Particle symbol rest energy in MeV or mass in MeV/c2 electron e muon 105.658357 neutral pion 0 134.9766 charged pion 139.57018 proton p 938.27200 neutron n 939.56533 deuteron H2 1875.580 triton H3 2808.873 alpha (He4) 3727.315 0.5109989 Imagine a narrow, well-collimated beam of mono-energetic particles Eo passing through a slab of matter Eo E DE Energy loss E1 Eo E Similarly, the initially well-defined beam direction suffers at least small-angle scattering: 0 D beam direction, If the target is thick, this implies that the overall mean energy loss thickness For sufficiently high initial E0 (or thin enough targets) all particles get through. Energy loss DE E1 Eo E 0 Eo E Electrons eso light they can scatter madly, suffering large deflections & energy losses Two regions are defined by an emperical “Critical Energy” 600MeV Ec Z Z of target atoms Ionization Region Radiation Region dE dx just like protons, etc Bremsstrahlung except range (penetration depth) is measured over actual path length (braking radiation) Bremsstrahlung braking radiation 4 E 4 Photon energies radiated, E 2 mc Resulting in “all-or-nothing” depletion of the beam’s energy E E0e - x / X0 “radiation length” after ~7X0 only 1/103 of the initial electron energy remains If Bremsstrahlung photons energetic enough > 1 MeV they can pair produce The mean free path of a (high energy) photon through matter is X e e - 9 X0 X0 7 Photon or “gamma” ray Pair production e+ e- eeBremsstrahlung Counting interaction lengths Photons interact within matter via 3 processes 1. The photo-electric effect 2. Compton scattering 3. Pair production e- 1. me 2. p1 h D (1 - cos ) mec p2 E~keV Pair production impossible and Compton cross section dominates at E=2mec2 pair production turns on ħ /mc=1 corresponds to 511 keV Total absorption coefficients of rays by lead and aluminum as a function of energy. W. Heitler, The Quantum Theory of Radiation, The Clarendon Press, Oxford, 1936. Experimental Objects muon chambers stee l HAD calorimeter EM calorimeter solenoid tracking volume Electrons and photons deposit most of their energy in the EM calorimeter e electrons & photons muons Quarks & gluons do not exist (for long) as free particles jet , K, , L, etc. quarks & gluons Due to hadronization we observe a collimated spray of particles (“jet”) Neutrinos escape without detection n neutrinos DØ 5500 tons 120,000 digitized readout channels For “free” particles (unbounded in the “continuum”) ipi r / 1 e i(r ) V ip f r / 1 e f (r ) V the solutions to Schrödinger’s equation with no potential Sorry!…this V is a volume appearing for normalization e e iki r ik f r M fi f V i * 3 F ( ki , k f ) f V ( r ) i dr e i ( pi - p f )r / V ( r )dr i ( ki - k f )r e 3 V ( r )dr 3 iqr 3 F ( q ) e V ( r )dr momentum transfer pi pi q = ki - kf =(pi-pf )/ħ the momentum given up (lost) by the scattered particle We’ve found (your homework!) the time evolution of a state from some initial (time, t0) unperturbed state can in principal be described using: U (t , t0 ) t d t0 complete commuting set of observables, e.g. En, etc… Where the | t are eigenstates satisfying Schrödingers equation: d i t H I (t ) t dt Since the set is “complete” we can even express the final state of a system in terms of the complete representation of the initial, unperturbed eigenstates | t0. You’ve also shown the “matrix