD Hi-Tec Couplings www.renold.com 17 17 DCB Series 8 Technical Data End View - Series 8 COUPLING SIZE NOMINAL TORQUE TKN (lb.ft) MAXIMUM TORQUE TKMAX (lb.ft) VIBRATORY TORQUE TKW (lb.ft) ALLOWABLE NM 45 DISSIPATED SM 50 HEAT AT AMB. SM 60 TEMP. 86°F. (W) SM 70 SM 80 MAXIMUM SPEED (rpm) (1) DYNAMIC TORSIONAL STIFFNESS CTdyn (lb.in/rad x 106) NM 45 SM 50 SM 60 @ 0.25 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 0.5 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 0.75 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 1.0 TKN SM 70 SM 80 NM 45 RADIAL STIFFNESS SM 50 NO LOAD (lb/in x 103) SM 60 SM 70 SM 80 NM 45 RADIAL STIFFNESS SM 50 SM 60 @ TKN (lb/in x 103) SM 70 SM 80 NM 45 AXIAL STIFFNESS SM 50 (lb/in x 103) SM 60 SM 70 SM 80 NM 45 MAXIMUM AXIAL (2) SM 50 LOAD AT POINT SM 60 SM 70 OF SLIP @ TKN (lb) 845.5 855.5 826.5 836.5 846.5 827.5 837.5 847.5 13,247 39,747 4,971 409 454 514 574 634 1,800 16,558 49,682 6,210 510 566 642 716 792 1,800 10,820 32,460 4,057 241 268 304 340 375 1,490 16,234 48,694 6,085 363 402 456 510 563 1,490 21,640 64,927 8,113 482 536 608 680 750 1,490 16,499 49,490 6,188 278 309 351 392 433 1,315 24,745 74,236 9,265 418 464 526 588 650 1,315 32,991 98,981 12,369 556 618 702 784 866 1,315 1.062 1.301 1.823 2.992 4.682 1.682 2.204 2.620 3.452 5.638 2.540 3.231 3.709 4.585 7.506 3.815 4.443 4.965 6.028 10.046 24.44 27.91 41.86 55.82 65.60 42.25 41.86 55.82 69.77 97.70 9.59 11.26 18.13 32.38 56.38 499 688 899 1097 1.275 1.664 2.222 3.602 5.443 2.036 2.629 3.186 4.328 6.939 3.133 3.903 4.585 5.718 9.488 4.726 5.399 6.125 7.435 13.082 30.55 34.89 52.33 69.77 81.99 52.82 52.33 69.77 87.22 122.12 11.99 14.07 22.67 40.47 70.47 625 859 1124 1371 0.929 1.124 1.505 2.425 3.868 1.407 1.868 2.275 2.983 4.735 2.115 2.726 3.239 4.027 6.435 3.098 3.779 4.328 5.257 8.683 14.43 16.49 24.74 32.99 38.76 24.99 24.74 32.99 41.27 57.73 5.66 6.66 10.72 19.13 33.32 294 405 531 652 1.390 1.691 2.266 3.629 5.797 2.107 2.797 3.408 4.470 7.099 3.169 4.080 4.859 6.036 9.656 4.629 5.665 6.497 7.886 13.020 21.7 24.7 37.1 49.5 58.1 37.5 37.1 49.5 61.8 86.6 8.5 10.0 16.1 28.7 50.0 443 607 798 975 1.850 2.257 3.018 4.841 7.736 2.806 3.735 4.549 5.957 9.462 4.222 5.443 6.470 8.046 12.869 6.178 7.559 8.665 10.515 17.366 28.9 33.0 49.5 66.0 77.5 50.0 49.5 66.0 82.5 115.5 11.3 13.3 21.4 38.3 66.6 589 809 1061 1324 1.416 1.726 2.310 3.709 5.912 2.151 2.859 3.478 4.558 7.240 3.231 4.160 4.948 6.151 9.842 4.726 5.780 6.629 8.046 13.277 17.1 19.5 29.2 39.0 45.8 29.5 29.2 39.0 48.7 68.2 6.5 7.7 12.4 22.1 38.4 342 468 611 749 2.124 2.584 3.461 5.558 8.878 3.222 4.284 5.213 6.842 10.860 4.841 6.249 7.426 9.232 14.763 7.090 8.674 9.940 12.064 19.924 25.6 29.2 43.9 58.5 68.7 44.3 43.9 58.5 73.1 102.3 9.8 11.5 18.6 33.1 57.7 513 704 922 1124 2.832 3.452 4.611 7.408 11.834 4.293 5.709 6.957 9.117 14.480 6.461 8.329 9.904 12.312 19.685 9.453 11.559 13.250 16.091 26.562 34.1 39.0 58.5 78.0 91.6 59.0 58.5 78. 97.5 136.4 13.1 15.4 24.7 44.1 76.9 683 935 1223 1497 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced. (2) The Renold Hi-Tec Coupling will “slip” axially when the maximum axial force is reached. RENOLD Hi-Tec Couplings www.renold.com 18 18 DCB Series 8 Technical Data End View - Series 8 COUPLING SIZE NOMINAL TORQUE TKN (lb.ft) MAXIMUM TORQUE TKmax (lb.ft) VIBRATORY TORQUE TKW (lb.ft) ALLOWABLE NM 45 DISSIPATED SM 50 HEAT AT AMB. SM 60 TEMP. 86°F. (W) SM 70 SM 80 MAXIMUM SPEED (rpm) (1) DYNAMIC TORSIONAL STIFFNESS CTdyn (lb.in/rad x 106) NM 45 SM 50 SM 60 @ 0.25 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 0.5 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 0.75 TKN SM 70 SM 80 NM 45 SM 50 SM 60 @ 1.0 TKN SM 70 SM 80 NM 45 RADIAL STIFFNESS SM 50 SM 60 NO LOAD (lb/in x 103) SM 70 SM 80 NM 45 RADIAL STIFFNESS SM 50 SM 60 @ TKN (lb/in x 103) SM 70 SM 80 NM 45 AXIAL STIFFNESS SM 50 SM 60 (lb/in x 103) SM 70 SM 80 MAXIMUM AXIAL (2) SM 45 LOAD AT POINT SM 50 SM 60 OF SLIP @ TKN (N) SM 70 857.5 828.0 849.5 859.5 8211.0 41,244 123,726 15,467 696 773 877 980 1083 1,315 19,936 59,816 7,678 297 330 374 418 462 1,240 29,908 39,873 89,717 119,625 11,218 14,950 446 594 495 660 561 748 627 836 693 924 1,240 1,240 838.0 848.0 49,844 33,766 50,648 149,533 101,297 151,945 18,690 12,782 18,992 743 353 529 825 392 588 935 444 666 1045 497 745 1155 550 823 1,240 1,010 1,010 858.0 829.5 67,531 202,593 25,328 706 784 888 994 1,100 1,010 84,451 253,352 27,954 883 980 1,110 1,243 1,375 1,010 53,060 159,180 19,899 409 454 515 575 635 880 3.540 4.310 5.762 9.258 14.790 5.373 7.143 8.692 11.400 18.100 8.072 10.409 12.374 15.392 24.606 11.816 14.454 16.569 20.109 33.200 42.7 48.7 73.1 97.5 114.5 73.8 73.1 97.5 121.8 170.6 16.3 19.2 30.9 55.2 96.1 854 1169 1529 1873 1.726 2.107 2.815 4.523 7.222 2.620 3.487 4.248 5.567 8.842 3.939 5.080 6.045 7.514 12.020 5.771 7.054 8.090 9.825 16.215 17.8 20.3 30.4 40.6 47.7 30.7 30.4 40.6 50.7 71.1 7.0 8.2 13.2 23.5 41.0 364 499 638 798 2.593 3.461 3.160 4.213 4.222 5.629 6.789 9.046 10.834 14.445 3.939 5.249 5.231 6.975 6.373 8.488 8.346 11.135 13.259 17.675 5.912 7.886 7.630 10.170 9.063 12.090 11.276 15.029 18.029 24.039 8.656 11.542 10.586 14.117 12.135 16.180 14.737 19.649 24.323 32.430 26.7 35.5 30.4 40.6 45.7 60.9 60.9 81.2 71.5 95.4 46.1 61.4 45.7 60.9 60.9 81.2 76.1 101.5 106.6 142.1 10.5 13.9 12.3 16.4 19.8 26.4 35.3 47.1 61.5 82.0 546 728 749 4 998 958 1277 1198 1596 4.319 5.257 7.037 11.312 18.056 6.559 8.718 10.612 13.914 22.101 9.860 12.710 15.109 18.791 30.049 14.416 17.640 20.225 24.562 40.538 44.4 50.7 76.1 101.5 119.3 76.8 76.1 101.5 126.9 177.6 17.4 20.5 33.0 58.9 102.5 910 1248 1596 1996 5.797 7.063 9.444 15.171 24.225 8.798 11.701 14.241 18.667 29.642 13.223 17.056 20.278 25.208 40.307 19.348 23.676 27.137 32.952 54.389 42.2 48.2 72.3 96.4 113.3 73.0 72.3 96.4 120.5 168.7 16.6 19.4 31.3 55.9 97.4 863 1187 1520 1897 7.249 8.824 11.807 18.968 30.279 10.993 14.622 17.799 23.340 37.059 16.534 21.322 25.340 31.510 50.389 24.190 29.589 33.917 41.184 67.985 52.8 60.2 90.4 120.5 141.6 91.2 90.4 120.5 150.6 210.9 20.7 24.3 39.2 69.9 121.7 1079 1484 1900 2372 4.532 5.514 7.382 11.860 18.941 6.877 9.143 11.135 14.595 23.172 10.338 13.330 15.852 19.702 31.510 15.126 18.507 21.216 25.756 42.511 24.4 27.9 41.9 55.8 65.6 42.3 41.9 55.8 69.8 97.7 9.6 11.3 18.1 32.4 56.4 499 688 879 1097 2.903 3.532 4.726 7.585 12.177 4.399 5.851 7.125 9.338 14.825 6.612 8.524 10.134 12.604 20.154 9.674 11.834 13.569 16.472 27.190 21.1 24.1 36.2 48.2 56.6 36.5 36.2 48.2 60.3 84.4 8.3 9.7 15.7 28.0 48.7 432 593 760 949 839.5 4.346 5.293 7.081 11.382 18.171 6.594 8.771 10.683 14.002 22.234 9.922 12.790 15.206 18.906 30.235 14.516 17.755 20.348 24.712 40.785 31.7 36.1 54.2 72.3 85.0 54.7 54.2 72.3 90.4 126.5 12.4 14.6 23.5 42.0 73.0 647 890 1140 1423 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling is dynamically balanced. (2) The Renold Hi-Tec Coupling will “slip” axially when the maximum axial force is reached. RENOLD Hi-Tec Couplings www.renold.com 19 19 DCB Design Variations The DCB coupling can be adapted to meet customer requirements, as can be seen from the design variations shown below. For a more comprehensive list contact Renold Hi-Tec. Cardan Shaft Coupling Universal Joint Shaft Coupling Cardan shaft coupling to give high misalignment capability, low axial and angular stiffness and high noise attenuation. Coupling for use with a universal joint shaft. The coupling has radial and axial bearings to accept the sinusoidal loads from the universal joint shaft. Clutch Coupling Limited End Float Coupling Clutch coupling to allow the drive to be engaged and disengaged. Limited end float coupling for use on applications where axial restraint is required, such as alternators with sleeve bearings. Stub Shaft Coupling Stub shaft coupling for flywheel to flange application or when increased distance between the driving and driven machines is required. Adaptor Plate Coupling Adaptor plate coupling for adapting the standard DCB coupling to meet customer requirements. RENOLD Hi-Tec Couplings www.renold.com 20 20 4 RENOLD Hi-Tec Couplings www.renold.com 21 HTB Flexible Coupling blind assembly, blind assembly, coupling coupling High temperature High temperature designed designed for bellfor housing bell housing applications. applications. Standard Standard Coupling Coupling Arrangements Arrangements • • • • Flywheel • Flywheel to Shaft to Shaft Shaft• to Shaft Shaft to Shaft Flywheel • Flywheel to U-joint to U-joint Flywheel • Flywheel to Flange to Flange Applications Applications • • • • • Marine • Marine propulsion propulsion Generator • Generator sets sets Pump • Pump sets sets Compressors • Compressors Rail/People • Rail/People movingmoving Features Features Benefits Benefits ● Unique ● Unique blind assembly blind assembly ● Allows ● Allows easy assembly easy assembly for applications for applications in bell in bell housings. housings. ● Allows ● Allows operation operation in bell in housings bell housings where where ambient ambient ● High ● temperature High temperature capability capability (up to (up 400°F) to 400°F) temperatures temperatures can becan high. be high. ● Avoiding ● Avoiding failure failure of the of driveline the driveline under short under short ● Severe ● Severe shock shock load protection load protection circuit circuit and other and transient other transient conditions. conditions. ● Intrinsically ● Intrinsically fail safe fail safe ● Ensuring ● Ensuring continuous continuous operation operation of the of driveline the driveline in in the unlikely the unlikely event of event rubber of rubber damage. damage. ● Low●maintenance Low maintenance ● Easy ● block Easy removal block removal ● Noise ● attenuation Noise attenuation ● Giving ● Giving quiet running quiet running conditions conditions in sensitive in sensitive applications applications by the by elimination the elimination of metal of to metal metal to metal contact. contact. Construction Construction Details Details • Spheroidal • Spheroidal Iron Graphite Iron Graphite to BS 2789 to BSGrade 2789 Grade 420/12.420/12. • High•temperature High temperature elastomer elastomer with a with 400°F a 400°F temperature temperature capability. capability. • Keep• plate Keepintegral plate integral with outer withmember. outer member. • Steel•Hub Steelmanufactured Hub manufactured to meettoapplication meet application requirements. requirements. RENOLD Hi-Tec Couplings www.renold.com 22 22 HTB Typical Applications Diesel electric main propulsion. Coupling fitted between electric motors and the reintjes gearboxes to kort nozzle propellors. Diesel generator sets. Coupling fitted between diesel engine and alternator. 