bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 1 Discoveringeventstructureincontinuousnarrativeperceptionandmemory 2 ChristopherBaldassano,JaniceChen,AsiehZadbood,JonathanWPillow,UriHasson,KennethANorman 3 PrincetonUniversity,PrincetonNeuroscienceInstituteandDepartmentofPsychology 4 Contact:ChristopherBaldassano,[email protected] 5 6 Summary:Duringrealistic,continuousperception,humansautomaticallysegmentexperiencesinto 7 discreteevents.Usinganovelmodelofneuraleventdynamics,weinvestigatehowcorticalstructures 8 generateeventrepresentationsduringcontinuousnarratives,andhowtheseeventsarestoredand 9 retrievedfromlong-termmemory.Ourdata-drivenapproachenablesidentificationofeventboundaries 10 andeventcorrespondencesacrossdatasetswithouthuman-generatedstimulusannotations,and 11 revealsthatdifferentregionssegmentnarrativesatdifferenttimescales.Wealsoprovidethefirstdirect 12 evidencethatnarrativeeventboundariesinhigh-orderareas(overlappingthedefaultmodenetwork) 13 triggerencodingprocessesinthehippocampus,andthatthisencodingactivitypredictspattern 14 reinstatementduringrecall.Finally,wedemonstratethattheseareasrepresentabstract,multimodal 15 situationmodels,andshowanticipatoryeventreinstatementassubjectslistentoafamiliarnarrative. 16 Ourresultsprovidestrongevidencethatbrainactivityisnaturallystructuredintosemantically 17 meaningfulevents,whicharestoredinandretrievedfromlong-termmemory. 18 1 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 19 Introduction 20 Typically,perceptionandmemoryarestudiedinthecontextofdiscretepicturesorwords.Real-life 21 experience,however,consistsofacontinuousstreamofperceptualstimuli.Thebrainthereforeneeds 22 tostructureexperienceintounitsthatcanbeunderstoodandremembered:“themeaningfulsegments 23 ofone’slife,thecoherentunitsofone’spersonalhistory”(Beal&Weiss,2013).Althoughthisquestion 24 wasfirstinvestigateddecadesago(Newtson,Engquist,&Bois,1977),ageneral“eventsegmentation 25 theory”wasonlyproposedrecently(Zacks,Speer,Swallow,Braver,&Reynolds,2007).Theseandother 26 authorshavearguedthathumansimplicitlygenerateeventboundarieswhenevertheworldchangesina 27 surprisingway,orwhenconsecutivestimulihavedistincttemporalassociations(Schapiro,Rogers, 28 Cordova,Turk-Browne,&Botvinick,2013). 29 Twocriticaldimensionsofeventrepresentationshavenotyetbeendeeplyexplored.First,eventscanbe 30 definedatmultipletimescales.Whenreadingastory,wecouldchunkitintodiscreteunitsofindividual 31 words,sentences,paragraphs,orchapters,andmayneedtochunkinformationonmultipletimescales 32 inparallel.Arecenttheoryofcorticalinformationprocessingarguesforadistributedtopographical 33 hierarchyoftimescales,fromshortprocessingtimescales(10sto100sofmilliseconds)inearlysensory 34 regionstolongprocessingtimescales(10sto100sofseconds)inhigher-orderareas(broadly 35 overlappingthedefaultmodenetwork)(Hasson,Chen,&Honey,2015).Inthisview,“events”inlow- 36 levelsensorycortex(e.g.hearingasingleword)(VanRullen,2016)areprogressivelyintegratedintothe 37 minutes-longeventstypicallyreportedbyhumanobservers. 38 Second,howarereal-lifeexperiencesencodedintolong-termmemory?Behavioralexperimentsand 39 mathematicalmodelshavearguedthatlong-termmemoryreflectseventstructureduringencoding 40 (Ezzyat&Davachi,2011;Gershman,Radulescu,Norman,&Niv,2014;Sargentetal.,2013;Zacks, 41 Tversky,&Iyer,2001),suggestingthattheeventsegmentsgeneratedduringperceptionmayserveas 2 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 42 the“episodes”ofepisodicmemory.Thewell-acceptedideathatthehippocampusstores“snapshots”of 43 corticalactivityhasbeendevelopedwithdiscretememoranda(Danker,Tompary,&Davachi,2016),for 44 whichitisobviouswhensnapshotsshouldbetakenandwhatinformationtheyshouldcontain. 45 However,duringacontinuousstreamofinformationinareal-lifecontext,itisnotatallclearatwhich 46 timescale(e.g.words,sentences,situations)snapshotsshouldbetaken,andwhetherthesesnapshots 47 shouldbecontinuouslyupdatedduringeventsorencodedonlyafteraneventhascompleted. 48 Weproposethatthefulllifecycleofanevent,fromconstructiontolong-termstorage,canbedescribed 49 inaunifiedtheory,illustratedinFig.1.Eachbrainregionalongtheprocessinghierarchysegments 50 informationatitspreferredtimescale,beginningwithshorteventsinprimaryvisualandauditorycortex 51 andbuildingtomultimodal,abstractrepresentationsofthefeaturesofthecurrentevent(“situation 52 models”,Zwaan&Radvansky,1998)inlong-timescaleareas,includingdefaultmoderegionssuchasthe 53 angulargyrusandposteriormedialcortex.Ateventboundariesinlong-timescaleareas,thesituation 54 modelistransmittedtothehippocampus,whichcanlaterreinstatethesituationmodelinlong 55 timescaleregionsduringrecall,andfacilitaterecognitionofsimilareventsinthefuture.Thistheory 56 makesthefollowingpredictions:1)Eventsshouldbeidentifiableatdifferenttimescalesthroughoutthe 57 processingtimescalehierarchy,withsegmentationintoshorteventsinearlysensoryareasand 58 integrationintolongereventsinhigh-orderareas.2)Eventboundariesannotatedbyhumanobservers 59 shouldbemostrelatedtoneuraleventboundariesinlongtimescaleregions.3)Theendofaneventin 60 longtimescalecorticalregionsshouldtriggerthehippocampustoencodeinformationaboutthejust- 61 concludedeventintoepisodicmemory.4)Storedeventmemoriescanbereinstatedinlongtimescale 62 corticalregionsduringrecall,withstrongerreinstatementformorestrongly-encodedevents.5)Neural 63 patternsinlongtimescaleregionscorrespondtoabstractsituationmodels,whichrepresentthefeatures 64 ofthesituationregardlessofthewaythatthesituationisdescribed(e.g.amovieoraverbalnarrative). 