Second harmonic generation on multiferroics Optical spectroscopy seminar 2013 spring Orbán Ágnes, Szaller Dávid 2013. 04. 04. Outline •Introduction to nonlinear optics • Theoretical background – selection rules •The basic idea of the instrumental setup • The structure of multiferroic materials • Examples: • Cr2O3 – domain structure, spin orientation in spin flop phase • Hexagonal manganites – spin orientation •YMnO3 – multiferro domains Introduction to nonlinear optics • Goal: determination/analysis of magnetic and/or electric ordering in crystal strucutres • Ususal method: x-ray, electron, neutron diffraction → microscopic structure • Nonlinear optics: • spatial resolution: 1- 100 µm → visible domain structure • surface sensitivity • symmetry considerations → resolution of structural ambiguities • temporal resolution: 1-10 fs → spin dynamics • faster, cheaper How fast? Introduction to nonlinear optics • Hamiltonina for light-matter interaction, linear terms: 0 1 0 0 δH ε0 pi Ei ε0Θij i E j μBmi Bi ... 3 • Induced polarozation: ΔP 1 1 ω Θ ω m ω ε χ E ε χ E μ χ B 0 ij j 0 ijk j k B ij j 0 ... ω 0 0 3 • For strong EM fields ΔP ε0 χ 1ij E j ω ε0 χ 2ijkEjωEkω ε0 χ 3ijkmE j ωEkωEmω ... • The Kubo-formula: Types of ferro orderings +q -q M -M -P P -q inversion r → -r +q j time reversal -j t → -t • spontaneous symmetry-breaking • multiferroic: ferroic order of more than one degree of freedom • extended definition: materials having multiferroic sublattices includes antiferromagnetic and ferrimagnetic order Basic symmetry arguments • Paramagnetic or nonmagnetic, centro-symmetric material – Spatial inversion and time reversal symmetry, 11 𝑃2𝜔 ~𝜒 𝑒𝑒𝑒 𝐸 𝜔 𝐸 𝜔 Basic symmetry arguments • Paramagnetic or nonmagnetic, centro-symmetric material – Spatial inversion and time reversal symmetry, 11 𝑃2𝜔 ~𝜒 𝑒𝑒𝑒 𝐸 𝜔 𝐸 𝜔 𝑀2𝜔 ~𝜒 𝑚𝑒𝑒 𝐸 𝜔 𝐸 𝜔 𝜒 𝑒𝑒𝑒 = 0 Basic symmetry arguments • Paramagnetic or nonmagnetic, centro-symmetric material – Spatial inversion and time reversal symmetry, 11 𝑃2𝜔 ~𝜒 𝑒𝑒𝑒 𝐸 𝜔 𝐸 𝜔 𝜒 𝑒𝑒𝑒 = 0 𝑀2𝜔 ~𝜒 𝑚𝑒𝑒 𝐸 𝜔 𝐸 𝜔 𝜒 𝑚𝑒𝑒 (𝑖) • Magnetic phase, 1 Basic symmetry arguments • Paramagnetic or nonmagnetic, centro-symmetric material – Spatial inversion and time reversal symmetry, 11 𝑃2𝜔 ~𝜒 𝑒𝑒𝑒 𝐸 𝜔 𝐸 𝜔 𝜒 𝑒𝑒𝑒 = 0 𝑀2𝜔 ~𝜒 𝑚𝑒𝑒 𝐸 𝜔 𝐸 𝜔 𝜒 𝑚𝑒𝑒 (𝑖) • Magnetic phase, 1 𝜒 𝑒𝑒𝑒 (𝑐) Introduction to nonlinear optics • Transformation properties of magnetic crystals: 32 crystallographic pont groups time-reversal operation (T) → 122 magnetic point groups • Nonmagnetic crystals: reciprocal susceptibilities, χijk i magnetic crystals: additional, nonreciprocal susceptibilities, linear dependence on the relevant order parameter, vanishes above Tc, χ c ijk • Total SH intensity: • Interference term: linear dependence on χ(c) → magnetic order parameter • For fixed polarizations χ(i) constant, χ(c) depends on the domain structure Hexagonal manganites • RMnO3 with R=Sc, Y, In, Ho, Er, Tm, Yb, Lu • simultaneous ferroelectric and frustrated triangular antiferromagnetic ordering • P63cm in the ferroelectric paramagnetic phase 𝑃63 𝑐𝑚 𝑃63 𝑐𝑚 M. Fiebig, R.V. Pisarev, JMMM, 272 e1607 (2004) Hexagonal manganites • RMnO3 with R=Sc, Y, In, Ho, Er, Tm, Yb, Lu • simultaneous ferroelectric and frustrated triangular antiferromagnetic ordering • P63cm in the ferroelectric paramagnetic phase Phys. Rev. Lett. 84, 5620 (2000) 𝑃63 𝑐𝑚 𝑃63 𝑐𝑚 M. Fiebig, R.V. Pisarev, JMMM, 272 e1607 (2004) Hexagonal manganites • RMnO3 with R=Sc, Y, In, Ho, Er, Tm, Yb, Lu • simultaneous ferroelectric and frustrated triangular antiferromagnetic ordering • P63cm in the ferroelectric paramagnetic phase Phys. Rev. Lett. 84, 5620 (2000) M. Fiebig, R.V. Pisarev, JMMM, 272 e1607 (2004) Cr2O3 : magnetic spectroscopy and domain topography • Crystal and magnetic structure: • Cr3+ in distorted octahedral errengement of O2- , chains along the z axis • AF magnetic order • order parameter: L vector • above TN: centrosym. point group 3̅m • below TN: 3̅m m m m m • experiment: k ǁ z → χm i χ yyy i χ yxx i χ xyx i χ xxy i m m m m χm c χ yyy c χyxx c χ xyx c χ xxy c Cr2O3 : magnetic spectroscopy and domain topography • cirkuláris bázisban: E = E+e+ + E-e- + Ezez, where e±=± (-1)* (1/√2)(ex±iey) • incoming left cirkularly pol. light → right circularly pol. SH incoming right cirkularly pol. light → left circularly pol. SH Cr2O3 : magnetic spectroscopy and domain topography • , where C is constant and the second term is the interference • change of interference term: reversing the circular polarization or AFM vector • same spectra, but with reversed dependence of σ T = 295 K (<TN), exposure time 35 min, σ+ polarized light T = 295 K (<TN), exposure time 35 min, σ- polarized light T = 325 K (>TN), exposure time 15 min, σ+/- polarized light Cr2O3 : spin-flop phase • Crystal and magnetic structure: • Cr3+ in distorted octahedral errengement of O2- , chains along the z axis • AF magnetic order • order parameter: L vector • above TN: centrosym. point group 3̅m • below TN: 3̅m • spin-flop phase: below TN, B=5.8 T ǁ z, AFM order • 3-fold rotation is lost, six possible domains • two possibilities: •Lǁy, where y is the twofold axis, 2/m • Lǁx, where x is the glid plane, 2/m • experiment: Ey polarization Magnetic dipole SHG 𝑀2𝜔 ~𝜒 𝑚𝑒𝑒 𝐸 𝜔 𝐸 𝜔 M. Fiebig, et. al. PRL, 87 137202 (2001)
© Copyright 2026 Paperzz