4 Main propulsion. Coupling fitted between Guascor engine and Twin Disc gearbox. RENOLD Hi-Tec Couplings Main propulsion coupling HTB fitted between 3508 Cat engine and Twin Disc 540 gearbox. www.renold.com 23 23 HTB Standard SAE Flywheel to Shaft HTB1200 - HTB10000 HTB4500 HTB12000 - HTB20000 MxN W2 J2 W2 J2 MxN B L L B2 J W1 J1 UxV UxV SxT W-3 SxT W1 J1 QxR C QxR W2 J2 B J C MxN B L J UxV SxT W1 J1 QxR W3 J3 W3 J3 C D A F D Y E Y A F G G E G A F D Y E G Dimensions, Weight, Inertia and Alignment COUPLING SIZE 1200 SAE11.5 SAE14 A B B2 C D E F G DIMENSIONS J (inch) L M (QTY) N Q (QTY) R S (QTY) T U (QTY) V Y (MAX) Y (MIN) Z RUBBER Per Cavity ELEMENTS Per Coupling MAXIMUM SPEED (rpm) (1) WEIGHT W1 (lb) W2 W3 TOTAL (W1+W2) INERTIA J1 (lb.in2) J2 J3 ALLOWABLE MISALIGNMENT RADIAL (inch) ALIGN MAX AXIAL (inch) ALIGN MAX CONICAL (degree) 13.875 1.97 0.16 3.94 6.14 13.13 11.97 0.39 4.20 8 0.41 12 M12 6 M6 6 M12 3.15 1.57 0.63 1 12 3730 6 22 26 28 102 649 136 0.01 0.04 0.04 0.08 0.5 3000 SAE14 SAE18 4500 SAE14 18.375 18.375 22.5 18.375 22.5 1.97 2.64 2.64 2.74 2.74 0.79 0.79 0.16 0.16 0.16 0.16 0.16 3.94 4.53 4.53 5.16 5.16 6.14 8.27 8.27 8.27 8.27 17.25 17.25 21.37 17.25 21.37 11.97 16.10 16.10 16.10 16.10 0.39 0.47 0.47 0.47 0.47 4.20 4.72 4.72 5.35 5.35 8 8 6 8 6 0.53 0.53 0.67 0.53 0.67 12 12 12 16 16 M12 M16 M16 M16 M16 6 6 6 6 6 M6 M8 M8 M8 M8 6 6 6 6 6 M12 M14 M14 M14 M14 3.15 4.53 4.53 4.53 4.53 1.57 1.97 1.97 1.97 1.97 0.63 0.79 0.79 0.00 0.00 1 1 1 2 2 12 12 12 24 24 2820 2820 2300 2820 2300 6 15 15 23 23 33 48 64 58 76 26 50 50 50 50 40 64 79 81 99 102 307 307 512 512 1435 2562 3177 3007 3143 136 478 478 580 580 0.01 0.04 0.04 0.08 0.5 0.02 0.06 0.04 0.10 0.5 0.02 0.06 0.04 0.10 0.5 0.02 0.06 0.04 0.10 0.5 6000 SAE18 SAE18 0.02 0.06 0.04 0.10 0.5 RENOLD Hi-Tec Couplings 10000 SAE21 SAE21 22.5 3.31 0.20 5.91 10.08 21.37 19.88 0.63 5.91 6 0.67 12 M20 6 M10 6 M16 5.91 2.36 1.14 1 12 2300 35 95 92 103 888 7722 1264 26.5 3.31 0.20 5.91 10.08 25.25 19.88 0.63 5.91 12 0.67 12 M20 6 M10 6 M16 5.91 2.36 1.14 1 12 1950 35 121 92 156 888 11447 1264 26.5 4.06 0.20 6.85 12.13 25.25 23.62 0.79 7.09 12 0.67 12 M24 6 M10 6 M20 6.69 2.36 1.42 1 12 1950 53 0.02 0.06 0.04 0.10 0.5 0.02 0.06 0.04 0.10 0.5 12000 SAE18 SAE21 22.5 5.55 0.20 8.07 10.08 21.37 19.88 0.63 8.07 6 0.67 12 M20 6 M10 6 M16 5.91 2.36 1.14 2 24 2300 91 171 129 102 143 225 221 2186 3348 18418 9533 3417 1981 26.5 5.55 0.20 7.64 10.08 25.25 19.88 0.63 8.07 12 0.67 12 M20 6 M10 6 M16 5.91 2.36 1.14 2 24 1950 91 155 143 247 3348 13497 1981 0.02 0.06 0.04 0.10 0.5 0.02 0.06 0.04 0.10 0.5 0.02 0.06 0.04 0.10 0.5 20000 40000 SAE21 26.5 33.858 6.81 8.46 0.20 0.28 9.61 10.87 12.13 16.38 25.25 32.28 23.62 30.63 0.79 0.87 9.84 11.81 12 32 0.67 0.83 12 16 M24 M24 6 M10 6 6 M20 M24 6.69 8.66 2.36 4.33 1.42 1.42 2 2 24 24 1950 1500 123 216 247 440 252 578 370 656 6560 20400 22655 80917 5023 20366 0.02 0.06 0.04 0.10 0.5 0.02 0.06 0.04 0.10 0.5 www.renold.com 24 24 HTB Technical Data 2.1 1.1 Torque Capacity - Diesel Engine Drives When subject to axial misalignment, the coupling will have an axial resistance which gradually reduces due to the effect of vibratory torque. The HTB Coupling is selected on the “Nominal Torque, TKN” without service factors. The axial stiffness of the coupling is torque dependent, the variation is as shown in the Technical Data. The full torque capacity of the coupling for transient vibration whilst passing through major criticals on run up is published as the Maximum Torque TKMAX. (TKMAX = 3 x TKN). 2.2 The published “Vibratory Torque TKW”, relates to the amplitude of the permissible continous torque fluctuation. The vibratory torque values shown in the technical data are at the frequency of 10Hz. The measure of acceptability of the coupling for vibrating drives is published as “Allowable Dissipated Heat at Ambient Temperature 86°F. 2.3 2.4 Transient Torques Prediction of the System Torsional Vibration Characteristics An adequate prediction of the systems torsional vibration characteristics, can be made by the following method: 2.4.1 Use the torsional stiffness, as published in the catalog which is based upon data measured at 86˚F ambient temperature. 2.4.2 Repeat the calculation made as 2.4.1, but using the maximum temperature correction factor St212, and dynamic magnifier correction factor, M212, for the selected rubber. Use tables on page 4 to adjust values for both torsional stiffness and dynamic magnifier. ie. CT212 = CTdyn X St212 Care needs to be taken in the design of couplings with shaft brakes, to ensure coupling torques are not increased by severe deceleration. Sudden torque applications of propulsion devices such as thrusters or waterjets, need to be considered when designing the coupling connection. Stiffness Properties The Renold Hi-Tec Coupling remains fully flexible under all torque conditions. The HTB series is a non-bonded type operating with the Rubber-inCompression principle. Torsional Stiffness The torsional stiffness of the coupling is dependent upon applied torque and temperature as shown in the Technical Data. Prediction of transient torques in marine drives can be complex. Normal installations are well provided for by selecting couplings based on the “Nominal Torque TKN”. Transients, such as start up and clutch maneuver, are usually within the “Maximum Torque TKMAX” for the coupling. 2.0 Radial Stiffness The radial stiffness of the coupling is torque dependent, and is as shown in the Technical Data. There is additional torque capacity built within the coupling for transient and shock torques. 1.2 Axial Stiffness 4 RENOLD Hi-Tec Couplings 2.4.3 Review calculations 2.4.1 and 2.4.2 and if the speed range is clear of criticals which do not exceed the allowable heat dissipation value as published in the catalog, then the coupling is considered suitable for the application with respect to the torsional vibration characteristics. If there is a critical in the speed range, then the actual temperature of the coupling should be calculated at this speed. www.renold.com 25 25 HTB Technical Data 2.6 Temperature Correction Factor - Si-70 Tempmax St °F St212 = 0.79 212 Si 70 Si 70 is considered “standard” Rubber Grade Dynamic Magnifier at 86ºF (M86) Dynamic Magnifier at 212ºF (M212) ϑ Temperature Correction Factor St Rubber Grade 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 77 7.5 Si 70 9.70 Si 70 is considered “standard” 2.5 Prediction of the Actual CouplingTemperature and Torsional Stiffness 2.5.1 Use the torsional stiffness as published in the catalog. This is based upon data measured at 86˚F and the dynamic magnifier at 86˚F (M86) 122 167 212 257 302 347 Rubber Temperature (ϑ) ˚F R 392 2.7 Dynamic Magnifier Correction Factor The Dynamic Magnifier of the rubber is subject to temperature variation in the same way as the torsional stiffness. MT = M86 St 2.5.2 Compare the synthesis value of the calculated heat load in the coupling (PK) at the speed of interest, to the “Allowable Heat Dissipation” (PKW). Rubber Grade ψT = ψ86 x St Dynamic Magnifier (M86) Relative Damping ψ86 Si 70 7.5 0.83 Si 70 is considered “standard” The coupling temperature rise = ∆F ∆F = Tempcoup = PK x 306 PKW The coupling temperature = ϑ ( ) ϑ = Tempcoup + Ambient Temp. 2.5.3 Calculate the temperature correction factor, St, from 2.6 (if the coupling temperature > 212ºF, then use St212). Calculate the dynamic Magnifier as per 2.7. Repeat the calculation with the new value of coupling stiffness and dynamic magnifier 2.5.4 Calculate the coupling temperature as per 2.5.2 Repeat calculation until the coupling temperature agrees with the correction factors for torsional stiffness and dynamic magnifier used in the calculation. RENOLD Hi-Tec Couplings www.renold.com 26 26 HTB Technical Data End view Dimensions, Weight, Inertia and Alignment COUPLING SIZE 1200 SAE11.5 3000 SAE14 SAE14 4500 SAE18 SAE14 6000 10000 12000 20000 40000 SAE18 SAE18 SAE21 SAE21 SAE18 SAE21 SAE21 SAE21 Nominal Torque TKN (ft.lb) 885 885 2213 2213 3319 3319 4425 4425 7376 8851 8851 14751 29,500 Maximum Torque TKMAX (ft.lb) 2655 2655 6638 6638 9957 9957 13276 13276 22127 26552 26552 44254 88,500 Vibratory Torque TKW (ft.lb) 295 295 738 738 1106 1106 1475 1475 2434 2950 2950 4868 9,832 Stiffness CTdyn (lb.in/radx106) 10% Nominal Torque 0.027 0.027 0.071 0.071 0.106 0.106 0.133 0.133 0.239 0.266 0.266 0.478 1.036 25% Nominal Torque 0.071 0.071 0.186 0.186 0.283 0.283 0.354 0.354 0.637 0.708 0.708 1.266 2.744 50% Nominal Torque 0.195 0.195 0.496 0.496 0.761 0.735 0.929 0.929 1.664 1.859 1.859 3.328 7.249 75% Nominal Torque 0.381 0.381 0.965 0.965 1.434 1.434 1.814 1.814 3.248 3.629 3.629 6.496 14.135 100% Nominal Torque 0.655 0.655 1.575 1.575 2.345 2.345 2.965 2.965 5.310 5.930 5.930 10.621 23.092 Allowable Heat Loading @ 86°F (W) 430 430 600 600 760 760 735 735 900 1150 1150 1425 1800 Dynamic Magnifier (M) 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 3730 2820 2820 2300 2820 2300 2300 1950 1950 2300 1950 1950 1500 @ No Load 2.969 2.969 4.054 4.054 5.995 5.995 5.139 5.139 5.938 10.278 10.278 11.877 13.875 @ TKN 9.450 9.450 12.990 12.990 19.185 19.185 16.416 16.416 18.985 32.775 32.775 37.914 44.252 @ No Load 1.113 1.113 1.570 1.570 2.941 2.941 1.970 1.970 2.370 5.596 5.596 6.566 15.132 @ TKN 4.796 4.796 6.738 6.738 12.619 12.619 8.508 8.508 10.221 24.153 24.153 27.236 48.875 Maximum Speed (RPM) Radial Stiffness (lb/in x 103): Axial Stiffness (lb/in x 103): 4 RENOLD Hi-Tec Couplings www.renold.com 27 27 HTB Design Variations The HTB coupling can be adapted to meet customer requirements, as can be seen from some of the design variations below. For a more comprehensive list contact Renold Hi-Tec. Coupling to Suit Existing Hub Existing hub fitment. Coupling inner member designed to suit existing hub design. Shaft to Shaft Coupling Shaft to Shaft Coupling. Designed for use on electric motor drives and power take off applications. Reversed Inner Member Coupling Coupling with reversed inner member to increase distance between flywheel face and shaft end. Spacer Coupling Spacer coupling. Used to increase the distance between shaft ends and allow easy access to driven and driving machine. RENOLD Hi-Tec Couplings www.renold.com 28 28 4 RENOLD Hi-Tec Couplings www.renold.com 29 RB Flexible Coupling General purpose, cost effective coupling range manufactured from SG iron for torques up to 30,240 lb-ft. Standard Coupling Arrangements Shaft to shaft Shaft to shaft with increased shaft engagement Flywheel to shaft Flywheel to shaft with increased shaft engagement • • • • Applications • • • • • • • • • Features Generator sets Pump sets Compressors Wind turbines Metal manufacture Bulk handling Pulp and paper industry Marine propulsion General heavy duty industrial applications Benefits ● Intrinsically fail safe ● Ensures continuous