Part 4 Nonlinear Programming 4.1 Introduction Standard Form min f y s.t. hj y 0 j 1, 2, g j y 0 j n 1, n 2, y y1 y2 ,n yn m T ,n p An Intuitive Approach to Handle the Equality Constraints One method of handling just one or two equality constraints is to solve for 1 or 2 variables and eliminate them from problem formulation by substitution. EX. f y y12 y22 s.t. y1 y2 1 Soln: f y y y y 1 y1 2 y 2 y1 1 f ( y1 ) 2 1 2 2 df 4 y1 2 0 dy1 2 1 1 y1 2 2 2 1 1 y2 2 Use of Lagrange Multipliers to Handle n Equality Constraints and m+n Variables min f y1 , y2 , , yn m s.t. h1 y1 , y2 , , yn m 0 h2 y1 , y2 , , yn m 0 hn y1 , y2 , , yn m 0 Equivalent Formulation min f x1 , , xn ; u1 , , um s.t. h1 x1 , , xn ; u1 , , um 0 min f x; u s.t. h(x; u) 0 hn x1 , , xn ; u1 , , um 0 state variables decision variables (1) (2) Choice of Decision Variables For a given optimization problem, the choice of which variables to designate as the decision (control) variables is not unique. It is only a matter of convenience to make a distinction between decision and state variables. 1st Derivation of Necessary Conditions (i) A stationary point is one where f f df 0 dx du (3) x u for arbitrary du while holding h h dh 0 dx du x nn u nm and letting dx change as it will. (4) f f x x1 dx1 dx dx 2 dxn h1 x 1 h2 h x1 x hn x1 f x2 f xn h1 x2 h1 xn h2 xn hn xn nn h2 x2 hn x2 1st Derivation of Necessary Conditions (ii) dh If is nonsingular (and it should be if u determines x from Eq (2)), dx n n Eq (4) can be solved for dx, i.e. dx h x1hu du (5) Substituting into Eq (3) yields df 0 f u f xh x1hu du (6) Hence, if df is to be zero for arbitrary du, it is necessary that f u f xh x1hu 0 (m equations) (7a) These m equations together with h x; u 0 determine u and x. (n equations) (7b) 1st Derivation of Necessary Conditions (iii) In other words, Eq (7) represents f 0 u h But, notice that, in general f f u u x 2nd Derivation of Necessary Conditions (i) Consider first a special case min f x, y, z s.t. g x, y , z 0 h x, y , z 0 At extremum ( x* , y* , z * ) df f x dx f y dy f z dz 0 Since dx, dy and dz are not independent, we cannot conclude that f x , f y and f z vanish identically. 2nd Derivation of Necessary Conditions (ii) Since g and h must be maintained constant at zero, dg 0 g x dx g y dy g z dz dh 0 hx dx hy dy hz dz Let us introduce two extra unkonwns 1 and 2 , df 1dg 2 dh f x 1 g x 2 hx dx f y 1 g y 2 hy dy f z 1 g z 2 hz dz 0 2nd Derivation of Necessary Conditions (iii) Now, it is possible to find nontrivial 1 and 2 such that at least one pair of the differentials are zero, say f x 1 g x 2 hx 0 (8) f y 1 g y 2 hy 0 (9) Otherwise, all pairs must satisfy gx hx gy hy gy hy gz hz gz hz gx hx 0 and g and h would be functionally dependent and, thus, they must be either equivalent or inconsistent. 2nd Derivation of Necessary Conditions (iv) If 1 and 2 are determined by Eqs (8) and (9), the remaining differentials can be arbitrarily assigned and forced to zero. f z 1 g z 2 hz 0 Eqs (8), (9) and (10) together with g x, y , z 0 h x, y , z 0 can be solved simultaneously. (10) 2nd Derivation of Necessary Conditions - General Formulation min f x; u s.t. h x; u 0 Necessary Conditions are: fx λT hx 0 (n equations) (11) fu λ T hu 0 (m equations) (12) Together with h x; u 0 (n equations) From Eq (11), λ T f xh x1 Substituting this into Eq (12) yields Eq (7) fu f xh x1hu 0 3rd Derivation with Lagrange Multipliers Adjoin the