3 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 65 6)Priormemoryforanarrativeshouldinfluencetheprocessingoffutureevents,leadingtoanticipatory 66 reinstatementinlongtimescaleregions. 67 Testingthiskindofintegratedtheoryisbeyondthereachofexistingapproachesthatrelyonhuman 68 annotatorstosegmentevents.Itrequiresidentifyinghowdifferentbrainareassegmentevents(possibly 69 atdifferenttimescales),andaligningeventsacrossdifferentdatasetswithdifferenttimings(e.g.tosee 70 whetherthesame“situationmodel”isbeingelicitedbyamovievs.averbalnarrative,oramovievs. 71 laterrecall).Stimulus-basedannotationsalsocannotaddressquestionssuchasanticipatory 72 reinstatement,inwhichanidenticalstimulusgeneratesdifferenteventsegmentationsindifferent 73 observers(dependingontheirpriorexperience).Thus,tosearchfortheneuralcorrelatesofevent 74 segmentation,wehavedevelopedanewdata-drivenanalysismethodthatallowsustoidentifyevents 75 directlyfromneuralactivitypatterns,acrossmultipletimescalesanddatasets. 76 Ouranalysisapproach(summarizedhere,anddescribedindetailintheMaterialsandMethods)starts 77 withtwosimpleassumptions:1)whileprocessingaparticularnarrativestimulus,observersprogress 78 throughaparticularsequenceofdiscreteeventrepresentations(hiddenstates),and2)eacheventhasa 79 distinct(observable)signature(amulti-voxelfMRIpattern)thatispresentthroughouttheevent.We 80 implementtheseassumptionsusingavariantofaHiddenMarkovModel(HMM).Fittingthemodelto 81 fMRIdata(e.g.whilewatchingamovie)entailssimultaneouslyestimatingwhenthetransitionsbetween 82 eventsoccurandalsothemeanneuralpatternforeachevent.Theoptimalnumberofeventsisselected 83 bysweepingoverarangeofvaluesandmaximizingthefitonheld-outdata.Whenapplyingthemodel 84 tomultipledatasetsthatexpressthesamenarrative(e.g.whilewatchingamovieandduringlaterverbal 85 recall),themodelisconstrainedtofindthesamesequenceofpatterns(becausetheeventsarethe 86 same),butthetimingofthetransitionsbetweenthepatternscanvary(e.g.sincethespokendescription 87 oftheeventsmightnottakeaslongastheoriginalevents).Forexample,ifthenumberofeventsisset 88 to10,themodelwillattempttoexplainbothdatasetsintermsofonemulti-voxelpatterntransitioning 4 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 89 toasecondandthenathird,andsoforth,wherethesetenpatternsarecommontobothdatasets,but 90 exactlywhenthepatternsswitchcanvaryacrossdatasets. 91 Thismodelallowsustotestthesixpredictionsofourunifiedtheorydescribedabove,followingevents 92 fromtheirinitialperceptioninsensorycortextotheirincorporationintolong-termmemory.Ourresults 93 providethefirstdirectevidencethatbrainactivityduringrealisticexperiencesisnaturallystructured 94 intosegmentedeventsacrossmultipletimescales,thateventrepresentationsinhigh-orderareasatthe 95 topoftheprocessinghierarchycontainhigh-levelsemanticsituationdescriptions,andthatthesehigh- 96 leveleventsarediscretelyencodedbylong-termmemorystructures. 5 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 97 98 Figure1:Theoryofeventsegmentationandmemory.(1)Duringperception,eventsareconstructedat 99 ahierarchyoftimescales,withshorteventsinearlysensoryregions(includingprimaryvisualcortexand 100 primaryauditorycortex)andlongeventsinhigh-levelregions(includingdefaultmoderegionssuchas 101 angulargyrusandposteriormedialcortex).(2)Putativeeventboundariesidentifiedbyhumanobservers 102 shouldcorrespondmostcloselytolongtimescaleeventsnearthetopofthehierarchy.(3)Attheendof 103 ahigh-levelevent,thesituationmodelisstoredintolong-termmemory,resultinginpost-boundary 104 encodingactivityinthehippocampus.(4)Episodiceventmemoriescanbereinstatedintohigh-level 105 corticalregionsduringrecall.(5)Sincesituationmodelsareabstractsemanticdescriptions,thesame 106 sequenceofhigh-leveleventscanbeactivatedbymultipleinputmodalitiesiftheydescribethesame 107 story.(6)Prioreventmemoriescanalsoinfluenceongoingprocessing,facilitatingpredictionof 108 upcomingeventsinrelatednarratives.Wetesteachofthesehypothesesusingadata-drivenevent 109 segmentationmodel,whichcanautomaticallyidentifytransitionsinneuralactivitypatternsanddetect 110 correspondencesinactivitypatternsacrossdatasets. 6 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 111 Results 112 AllofouranalysesarecarriedoutusingournewHMM-basedeventsegmentationmodel(summarized 113 above,anddescribedindetailintheEventSegmentationModelsubsectionofMaterialsandMethods), 114 whichcanautomaticallydiscovertheneuralsignaturesofeacheventanditstemporalboundariesina 115 particulardataset.Wevalidatedthismodelusingbothsyntheticdata(Supp.Fig.1)andnarrativedata 116 withcleareventbreaksbetweenstories(Supp.Fig.2),confirmingthatwecouldaccuratelyrecoverthe 117 numberofeventboundariesandtheirlocations(seeMaterialsandMethods).Wethenappliedthe 118 modeltotestsixpredictionsofourtheoryofeventperceptionandmemory. 