operation of the driveline in the unlikely event of rubber damage. ● Control of resonant torsional vibration ● Achieves low vibratory loads in the driveline components by selection of optimum stiffness characteristics. ● Maintenance free ● No lubrication or adjustment required resulting in low running costs. ● Severe shock load protection ● Avoids failure of the driveline under short circuit and other transient conditions. ● Misalignment capability ● Allows axial, angular and radial misalignments between the driving and driven machines. ● Zero backlash ● Eliminates torque amplifications through pre-compression of the rubber elements. ● Low cost ● The RB coupling gives the lowest lifetime cost. ● Selection of Rubber ● Variety of rubber materials and hardness are available for optimum reduction of drive vibration and maximun block life. Construction details • Spheroidal graphite iron to BS 2789 Grade 420/12 • Separate rubber elements with a choice of grade and hardness, styrene butadiene with 70 shore hardness (SM70) is standard. • Rubber elements which are totally enclosed and loaded in compression. RENOLD Hi-Tec Couplings www.renold.com 30 RB Typical Applications RB 0.24 flywheel mounted coupling on a Deutz TD 229 - 6 diesel generator set in Spain. RB 2.15 flywheel mounted coupling on a Detroit Diesel driven Peerless pump RB 0.37 flywheel mounted coupling on an ADE - HML ground power unit. RB 0.73 flywheel mounted coupling on a diesel engine driven Weir pump. RB 2.15 shaft to shaft coupling on a Howden Donkin blower. RB 0.73 Cardan shaft and RB 0.73 shaft to shaft couplings with long boss inner members on wind turbines in the Netherlands. 4 RB 1.15 flywheel mounted coupling on an FG Wilson diesel generator set. RB 3.86 flywheel mounted coupling on an Aggreko rental diesel generator set. RENOLD Hi-Tec Couplings www.renold.com 31 31 RB Shaft to Shaft Rigid half / Flex half Features Benefits ● Can accommodate a wide range of shaft diameters ● Allows the optimum coupling to be selected ● Easy disconnection of the outer member and driving flange ● Allows the driving and driven machines to be disconnected ● Coupling available with limited end float ● Provides axial location for motors with sleeve bearings Dimensions, Weight, Inertia and Alignment COUPLING SIZE 0.12 0.2 0.24 0.37 0.73 1.15 2.15 3.86 5.5 A B C D D1 E F G DIMENSIONS J (inch) Q (QTY) R S (QTY) T MAX. X MAX. Y MIN. X & Y RUBBER Per Cavity ELEMENTS Per Coupling MAXIMUM SPEED (rpm)(1) WEIGHT (3) W1 (lb) W2 W3 TOTAL INERTIA (3) J1 (lb.in2) J2 J3 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) ± CONICAL (degree) 7.87 4.13 0.13 2.00 2.00 3.13 7.00 6.16 0.50 5 M8 6 M8 1.97 2.17 1.18 1 10 5250 6.2 8.8 9.0 24.0 15 79 52 8.75 4.38 0.13 2.13 2.13 3.75 7.87 7.01 0.56 6 M8 6 M8 2.36 2.76 1.38 1 12 4725 8.9 11.1 12.8 32.8 28 128 92 9.37 4.87 0.13 2.37 2.37 4.00 8.37 7.34 0.63 6 M8 6 M10 2.56 2.95 1.57 1 12 4410 11.7 14.1 16.4 42.2 44 186 135 10.25 5.37 0.13 2.63 2.63 4.75 9.25 8.27 0.69 6 M10 8 M10 3.15 3.35 1.57 1 12 4035 16.5 17.9 23.0 57.4 79 303 220 12.13 6.87 0.13 3.37 3.37 6.00 11.00 9.88 0.75 6 M10 8 M12 3.74 3.74 2.17 1 12 3410 28.3 29.3 39.7 97.3 192 683 504 14.13 7.63 0.13 3.75 3.75 7.25 12.75 11.61 0.75 6 M12 10 M12 4.53 4.53 2.17 1 12 2925 51.6 40.6 60.3 152.5 478 1255 977 18.37 9.19 0.19 4.50 4.50 8.75 17.25 14.25 0.75 6 M12 16 M12 5.51 5.51 2.76 1 12 2250 79.1 74.9 104.6 258.6 1102 3770 2733 20.00 10.25 0.25 5.00 5.00 11.00 18.50 17.13 0.87 7 M12 12 M16 6.69 6.69 3.15 1 14 2070 138.5 96.7 166.2 401.4 2900 6547 5166 22.5 11.25 0.25 5.50 5.50 13.00 21.375 19.74 1.00 8 M12 12 M16 8.27 8.27 3.54 1 16 1820 225.1 130.1 249.8 605 6708 0.03 0.06 0.5 0.03 0.06 0.5 0.03 0.06 0.5 0.03 0.06 0.5 0.04 0.06 0.5 0.06 0.06 0.5 0.06 0.08 0.5 0.06 0.12 0.5 0.06 0.12 0.5 11751 10181 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling be dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that they do not exceed the manufacturers allowables. (3) Weights and inertias are based on the minimum bore size. RENOLD Hi-Tec Couplings www.renold.com 32 RB Shaft to Shaft with Increased Shaft Engagement Rigid half / Flex half Features ● Benefits Long boss inner member ● Allows small diameter, long length shafts to be used ● Reduces key stress ● Allows increased distances between shaft ends ● Full shaft engagement avoids the need for spacer collars Dimensions, Weight, Inertia and Alignment COUPLING SIZE 0.12 0.2 0.24 0.37 0.73 1.15 2.15 3.86 5.5 A B1 B2 C D D2 E F G DIMENSIONS J (inch) Q (QTY) R S (QTY) T MAX. X MAX. Y MIN. X & Y RUBBER PER CAVITY ELEMENTS PER COUPLING MAXIMUM SPEED (rpm)(1) WEIGHT (3) W1 (lb) W2 W3 TOTAL INERTIA (3) J1 (lb.in2) J2 J3 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) ± CONICAL (degree) 7.87 5.47 2.13 0.13 2.00 3.35 3.13 7.00 6.16 0.50 5 M8 6 M8 1.97 2.17 1.18 1 10 5250 9.3 8.8 9.0 27.1 20 79 52 8.75 5.99 2.25 0.13 2.13 3.74 3.75 7.87 7.01 0.56 6 M8 6 M8 2.36 2.76 1.38 1 12 4725 14.2 11.1 12.8 38.1 41 128 92 9.37 6.83 2.50 0.13 2.37 4.33 4.00 8.37 7.34 0.63 6 M8 6 M10 2.56 2.95 1.57 1 12 4410 19.1 14.1 16.4 49.6 65 186 135 10.25 7.48 2.75 0.13 2.63 4.72 4.75 9.25 8.27 0.69 6 M10 8 M10 3.15 3.35 1.57 1 12 4035 26.1 17.9 23.0 67 111 303 220 12.13 9.21 3.50 0.13 3.37 5.71 6.00 11.00 9.88 0.75 6 M10 8 M12 3.74 3.74 2.17 1 12 3410 42.8 29.3 39.7 111.8 263 683 504 14.13 10.57 3.87 0.13 3.75 6.69 7.25 12.75 11.61 0.75 6 M12 10 M12 4.53 4.53 2.17 1 12 2925 77.8 40.6 60.3 178.7 647 1255 977 18.37 12.17 4.69 0.19 4.50 7.48 8.75 17.25 14.25 0.75 6 M12 16 M12 5.51 5.51 2.76 1 12 2250 118.6 74.9 104.6 298.1 1485 3770 2733 20.00 13.52 5.25 0.25 5.00 8.27 11.00 18.50 17.13 0.87 7 M12 12 M16 6.69 6.69 3.15 1 14 2070 210.5 96.7 166.2 473.4 4043 6547 5166 22.50 15.20 5.75 0.25 5.50 9.45 13.00 21.375 19.74 1.00 8 M12 12 M16 8.27 8.27 3.54 1 16 1820 358.9 130.1 249.8 738.8 9893 11751 10181 0.03 0.06 0.5 0.03 0.06 0.5 4 0.03 0.03 0.06 0.5 0.04 0.06 0.5 0.06 0.06 0.5 0.06 0.08 0.5 0.06 0.12 0.5 0.06 0.12 0.5 0.06 0.5 RENOLD Hi-Tec Couplings www.renold.com 33 RB SAE Flywheel to Shaft 0.24 to 1.15 Features Benefits ● Wide range of adaptor plates ● Allows the coupling to be adapted to suit most engine flywheels ● Choice of rubber compound and hardness ● Allows control of the torsional vibration system ● Short axial length ● Allows the coupling to fit in bell housed applications Dimensions, Weight, Inertia and Alignment COUPLING SIZE A C D1 F G DIMENSIONS J (inch) L Q (QTY) R S (QTY) U MAX. Y MIN. Y RUBBER Per Cavity ELEMENTS Per Coupling MAXIMUM SPEED (rpm) (1) WEIGHT (3) W1 (lb) W2 TOTAL INERTIA (3) J1 (lb.in2) J2 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) ± CONICAL (degree) 0.24 0.37 0.73 SAE 10 SAE 11.5 SAE 11.5 SAE 14 SAE 11.5 SAE 14 12.375 13.875 13.875 18.375 13.875 18.375 0.13 0.13 0.13 0.13 0.13 0.13 2.37 2.38 2.63 2.63 3.37 3.37 11.625 13.125 13.125 17.25 13.125 17.25 7.34 7.34 8.27 8.27 9.88 9.88 0.79 0.79 0.79 0.79 0.79 0.79 3.13 3.13 3.38 3.38 4.13 4.13 6 6 6 6 6 6 M8 M8 M10 M10 M10 M10 8 8 8 8 8 8 0.41 0.41 0.41 0.53 0.41 0.53 2.95 2.95 3.35 3.35 3.74 3.74 1.57 1.57 1.57 1.57 2.17 2.17 1 1 1 1 1 1 12 12 12 12 12 12 3710 3305 3305 2500 3310 2500 11.7 11.7 16.5 16.5 28.3 28.3 34.6 37.7 44.0 63.4 52.9 77.8 46.3 49.4 60.5 79.9 81.2 106.1 44 44 79 79 192 192 656 870 1054 2558 1366 3041 0.03 0.06 0.5 0.03 0.06 0.5 0.03 0.06 0.5 0.03 0.06 0.5 0.04 0.06 0.5 0.04 0.06 0.5 1.15 SAE 14 SAE 18 18.375 22.50 0.13 0.13 3.75 3.75 17.25 21.375 11.61 11.61 0.79 1.10 4.50 4.82 6 6 M12 M12 8 6 0.53 0.66 4.53 4.53 2.17 2.17 1 1 12 12 2500 2040 51.6 51.6 86.0 134.5 137.6 186.1 478 478 3510 8192 0.06 0.06 0.5 0.06 0.06 0.5 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling be dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that they do not exceed the manufacturers allowables. (3) Weights and inertias are based on the minimum bore size. RENOLD Hi-Tec Couplings www.renold.com 34 RB SAE Flywheel to Shaft 2.15 - 5.5 Keep Plate (2.15 SAE 14 and 5.5 SAE 18) Dimensions, Weight, Inertia and Alignment COUPLING SIZE 2.15 SAE 14 SAE 18 SAE 21 3.86 SAE 18 SAE 21 SAE 24 5.5 SAE 18 SAE 21 SAE 24 A C D1 F G DIMENSIONS J (inch) L Q (QTY) R S (QTY) U MAX. Y MIN. Y RUBBER Per Cavity ELEMENTS Per Coupling MAXIMUM SPEED (rpm)(1) WEIGHT (3) W1 (lb) W2 TOTAL INERTIA (3) J1 (lb.in2) J2 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) ± CONICAL (degree) 18.375 22.50 0.19 0.19 4.50 4.50 17.25 21.375 14.25 14.25 1.38 1.10 5.32 5.63 6 6 M12 M12 8 6 0.52 0.66 5.51 5.51 2.76 2.76 1 1 12 12 2500 2040 79.1 79.1 111.2 174.5 190.3 253.6 1102 1102 5650 11254 26.50 0.19 4.50 25.25 14.25 1.10 5.63 6 M12 12 0.66 5.51 2.76 1 12 1800 79.1 203.2 282.3 1102 17063 22.50 0.25 5.00 21.375 17.13 1.10 6.20 7 M12 6 0.66 6.69 3.15 1 14 2040 138.5 190.6 329.1 2900 13484 22.50 0.25 5.50 21.375 19.74 1.63 6.38 8 M12 12 0.68 8.27 3.54 1 16 2040 225.1 174.5 399.6 6708 15610 26.50 0.25 5.50 25.25 19.74 1.10 6.69 8 M12 12 0.67 8.27 3.54 1 16 1800 225.1 258.4 483.5 6708 25044 28.875 0.25 5.50 27.25 19.74 1.22 6.81 8 M12 12 0.87 8.27 3.54 1 16 1590 225.1 298.6 523.7 6708 33040 0.06 0.08 0.5 0.06 0.12 0.5 0.06 0.12 0.5 0.06 0.12 0.5 0.06 0.12 0.5 0.06 0.08 0.5 0.06 0.08 0.5 26.50 28.875 0.25 0.25 5.00 5.00 25.25 27.25 17.13 17.13 1.22 1.22 6.32 6.32 7 7 M12 M12 12 12 0.66 0.87 6.69 6.69 3.15 3.15 1 1 14 14 1800 1590 138.5 138.5 243.3 265.3 381.8 403.8 2900 2900 22095 27836 0.06 0.12 0.5 0.06 0.12 0.5 (1) For operation above 80% of the declared maximum coupling4speed, it is recommended that the coupling be dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that they do not exceed the manufacturers allowables. (3) Weights and inertias are based on the minimum bore size. RENOLD Hi-Tec Couplings www.renold.com 35 RB SAE Flywheel to Shaft with Increased Shaft Engagement 0.24 - 1.15 Features L1 L ● SxU J Benefits Long boss inner members ● Allows small diameter long length shafts to be used ● Reduces key stress ● Allows increased distance between shaft end and flywheel ● Full shaft engagement avoids the need for spacer collars W2 J2 QxR C W1 J1 D2 A F Y G Dimensions, Weight, Inertia and Alignment COUPLING SIZE 0.24 SAE 10 A C D2 F G J DIMENSIONS L (inch) L1 Q (QTY) R S (QTY) U MAX. Y MIN. Y RUBBER PER CAVITY ELEMENTS PER COUPLING MAXIMUM SPEED (rpm)(1) WEIGHT (3) W1 (lb) W2 TOTAL INERTIA (3) J1 (lb.in2) J2 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) ± CONICAL (degree) 0.37 SAE 11.5 SAE 11.5 0.73 1.15 SAE 14 SAE 11.5 SAE 14 SAE 14 SAE 18 12.375 0.13 4.33 11.625 7.34 0.79 3.13 5.09 6 M8 8 0.41 2.95 1.57 1 12 3710 19.1 34.6 53.7 65 656 13.875 0.13 4.33 13.125 7.34 0.79 3.13 5.09 6 M8 8 0.41 2.95 1.57 1 12 3305 19.1 37.7 56.8 65 870 13.875 0.13 4.72 13.125 8.27 0.79 3.38 5.48 6 M10 8 0.41 3.35 1.57 1 12 3305 26.1 44.0 70.1 111 1054 18.375 0.13 4.72 17.25 