elements” of this operator (the “overlap” of initial and potential “final” states) t0 U (t , t0 ) t0 t0 t give the probability amplitudes (which we’ll relate to the rates) of the transitions | t0 |″ t during the interval ( t0, t ). to use this idea we need an expression representing U! Operator on both sides, by the Hamiltonian of the perturbing interaction: HI(t)U (t , t0 ) HI(t) t d t0 Then integrate over (t0,t) t t HI(t′) U (t′, t0 ) dt′ t HI(t′) t′ d t0 0 t dt′ 0 d i t d t0 ddt′ t t0 dt d tt' t i ddt′ t d t0 dt′t d t0 t i t t0 d t d t0 i t - t0 t 0 d t0 t H I (t )U (t t0 )dt i t - t0 t0 d i t t0 d - i t0 t0 d i t t0 d - iI U Which notice has lead us to an iterative equation for U t H ( t ) U ( t t ) d t iU - iI I 0 t0 i t U(tto) = 1 - t H I (t ) U(t t0 )dt 0 If at time t0=0 the system is in a definite energy eigenstate of H0 (intitial state is, for example, a well-defined beam) Ho|En,t0> = En |En,to > then to first order i t U(tto)|En,t0> = 1 - t H I (t )dt Ent0 0 and the transition probability E f U E0 ( for f 0 ) 2 i t f 0 - E f t0 H I (t ) E0t0 dt 0 1 2 t 0 E f t0 H I (t ) E0t0 dt Note: probability to remain unchanged = 1 – P !! 2 2 recall: † H 0 (t ) U V (t )U e i tH 0 V (t )e - i tH 0 H0†=H0 (Hermitian!) where each operator acts separately on: E f t0 e itH0 e So: E f U E0 2 1 2 t 0 E f t0 V (t ) E0t0 e (homework!) -itH0 E0t0 ( i / )( E f - E0 ) t dt 2 If we simplify the action (as we do impulse in momentum problems) to an average, effective potential V(t) during its action from (t0,t) ≈ E f U E0 2 factor out 1 2 E f t0 Veff E0t0 2 t e 0 ( i / )( E f - E0 ) t dt 2 E f U E0 2 E f t0 Veff E0t0 ( E f - E0 ) 2 2 i iDEt / t t e t 0 DE 2 2 iDEt / e -1 2 DE E f - E0 1 - cos t 2 The probability of a transition to a particular final state |Ef t> P4 E f | V | Ei E 2 - Ei sin 2 f 2 E f 2 The total transition probability: Ptotal 4 N E N | V | Ei 2 EN - Ei 2 - Ei t sin 2 EN - Ei t 2 If < EN|V|Ei > ~ constant over the narrowly allowed DE Ptotal 4 EN | V | Ei 2 N sin 2 EN - Ei t 2 2 EN - Ei E f U E0 2 E f t0 Veff E0t0 ( E f - E0 ) 2 2 E f - E0 1 - cos t E f - E0 t 2 4 sin 2 DE=2h/Dt for scattering, the final state particles are free, & actually in the continuum - Ei t sin 2 2 Ptotal 4 EN | V | Ei 2 N EN - Ei 2 E n= N n=3 Ptotal 4 E( N) | V | Ei dN 2 sin 2 E( N) - E t 2 2 E( N) - Ei i n=2 n=1 Ptotal 4 E( N) | V | Ei dN 2 sin 2 E( N) - E t i 2 2 E( N) - Ei With the change of variables: t dE dx dN 2 dN x E ( N ) - Ei t / 2 2 dN 2 sin x Ptotal 4 EN | V | Ei dx 2 dE t 2x / t 2 2 dN t sin x Ptotal 4 E N | V | Ei dx 2 dE 2 - x 2 Notice the total transition probability t 2 t 2 dN Ptotal E N | V | Ei dE and the transition rate 2 2 dN W Ptotal / t EN | V | Ei dE Does the density of states vary through the continuum? n= dN/dE n=3 E n=2 n=1 Classically, for free particles E = ½ mv2 = ½ m(vx2 + vy2 + vz2 ) vz vy Notice for any fixed E, m this defines a sphere of velocity points all which give the same kinetic energy. vx The number of “states” accessible by that energy are within the infinitesimal volume (a shell a thickness dv on that sphere). dV = 4v2dv Classically, for free particles E = ½ mv2 = ½ m(vx2 + vy2 + vz2 ) dE mv dv dE dE dv mv 2mE We just argued the number of accessible states (the “density of states”) is proportional to 4v2dv 2 E dE dN C 4v dv C 4 m 2mE 4C 1/ 2 dN dN 3/ 2 2 E dE E1/2 dE m 2
© Copyright 2026 Paperzz