7 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 119 Timescalesofcorticaleventsegmentation 120 Thefirstpredictionofourtheoryisthat“eventsshouldbeidentifiableatdifferenttimescales 121 throughouttheprocessingtimescalehierarchy,withsegmentationintoshorteventsinearlysensory 122 areasandintegrationintolongereventsinhigh-orderareas.”Wemeasuredtheextenttowhich 123 continuousstimulievokedtheeventstructurehypothesizedbyourmodel(periodswithstableevent 124 patternspunctuatedbyshiftsbetweenevents),andwhetherthetimescalesoftheseeventsvariedalong 125 thecorticalhierarchy.WetestedthemodelbyfittingittofMRIdatacollectedwhilesubjectswatcheda 126 50-minutemovie(Chen,Leong,Norman,&Hasson,2016),andthenassessinghowwellthelearned 127 eventstructureexplainedtheactivitypatternsofaheld-outsubject(bycomparingwithin-eventvs. 128 across-eventpatternsimilarity,withlargerwithin-vs.across-eventsimilarityindicatingbettermodelfit). 129 Notethatpreviousanalysesofthisdatasethaveshownthattheevokedactivityissimilaracross 130 subjects,justifyinganacross-subjectsdesign(Chen,Leong,etal.,2016).Wefoundthatessentiallyall 131 brainregionsthatrespondedconsistentlytothemovie(acrosssubjects)showedevidenceforevent-like 132 structure,andthattheoptimalnumberofeventsvariedacrossthecortex(Fig.2).Sensoryregionslike 133 visualcortexshowedfastertransitionsbetweenstableactivitypatterns,whilehigher-levelregionslike 134 theprecuneushadactivitypatternsthatoftenremainedconstantforoveraminutebeforetransitioning 135 toanewstablepattern(seeFig.2insets).Thistopographyofeventtimescalesisbroadlyconsistentwith 136 thatfoundinpreviouswork(Hassonetal.,2015)measuringsensitivitytotemporalscramblingofa 137 moviestimulus(seeSupp.Fig.3). 8 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 138 139 140 Figure2:Eventsegmentationmodelformovie-watchingdatarevealseventtimescales.Theevent 141 segmentationmodelidentifiestemporally-clusteredstructureinmovie-watchingdatathroughoutall 142 regionsofcortexwithhighintersubjectcorrelation.Theoptimalnumberofeventsvariedbyanorderof 143 magnitudeacrossdifferentregions,withalargenumberofshorteventsinsensorycortexandasmall 144 numberoflongeventsinhigh-levelcortex.Forexample,thetimepointcorrelationmatrixforaregionin 145 theprecuneusexhibitedcoarseblocksofcorrelatedpatterns,leadingtomodelfitswithasmallnumber 146 ofevents(whitesquares),whilearegioninvisualcortexwasbestmodeledwithalargernumberof 147 shortevents(notethatonly~3minutesofthe50minutestimulusareshown).Thesearchlightismasked 148 toincludeonlyregionswithintersubjectcorrelation>0.25,andvoxelwisethresholdedforgreater 149 within-thanacross-eventsimilarity,q<0.001. 150 9 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 151 Comparisontohuman-labeledeventboundaries 152 Oursecondpredictionisthat“eventboundariesannotatedbyhumanobserversshouldbemostrelated 153 toneuraleventboundariesinlongtimescaleregions.”Weaskedfourindependentraterstodividethe 154 movieinto“scenes”basedonmajorshiftsinthenarrative(suchasinlocation,topic,ortime).The 155 numberofeventboundariesidentifiedbytheobserversvariedbetween36and64,buttheboundaries 156 hadasignificantamountofoverlap,withanaveragepairwiseDice’scoefficientof0.63and20event 157 boundariesthatwerelabeledbyallfourraters.Wethenmeasured,foreachbrainsearchlight,what 158 fractionofitsneurally-definedboundarieswerecloseto(withinthreetimepointsof)ahuman-labeled 159 eventboundary.AsshowninFig.3,thisrevealedagradientfromearlysensorycortextohigh-levellong 160 timescaleregions.Earlyauditoryandvisualcortexexhibitedmanyneuralboundaries,somenear 161 boundariesmarkedbyahumanobserverbutalsoatmanyothertimesduringthemovie,likelydueto 162 shiftsinlow-level(butnothigh-level)features.Inlongtimescaleregions,suchasangulargyrusand 163 especiallyposteriormedialcortex,amajorityoftheneurally-identifiedeventboundariescorresponded 164 withaboundarymarkedbyahumanobserver. 10 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 165 166 Figure3:Neuraleventboundariesmatchhuman-labeledeventboundaries,especiallyinposterior 167 medialcortex.Comparingtheeventboundariesidentifiedbythemodeltohuman-labeledevent 168 boundaries,wefindthatsimilarityincreasesaswemovefromsensoryregionstohigh-levelregions.The 169 plotontherightcompareshuman-labeledeventboundariesfromallfourhumanobserverstoneural 170 eventboundariesforthreeexamplesearchlights(forseveralminutesofthemovie).Earlysensory 171 regionssuchasV1producealargenumberofboundariesthatarenotstronglypredictiveofahuman- 172 labeledevent.Longtimescaleregions,includingangulargyrusandespeciallyinsuperiorparietaland 173 posteriormedialcortex,haveamajorityoftheireventboundariesnearhuman-labeledboundaries.The 174 searchlightismaskedtoincludeonlyregionswithintersubjectcorrelation>0.25. 175 11 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 176 Relationshipbetweencorticaleventboundariesandhippocampalencoding 177 Thethirdpredictionofourtheoryisthat“theendofaneventinlongtimescalecorticalregionsshould 178 triggerthehippocampustoencodeinformationaboutthejust-concludedeventintoepisodicmemory.” 