8.27 0.79 3.38 5.48 6 M10 8 0.53 3.35 1.57 1 12 2500 26.1 63.4 89.5 111 2558 13.875 0.13 5.71 13.125 9.88 0.79 4.13 6.46 6 M10 8 0.41 3.74 2.17 1 12 3305 42.8 52.9 95.7 263 1366 18.375 0.13 5.71 17.25 9.88 0.79 4.13 6.46 6 M10 8 0.53 3.74 2.17 1 12 2500 42.8 77.8 120.6 263 3041 18.375 0.13 6.69 17.25 11.61 0.79 4.50 7.45 6 M12 8 0.53 4.53 2.17 1 12 2500 77.8 86.0 163.8 647 3510 22.50 0.13 6.69 21.375 11.61 1.10 4.82 7.76 6 M12 6 0.66 4.53 2.17 1 12 2040 77.8 134.5 212.3 647 8192 0.03 0.06 0.5 0.03 0.06 0.5 0.03 0.06 0.5 0.03 0.06 0.5 0.04 0.06 0.5 0.04 0.06 0.5 0.06 0.06 0.5 0.06 0.06 0.5 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling be dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that they do not exceed the manufacturers allowables. (3) Weights and inertias are based on the minimum bore size. RENOLD Hi-Tec Couplings www.renold.com 36 RB SAE Flywheel to Shaft with Increased Shaft Engagement 2.15 - 5.5 Keep Plate (2.15 SAE 14 and 5.5 SAE 18) Dimensions, Weight, Inertia and Alignment COUPLING SIZE A C D2 F G J DIMENSIONS L (inch) L1 Q (QTY) R S (QTY) U MAX. Y MIN. Y RUBBER Per Cavity ELEMENTS Per Coupling MAXIMUM SPEED (rpm) (1) WEIGHT (3) W1 (lb) W2 TOTAL INERTIA (3) J1 (lb.in2 ) J2 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) ± CONICAL (degree) 2.15 3.86 5.5 SAE 14 SAE 18 SAE 21 SAE 18 SAE 21 SAE 24 SAE 18 SAE 21 SAE 24 18.375 0.19 7.48 17.25 14.25 1.38 5.32 8.30 6 M12 8 0.53 5.51 2.76 1 12 2500 118.6 111.2 229.8 1485 5650 22.50 0.19 7.48 21.375 14.25 1.10 5.63 8.66 6 M12 6 0.66 5.51 2.76 1 12 2040 118.6 174.5 293.1 1485 11254 0.06 0.08 0.5 0.06 0.08 0.5 4 RENOLD Hi-Tec Couplings 26.50 0.19 7.48 25.25 14.25 1.10 5.63 8.66 6 M12 12 0.66 5.51 2.76 1 12 1800 118.6 203.2 321.8 1485 17063 22.50 0.25 8.27 21.375 17.13 1.10 6.20 9.47 7 M12 6 0.66 6.69 3.15 1 14 2040 210.5 190.6 401.1 4043 13484 26.50 0.25 8.27 25.25 17.13 1.22 6.32 9.59 7 M12 12 0.66 6.69 3.15 1 14 1800 210.5 243.3 453.8 4043 22095 28.875 0.25 8.27 27.25 17.13 1.22 6.32 9.59 7 M12 12 0.87 6.69 3.15 1 14 1590 210.5 265.3 475.8 4043 27836 22.50 0.25 9.45 21.375 19.74 1.63 6.38 10.34 8 M12 12 0.68 8.27 3.54 1 16 2040 358.9 174.5 533.4 9893 15610 26.50 0.25 9.45 25.25 19.74 1.10 6.69 10.69 8 M12 12 0.67 8.27 3.54 1 16 1800 358.9 258.4 617.3 9893 25044 28.875 0.25 9.45 27.25 19.74 1.22 6.81 10.77 8 M12 12 0.87 8.27 3.54 1 16 1590 358.9 298.6 657.5 9893 33040 0.06 0.08 0.5 0.06 0.12 0.5 0.06 0.12 0.5 0.06 0.12 0.5 0.06 0.12 0.5 0.06 0.12 0.5 0.06 0.12 0.5 www.renold.com 37 RB Technical Data 1.1 Diesel Engine Drives The RB coupling is selected using the “nominal torque (TKN)” without service factors for diesel drive applications. The full torque capacity of the coupling for transient vibration while passing through major criticals on run up is published as the maximum torque (TKMAX). (TKMAX = 3 x TKN). There is an additional torque capacity built into the coupling for short circuit and shock torques equal to 3 x TKMAX. The published “Vibratory torque (TKW)” is a fatigue function according to DIN740 and not significant in diesel engine drives. The vibratory torque values shown in the Technical Data are at the frequency of 10Hz. The measure used for acceptability of the coupling under vibratory torque is heat dissipation of the rubber elements. The maximum allowable heat dissipation shown in the Technical Data is at a 86°F ambient temperature. 1.2 Industrial Drives For industrial electrical motor applications, refer to the “Selection Procedure” and base the selection on TKmax with the appropriate service factors. The service factors used in the “Selection Procedure” are based upon 40 years experience of drives and their shock frequency/amplitude. The stated TKMAX quoted should not be exceeded by design without reference to Renold Hi-Tec Couplings. Care needs to be taken in the design of couplings with shaft brakes to ensure the coupling torques are not increased by severe deceleration. 2.0 Stiffness Properties The Renold Hi-Tec coupling remains fully flexible under all torque conditions because of its nonbonded “Rubber-in-Compression” style of design. 2.1 Axial Stiffness When subject to misalignment forces in the axial direction, the coupling will have an axial resistance which gradually reduces due to the effect of vibratory torques. Given sufficient axial force as shown in the catalog, the coupling will slip to its new position immediately. 2.2 Radial Stiffness The radial stiffness of the coupling is torque dependent, and is as shown in the “Technical Data”. 2.3 Torsional Stiffness The torsional stiffness of the coupling is dependent upon applied torque (see “Technical Data”) and temperature. 2.4 Prediction of the System Torsional Vibration Characteristics An adequate prediction of the system torsional vibration characteristics can be made by the following method. 2.4.1 Use the torsional stiffness as published in the catalog (K86) which is based upon data measured at a 86˚F ambient temperature. 2.4.2 Repeat the calculation made in 2.4.1, but use the maximum temperature correction factor St212 and M212 for the rubber selected for both torsional stiffness and dynamic magnifier from the tables. K212 = K86 x St212 2.4.3 Review the calculations 2.4.1 and 2.4.2. If the speed range is clear of criticals which do not exceed the allowable heat dissipation value as published in the catalog, then the coupling is considered suitable for the application with respect to the torsional vibration characteristics. If there is a critical in the speed range, the actual temperature of the coupling will need to be calculated at this speed. RENOLD Hi-Tec Couplings www.renold.com 38 RB Technical Data Rubber Grade Tempmax St SM 60 SM 70 SM 80 212 212 212 St212 = 0.75 St212 = 0.63 St212 = 0.58 2.6 KT = K86 x St 2.7 SM 70 is considered “standard” Rubber Grade Dynamic Magnifier at 86ºF (M86) Dynamic Magnifier at 212ºF (M212) SM 60 SM 70 SM 80 8 6 4 10.7 9.5 6.9 Temperature Correction Factor Dynamic Magnifier Correction Factor The dynamic magnifier of the rubber is subject to temperature variation in the same way as the torsional stiffness. SM 70 is considered “standard” 2.5 Prediction of the Actual Coupling Temperature and Torsional Stiffness 2.5.1 Use the torsional stiffness as published in the catalog (K86), which is based upon data measured at 86˚F and the dynamic magnifier (M86) at 86˚F. 2.5.2 Compare the synthesis value of the calculated heat load in the coupling (PK) at the speed of interest to the “Allowable Heat Dissipation (PKW).” The coupling temperature rise = ∆F ∆F = Tempcoup = PK x 126 PKW The coupling temperature = ϑ ( ) Rubber Temperature (ϑ) ˚F MT = M86 St Rubber Grade SM 60 SM 70 SM 80 ϕT = ϕ 86 x St Dynamic Magnifier (M86) Relative Damping 8 6 4 0.78 1.05 1.57 ϕ86 SM 70 is considered “standard” ϑ = Tempcoup + Ambient Temp. 2.5.3 Calculate the temperature correction factor (St) from 2.6 (if the coupling temperature > 212ºF, then use St212). Calculate the dynamic magnifier as per 2.7. Repeat the calculation with the new value of coupling stiffness (KT) and dynamic magnifier (MT). 2.5.4 Calculate the coupling temperature as per 2.5. Repeat calculation until the coupling temperature agrees with the correction factors for torsional stiffness and dynamic magnifier used in the calculation. 4 RENOLD Hi-Tec Couplings www.renold.com 39 RB Technical Data COUPLING COUPLING SIZE SIZE 0.12 0.12 0.2 0.2 0.24 0.24 0.37 0.370.73 0.731.15 1.15 2.15 2.15 3.86 3.86 5.5 5.5 NOMINAL NOMINAL TORQUE TORQUE TKN (lb-ft) TKN (lb-ft) 232 232 356 356 420 420 648 6481276127620142014 37733773 6755675596259625 MAXIMUM MAXIMUM TORQUE TORQUE TKMAX T(lb-ft) KMAX(lb-ft) 682 6821051 10511269 12691943 19433946 39465974 5974 11287 1128720209 20209 30240 30240 HP/rpm HP/rpm 0.13 0.130.20 0.200.24 0.24 0.37 0.370.75 0.751.14 1.14 2.15 2.15 3.85 3.855.76 5.76 VIBRATORY VIBRATORY TORQUE TORQUE TKW (lb-ft) TKW (lb-ft) 90 90 139 139 164 164 252 252 496 496 783 783 14671467 2626262637433743 ALLOWABLE ALLOWABLE DISSIPATED DISSIPATED SM 60 SM 60 90 90 112 112 125 125 140 140 185 185 204 204 246 246 336 336 426 426 HEATHEAT AT 86°F AT AMBIENT 86°F AMBIENT TEMPTEMP SM 70 SM 7098 98 123 123 138 138 155 155 204 204 224 224 270 270 369 369 465 465 PKWPKW (W) (W) SM 80 SM 80100 100 138 138 154 154 173 173 228 228 250 250 302 302 410 410 520 520 DYNAMIC DYNAMIC TORSIONAL TORSIONAL 6 lb-in/rad) STIFFNESS STIFFNESS (x106(x10 lb-in/rad) 0.0800.080 SM 60 SM 60 0.0620.062 0.0890.0890.1420.142 0.2830.283 0.4340.4340.8230.8231.2571.257 1.6461.646 0.1240.124 25% 25% TKN TKN SM 70 SM 70 0.0970.097 0.1500.1500.2300.230 0.4600.460 0.6990.6991.3281.3282.0362.036 2.6552.655 0.1860.186 SM 80 SM 80 0.1420.142 0.2210.2210.3450.345 0.6990.699 1.0531.0531.9911.9913.0623.062 4.0094.009 0.1860.186 SM 60 SM 60 0.1420.142 0.2210.2210.3360.336 0.6900.690 1.0441.0441.9741.9743.0363.036 3.9743.974 0.2480.248 50% 50% TKN TKN SM 70 SM 70 0.1950.195 0.3010.3010.4600.460 0.9290.929 1.4071.4072.6552.6554.0714.071 5.3285.328 0.2920.292 SM 80 SM 80 0.2300.230 0.3540.3540.5490.549 1.1061.106 1.6731.6733.1693.1694.8594.859 6.3646.364 0.3980.398 SM 60 SM 60 0.3100.310 0.4780.4780.7260.726 1.4781.478 2.2392.2394.2404.2406.5056.505 8.5148.514 0.4870.487 75% 75% TKN TKN SM 70 SM 70 0.3810.381 0.5840.5840.8940.894 1.8141.814 2.7442.7445.1875.1877.9667.966 10.426 10.426 0.5580.558 SM 80 SM 80 0.4340.434 0.6730.6731.0361.036 2.1062.106 3.1863.1866.0186.0189.2319.231 12.090 12.090 0.6460.646 SM 60 SM 60 0.5040.504 0.7790.7791.1861.186 2.4162.416 3.6553.6556.9046.90410.594 10.594 13.869 13.869 0.7520.752 100%100% TKN TKN SM 70 SM 70 0.5840.584 0.9120.9121.3901.390 2.8232.823 4.2754.2758.0728.07212.391 12.391 16.22316.223 0.8850.885 SM 80 SM 80 0.6900.690 1.0711.0711.6371.637 3.3373.337 5.0455.0459.5329.53214.630 14.630 19.153 19.153 RADIAL RADIAL STIFFNESS STIFFNESS SM 60 SM 605.82 5.827.19 7.198.19 8.19 9.10 9.1012.0812.08 13.1913.1916.3816.3821.3521.35 26.9926.99 3 lb/in) SM 70 NO LOAD NO LOAD (x103(x10 lb/in) SM 707.16 7.168.85 8.8510.0710.0711.2011.20 14.7614.76 16.2416.2420.1520.1526.2626.26 33.1733.17 SM 80 SM 809.86 9.8612.1912.19 13.8713.8715.4115.41 20.8620.86 22.3522.3527.7527.7536.1436.14 45.7245.72 14.4814.48 Radial Radial Stiffness Stiffness SM 60 SM 60 11.6811.68 16.4416.4418.3118.31 24.2624.26 26.5526.5533.0033.0042.9442.94 54.3054.30 3 lb/in) 15.0615.06 @TKN@T (x10 KN3(x10 lb/in) SM 70 SM 70 12.1812.18 17.1317.1319.6119.61 25.1025.10 27.6027.6034.2634.2644.6544.65 56.4756.47 16.3016.30 SM 80 SM 80 13.1913.19 18.5518.5520.6120.61 27.8927.89 29.8929.8937.1137.1148.3348.33 61.0961.09 AXIAL AXIAL STIFFNESS STIFFNESS SM 60 SM 605.88 5.887.13 7.137.99 7.99 9.13 9.1311.9611.96 13.1913.1916.2716.2721.1221.12 26.8326.83 3 lb/in) SM 70 NO LOAD NO LOAD (x103(x10 lb/in) SM 70 