Catalysts for Solar Fuels Bryan D. Stubbert, Bert T. Lai, and Harry B. Gray Division of Chemistry and Chemical Engineering, California Institute of Technology NSF Center for Chemical Innovation: CCI Solar Interdisciplinary collaboration focused on building and understanding a self-contained water splitting system powered by the sun as a source of clean, sustainable energy Covalently tethered or adsorbed electrocatalyst on a lightabsorbing nanostructured cathode stable to (moderately) reducing conditions Ongoing Flash-Quench Spectroscopic Studies Aqueous Co(P) Electrocatalysts Selected Nonaqueous H2 Evolution Studies Aqueous electrocatalysis (>90% Faradaic H2 yield) at moderate overpotentials (<0.6 V) Catalysis likely occurs at CoII/I interface (limited mechanistic details reported) Several electronic absorptions in UV-visible region: oxidation state sensitive photoprobes Electrocatalytic H2 evolution occurs near Co2+/1+ couple Simulations and thermodynamics favor bimetallic pathway Juris; Balzani; Barigeletti; Campagna; Belser; von Zelewsky Coord. Chem. Rev. 1988, 84, 85-277. Hoffman, M. Z.; Bolletta, F.; Moggi, L.; Hug, G. L. J. Phys. Chem. Ref. Data 1989, 18, 219-543. Kellet, R.; Spiro, T. G. Inorg. Chem. 1985, 24, 2373-2377. J. L. Dempsey, J. R. Winkler, H. B. Gray manuscript in preparation. Hu, X.; Brunschwig, B. S.; Peters, J. C. J. Am. Chem. Soc. 2007, 129, 8988-8998. Connolly, P.; Espenson, J. H. Inorg. Chem. 1986, 25, 2684-2688. Reductive Quenching: [Ru(bpy)3]1+ from MeODMA Thermodynamic Considerations Bimetallic pathway strongly favored under most conditions Strong acid and/or less positive E° (Co3+/2+) favor monometallic route Both can be competitive under intermediate conditions 0' 0' 2e EH 2 E (Co( II / I )) K bi exp kBT Nanostructured anode or adsorbed thin film electrocatalyst stable to strongly oxidizing conditions e 2 EH0'2 E 0' (Co( III / II )) E 0 ' (Co( II / I )) K mono exp k BT K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, N. S. Lewis Adv. Mater 2009, 21, 325-328 Very Long Range Membrance Electron Transfer CO2 Reduction Catalysts: Very High h in CH3CN e EH0'2 E 0' (Co( III / II )) EH0 '2 E 0 ' (Co( II / I )) exp k BT Hu, X.; Brunschwig, B. S.; Peters, J. C. J. Am. Chem. Soc. 2007, 129, 8988-8998. Kellett, R. M.; Spiro, T. G. Inorg. Chem. 1985, 24, 2373-2377. Chao, T.-H.; Espenson, J. H. J. Am. Chem. Soc. 1978, 100, 129-133. Spectroelectrochemistry: ┐3+ I Co (TMPyP) Flash-quench laser photolysis studies (pH 5) Data consistent with CoIP generation [Ru(bpy)3]2+ bleach convolutes data (480 nm) SEC-derived difference spectrum (blue; Pt mesh, 0.1 M TBAH in MeCN) UV-vis absorption spectrum of [CoII(TM4PyP)]4+ in MeCN (orange) Non-rigidity and Preferred Conformations Currently investigating timescale to confirm reduction at CoII site in [Co(TMPyP)]4+ Reductive quenching of [RuII(bpy)3]2+ promising for CoI(P) generation in situ Efforts to expand range of conditions to pH 5-8 continue Bulk photolysis experiments ongoing to confirm H2 evolution via homogeneous catalyst Roles of Ligand-N H–Bonding Plausible CO2 Reduction Mechanism at Ni Two main isomerization routes: inversion at Ni–N< N–H deprotonation to Ni–N< (Ni2+ and Ni3+) Ni–N(R)< cleavage to Ni–N< (3° NL< and Ni1+) Goal: understand tryptophan electron transfer through OmpA as model membrane protein for PSII Photosystem II Fujita, E.; Creutz, C.; Sutin, N. Brunschwig, B. S. Inorg. Chem. 1993, 32, 2657-2662. OmpA Maimon, E.; Zilbermann, I.; Cohen, H.; Kost, D.; van Eldik, R.; Meyerstein, D. Eur. J. Inorg. Chem. 2005, 4997. Soibinet, M.; Dechamps-Olivier, I.; Guillon, E.; Barbier, J.-P.; Aplincourt, M.; Chuburu, F.; Le Baccon, M.; Handel, H. Polyhedron 2005, 24, 143-150. Ikeda, R.; Soneta, Y.; Miyamura, K. Inorg. Chem. Comm. 2007, 10, 590-592. Nelson, et al. Nat. Rev. Mol. Cell Bio. 2005, 6, 818. Babini, et al. J. Am. Chem. Soc. 2000, 122, 4532. Winkler, et al. Pure Appl. Chem. 1999, 71, 1753. Gray, et al. Annu. Rev. Biochem. 1996, 65, 537. Pautsch, A.; Schulz, G. E. Nat. Struct. Biol. 1998, 5, 1013-1017. OmpA ET Pathway: Follow the Hopping Hole 6.55 Å Fisher, B.; Eisenberg, R. J. Am. Chem. Soc. 1980, 102, 7361. Bhugun, I.; Lexa, D.; Saveant, J.-M. J. Am. Chem. Soc. 1996, 118, 1769. Grodkowski, J.; Neta, P.; Fujita, E.; Mahammed, A.; Simkhovich, L.; Gross, Z. J. Phys. Chem. A 2002, 106, 4772. Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. et al. Chem. Soc. Rev. 2009, in press. Ni(cyclam) TON W7 Jeoung & Dobbek Science 2007, 318, 1461 8.35 Å F40W 6.27 Å >106 × CO2:H2O selectivity!! Gray and Lewis research groups R60C-Re Distance (C60 and C5) = 38.4 Å Electron transfer rates: hopping mechanism >> tunneling mechanism Tryptophan residues provide launch pads and landing sites OmpA has several well-positioned residues for long range ET ET dynamics investigated with time resolved laser flash photolysis Team GCEP: Kyle M. Lancaster, Keiko Yokoyama, A. Katrine Museth, Rose Bustos Jillian Dempsey & Lionel Cheruzel 6.98 Å 10.42 Å Shih, C.; et al. (2008) Science 320, 1760-1762. Acknowledgements Bruce Brunschwig & Jay Winkler Y55W W57 Currently moving towards heterobimetallic ligands to facilitate oxygen atom or hydroxyl group transfer in a two electron process Targeting Cooperative C–O Cleavage CO Dehydrogenase Ni(h1-CO2) interaction H-bond stabilization Fe for “O” transfer N5C-Ru 4.46 Å Y43W 3.77 Å Y8W Catalytic CO2 Reduction: [NiL4]2+ Single pendant arm donors afford similar results: diminished reactivity and minor decrease in overpotential Beley, M.; Cellis, J.-P.; Ruppert, R.; Sauvage, J.-P. J. Am. Chem. Soc. 1986, 108, 7641 N-substitution induces conformational change: counterintuitive decrease in overpotential, but diminished reactivity Ethylene-bridged bis(cyclam)Ni24+ lowers overpotential Modest gain possibly at the expense of selectivity Exogenous Lewis bases (e.g., pyridine) lower overpotential Reduced pyridinium catalysis not observed Additional funding:
© Copyright 2026 Paperzz