179 Priorworkhasshownthattheendofavideoclipisassociatedwithincreasedhippocampalactivity,and 180 themagnitudeoftheactivitypredictslatermemory(Ben-Yakov&Dudai,2011;Ben-Yakov,Eshel,& 181 Dudai,2013).Theseexperiments,however,haveusedonlyisolatedshortvideoclipswithclear 182 transitionsbetweenevents.Doneurally-definedeventboundariesinacontinuousmovie,evokedby 183 subtlertransitionsbetweenrelatedscenes,generatethesamekindofhippocampalsignature?Usinga 184 searchlightprocedure,weidentifiedeventboundarieswiththeHMMsegmentationmodelforeach 185 corticalareaacrossthetimescalehierarchy.Wethencomputedtheaveragehippocampalactivity 186 aroundtheeventboundariesofeachcorticalarea,todeterminewhetheracorticalboundarytendedto 187 triggerahippocampalresponse.Wefoundthateventboundariesinadistributedsetoflong(butnot 188 short)timescaleregions(includingposteriorcingulatecortexandbilateralangulargyrus)allshoweda 189 strongrelationshiptohippocampalactivity,withthehippocampalresponsetypicallypeakingwithin 190 severaltimepointsaftertheeventboundary(Fig.4). 12 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 191 192 Figure4:Hippocampalactivityincreasesatcortically-definedeventboundaries.Todeterminewhether 193 eventboundariesmayberelatedtolong-termmemoryencoding,weidentifyeventboundariesbased 194 onacorticalregionandthenmeasurehippocampalactivityaroundthoseboundaries.Inasetofhigh- 195 levelregions(includingbilateralangulargyrus)wefindthateventboundariesintheseregionsrobustly 196 predictincreasesinhippocampalactivity,whichtendstopeakjustaftertheeventboundary.The 197 searchlightismaskedtoincludeonlyregionswithintersubjectcorrelation>0.25,andvoxelwise 198 thresholdedforpost-boundaryhippocampalactivitygreaterthanpre-boundaryactivity,q<0.001. 199 13 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 200 Reinstatementofeventpatternsduringfreerecall 201 Wethentestedourfourthprediction,that“storedeventmemoriescanbereinstatedinlongtimescale 202 corticalregionsduringrecall,withstrongerreinstatementformorestrongly-encodedevents.”After 203 watchingthemovie,allsubjectsinthisdatasetwereaskedtoretellthestorytheyhadjustwatched 204 (withoutanycuesorstimulus).Wefocusedouranalysesonthehigh-levelregionsthatshowedastrong 205 relationshipwithhippocampalactivityinthepreviousanalysis(posteriorcingulateandangulargyrus),as 206 wellasearlyauditorycortexforcomparison. 207 Usingtheeventsegmentationmodel,wefirstestimatedthe(group-average)seriesofevent-specific 208 neuralpatternsevokedbythemovie,andthenattemptedtosegmenteachsubject’srecalldatainto 209 correspondingevents.Whenfittingthemodeltotherecalldata,weassumedthatthesameevent- 210 specificneuralpatternsseenduringthemovie-viewingwillbereinstatedduringthespokenrecall. 211 Analyzingthespokenrecalltranscriptionsrevealedthatsubjectsgenerallyrecalledtheeventsinthe 212 sameorderastheyappearedinthemovie(seetableS1inChen,Leong,etal.,2016).Therefore,the 213 modelwasconstrainedtousethesameorderofmulti-voxeleventpatternsforrecallthatithadlearned 214 fromthemovie-watchingdata.However,crucially,themodelwasallowedtolearndifferentevent 215 timingsfortherecalldatacomparedtothemoviedata–thisallowedustoaccommodatethefactthat 216 eventdurationsdifferedforfreerecallvs.movie-watching. 217 Foreachsubject,themodelattemptedtofindasharedsequenceoflatenteventpatternsthatwas 218 sharedbetweenthemovieandrecall,asshownintheexamplewith25eventsinFig.5a.Comparedto 219 thenullhypothesisthattherewasnosharedeventorderbetweenthemovieandrecall,wefound 220 significantmodelfitsinboththeposteriorcingulate(p=0.015)andtheangulargyrus(p=0.002),butnot 221 inlow-levelauditorycortex(p=0.277)(Fig.5b).Thisresultdemonstratesthatwecanidentifyshared 14 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 222 temporalstructurebetweenperceptionandrecallwithoutanyhumanannotations.Asimilarpatternof 223 resultscanbefoundregardlessofthenumberoflatenteventsused(seeSupp.Fig4). 224 Wethenassessedwhetherthehippocampalresponseevokedbytheendofaneventduringthe 225 encodingofthemovietomemorywaspredictiveofthelengthoftimeforwhichtheeventwasstrongly 226 reactivatedduringrecall.AsshowninFig.5c-d,wefoundthatencodingactivityandeventreactivation 227 werepositivelycorrelatedinbothangulargyrus(r=0.362,p=0.002)andtheposteriorcingulate(r=0.312, 228 p=0.042),butnotearlyauditorycortex(r=0.080,p=0.333).Notethattherewasnorelationshipbetween 229 thehippocampalactivityatthestartingboundaryofaneventandthatevent’slaterrecallintheangular 230 gyrus(r=-0.119,p=0.867;differencefromendingboundarycorrelationp=0.004)andonlyaweak, 231 nonsignificantrelationshipinposteriorcingulate(r=0.189,p=0.113;differencefromendingboundary 232 correlationp=0.274). 233 15 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 234 235 Figure5:Movie-watchingeventsarereactivatedduringindividualfreerecall,andreactivationis 236 relatedtohippocampalactivationatencodingeventboundaries.(a)Wecanobtainanestimated 237 correspondencebetweenmovie-watchingdataandfree-recalldatainindividualsubjectsbyidentifying 238 asharedsequenceofeventpatterns,shownhereforanexamplesubjectusingdatafromposterior 239 cingulatecortex.