6.2816.2817.70 7.708.62 8.62 9.76 9.7612.5612.56 14.2714.2717.7017.7023.4123.41 29.6929.69 21.0721.07 SM 80 SM 80 16.7816.78 23.1823.1826.3826.38 34.6034.60 38.2538.2546.9346.9361.4461.44 77.5477.54 MAX MAX AXIAL AXIAL FORCE FORCE (1) (1) SM 60 SM 60243 243 303 303 337 337 382 382 495 495 553 553 674 674 877 8771,1241,124 (lb) @T (lb) KN@TKN SM 70 SM 70259 259 324 324 360 360 405 405 531 531 584 584 719 719 922 9221,1911,191 SM 80 SM 80292 292 360 360 396 396 450 450 584 584 652 652 787 787 1,0341,034 1,3041,304 Note.Note. SM70SM70 is supplied is supplied as the asstandard the standard rubber rubber grade. grade. Options Options of rubber of rubber grades grades SM60SM60 or SM80 or SM80 are available are available if if thesethese are considered are considered a better a better solution solution to a dynamic to a dynamic application application problem. problem. It should It should be noted be noted that for thatoperation for operation aboveabove 80% 80% of theofdeclared the declared maximum maximum coupling coupling speed, speed, the coupling the coupling should should be dynamically be dynamically balanced. balanced. (1) The (1) Renold The Renold Hi-Tec Hi-Tec coupling coupling will “slip” will “slip” axially axially whenwhen the maximum the maximum axial axial forceforce is reached. is reached. RENOLD Hi-Tec Couplings www.renold.com 40 RB Design Variations The RB coupling range can be adapted to meet customer needs. Below are some of the arrangements that have been produced. For more a comprehensive list, contact Renold HiTec Couplings. Spacer Coupling Cardan Shaft Coupling Spacer coupling used to increase the distance between shaft ends and allow easy access to the driven and driving machines. Cardan shaft coupling used to increase the misalignment capability and halve the torsional stiffness. Coupling with Long Boss Inner Member Coupling with large boss driving flange and long boss inner member for vertical applications. 4 RENOLD Hi-Tec Couplings Brake Drum Coupling Coupling with brake drum for use on cranes, fans and conveyor drives. www.renold.com 41 RENOLD Hi-Tec Couplings www.renold.com 42 PM Flexible Coupling Heavy duty steel coupling with unlimited torque capacity Standard Coupling Arrangements • • • • Shaft to shaft Flange to shaft Limited end float coupling Drop out spacer Applications • • • • • • • Metal manufacture Mining and mineral processing Pumps and compressors Fans Cranes and hoists Pulp and paper industry General heavy duty industrial applications Benefits Features ● Severe shock load protection ● Gives protection and avoids failure of the driveline under high transient torques. ● Intrinsically fail safe ● Ensures continuous operation of the driveline in the unlikely event of rubber failure or damage. ● Maintenance free ● No lubrication or adjustment required resulting in low running costs. ● Vibration control ● ● Zero backlash Achieves low vibratory loads in the driveline components by selection of optimum stiffness characteristics. ● Misalignment capability ● Eliminates torque amplifications through pre-compression of the rubber elements. ● Selection of Rubber ● Allows axial, angular and radial misalignment between the driving and driven machines. ● Variety of rubber materials and hardness are available for optimum reduction of drive vibration and maximum block life Construction Details • PM couplings up to and including PM600 are manufactured from steel. Driving flanges up to and including PM60 are steel forgings to BS970 grade 070 M55. Driving flanges PM90 to PM600 and all inner and outer members up to PM600 are steel casting to BS 3100 grade A4. • PM couplings above PM900 are made from spheroidal graphite iron to BS2789 grade 420/12 unless otherwise specified. • Separate rubber elements with a choice of grade and hardness, styrene butadiene with 60 shore hardness (SM60) is standard. • Rubber elements loaded in compression. • Rubber elements are totally enclosed. 4 RENOLD Hi-Tec Couplings www.renold.com 43 PM Typical Applications PM 130 spacer coupling on an IHI Turbo compressor in Japan. PM 0.7 brake drum coupling and a PM 0.7 spacer coupling on a John Henderson coal charging car at CORUS Dawes Lane. PM 40 spacer coupling, PM 40 LEF coupling and PM 40 cardan shaft couplings on electric motor driven Sulzer pumps in Egypt. PM 90 coupling fitted between electric motor and Maag gearbox on grinding mills. PM 18 and PM 27 coupling on a Hallden-Robertson type 56 flying shear in Portugal. Two PM 600 Couplings on a nickel grinding mill at Leinster in Western Australia. RENOLD Hi-Tec Couplings www.renold.com 44 44 PM Shaft to Shaft PM 0.4 to PM 130 Data 0.7 - 60 90 - 130 Dimensions, Weight, Inertia and Alignment COUPLING SIZE 0.4 0.7 1.3 3 6 8 12 18 27 40 60 90 130 A B C D D1 E F G DIMENSIONS J (inch) Q (QTY) R S (QTY) T W MAX. X & Y (4) MIN. X (5) MIN. Y RUBBER Per Cavity ELEMENTS Per Coupling MAXIMUM SPEED (rpm) (1) W1 WEIGHT (3) W2 (lb) W3 TOTAL INERTIA (3) J1 (lb.in2) J2 J3 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch) ± CONICAL (degree) 6.37 7.37 8.50 10.25 10.24 11.89 13.31 15.43 17.32 19.29 22.36 25.12 28.66 4.06 4.33 5.12 5.63 6.89 7.60 8.72 10.00 11.44 12.95 14.86 17.03 19.17 0.04 0.08 0.08 0.12 0.12 0.12 0.14 0.16 0.18 0.20 0.22 0.26 0.28 2.01 2.13 2.52 2.76 3.39 3.74 4.29 4.92 5.63 6.38 7.32 8.39 9.45 2.01 2.13 2.52 2.76 3.39 3.74 4.29 4.92 5.63 6.38 7.32 8.39 9.45 2.99 3.62 4.25 4.80 5.31 5.83 6.61 7.68 8.66 9.92 11.42 12.99 14.69 5.75 6.75 7.75 9.25 9.45 10.87 12.28 14.17 16.02 18.03 20.79 23.54 26.77 5.24 6.18 7.13 8.70 8.74 9.65 11.02 12.60 14.45 16.46 18.86 21.57 24.41 0.37 0.43 0.47 0.57 0.43 0.53 0.55 0.63 0.73 0.83 0.94 1.04 1.22 5 5 6 6 8 8 8 8 8 8 8 8 8 M8 M8 M8 M8 M8 M10 M12 M16 M16 M16 M20 M20 M24 8 8 8 8 12 12 12 12 12 16 12 16 16 M8 M8 M8 M8 M8 M12 M12 M16 M16 M16 M20 M20 M24 1.42 1.54 1.81 2.36 3.19 3.50 4.02 4.65 5.28 6.01 6.85 7.87 8.90 1.61 2.01 2.52 2.88 3.35 3.74 4.29 4.93 5.63 6.38 7.33 8.39 9.46 1.06 1.06 1.38 1.46 1.97 2.44 2.68 3.15 3.55 4.14 4.73 5.52 6.30 1.06 1.06 1.46 1.58 1.97 2.17 2.56 2.76 3.35 4.14 4.33 5.52 6.30 1 1 1 1 1 1 1 1 1 1 1 2 2 10 10 12 12 16 16 16 16 16 16 16 32 32 7200 6300 5400 4500 4480 3860 3450 2975 2650 2380 2050 1830 1600 4.2 6.2 9.9 15.2 19.6 25.6 39.1 59.5 88.6 131.2 197.2 291.0 421.3 4.4 6.4 10.1 13.2 14.4 24.1 35.0 54.2 77.9 111.3 171.5 246.8 364.3 6.2 9.5 14.6 22.0 23.9 33.4 46.8 72.8 105.4 152.8 230.7 334.6 490.3 14.8 22.0 34.6 50.5 58.0 83.1 120.8 186.5 271.8 395.3 599.4 872.4 1275.8 6 13 27 62 88 171 345 693 1339 2583 5094 9814 18213 21 48 165 167 246 509 932 1913 3557 6485 13214 24562 46746 17 45 85 171 198 396 662 1387 2556 4596 9291 16931 32684 0.03 0.03 0.03 0.05 0.06 0.06 0.06 0.06 0.07 0.08 0.09 0.11 0.13 0.03 0.05 0.05 0.05 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.13 0.14 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling be dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that they do not exceed the manufacturers allowables. 4 (3) Weights and inertias are calculated with mean bore for couplings up to and including PM600 and with maximum bore for PM900 and above. (4) Oversize shafts can be accommodated in large boss driving flanges manufactured to customer’s requirements. (5) PM0.7 - PM3 driving flanges are available with solid bores on request. RENOLD Hi-Tec Couplings www.renold.com 45 PM Shaft to Shaft PM 180 to PM 7000 Data 180 - 600 850 - 7000 Dimensions, Weight, Inertia and Alignment COUPLING SIZE A B C D D1 E F DIMENSIONS J (inch) Q (QTY) R S (QTY) T W MAX. X&Y (4) MIN. X MIN. Y RUBBER Per Cavity ELEMENTS Per Coupling MAXIMUM SPEED (rpm) (1) W1 WEIGHT (3) W2 (lb) W3 TOTAL INERTIA (3) J1 2 3 (lb.in x 10 ) J2 J3 ALLOWABLE MISALIGNMENT (2) RADIAL (inch) AXIAL (inch)± CONICAL (degree) 180 31.42 21.42 0.31 10.55 10.55 16.34 29.53 1.32 12 M24 20 M24 9.92 10.55 6.57 6.70 2 32 1,460 578 588 656 1,822 31.23 98.41 52.45 270 36.42 24.53 0.35 12.09 12.09 18.70 34.06 1.42 12 M30 20 M30 11.36 12.09 7.56 7.68 2 32 1,260 858 913 964 2,734 61.09 202.6 102.1 400 41.93 27.97 0.41 13.78 13.78 21.34 39.06 1.69 12 M36 20 M36 12.91 13.78 9.13 9.26 2 32 1,090 1,240 1,396 1,436 4,072 116.3 408.3 207.3 600 47.05 31.97 0.47 15.75 15.75 24.41 44.17 2.05 12 M36 24 M36 14.80 15.75 11.23 11.23 2 32 975 1,793 2,004 2,087 5,884 224.0 752.5 395.4 850 45 32.72 0.25 15.98 15.98 25.5 42 1.75 20 M30 20 M36 16.75 15.75 13.5 13.5 2 48 1,000 2,337 1,565 2,050 5,952 355.3 560.0 358.8 1200 52 34.21 0.25 16.73 16.73 30 458.8 2 20 M30 20 M36 17.5 18 15 15 3 78 870 3,600 2,127 3,062 8,790 756.4 1048 725.3 2000 62 40.75 0.25 20 20 38 58 2.5 20 M36 20 M45 20.25 22 18 18 3 84 725 5,721 3,684 5,800 15,205 1687 2540 2008 3500 794 49.02 0.5 20 20 40 74.5 3 24 M36 24 M48 20.5 24.1 21 21 3 96 580 11,603 6,023 9,228 26,854 5650 7092 5011 4700 79 56.97 0.5 28 28 48 74.5 3 24 M36 24 M48 25.3 28 24 24 4 128 580 14,221 8,645 15,864 38,730 7332 10444 9013 7000 79 73.90 0.5 34.4 34.4 53.9 74.5 3 24 M36 24 M48 39.5 32 27 27 6 192 580 19,057 10,794 17,070 46,921 10470 12835 10004 0.14 0.16 0.5 0.15 0.18 0.5 0.18 0.21 0.5 0.20 0.24 0.5 0.11 0.13 0.5 0.13 0.13 0.5 0.13 0.19 0.5 0.13 0.25 0.5 0.13 0.25 0.5 0.13 0.25 0.5 (1) For operation above 80% of the declared maximum coupling speed, it is recommended that the coupling be dynamically balanced. (2) Installations should be initially aligned as accurately as possible. In order to allow for deterioration in alignment over time, it is recommended that initial alignment should not exceed 25% of the above noted data. The forces on the driving and driven machinery should be calculated to ensure that they do not exceed the manufacturers allowables. (3) Weights and inertias are calculated with mean bore for couplings up to and including PM600 and with maximum bore for PM900 and above. (4) Oversize shafts can be accommodated in large boss driving flanges manufactured to customer’s requirements. RENOLD Hi-Tec Couplings www.renold.com 46 PM Technical Data 1.1 Prediction of the System Torsional Vibration Characteristics. 1.2.2 Compare the synthesis value of the calculated heat load in the coupling (PK) at the speed of interest to the “Allowable Heat Dissipation (PKW)”. A prediction of the system torsional vibration characteristics can be made by the following method. The coupling temperature rise = ∆F ∆F = Tempcoup = PK x 126 PKW The coupling temperature = ϑ ( ) 1.1.1 Use the torsional stiffness as published in the catalog, (K86) which is based upon data measured at a 86˚F ambient temperature. 1.1.2 Repeat the calculation made in 1.1.1, but use the maximum temperature correction factor St212 and M212 for the rubber selected for both torsional stiffness and dynamic magnifier from the tables below. 