A complete and convex search for discrete-time noncausal FIR ZamesFalb multipliers Student: Shuai Wang Supervisor: William P. Heath Co-supervisor: Joaquin Carrasco The University of Manchester UKACC PhD Presentation Showcase Discrete-time Lur’e system G If an LTI plant G is in negative feedback with an S[0, k] slope-restricted nonlinearity, then stability is guaranteed if there is a multiplier M such that Re M e j 1+kG e j > 0, [0,2 ] G UKACC PhD Presentation Showcase Slide 2 Overview of results Types of methods Continuous methods Discrete methods Finite Impulse Response Safonov, 1987; Gapski, 1994; Chang, 2012 FIR Zames-Falb Basis functions Chen & Wen,1995; Vee,2013 Restricted structure rational multipliers Turner,2009; Carrasco,2012; Turner,2011 Ahmad,2013 Jury-Lee criteria & Lyapunov approach Khalil2002; Kothare,1999; Carrasco,2013 Ahmad,2012 M ( z) nb i n f mi z i FIR Zames-Falb, noncausal, convex search, covers both slope restricted and odd slope restricted Remarkably efficient and improvement on existing literature UKACC PhD Presentation Showcase Slide 3 Phase equivalence Lemma Amplitude Given P RH , if there exists a Zames-Falb multiplier M such that Re M ( z ) P( z ) 0, z 1 then there exists an FIR Zames-Falb multiplier MFIR such that Re M FIR ( z ) P( z ) 0, z 1 x(0) 4 x(1) Definition (Willems,1968) i M ( z ) mi z x(2) i 4 M ( z) mz i i i Amplitude n n UKACC PhD Presentation Showcase Slide 4 Numerical results z 4 1.5 z 3 0.5 z 2 0.5 z 0.5 G( z) 4.4 z 5 8.957 z 4 9.893 z 3 5.671z 2 2.207 z 0.5 SLOPE RESTRICTION RESULTS BY USING VARIOUS STABILITY CRITERIA Circle Criterion Tsypkin Criterion Park & Kim (1998) Haddad & Bernstein (1994) Ahmad et. al. (2013) Ahmad et. al. (2012) Gonzaga et. al. (2012) FIR Zames-Falb 1.53 1.69 1.69 1.56 1.83 2.59 1.53 3.82 0 1 2 UKACC PhD Presentation Showcase 3 4 5 Slide 5 Computation time G( z) 6000 0.1z z 2 1.8 z 0.81 T 1.7333e0.1 seconds computation time evaluated time 5000 time/second 4000 3000 2000 1000 0 0 10 20 30 40 50 60 n UKACC PhD Presentation Showcase 70 80 Slide 6 Conclusion and future work Phase-equivalence Discrete-time FIR Zames-Falb multipliers are phase-equivalent to the class of discrete-time rational Zames-Falb multipliers A convex search for discrete-time Zames-Falb multipliers with FIR structure KYP lemma derived for discrete-time noncausal transfer functions No source of conservatism Complete search and it is expected to be the best for slope-restricted nonlinearities Future work MIMO extension Anti-windup synthesis UKACC PhD Presentation Showcase Slide 7
© Copyright 2026 Paperzz