(b)Foreachregionofinterest,wetestedwhetherthemovieandrecalldatasharedan 240 orderedsequenceoflatentevents(relativetoanullmodelinwhichtheorderofeventswasshuffled 241 betweenmovieandrecall).Wefoundthatbothangulargyrus(blue)andposteriorcingulatecortex 242 (green)showedsignificantreactivationofeventpatterns,whileearlyauditorycortex(red)didnot.(c-d) 243 Eventswhoseoffsetdroveastronghippocampalresponseduringencoding(movie-watching)were 244 stronglyreactivatedforlongerfractionsoftherecallperiod,bothintheangulargyrusandtheposterior 245 cingulate.Errorbarsforeventpointsdenotes.e.m.acrosssubjects,anderrorbarsonthebest-fitline 246 indicate95%confidenceintervalsfrombootstrappedbest-fitlines. 16 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 247 Sharedeventstructureacrossmodalities 248 Ourfifthhypothesisisthat“neuralpatternsinlongtimescaleregionscorrespondtoabstractsituation 249 models,whichrepresentthefeaturesofthesituationregardlessofthewaythatthesituationis 250 described(e.g.amovieoraverbalnarrative).”Wetestedthishypothesisusingaseparatedataset 251 (Zadbood,Chen,Leong,Norman,&Hasson,2016),inwhichsomesubjectswatchedamovie(thefirst24 252 minutesofSherlock)whileothersubjectslistenedtoan18-minuteaudionarrationdescribingtheevents 253 thatoccurredinthemovie.Foreachcorticalsearchlight,wefirstsegmentedthemoviedataintoevents, 254 andthentestedwhetherthissamesequenceofeventsfromthemovie-watchingsubjectswaspresentin 255 theaudio-narrationsubjects.High-levelcorticalregionswithlongprocessingtimescalesincludingthe 256 angulargyrusandposteriormedialcortexshowedastronglysignificantcorrespondencebetweenthe 257 twomodalities,indicatingthatasimilarsequenceofeventpatternswasevokedbythemovieandaudio 258 narration(Fig.6),irrespectiveofthemodalityusedtodescribetheevents.Incontrast,thoughlow-level 259 auditorycortexwasreliablyactivatedbybothofthesestimuli,therewasnoabove-chancesimilarity 260 betweentheseriesofactivitypatternsevokedbythetwostimuli(movievs.verbaldescription), 261 presumablybecausethelowlevelauditoryfeaturesofthetwostimuliweremarkedlydifferent. 262 17 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 263 264 Figure6:Movie-watchingmodelgeneralizestoaudionarrationinhigh-levelcortex.Afteridentifyinga 265 seriesofeventpatternsinagroupofsubjectswhowatchedamovie,wetestedwhetherthissameseries 266 ofeventsoccurredinaseparategroupofsubjectswhoheardanaudionarrationofthesamestory.The 267 movieandaudiostimuliwerenotsynchronizedanddifferedintheirduration.Werestrictedour 268 searchlighttovoxelsthatrespondedtoboththemovieandaudiostimuli(havinghighISCwithineach 269 group).Movie-watchingeventpatternsinearlyauditorycortex(dottedline)didnotgeneralizetothe 270 activityevokedbyaudionarration,whileregionsincludingtheangulargyrusandposteriormedialcortex 271 exhibitedsharedeventstructureacrossthetwostimulusmodalities.Thesearchlightismaskedto 272 includeonlyregionswithintersubjectcorrelation>0.1inallconditions,andvoxelwisethresholdedfor 273 above-chancemovie-audiofit,q<10-5. 274 18 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 275 Anticipatoryreinstatementforafamiliarnarrative 276 Finally,wetestedoursixthprediction,that“priormemoryforanarrativeshouldinfluencethe 277 processingoffutureevents,leadingtoanticipatoryreinstatementinlongtimescaleregions.”Our 278 analysessofarhaveexamineddataonperceptionoronmemory,butineverydaylifewedrawonthese 279 twofunctionssimultaneously.Ourongoinginterpretationofeventscanbeinfluencedbyprior 280 knowledge;specifically,ifsubjectslisteningtotheaudioversionofanarrativehadalreadyseenthe 281 movieversion,theymayanticipateupcomingeventscomparedtosubjectsexperiencingthenarrative 282 forthefirsttime.Detectingthiskindofanticipationhasnotbeenpossiblewithpreviousapproachesthat 283 relyonstimulusannotations,sincethedifferencebetweenthetwogroupsisnotinthestimulus(which 284 isidentical)butratherinthetemporaldynamicsoftheircognitiveprocesses. 285 Wecanfitoureventsegmentationmodeltothethreeconditions(watchingthemovie,listeningtothe 286 narrationwithmemory,andlisteningtothenarrationwithoutmemory)simultaneously,lookingforthe 287 samesequenceofeventpatternsinallthreecases(withvaryingeventboundaries).Byanalyzingwhich 288 timepoints(acrossthethreeconditions)wereassignedtothesameevent,wecangenerateatimepoint 289 correspondenceindicating–foreachtimepointduringtheaudionarrationdatasets–whichtimepoints 290 ofthemoviearemoststronglyevoked(onaverage)inthemindofthelisteners. 291 Wesearchedforcorticalregionsalongthehierarchyoftimescaleshowinganticipation,inwhichthis 292 correspondenceforthememorygroupwasconsistentlyaheadofthecorrespondencefortheno- 293 memorygroup(relativetochance).AsshowninFig.7,wefoundanticipatoryeventreinstatementin 294 severalhigh-levelregionswithlongprocessingtimescales,includingtheangulargyrusandposterior 295 medialcortex,withthelargestleadingeffectsinthemedialfrontalcortex.Examiningthemovie-audio 296 correspondencesintheseregions,thememorygroupwasconsistentlyaheadoftheno-memorygroup, 297 indicatingthatforagiventimepointoftheaudionarrationthememorygrouphadevent 298 representationsthatcorrespondedtolatertimepointsinthemovie. 