1.2.3 Calculate the temperature correction factor (St) from 1.3 (if the coupling temperature > 212ºF, then use St212). Calculate the dynamic Magnifier as per 1.4. Repeat the calculation with the new value of coupling stiffness (KT) and dynamic magnifier (MT). K212 = K86 x St212 Rubber Grade SM 60 SM 70 SM 80 Tempmax St 212 212 212 St212 = 0.60 St212 = 0.44 St212 = 0.37 1.2.4 Calculate the coupling temperature as per 1.2. Repeat calculation until the coupling temperature agrees with the correction factors for torsional stiffness and dynamic magnifier used in the calculation. 1.3 SM 60 is considered “standard” Rubber Grade Dynamic Magnifier at 86ºF (M86) ϑ = Tempcoup + Ambient Temp. Temperature Correction Factor Dynamic Magnifier at 212ºF (M212) SM 60 8 10.67 SM 70 6 9.53 SM 80 4 6.9 SM 60 is considered “standard” 1.1.3 Review the calculations 1.1.1 and 1.1.2. If the speed range is clear of criticals which do not exceed the allowable heat dissipation value as published in the catalog, the coupling is then considered suitable for the application with respect to the torsional vibration characteristics. If there is a critical in the speed range, the actual temperature of the coupling will need to be calculated at this speed. 1.2 Rubber Temperature (ϑ) ˚F KT=K86xSt 1.4 Dynamic Magnifier Correction Factor The dynamic magnifier of the rubber is subject to temperature variation in the same way as the torsional stiffness. ϕT =ϕ86 x St MT = M86 St Prediction of the Actual Coupling Temperature and Torsional Stiffness Rubber Grade 1.2.1 Use the torsional stiffness as published in the catalog (K86), which is based upon data of measured at 86˚F and the dynamic magnifier (M86) at 86˚F. 4 RENOLD Hi-Tec Couplings Dynamic Magnifier (M86) Relative Damping ϕ86 SM 60 8 0.78 SM 70 6 1.05 SM 80 4 1.57 SM 60 is considered “standard” www.renold.com 47 PM Technical Data - Standard Blocks PM PM 0.4 0.4 - PM - PM 130 130 COUPLING COUPLING SIZE SIZE 0.40.4 0.70.7 1.31.3 164 164 3 3 NOMINAL NOMINAL TORQUE TORQUE (ft.lb)(ft.lb) (1) (1) 106 106 HP/RPM HP/RPM 0. 0.09 09 0.180.18 0.420.42 0.060.06 319 319 737 737 TORQUE TORQUE TKMAX TKMAX (ft.lb)(ft.lb) MAXIMUM MAXIMUM 317 317 TORQUE TORQUE TKW T(ft.lb) (2) (2) VIBRATORY VIBRATORY KW (ft.lb) 6 6 8 8 12 12 18 18 27 27 40 40 60 60 90 90 130130 1,475 1,475 1,966 1,966 2,833 2,833 4,425 4,425 6,638 6,638 9,834 9,834 14,751 14,751 22,127 22,12731,961 31,961 0.840.84 1.121.12 494 494 959 959 2,213 2,213 40 40 62 62 120 120 277 277 553 553 738 738 DISSIPATED DISSIPATED HEAT(PKW) HEAT(PKW) 266 266 ALLOWABLE ALLOWABLE 322 322 365 365 458 458 564 564 562 562 1.681.68 2.532.53 3.793.79 5.625.62 8.428.42 12.64 12.64 18.26 18.26 4,425 4,425 5,900 5,900 8,851 8,851 13,276 13,276 19,914 19,914 29,502 29,502 44,254 44,254 66,381 66,38195,883 95,883 1,106 1,106 1,660 1,660 2,489 2,489 3,688 3,688 670 670 798 798 870 870 55325532 8,298 8,298 11,985 11,985 1,018 1,018 1,159 1,159 1,209 1,209 1,369 1,369 AT 86°F AT 86°F AMB. AMB. TEMP. TEMP. (W) (W) MAXIMUM MAXIMUM SPEED SPEED (rpm)(rpm) 6,300 5,400 5,400 4,500 4,500 7200 7200 6,300 4,480 4,480 3,860 3,860 3,450 3,450 2,975 2,975 2,650 2,650 2,380 2,380 2,050 2,050 1,830 1,830 1,600 1,600 DYNAMIC DYNAMIC TORSIONAL TORSIONAL (3) (3) 6 lb-in/rad) 6 lb-in/rad) STIFFNESS STIFFNESS (x10(x10 @ 0.25 @ 0.25 TKN TKN @ 0.50 @ 0.50 TKN TKN SM SM SM @ 0.75 @ 0.75 TKN TKN SM SM KN TKN @ 1.0 @T 1.0 SM SM SM SM 60 60 0.030.03 0.040.04 0.110.11 0.260.26 SM SM 0.650.65 0.860.86 1.291.29 1.931.93 2.902.90 4.294.29 6.446.44 9.669.66 13.96 13.96 SM SM 70 70 0.040.04 0.070.07 0.160.16 0.380.38 0.920.92 1.221.22 1.831.83 2.752.75 4.124.12 6.126.12 9.179.17 13.75 13.75 19.87 19.87 80 80 0.080.08 0.120.12 0.270.27 0.640.64 SM SM 1.191.19 1.581.58 2.382.38 3.573.57 5.355.35 7.937.93 11.90 11.90 17.84 17.84 25.77 25.77 SM SM 60 60 0.040.04 0.070.07 0.170.17 0.410.41 0.920.92 1.221.22 1.831.83 2.752.75 4.124.12 6.126.12 SM 70 70 0.060.06 0.090.09 0.220.22 0.510.51 1.231.23 1.641.64 2.452.45 3.683.68 5.525.52 8.188.18 12.27 12.27 18.40 18.40 26.58 26.58 9.179.17 13.75 13.75 19.87 19.87 80 80 0.090.09 0.130.13 0.320.32 0.760.76 1.601.60 2.132.13 3.203.20 4.804.80 7.207.20 10.66 10.66 15.98 15.98 23.98 23.98 34.63 34.63 SM SM 60 60 0.070.07 0.110.11 0.260.26 0.610.61 1.361.36 1.811.81 2.732.73 4.094.09 6.136.13 SM SM 70 70 0.080.08 0.120.12 0.290.29 0.690.69 1.761.76 2.352.35 3.523.52 5.285.28 7.927.92 11.73 11.73 17.60 17.60 26.39 26.39 38.12 38.12 4.684.68 7.037.03 10.54 10.54 15.61 15.61 23.42 23.42 35.13 35.13 50.74 50.74 9.099.09 13.63 13.63 20.45 20.45 29.53 29.53 80 80 0.110.11 0.160.16 0.380.38 0.900.90 2.352.35 3.123.12 SM SM 60 60 0.100.10 0.160.16 0.380.38 0.900.90 1.981.98 2.652.65 3.973.97 5.955.95 70 70 0.110.11 0.160.16 0.390.39 0.930.93 2.452.45 3.273.27 4.904.90 7.367.36 11.04 11.04 16.36 16.36 24.53 24.53 36.80 36.80 53.16 53.16 80 80 0.120.12 0.190.19 0.450.45 1.081.08 3.383.38 4.514.51 6.766.76 10.15 10.15 15.22 15.22 22.55 22.55 33.83 33.83 50.74 50.74 73.29 73.29 8.928.92 13.21 13.21 19.83 19.83 29.74 29.74 42.95 42.95 RADIAL RADIAL STIFFNESS STIFFNESS SM SM 60 60 3.913.91 4.134.13 7.087.08 11.71 11.71 35.84 35.84 39.78 39.78 45.57 45.57 52.19 52.19 59.73 59.73 63.21 63.21 72.41 72.41 82.80 82.80 93.65 93.65 @ NO @ NO LOAD LOAD (lb/in (lb/in x 10x3)103) SM SM 80 80 9.949.94 10.39 10.39 18.33 18.3329.64 29.64 65.10 65.10 72.23 72.23 82.80 82.80 94.79 94.79 108.49 108.49123.68 123.68 141.67 141.67161.03 161.03183.30 183.30 RADIAL RADIAL STIFFNESS STIFFNESS SM SM 60 60 8.178.17 8.628.62 14.85 14.8524.55 24.55 75.26 75.26 83.54 83.54 95.82 95.82 109.64 109.64125.45 125.45143.04 143.04 163.88 163.88187.41 187.41211.90 211.90 @ 50% @ 50% TKMAX TKMAX (lb/in (lb/in x 10x3)103) SM SM 80 8014.33 15.13 25.58 25.5842.54 42.54 94.22 94.22 104.61 104.61119.80 119.80137.04 137.04157.03 157.03179.01 179.01 205.05 205.05234.69 234.69265.24 265.24 14.33 15.13 AXIAL AXIAL STIFFNESS STIFFNESS SM SM 60 60 2.622.62 2.872.87 4.084.08 5.545.54 6.056.05 @ NO @ NO LOAD LOAD (lb/in (lb/in x 10x3)103) SM SM 70 70 4.304.30 4.734.73 6.746.74 9.199.19 15.69 15.69 17.42 17.42 19.96 19.96 22.84 22.84 26.15 26.15 29.81 29.81 34.15 34.15 39.06 39.06 44.20 44.20 SM SM 80 80 5.945.94 6.626.62 9.549.54 12.73 12.73 23.53 23.53 26.11 26.11 29.92 29.92 34.26 34.26 39.21 39.21 44.70 44.70 51.21 51.21 58.59 58.59 66.24 66.24 AXIAL AXIAL STIFFNESS STIFFNESS SM SM 60 60 5.255.25 6.006.00 8.798.79 11.53 11.53 13.13 13.13 14.28 14.28 16.67 16.67 18.90 18.90 21.87 21.87 24.90 24.90 28.44 28.44 32.66 32.66 36.89 36.89 @ 50% @ 50% TKMAX TKMAX (lb/in (lb/in x 10x3)103) SM SM 80 80 7.147.14 8.288.28 11.76 11.7615.70 15.70 23.53 23.53 26.10 26.10 29.92 29.92 34.26 34.26 39.23 39.23 44.71 44.71 51.22 51.22 58.59 58.59 66.24 66.24 MAX. MAX. AXIAL AXIAL FORCE FORCE SM SM 60 60 14.814.8 16.216.2 22.922.9 28.828.8 337 337 375 375 430 430 490 490 562 562 640 640 734 734 838 838 948 948 (4) (4) (lb) @ (lb)50% @ 50% TKMAX TKMAX SM SM 70 70 17.517.5 18.018.0 25.225.2 31.531.5 370 370 410 410 472 472 534 534 648 648 706 706 805 805 922 922 1,043 1,043 SM SM 80 80 19.119.1 23.823.8 33.333.3 41.641.6 303 303 558 558 640 640 732 732 838 838 959 959 SM SM 70 70 6.116.11 6.456.45 11.13 11.1318.50 18.50 47.97 47.97 53.22 53.22 60.98 60.98 69.84 69.84 79.94 79.94 91.13 91.13 104.38 104.38119.43 119.43135.02 135.02 SM SM 70 7010.05 10.62 18.27 18.2729.92 29.92 78.80 78.80 87.48 87.48 100.21 100.21114.77 114.77131.33 131.33149.72 149.72 171.53 171.53196.20 196.20221.84 221.84 10.05 10.62 6.726.72 7.697.69 8.818.81 10.08 10.08 11.48 11.48 13.17 13.17 15.06 15.06 17.02 17.02 SM SM 70 70 6.286.28 7.777.77 10.96 10.9614.90 14.90 15.70 15.70 17.42 17.42 19.99 19.99 22.84 22.84 26.15 26.15 29.81 29.81 34.15 34.15 39.06 39.06 44.20 44.20 1,094 1,094 1,253 1,253 1,416 1,416 (1) (1) These These values values apply apply to systems to systems which which have have a service a service factor factor of 3; of ie. 3; ie. TKNT= KNT= KMAX TKMAX ForFor other other applications applications seesee “Selection “Selection Procedure”. Procedure”. 3 3 (2) (2) At 10Hz At 10Hz only, only, allowable allowable vibratory vibratory torque torque at higher at higher or lower or lower frequencies frequencies (fe)(fe) = Vib. = Vib. Torque Torque 10Hz 10Hz fe fe (3) (3) These These values values should should be be corrected corrected for for rubber rubber temperature temperature as as shown shown in the in the design design information information section. section. These These values values apply apply to conditions to conditions of low of low amplitude, amplitude, steady steady vibration vibration at aatmean a mean torque. torque. Consult Consult Renold Renold Hi-Tec Hi-Tec Couplings Couplings for for values values applying applying to high to high amplitude amplitude transient transient vibration. vibration. (4) (4) TheThe couplings couplings willwill ‘slip’ ‘slip’ axially axially when when thethe maximum maximum axial axial force force is reached. is reached. RENOLD Hi-Tec Couplings www.renold.com 48 PM Technical Data - Standard Blocks P PM 180 - PM 7000 COUPLING SIZE NOMINAL TORQUE (ft.lb) (1) HP/RPM MAXIMUM TORQUE TKMAX, (ft.lb) VIBRATORY TORQUE TKW (ft.lb) (2) 180 44,254 25.3 132,760 16,595 270 66,380 37.9 199,141 24,893 400 600 93,841 147,512 56.2 84.3 295,024 442,536 36,878 55,317 850 208,976 119.4 626,926 78,329 1200 295,024 168.5 885,073 110,634 2000 491,707 280.9 1,475,122 184,390 3500 860,488 491.5 2,581,463 322,683 4700 1,155,512 660.1 3,466,536 433,317 7000 1,720,976 983.0 5,162,927 645,366 ALLOWABLE DISSIPATED HEAT AT AMB. TEMP. 86°F Pkw (W) MAXIMUM SPEED (rpm) DYNAMIC TORSIONAL (3) STIFFNESS (x106 lb-in/rad) @ 0.25 TKN SM 60 SM 70 SM 80 @ 0.50 TKN SM 60 SM 70 SM 80 @ 0.75 TKN SM 60 SM 70 SM 80 @ 1.0 TKN SM 60 SM 70 SM 80 RADIAL STIFFNESS SM 60 (lb/in x 103) SM 70 @ NO LOAD SM 80 RADIAL STIFFNESS SM 60 (lb/in x 103) SM 70 SM 80 @ 50% TKMAX AXIAL STIFFNESS SM 60 (lb/in x 103) SM 70 @ NO LOAD SM 80 AXIAL STIFFNESS SM 60 (lb/in x 103) SM 70 @ 50% TKMAX SM 80 MAX. AXIAL FORCE (lb) SM 60 @ 50% TKMAX (4) SM 70 SM 80 1,526 1,735 1,985 2,168 1,460 1,260 1,090 975 1,000 870 725 580 580 580 19.3 27.5 35.7 27.5 36.8 48.0 40.9 52.8 70.3 59.5 73.6 101.5 104.3 150.5 204.1 236.1 247.2 295.5 19.0 49.2 73.8 41.1 49.2 73.8 1,059 1,160 1,577 29.0 41.3 53.5 41.3 55.2 71.9 59.5 79.2 105.4 89.2 110.4 152.2 119.5 172.3 233.8 270.4 283.0 338.4 21.7 56.4 84.5 47.0 56.4 84.5 1,213 1,330 1,804 43.0 60.5 79.3 60.5 81.8 106.6 90.9 117.3 156.1 132.2 163.6 225.5 136.0 196.1 266.1 307.7 322.2 385.2 24.7 64.1 96.2 53.6 64.1 96.2 1,378 1,513 2,055 64.4 91.7 119.0 91.7 122.7 159.8 136.3 176.0 234.4 198.3 245.3 338.3 155.9 224.8 304.9 352.8 369.3 441.5 28.4 73.5 110.3 61.4 73.5 110.3 1,.581 1,735 2,355 129.2 194.7 323.9 204.5 264.6 387.7 318.6 359.3 464.7 477.9 484.1 557.6 215.8 344.3 547.0 488.4 565.7 221.1 103.9 173.0 199.8 225.2 173.0 199.8 - 199.1 300.9 500.1 314.2 408.0 598.3 489.4 552.3 716.0 733.7 744.3 859.4 239.2 378.0 599.5 541.4 621.0 868.1 118.8 195.8 227.3 257.4 195.8 227.3 ---- 361.1 546.1 902.8 566.4 737.3 1,088.6 877.1 1,017.8 1,301.1 1,318.8 1,336.5 1,548.9 313.5 498.5 799.4 709.4 819.0 1,157.5 158.2 260.4 281.5 342.7 260.4 281.5 - 662.9 1,009.0 1,725.9 1,035.5 1,354.2 2,000.3 1,575.4 1,814.4 2,372.0 2,345.4 2,407.4 2,832.2 328.3 520.2 832.5 743.0 854.6 1,205.5 162.2 268.4 428.2 351.4 268.4 428.2 - 902.8 1,363.0 2,274.6 1,425.0 1,849.8 2,717.2 2,203.8 2,053.4 3,248.2 3,292.5 3,354.4 3,885.5 436.8 696.6 1,113.5 989.8 1,144.5 1,612.2 215.8 358.0 571.0 467.7 358.0 571.0 - 1,309.9 1,991.4 3,327.9 2,053.4 2,690.6 3,920.9 3,168.6 3,619. 