7. One-dimensional systems Work and energy for one-dimensional systems x2 For one-dimensional motion W x1 x2 Fx x dx x1 work is path independent. This follows from the fact that f x dx f x dx x2 x1 x1 x2 U ( x) Fx x dx It is possible to introduce potential energy: x2 x1 Equilibrium: dU dx 0 2 Stable equilibrium: d 2U dx 0 2 Unstable equilibrium: d 2U dx 0 1 Example (Stability of a cube balanced on a cylinder): U ( ) mgh mg r b cos r sin 2b dU d mg r cos b sin dU d 0 0 h r d 2U d 2 mg r b cos r sin d 2U 0 d 2 mg r b If r>b then equilibrium is stable If r<b then equilibrium is unstable 2 Integration of equation of motion in one-dimension 1 2 mx 2 U x E dx dt 2 m E U x m x t 2 x0 dx t0 E U x Two arbitrary constants in this solutions are energy E and initial time t0 Limits of motion (turning points): U x E A finite motion in 1-D is oscillatory – motion between two turning points. Period: T E 2m x2 E x1 E dx E U x 3 Example (Period of oscillation of a simple pendulum): U mgl cos dx ld l 0 max E mgl cos 0 T 2m x2 E x1 E x l 0 dx ld 2l 0 d 2m 2 0 g 0 cos cos 0 E U x mgl cos mgl cos 0 l 0 d l 1 du 1 cos 1 T 4 4 2 2 0 g g 0 1 u 2 0 1 2 2 T 2 l g l 0 d l T 2 T 4 K sin 0 2 2 2 0 g g sin 0 2 sin 2 sin 2 sin sin 0 2 K k 2 0 d 1 k 2 sin 2 Complete elliptic integral of the first kind 4 Spherical coordinates x r sin cos y r sin sin z r cos dr drrˆ rdˆ r sin ˆ f ˆ 1 f ˆ 1 f f rˆ r r r sin 5 Central forces Definition: F r f r rˆ Example: F r rˆ 2 r • A central force that is conservative is spherically symmetric • A central force that is spherically symmetric is conservative U ˆ 1 U ˆ 1 U F r f r rˆ U rˆ U r U r r r r sin 0 0 U r F r rˆ f r rˆ r r F r f r rˆ f r r Fx f r x f r r x xy y y r r r y r Fx Fy f r Fy F z 0 r x y x 6
© Copyright 2026 Paperzz