19 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 299 300 Figure7:Priormemoryshiftsmovie-audiocorrespondence.Theeventsegmentationmodelwasfit 301 simultaneouslytoadatafromagroupwatchingthemovie,thesamegrouplisteningtotheaudio 302 narrationafterhavingseenthemovie(“memory”),andaseparategrouplisteningtotheaudionarration 303 forthefirsttime(“nomemory”).Byexaminingwhichtimepointswereestimatedtofallwithinthesame 304 latentevent,weobtainedacorrespondencebetweentimepointsintheaudiodata(forbothgroups)and 305 timepointsinthemoviedata.Wefoundthatthecorrespondenceinbothgroupswasclosetothe 306 human-labeledcorrespondencebetweenthemovieandaudiostimuli(blackboxes).Insomeregions, 307 however,thememorycorrespondence(orange)significantlyledthenon-memorycorrespondence 308 (blue),witheventsfromthemovieappearingslightlyearlierforthememorygroup(indicatedbyan 309 upwardshiftonthecorrespondenceplots)despitethestimuliforthetwogroupsbeingidentical.This 310 suggeststhatcorticalregionsofthememorygroupwereanticipatingeventsinthenarrationbasedon 311 knowledgeofthemovie,withtheanticipationeffectincreasingfromposteriortoanteriorregions.The 312 searchlightismaskedtoincludeonlyregionswithintersubjectcorrelation>0.1inallconditions,and 313 voxelwisethresholdedforabove-chancedifferencesbetweenmemoryandnomemorygroups,q<0.05. 20 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 314 Discussion 315 Usingadata-driveneventsegmentationmodelthatcanidentifytemporalstructuredirectlyfromneural 316 measurements,wefoundthatactivitypatternsincorticalregionsincludingposteriormedialcortexand 317 theangulargyrusprocessnarrativesasasequenceofhigh-levelsemanticevents.Althoughnarratives 318 evokerapidshiftsbetweenstableactivitypatternsinmanycorticalregionsalongthetimescale 319 hierarchy,onlythesehigh-levelregionshaveeventrepresentationsthatarecloselyrelatedtohuman 320 annotations,predicthippocampalencoding,arereactivatedduringrecall,generalizeacrossmodalities, 321 andshowanticipatorycodingforfamiliarnarratives. 322 Eventsegmentationtheory 323 Ourresultsarethefirsttodemonstrateanumberofkeypredictionsofeventsegmentationtheory 324 (Zacksetal.,2007)directlyfromneuraldataofnaturalisticnarratives,withoutusingspecially- 325 constructedstimuliorsubjectivelabelingofwhereeventsshouldstartandend.Previousworkhas 326 shownthathand-labeledeventboundariesareassociatedwithunivariateactivityincreasesinanetwork 327 ofregionsoverlappingourhigh-levelareas(Ezzyat&Davachi,2011;Speer,Zacks,&Reynolds,2007; 328 Swallowetal.,2011;Whitneyetal.,2009;Zacks,Braver,etal.,2001;Zacks,Speer,Swallow,&Maley, 329 2010),butbymodelingfine-scalespatialactivitypatternswewereabletodetecttheseeventchanges 330 withoutanexternalreference.Thisallowedustoidentifyregionswithtemporaleventstructuresat 331 manydifferenttimescales,onlysomeofwhichmatchedhuman-labeledboundaries.Otheranalysesof 332 thesedatasetsalsofoundreactivationduringrecall(Chen,Leong,etal.,2016)andsharedevent 333 structureacrossmodalities(Zadboodetal.,2016);however,becausetheseotheranalysesdefined 334 eventsbasedonthenarrativeratherthanbrainactivity,theywereunabletoidentifydifferencesin 335 eventsegmentationacrossbrainareasoracrossgroupswithdifferentpriorknowledge. 21 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 336 Timescalesofperception 337 Thetopographyofeventtimescalesrevealedbyouranalysisprovidesconvergingevidenceforan 338 emergingviewofhowinformationisprocessedduringreal-lifeexperience(Hassonetal.,2015).The 339 “processmemoryframework”arguesthatperceptualstimuliareintegratedacrosslongerandlonger 340 timescalesalongahierarchyfromearlysensoryregionstoregionsinthedefaultmodenetwork.Usinga 341 varietyofexperimentalapproaches,includingfMRI,electrocorticography(ECoG),andsingle-unit 342 recording,thistopographyhaspreviouslybeenmappedeitherbytemporallyscramblingthestimulusat 343 differenttimescalestoseewhichregions’responsesaredisrupted(Hasson,Yang,Vallines,Heeger,& 344 Rubin,2008;Honeyetal.,2012;Lerner,Honey,Silbert,&Hasson,2011)orbyexaminingthepower 345 spectrumofintrinsicdynamicswithineachregion(Honeyetal.,2012;Murrayetal.,2014;Stephens, 346 Honey,&Hasson,2013).Ourmodelandresultsaddtothesefindings,bysuggestingthatallprocessing 347 regionsexhibitfastchangesateventboundaries,butthatthesefastchangesaremuchlessfrequentin 348 long-timescaleregionswhichaccumulateandsynthesizeinformationatthesituationmodellevel,since 349 theyexperiencelargeupdatesonlywhenthehigh-levelsituationmodelchanges. 350 Interactionsbetweenlongtimescalecorticalregionsandthehippocampus 351 Severallong-timescaleregions,includingposteriorcingulatecortexandtheangulargyrus,showed 352 effectsacrossmanyofourindependentanalyses.Theseareasareinvolvedinhigh-levelscene 353 processingtasksinvolvingmemoryandnavigation(Baldassano,Esteva,Beck,&Fei-Fei,2016),arepart 354 ofthe“generalrecollectionnetwork”withstronganatomicalandfunctionalconnectivitytothe 355 hippocampus(Rugg&Vilberg,2013),andarethecorecomponentsoftheposteriormedialmemory 356 system(Ranganath&Ritchey,2012),whichisthoughttorepresentandupdatearepresentationofthe 357 currentsituation(Johnson-Laird,1983;VanDijk&Kintsch,1983;Zwaan,Langston,&Graesser,1995; 358 Zwaan&Radvansky,1998).Sinceeventrepresentationsintheseregionsgeneralizedacrossmodalities 22 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 359 andbetweenperceptionandrecall,ourresultsprovidefurtherevidencethattheyencodehigh-level 360 situationdescriptions. 