4,726.3 4,717.4 4,832.5 5,646.8 656.6 1,039.2 1,661.6 1,486.0 1,707.4 2,406.1 323.8 536.7 856.5 701.6 536.7 856.5 (1) These values apply to systems which have a service factor of 3; ie. For other applications see “Selection Procedure”. TKN = TKMAX 3 (2) At 10Hz only, allowable vibratory torque at higher or lower frequencies (fe) = Vib. Torque 10Hz fe (3) These values should be corrected for rubber temperature as shown in the design information section. These values apply to conditions of low amplitude, steady vibration at a mean torque. Consult Renold Hi-Tec Couplings for values applying to high amplitude transient vibration. 4 (4) The couplings will ‘slip’ axially when the maximum axial force is reached. RENOLD Hi-Tec Couplings www.renold.com 49 PM Design Variations The PM coupling range can be adapted to meet customer needs. Below are some of the arrangements that have been produced. For a more comprehensive list contact Renold Hi-Tec Couplings. Torque Limiting Coupling Vertical Spacer Coupling Combination with a torque limiting device to prevent damage to driving and driven machines under shock loads. Brake Disk Coupling Combination with a brake disc, for use on cranes, fans and conveyor drives. (Brake drum couplings also available). Cardan Shaft Coupling Cardan Shaft Coupling. Used to increase the distance between shaft ends and give a higher misalignment capability Spacer Couplings. Used to increase the distance between shaft ends and allow access to driven and driving machine. RENOLD Hi-Tec Couplings www.renold.com 50 4 RENOLD Hi-Tec Couplings www.renold.com 51 Coupling Selection Coupling Selection Checklist Photocopy this page and complete the following checklist to ensure the correct coupling selection is achieved, then fax it to the Renold Hi-Tec Coupling Sales Fax Line below for a speedy response. Customer: Project: Prime mover: Service factor: (see page 53) Driven equipment: Service factor: (see page 54) Continuous power: Maximum power: Operating speed: Overspeed: Driving shaft diameter: Driven shaft diameter: Driving shaft length: Driven shaft length: Flywheel location diameter: Hole size and PCD: Continuous misalignment: Transient misalignment: Diameter constraints: Length constraints: Distance between shaft ends: If you require help with coupling selections contact Renold Hi-Tec Couplings: Tel: 800-879-2529 Fax: (716) 326-8229 RENOLD Hi-Tec Couplings www.renold.com 52 Selection Procedure ● From the continuous Power (HP) and operating Speed (n) calculate the Application Torque (T NORM) from the formula: T NORM = Application Torque (lb-ft) HP x 5252 lb-ft n ● = Peak Application Torque (lb-ft) T KN = Nominal Coupling Rating (lb-ft) according to DIN 740 (with service factor = 3 according to Renold Hi-Tec Select Prime Mover Service Factor (Fp) from table below. ● Select Driven Equipment Service Factor (Fm) from table on page 54 of this section. ● The minimum Service Factor is 1.5. ● Calculate T MAX from the formula: Couplings standard) T Kmax = Maximum Coupling Rating (lb-ft) according to DIN 740 TMAX = TNORM (Fp + Fm) ● Select Coupling such that T MAX < T Kmax ● Check n < Coupling Maximum Speed (from catalog data). ● Check Coupling Bore Capacity such that dmin < d < dmax. ● T MAX = Continuous Power to be transmitted by coupling (HP) n = Speed of coupling application (rpm) Fp = Prime Mover Service Factor Fm = Driven Equipment Service Factor dmax = Coupling Maximum Bore (in) dmin Note: If you are within 80% of maximum speed, dynamic balancing is required. Prime Mover Service Factors Fp * * 2.5 2.0 1.8 1.7 1.5 1.5 1.5 0 0 0 1.5 1.0 0.5 0.5 0.5 1.5 = Coupling Minimum Bore (in) It is the responsibility of the system designer to ensure that the application of the coupling does not endanger the other constituent components in the system. Service factors given are an initial selection guide. Consult the factory for alternatives if catalog limits are exceeded. Prime Mover Factors Diesel Engine 1 Cylinder 2 Cylinder 3 Cylinder 4 Cylinder 5 Cylinder 6 Cylinder More than 6 Cylinder Vee Engine Gasoline Engine Turbine Electric Motor Induction Motor Synchronous Motor Variable Speed* Synchronous Converter (LCI) - 6 pulse - 12 pulse PWM/Quasi Square Cyclo Converter Cascade Recovery (Kramer, Scherbius) HP *The application of these drive types is highly specialized and it is recommended that Renold Hi-Tec Couplings is consulted for further advice. The final selection should be made by Renold Hi-Tec Couplings. 4 RENOLD Hi-Tec Couplings For confirmation of coupling selection complete the checklist and fax to Renold Hi-Tec Couplings. Fax: (716) 326 - 8229 www.renold.com 53 Driven Equipment Service Factors Application Typical Driven Equipment Factor(Fm) Agitators Pure liquids Liquids and solids Liquids-variable density 1.5 2.0 2.0 Blowers Centrifugal Lobe (Roots type) Vane 1.5 2.5 2.0 Brewing and Distilling Bottling machinery Lauter Tub Briquetter machines 1.5 1.75 3.0 Can filling machines 1.5 Cane knives 3.0 Car dumpers 3.0 Car pullers - Intermittent Duty 2.5 Clay working machinery 2.5 Compressors Axial Screw Ce ntrifugal Lobe Reciprocating - multi-cylinder Rotary 1.5 1.5 2.5 3.0 2.0 Conveyors - uniformly loaded or fed Ap ron Assembly Belt Bucket Ch ain Flight Oven Screw 2.0 1.5 1.5 2.0 2.0 2.0 2.5 2.0 Conveyors - heavy duty not uniformly fed Ap ron Assembly Belt Bucket Ch ain Flight Oven Reciprocating Screw Shaker 2.0 2.0 2.0 2.5 2.5 2.5 2.5 3.0 3.0 4.0 Cranes & hoists All motions 3.0 Crushers Ore Stone Sugar 3.0 3.5 3.5 Dredgers Ca ble reels Conveyors Cutter head drives Jig drives Maneuvring winches Pumps Screen drive Stackers Utility winches 2.5 2.0 3.5 3.5 3.0 3.0 3.0 3.0 2.0 Dynamometer 1.5 Elevators Bucket Centrifugal discharge Escalators Freight Gravity discharge 3.0 2.0 1.5 2.0 2.0 Fans Centrifugal 1.5 Cooling towers 2.0 Forced draft 2.0 Induced draft (without damper control) 2.0 Feeders Apron Belt Disc 2.0 2.0 2.0 Application Typical Driven Equipment Factor(Fm) Reciprocating Sc rew 3.0 2.0 Generators Alternating Not welding Welding 1.5 1.5 2.2 Hammer mills 4.0 Lumber industry Barkers - drum type Ed ger feed Live rolls Lo g haul-incline Log haul-well type Off bearing rolls Planer feed chains Pl aner floor chains Planer tilting hoist Sawing machine Slab conveyor Sorting table Trimmer feed 3.0 2.5 2.5 2.5 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Metal manufacture Bar reeling machine Cr usher-ore Feed rolls Fo rging machine Rolling machine Roller table Sh ears Tube mill (pilger) Wire Mill 2.5 4.0 * 2.0 * * 3.0 * 2.0 Metal mills Drawn bench - carriage Drawn bench - main drive Fo rming machines Slitters Ta ble conveyors - non-reversing - reversing Wire drawing and flattening machine Wire winding machine 2.5 2.5 2.5 2.0 * * 2.0 2.0 Metal rolling mills Blooming mills Co ilers - hot mill & cold mill Co ld mills Cooling mills Door openers Draw benches Ed ger drives Feed rolls, reversing mills Fu rnace pushers Ho t mills Ingot cars Manipulators Merchant mills Pi ercers Pu shers rams Reel drives Reel drums Bar mills Roughing mill delivery table Runout table Saws - hot, cold Screwdown drives Skelp mills Slitters Slabbing mills Soaking pit cover drives Straighteners Table transfer & runabout Thrust block Traction drive Tube conveyor rolls Unscramblers Wire drawing * 2.5 * * 2.0 2.5 2.5 * 2.5 * 2.0 3.0 * 3.0 2.5 2.0 2.0 * * * 2.0 2.5 * 2.0 * 2.5 3.0 2.5 3.0 2.0 2.0 2.5 2.0 Mills, rotary type Ball Cement kilns Dryers and coolers Kilns Hammer Pebble Pug Rod Tumbling barrels 2.5 2.5 2.5 2.5 3.5 2.5 3.0 2.5 2.5 RENOLD Hi-Tec Couplings Application Typical Driven Equipment Factor(Fm) Mining Conveyor - armoured face - belt - bucket - chain - screw Dintheader Fan - ventilation Haulages Lump breakers Pulverizer Pump - rotary - ram - reciprocating - centrifugal Roadheader Shearer - Longwall Winder Colliery 3.0 1.5 1.5 1.75 1.5 3.0 2.0 2.0 1.5 2.0 2.0 3.0 3.0 1.5 2.0 2.0 2.5 Mixers Concrete mixers Drum type 2.0 2.0 Oil industry Chillers Oil well pumping Paraffin filter press Rotary kilns 2.0 3.0 2.0 2.5 Paper mills Barker-auxiliaries hydraulic 3.0 Barker-mechanical 3.5 Barking drum (Spur Gear only) 3.5 Beater and pulper 3.5 Bleacher 2.0 Calenders 2.0 Chippers 2.5 Coaters 2.0 Converting machine (not cutters, platers) 2.0 Couch 2.0 Cutters, platers 3.0 Cylinders 2.0 Dryers 2.0 Felt stretcher 2.0 Felt whipper 2.0 Jordans 2.25 Line shaft 2.0 Log haul 2.5 Presses 2.5 Pulp grinder 3.5 Reel 2.0 Stock chests 2.0 Suction roll 2.0 Washers and thickeners 2.0 Winders 2.0 Printing presses 2.0 Propeller Marine - fixed pitch - controllable pitch 2.0 2.0 Pullers Barge haul 2.5 Pumps Centrifugal Reciprocating - double acting single acting - 1 or 2 cylinders 3 or more cylinders Rotary - gear, lobe, vane 1.5 3.0 3.0 3.0 2.0 Rubber industry Mixed - banbury Rubber calender Rubber mill (2 or more) Sheeter Tire building machines Tire and tube press openers Tubers and strainer 3.0 2.0 2.5 2.5 2.5 2.0 2.5 Screens Air washing Grizzly Rotary, stone or gravel Travelling water intake Vibrating 1.5 2.5 2.0 1.5 2.5 Sewage disposal equipment 2.0 Textile industry 2.0 Windless 2.5 * Use 1.75 with motor cut-out power rating www.renold.com 54 Selection Examples Example 1 ● Example 2 Selection of 6 cylinder diesel engine 1000 HP at 900 rpm driving a centrifugal pump. ● The coupling is flywheel mounted pump shaft diameter = dm HP = 1000HP n = 900 rpm dm = 3.75in temp = 86ºF T NORM = (HP/n) x 5252 = (1000/900) x 5252 = 5836 lb-ft ● Selection of induction motor 1080 HP at 1498 rpm driving a rotary pump. Motor shaft = dp Pump shaft = dm HP = 1080Hp n = 1498 rpm dp = 3.75in dm = 3.375in temp = 30ºC Fp = 0 Fm = 2 T NORM = (HP/n) x 5252 lb-ft = (1080/1498) x 5252 lb-ft = 3786 lb-ft T MAX = T NORM (Fp + Fm) = 3786 (0 + 2) lb-ft = 7572 lb-ft The application is considered light industrial and RB type coupling should be selected. Examination of RB catalog shows RB 3.86 as: T KN = 6755 lb-ft which satisfies the condition The application requires a steel coupling (by customer specification) and PM type coupling should be selected. Examination of PM catalog shows PM12 as: ● T NORM < T KN (5836 < 6755) lb-ft T Kmax = 8851 lb-ft ● n < coupling maximum speed (900 < 2500) rpm which satisfies the conditions:- ● dmin < dm < dmax (3.15 < 3.75 < 6.70) in ● ● T MAX < T Kmax (7572 < 8851) lb-ft ● n < coupling maximum speed (1498 < 3450) rpm ● dmin < dp < dmax (2.56 < 3.75 < 4.29) in ● dmin < dm < dmax (2.56 < 3.375 < 4.29) in ● A consultancy service is also available to customers in the selection of the correct product for their specific application. ● Renold Hi-Tec Couplings is well known in the diesel engine industry for its analysis techniques. ● In the heavy industrial sector, Renold Hi-Tec Couplings’ engineers have made many torsional vibration analyses. For example, steady state, transient and Torque Amplification Factors (TAF) on electric motor drivelines in cement mills, rolling mills, compressor drive trains, synchronous motor start ups and variable frequency (LCI Kramer/Scherbius/PWM) applications. ● Two examples of torsional vibration analysis that have been produced by Renold Hi-Tec Couplings’ engineers are shown on page 56 of this section. Calculation Service ● For over 40 years we have been a world leader in torsional vibration analysis for all types of machinery and have developed sophisticated in-house computer programs specifically for this purpose. 