constraints to the objective function by a set of n undetermined multipliers, 1 , 2 , , n , i.e. L x , u , λ f x, u λ T h x , u where 1 , 2 , , n are called Lagrange multipliers. Treat the minimization problem min L x, u, λ x ,u , λ as an unconstrained problem. The necessary conditions are: L f h λT 0 x x x L f h λT 0 u u u L h0 λ which are the same as before. Example: 1 x2 u 2 f 2 2 2a b subject to h x, u x mu c 0 Solution: 1 x2 u 2 L f h 2 2 x mu c 2a b L x L u L 2 0; 2 m 0; x mu c 0 x a u b mcb 2 ca 2 c u 2 ; x 2 ; 2 2 2 2 2 a m b a m b a m 2b 2 Example : min f y1 , y2 y1 y2 s.t. h y1 , y2 y12 y22 b 0 and b 1 Solution : L y1 y2 y12 y22 1 L 1 2 y1 0 y1 L 1 2 y 2 0 y2 y12 y22 1 0 1 1.414 1 1.414 * * f y ; h y 1 1.414 y1* y2* 0.707; Two vectors pointing toward opposite directions at minimum! 1 2 y1 0 y1 y2 1 2 y 2 0 2 2 y1 y2 b 0 b y1 y2 2 Sensitivity Interpretation 1/2 b y b y b 2 * 1 * 2 b 2b * 1/2 V b y b y b 2b * 1 * 2 1/2 minimum objective value dV 1/2 2b * b db dV * V b V 1 b 1 V 1 (1) b 1 db b 1 Generalized Sensitivity min f y s.t. hˆ y b i i 1, 2, i ,m If b = b and the optimal objective value is V b . The corresponding local optimum is y * b and λ * b . i* b V bi b The constraint with the largest absolute i value is the one whose rhs affects the optimal value function V the most, at least for b close to b. Problems with Inequality Constraints Only min f y s.t. hj y 0 j 1, 2, g j y 0 j n 1, n 2, y y1 y2 ,n yn m T ,n p Two scenarios at minimum: (1) g ( y* ) 0 and (2) g ( y * ) 0. (1) If g ( y* ) 0, the constraint is not effective and can be ignored. df dy 0 y* (2) If g ( y* ) 0, then df df sgn dy y* dg sgn dy y* df dy dy 0 and dg y* y* dg dy dy 0 y* y* The above two possibilities can be expressed in one equation as df dg 0 dy dy and 0 (13) Two Scenarios at Minimum f ( y) f ( y) g ( fy( *y)) a y* 0 f ( y) g ( y* ) a y* 0 f ( y) df dy y* a y** 0 y * 0 df dy or y* dg dy df sgn dy 0 and 0 y* dg sgn dy y* y* If min is on the boundary, Eq (13) can be written as f g 0 and 0 (14) which should be interpreted as: f parallel to g but pointing in opposite directions. g f g 0 Area of improvement exists if Eq (14) is not satisfied. f f constant f constant g2 g1 g1 0 f f f constant minimum g2 0 g2 0 f g1 0 J Inequality Constraints and N Variables The necessary condition is: f μT g 0 or f 1g1 2 g 2 J g J 0 0 gi y1 , y2 , where, i 0 gi y1 , y2 , and i 1, 2, , J , y N 0 active , y N 0 inactive Since, at minimum, the i 's have to be nonnegative, f can be expressed as a negative linear combination of g j 's. In words, the gradient of f w.r.t y at a minimum must be pointed in such a way the decrease of f can only come by violating the active constraints. Geometrical Interpretation At any local constrained optimum, no (small) allowable change in the problem variables can improve the value of the objective function. f lies within the cone formed by the negative gradients of the active constraints. General Formulation min f y1 , y2 , , yN (1) s.t. g j y1 , y2 , , yN 0 j 1, 2, ,J (2) hk y1 , y2 , , yN 0 k 1, 2, ,K (3) where, N K Active Constraints The inequality constraint g j y 0 is said to be an active or binding constraint at the point y if g j y =0 It is said to be inactive or nonbinding if g j y 0. Kuhn-Tucker Conditions y f μT y g y λ T y h y 0T (4) g y 0 (5) h y 0 (6) μ0 (7) μT g y 0 (8) or j g j y 0 j 1, 2, ,J Kuhn-Tucker Necessity Theorem Consider the NLP problem given