361 Priorwork,however,hasnotaddressedwhathappenstotherepresentationsintheseregionswhenthe 362 situationchanges.Behavioralexperimentshaveshownthatlong-termmemoryreflectseventstructure 363 duringencoding(Ezzyat&Davachi,2011;Sargentetal.,2013;Zacks,Tversky,etal.,2001),suggesting 364 thatsituationrepresentationsare“saved”intomemoryasdiscreteevents.Wehavedemonstratedthat 365 thehippocampalencodingactivitypreviouslyshowntobepresentattheendofmovieclips(Ben-Yakov 366 &Dudai,2011;Ben-Yakovetal.,2013)andatabruptswitchesbetweenstimuluscategoryandtask 367 (DuBrow&Davachi,2016)alsooccursatthemuchmoresubtletransitionsbetweenevents(definedby 368 patternshiftsinhigh-levelregions),providingevidencethateventboundariestriggerthestorageofthe 369 currentsituationrepresentationintolong-termmemory.Wehavealsoshownthatthispost-event 370 hippocampalactivityisrelatedtopatternreinstatementduringrecall,ashasbeenrecently 371 demonstratedfortheencodingofdiscreteitems(Dankeretal.,2016),therebysupportingtheviewthat 372 eventsarethenaturalunitsofepisodicmemoryduringeverydaylife. 373 Oureventsegmentationmodel 374 Temporallatentvariablemodelshavebeenlargelyabsentfromthefieldofhumanneuroscience,since 375 thevastmajorityofexperimentshaveatemporalstructurethatisdefinedaheadoftimebythe 376 experimenter.OnenotableexceptionistherecentworkofAndersonandcolleagues,whichhasused 377 HMM-basedmodelstodiscovertemporalstructureinneuralresponsesduringmathematicalproblem 378 solving(Anderson&Fincham,2014;Anderson,Lee,&Fincham,2014;Anderson,Pyke,&Fincham, 379 2016).Thesemodelsareusedtosegmentproblem-solvingoperations(performedinlessthan30 380 seconds)intoasmallnumberofcognitivelydistinctstagessuchasencoding,planning,solvingand 381 responding.Ourworkisthefirsttoshowthat(usingamodifiedHMMandanannealedfitting 23 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 382 procedure)thislatent-stateapproachcanbeextendedtomuchlongerexperimentalparadigmswitha 383 muchlargernumberoflatentstates. 384 Forfindingcorrespondencesbetweencontinuousdatasets,asinouranalysesofsharedstructure 385 betweenperceptionandrecallorperceptionunderdifferentmodalities,severalothertypesof 386 approaches(notbasedonHMMs)havebeenproposedinpsychologyandmachinelearning.Dynamic 387 timewarping(Kang&Wheatley,2015;Silbert,Honey,Simony,Poeppel,&Hasson,2014)locally 388 stretchesorcompressestwotimeseriestofindthebestmatch,andmorecomplexmethodssuchas 389 conditionalrandomfields(Zhuetal.,2015)allowforpartsofthematchtobeoutoforder.However, 390 thesemethodsdonotexplicitlymodeleventboundaries,andfutureworkwillberequiredtoinvestigate 391 whattypesofneuralcorrespondencesarewellmodeledbycontinuouswarpingversusevent-structured 392 models. 393 Perceptionandmemoryinthewild 394 Ourresultsprovideabridgebetweenthelargeliteratureonlong-termencodingofindividualitems 395 (suchaswordsorpictures)andstudiesofmemoryforreal-lifeexperience(Nielson,Smith,Sreekumar, 396 Dennis,&Sederberg,2015;Rissman,Chow,Reggente,&Wagner,2016).Sinceourapproachdoesnot 397 requireanexperimentaldesignwithrigidtiming,itopensthepossibilityofhavingsubjectsbemore 398 activelyandrealisticallyengagedinatask,allowingforthestudyofeventsgeneratedduringvirtual 399 realitynavigation(suchasspatialboundaries,Horner,Bisby,Wang,Bogus,&Burgess,2016)orwhile 400 holdingdialogueswithasimultaneously-scannedsubject(Hasson,Ghazanfar,Galantucci,Garrod,& 401 Keysers,2012).ThemodelalsoisnotfMRI-specific,andcouldbeappliedtoothertypesofneural 402 timeseriessuchaselectrocorticography(ECoG),electroencephalography(EEG),orfunctionalnear- 403 infraredspectroscopy(fNIRS),includingportablesystemsthatcouldallowexperimentstoberun 404 outsidethelab(Mckendricketal.,2016). 24 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 405 Conclusion 406 Usinganoveleventsegmentationmodelthatcanbefitdirectlytoneuroimagingdata,weshowedthat 407 neuralresponsestonaturalisticstimuliaretemporallyorganizedintodiscreteeventsatvarying 408 timescales.Inanetworkofhigh-levelassociationregions,wefoundthattheseeventswererelatedto 409 subjectiveeventannotationsbyhumanobservers,predictedhippocampalencoding,generalizedacross 410 modalitiesandbetweenperceptionandrecall,andshowedanticipatorycodingoffamiliarnarratives. 411 Ourresultsprovideanewframeworkforunderstandinghowcontinuousexperienceisaccumulated, 412 stored,andrecalled. 25 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 413 ExperimentalProcedures 414 415 Figure8:Eventsegmentationmodel.Ourhypothesisabouttheeventstructureofnarrativestimuliis 416 that,foraparticularstory,aseriesofdistincteventsoccursinafixedorder(acrossstimulusmodalities 417 andbetweenencodingandrecall),andthateacheventkhasasignatureneuralpatternmk.Toencode 418 thishypothesisinaquantitativemodel,weusedamodifiedHiddenMarkovModel(HMM)inwhichthe 419 latentstateforeachtimepointdenotestheeventtowhichthattimepointbelongs.Themodelstartsin 420 thefirstevent,andtheneverysuccessivetimepointeithercontinuesthecurrenteventorstartsthenext 421 event,withthefinaltimepointconstrainedtofinishinthefinaleventK.Allneuraldatapointsduring 422 eventkareassumedtobehighlycorrelated(Pearson’sr)withmk. 