4 RENOLD Hi-Tec Couplings www.renold.com 55 Transient Analysis Calculated Examples Illustrated below are two different types of transient torsional vibration analysis that can be produced by Renold Hi-Tec Couplings’ engineers. This ensures optimum solutions are reached by the correct selection of torsional stiffness and damping characteristics of the coupling. Synchronous resonance and synchronous convertor (LCI) examples are shown, however, Renold Hi-Tec Couplings’ experience also includes: Diesel drives, Torque Amplification, electrical speed control devices, PWM, Scherbius/ Kramer, short-circuit and any re-connection of electrical circuits on the mechanical systems. Example 1 Since June 1962 we have engineered flexible couplings for synchronous motor applications to reduce, by damping, the damaging vibratory torques imposed into the system when accelerating through the first resonant frequency. See Tables A and B. Speed - (RPM) Table B 120 1620 60 1260 0 900 Coupling Torque (KNm) Coupling Torque (KNm) Speed - (RPM) Table A -60 540 -120 180 120 1620 60 1260 0 900 -60 540 -120 180 1.500 4.500 7.500 10.500 13.500 16.500 19.500 22.500 Acceleration time in seconds 1.500 4.500 7.500 10.500 13.500 16.500 19.500 22.500 Acceleration time in seconds Table A shows vibrating torque experienced in the motor shaft when the system is connected rigidly (or by a gear or membrane coupling) to the driven system. Table B shows the same system connected by a DCB coupling. PM type couplings are also used in such applications. Example 2 Since 1981 we have been engineering flexible couplings for synchronous convertor (LCI) drives to control the forced mode conditions through the first natural frequency by judicial selection of torsional stiffness and damping. See Tables C and D. Speed - (RPM) Table D 320 180 160 140 Coupling Torque Nm (*10**2) Coupling Torque Nm (*10**2) Speed - (RPM) Table C 0 100 -160 60 -320 20 .250 .750 1.250 1.750 2.250 2.750 3.250 Acceleration time in seconds 3.750 Table C shows a typical motor/fan system connected rigidly (or through a gear or membrane coupling) when damaging torques would have been experienced in the motor shaft. 320 180 160 140 0 100 -160 60 -320 20 .250 .750 1.250 1.750 2.250 2.750 3.250 Acceleration time in seconds 3.750 Table D shows the equivalent Renold Hi-Tec Couplings’ engineered solution using a PM coupling. RENOLD Hi-Tec Couplings www.renold.com 56 Rubber Infor Information rmation The rubber ru ubber blocks and elements used in Renold Hi-T Hi-Tec Tec Coup Couplings plings ar are e key elements in th the he coupling design. Strict quality contr control ol is applied in the manufactur manufacture, e, and fr frequent equ uent testing is part of the pr production o oduction pr process. ocess. Rubber-in-Compression Rubb berr-in-Compression These T hese d designs esigns u use se n non-bonded on-bonded c components, omponents, w which hich a allows llows ffor or m many any ssynthetic ynthetic elastomers elastomers to to be be employed. employed. These e elastomers offer offfer considera able advantages over others for specific applications, gi ving Renold Hiconsiderable giving T ec C ouplings a distinctive lead in n application engineering in specialized ar eas. Tec Couplings areas. R ubber iin nS hear Rubber Shear These e designs use high tear str strength, en ngth, low cr creep, eep, natural rubb rubber ber developed for diesel eng engine gine drives. All rubbe rubber er in shear couplings ar are e 100 100% 0% tested to ensur ensure e bond/m bond/molding molding integrity integrity.. Rubber Rubb ber compound Natural Iden Identification ntification label Red ((F F, NM)) (F, StyreneStyr e eneButad diene Butadiene Gr Green een ((SM M)) (SM) Good Excellent Excellent Excellent Fair Poor Good Good 1 176°F 76°F (8 (80ºC) 80ºC) -58°F ((-50ºC)) Good Goo od Good Goo od Good Goo od Good Goo od Fair Fair Poor Poo or Good Goo od Good Goo od 212°F(100ºC) 212°F(100ºC) -40°F ((-40ºC)) (-40ºC) Resistance Resis stance to Compression Compression Set Resistance Resis stance to Flexing Resistance Resis stance to Cutting Resistance Resis stance to Abrasion Resistance Resis stance to Oxidation Resistance Resis stance to Oil & Gasoline Resistance Resis stance to Acids Resistance Resis stance to Water Water Swelling Service Servi ice Temp. Temp. Maximum; Continuous Continuou us Serv ice T emperatur p e Minimum Service Temperature * Hig gh Damping High Neoprene Neopr ene Nit Nitrile trile Y Yellow ellow ( ) (CM) Wh White hite ((A AM)) (AM) StryeneStr ryeneButadiene Blue* ( ) (S) Fair Good Go ood Good Good Go ood Good Good Go ood Good Good Go ood Very Good Very Good Go ood Good Good Go ood Fair Fair F Good Good Go ood 212°F 212°F (100ºC) (100ºC) 212°F 212°F (100ºC) (100ºC) -22°F ((-30ºC)) -40°F (-40ºC) ( ) Fair Good Fair Good Fair Poor Good Good 212°F 212°F (100ºC) (100ºC) -40°F ((-40ºC)) Rubber Block Block Types Types Rubber DCB D C CB P PM M NM N M RB R B SM/SB SM/SB Renold R enold 45 45 SPECIAL S PECIAL WB WB SM SM Renold R enold 50 50 Renold R enold 60 60 Renold R enold 60 60 Renold R enold 70 70 Renold R enold 70 70 Renold R enold 80 80 CM CM 4 RENOLD Hi-T Hi-Tec Tec Couplings Renold R enold 80 80 A AM M Renold R enold 50 50 Renold R enold 50 50 NCB N CB A1976/7 A1976/7 Renold R enold AA833/7 833/7 Renold R enold 70 70 Renold R enold 60 60 Renold R enold 60 60 Renold R enold 70 70 S Renold R enold 70 70 Renold R enold 90 90 Renold R enold 80 80 www .renold.com www.renold.com 57 5 7 Damping Characteristics Coupling damping varies directly with torsional stiffness and inversely with frequency for a given rubber grade. This relationship is conventionally described by the dynamic magnifier (M), varying with hardness for the various rubber types. M= K Cω iωt + ) ae ω ic + (k δ e= Torqu δ = Where K Cω K = The rubber compound dynamic magnifier values are shown in the table below. Rubber grade NM 45 SM 50 SM 60 SM 70 SM 80 Mid Deflection Torque Deflection = = Phase Angle (Rad) ψ = Damping Energy Ratio AD AD Af = Dynamic Magnifier δ I M Mid Torque Mdm = = Torsional Stiffness (lb-ft/rad) M Af ψ C = Specific Damping (lb-ft s/rad) ω = Frequency (Rad/s) Deflection = aeiωt tan δ This property may also be expressed as the Damping Energy Ratio or Relative Damping (ψ ), which is the ratio of the damping energy (AD), produced mechanically by the coupling during a vibration cycle and converted into heat energy, to the flexible strain energy (Af), with respect to the mean position. M 15 10 8 6 4 2π M Health and Safety at Work Customers are reminded that when purchasing Renold Hi-Tec Couplings products, for use at work or otherwise, additional and up-to-date information which is not possible to include in Renold Hi-Tec Couplings publications is available from your local Sales Company in relation to: (a) guidance on individual product suitability based on the various existing applications of the extensive range of Renold Hi-Tec Couplings products. No representation warranty or condition is given that our products shall meet the stated performance levels or tolerances for any given application outside the controlled environment required by such tests. Guidance Notes While all reasonable care in compiling the information contained in this catalog is taken, no responsibility is accepted for printing errors. All information contained in this catalog is subject to change after the date of publication. (b) guidance on safe and proper use provided that full disclosure is made of the precise details of the intended or existing application. All relevant information should be passed on to the persons engaged in, likely to be affected by, and those responsible for the use of the product. Nothing contained in this publication shall constitute a part of any contract, expressed or implied. Illustrations - The illustrations used in this catalog represent the type of product described but the goods supplied may vary in some detail from those illustrated. Product Performance Renold Hi-Tec Couplings - Products can be supplied by Renold Hi-Tec Couplings and Renold companies or representatives around the world on the standard terms and conditions of sale of the company or representative from which the products are purchased. The performance levels and tolerances of our product stated in this catalog (including without limitation, serviceability, wearlife, resistance to fatigue, corrosion protection) have been shown in a program of testing and quality control in accordance with Renold Hi-Tec Couplings, independent and or international standard recommendations. Specifications - The right is reserved to make modifications to design and dimensions as published in this catalog to meet manufacturing conditions and developments in design and materials. Copyright - All matter in this publication is the copyright of Renold Inc. and may not be reproduced in whole or part without written permission. RENOLD Hi-Tec Couplings www.renold.com 58 DCB-GS Coupling The New Generator Set Coupling 59 N W E Renold Couplings & Gears 100 Bourne Street Westfield, NY 14787-9706 Tel: +1 800 879 2529 Fax: +1 716 326 8229 Web: www.renold.com E-mail: [email protected] 112 Parkinson Lane Halifax HX1 3QH United Kingdom Tel: +44 (0) 1422 255000 Fax: +44 (0) 1422 255100 E-mail: [email protected] Superior Coupling Technology 3mDPI 5/07 PRINTED IN USA www.renold.com
© Copyright 2026 Paperzz