MONTE CARLO ERROR

MONTE CARLO ERROR
1
Error ο‚΅
n
b
or ò
a
b-a
f ( x)dx »
f ( xi )
å
n i =1
n
Let π‘Œπ‘– be the mean of 𝑏 βˆ’ π‘Ž 𝑓 π‘₯𝑖 .
Note that π‘Œ1 = π‘Œ2 = β‹― = π‘Œπ‘› = πœ‡.
π‘Œ1 + π‘Œ2 + β‹― +π‘Œπ‘›
π‘›πœ‡
𝐸
=
=πœ‡
𝑛
𝑛
Variance:
π‘‰π‘Žπ‘Ÿ
π‘Œ1 +π‘Œ2 +β‹―+π‘Œπ‘›
𝑛
Since π‘Œπ‘– ’s are independent
π‘Œ1
π‘Œ2
π‘‰π‘Žπ‘Ÿ
+ π‘‰π‘Žπ‘Ÿ
+ β‹― + π‘‰π‘Žπ‘Ÿ
𝑛
=
1
π‘‰π‘Žπ‘Ÿ
2
𝑛
π‘Œ1 +
𝑛
1
π‘‰π‘Žπ‘Ÿ
2
𝑛
π‘Œπ‘›
𝑛
π‘Œ2 + β‹― +
1
π‘‰π‘Žπ‘Ÿ
2
𝑛
π‘Œπ‘› .
Note that π‘Œπ‘– ’s have equal variances, say 𝜎 2 ,
1
𝑛2
𝑛
𝑖=1 π‘‰π‘Žπ‘Ÿ
π‘Œπ‘– =
1
2
π‘›πœŽ
𝑛2
=
𝜎2
.
𝑛
b
or ò
a
b-a
f ( x)dx »
f ( xi )
å
n i =1
n
Standard deviation is
𝜎
𝑛
and we can decrease it by
increasing 𝑛 at the rate proportional to
1
.
𝑛
Variance Reduction Techniques
-techniques for improving the speed or efficiency
of a Monte Carlo Simulation