by Eqs (1) - (3). Let f , g and h be differentiable functions and y * be a feasible solution to NLP. Let I j | g j 0 . Furthermore, y g j y * for j I and y hk y * for k 1, 2, , K are linearly independent. If y * is an optimal solution to NLP, then there exists a μ* such that y * μ* λ * solves the Kuhn-Tucker problem given by Eqs (4) - (8). λ* Remarks • The Kuhn-Tucker necessity theorem helps to identify points that are not optimal. • If the KTC are satisfied, there is no assurance that the solution is truly optimal. Example 1. min f y y12 y2 s.t. y1 y2 6, y1 1 0, y12 y22 26 Solution: f 2 y1 1 g1 1 0 , g 2 2 y1 2 y2 h 1 1 Eq (4) becomes 2 y1 1 1 2 2 y1 1 1 0 1 1 0 2 2 y2 1 1 0 Eq (8) becomes 1 1 y1 0 2 y12 y22 26 0 Example 2 min f y y1 y2 s.t. g y y12 y22 25 L y , y1 y2 y y 25 2 1 2 2 L y2 2 y1 0 y1 L y1 2 y2 0 y2 y y 25 0 and 0 2 1 2 2 y1 y2 C 25 y12 y22 Sensitivity min f y1 , y2 , , yN s.t. g j y1 , y2 , , y N gˆ j y1 , y2 , , yN c j 0 j 1, 2, ,J hk y1 , y2 , , y N hˆk y1 , y2 , , y N bk 0 k 1, 2, ,K K J k 1 j 1 L y , λ , μ f y k hk y j g j y V bk * k V c j * j Constraint Qualification g j y * for j I j | g j 0 and hk for k 1, 2, ,K are linear independent at the optimum. When the constraint qualification is not met at the optimum, there may or may not exist a solution to the Kuhn-Tucker problem. Second-Order Optimality Conditions δT δ2 L y , λ , μ δ 0 for all nonzero vectors δ such that J y* δ 0 where J is the matrix whose rows are the gradients of the constraints that are active at y * . In other words, the above equation defines a set of vectors δ that are orthogonal to the gradients of the active constraints. These vectors form the tangent plane to the active constraints. Necessary and Sufficient Conditions for Optimality If a Kuhn-Tucker point satisfies the second-order sufficient conditions, then optimality is guaranteed. Basic Idea of Penalty Methods min f x s.t. min P f , g, h, r g x 0 h x 0 where P f , g, h, r is an unconstrained penalty function, and r is a penalty parameter. Example min f x x1 1 x2 2 2 2 s.t. h x x1 x2 4 0 P x, r x1 1 x2 2 r x1 x2 4 2 2 2 Exact L1 Penalty Function P1 x, w (1) , w (2) f x wk(1) hk x w(2) j max 0, g j x K J k 1 j 1 0 0 where wk(1) >0 and w(2) j >0 are positive. If x* , λ * , μ* satisfy the Kuhn-Tucker conditions and if wk(1) k* k 1, 2, ,K w(2j ) *j j 1, 2, ,J then it can be shown that x* is a local minimum of P1 x, w (1) , w (2) . However, P1 is nonsmooth at hk x 0 and g j x 0. Equivalent Smooth Constrained Problem K J (1) (1) (1) (2) (2) min f x wk pk nk w j p j k 1 j 1 s.t. hk x pk(1) nk(1) ,K (2) (2) g j x p j nj j 1, 2, , J (1) (1) p n k k hk x (1) (1) pk nk 0 (2 ) p j max 0, g j x (2) (2) pj nj 0 ( 2) pk(1) , nk(1) , p (2) , n 0 j j k 1, 2, Barrier Method min f x x1 1 x2 2 2 2 s.t. g x x1 x2 4 0 0 B x, r x1 1 x2 2 r ln x1 x2 4 2 2 1 x1 1 x2 2 r ln x x 4 1 2 where r 0 is a positive scalar called the barrier parameter. 2 2 r ln x1 x2 4 x1 1 x2 2 2 2 x1 x2 4 Generalized Cases min f x s.t. g j x 0 j 1, 2, ,J min B x, r f x r ln g j x J j 1 Mixed Penalty-Barrier Method Barrier method is not directly applicable to problems with equality constraints, but equality constraints can be integrated using a penalty term and inequality can use a barrier term, leading to a mixed penalty-barrier method. min f x s.t. hi x 0 i 1, 2, ,K g j x 0 j 1, 2, ,J min PB x, r1 , r2 f x r1 hi2 x r2 ln g j x K J i 1 j 1
© Copyright 2026 Paperzz