423 26 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 424 EventSegmentationModel 425 Ourmodelisbuiltontwohypotheses:1)whileprocessingnarrativestimuli,observersexperiencea 426 sequenceofdiscreteevents,and2)eacheventhasadistinctneuralsignature.Mathematically,agiven 427 subject(oraveragedgroupofsubjects)startsinevents1=1andendsineventsT=K,whereTisthetotal 428 numberoftimepointsandKisthetotalnumberofevents.Oneachtimepointthemodeleitherremains 429 inthecurrentstateoradvancestothenextstate,i.e.st+1∈{st,st+1}foralltimepointst.Eacheventhasa 430 signaturemeanactivitypatternmkacrossallVvoxelsinaregionofinterest,andtheobservedbrain 431 activitybtatanytimepointtisassumedtobehighlycorrelatedwithmk,asillustratedinFig.8. 432 Giventhesequenceofobservedbrainactivitiesbt,ourgoalistoinferboththeeventsignaturesmkand 433 theeventstructurest.Toaccomplishthis,wecastourmodelasavariantofaHiddenMarkovModel 434 (HMM).Thelatentstatesaretheeventsstthatevolveaccordingtoasimpletransitionmatrix,inwhich 435 allelementsarezeroexceptforthediagonal(correspondingtost+1=st)andtheadjacentoff-diagonal 436 (correspondingtost+1=st+1),andtheobservationmodelisanisotropicGaussian$ %& '& = ( = 437 438 variance.Notethat,duetothisz-scoring,thelogprobabilityofobservingbrainstatebtinaneventwith 439 signaturemkissimplyproportionaltothePearsoncorrelationbetweenbtandmkplusaconstantoffset. 440 TheHMMisfittotheneuraldatabyusinganannealedversionoftheBaum-Welchalgorithm,which 441 iteratesbetweenestimatingtheneuralsignaturesmkandthelatenteventstructurest.Giventhe 442 signatureestimatesmk,theeventestimatesp(st=k)canbecomputedusingtheforward-backward 443 algorithm.Giventheeventestimatesp(st=k),thesignaturesmkcanbecomputedastheweighted 444 average;< = 445 observationvarianceσ2as4 ∙ 0.98F whereiisthenumberofloopsofBaum-Welchcompletedsofar.We ) *+, - . / 0 -1- 2 34 /2 56 -- 4= >4 ?< 34 4= >4 ?< ,where7(9)denotesz-scoringaninputvectorxtohavezeromeanandunit .Toencourageconvergencetoahigh-likelihoodsolution,weannealthe 27 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 446 stopthefittingprocedurewhenthelog-likelihoodbeginstodecrease,indicatingthattheobservation 447 variancehasbeguntodropbelowtheactualeventactivityvariance.Wecanalsofitthemodel 448 simultaneouslytomultipledatasets;oneachroundofBaum-Welch,weruntheforward-backward 449 algorithmoneachdatasetseparately,andthenaverageacrossalldatasetstocomputeasinglesetof 450 sharedsignaturesmk. 451 Afterfittingthemodelononesetofdata,wecanthenlookforthesamesequenceofeventsinanother 452 dataset.Usingthesignaturesmklearnedfromthefirstdataset,wesimplyperformasingleroundofthe 453 forward-backwardalgorithmtoobtaineventestimatesp(st=k)ontheseconddataset.Ifweexpectthe 454 datasetstohavesimilarnoiseproperties(e.g.bothdatasetsaregroup-averageddatafromthesame 455 numberofsubjects),wesettheobservationvariancetothefinalσ2obtainedwhilefittingthefirst 456 dataset.Whentransferringeventslearnedongroup-averageddatatoindividualsubjects,weestimate 457 thevarianceforeacheventacrosstheindividualsubjectsofthefirstdataset. 458 Theendstaterequirementofourmodel–thatallstatesshouldbevisited,andtheendstateshouldbe 459 symmetricaltoallotherstates–requiresextendingthetraditionalHMMbymodifyingtheobservation 460 probabilities$ %& '& = ( .First,weenforce'G = Hbyrequiringthat,onthefinaltimestep,onlythe 461 finalstateKcouldhavegeneratedthedata,bysetting$ %G 'G = ( = 0forall( ≠ H.Equivalently,we 462 canviewthisasamodificationofthebackwardspass,byinitializingthebackwardsmessageJ('G = () 463 to1for( = Hand0otherwise.Second,wemustmodifythetransitionmatrixtoensurethatallvalid 464 eventsegmentations(whichstartatevent1andendateventK,andproceedmonotonicallythroughall 465 events)havethesamepriorprobability.Formally,weintroduceadummyabsorbingstateK+1towhich 466 stateKcantransition,ensuringthatthetransitionprobabilitiesforstateKareidenticaltothosefor 467 previousstates,andthenset$ %& '& = H + 1 = 0toensurethatthisstateisneveractuallyused. 28 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 468 Sincewedonotwanttoassumethateventswillhavethesamerelativelengthsacrossdifferentdatasets 469 (suchasamovieandaudio-narrationversionofthesamenarrative),wefixallstatestohavethesame 470 probabilityofstayinginthesamestate(st+1=st)versusjumpingtothenextstate(st+1=st+1).Notethat 471 thesharedprobabilityofjumpingtothenextstatecantakeanyvaluebetween0and1withnoeffecton 472 theresults(uptoanormalizationconstantinthelog-likelihood),sinceeveryvalideventsegmentation 473 willcontainexactlythesamenumberofjumps(K-1). 474 Ourmodelinducesaprioroverthelocationsoftheeventboundaries.Thereareatotalof 475 likelyplacementsoftheK-1eventboundaries,andthenumberofwaystohaveeventboundarykfallon 476 timepointtisthenumberofwaysthatk-1boundariescanbeplacedint-1timepointstimesthenumber 477 ofwaysthat(K-1)-(k-1)-1boundariescanbeplacedinT-ttimepoints.Therefore$ '& = (&'&N) = ( + 478 1 = 479 thedistributionoverboundarylocationsstartsatthisprior,andslowlyadjuststomatchtheevent 480 structureofthedata. 481 Themodelimplementationwasfirstverifiedusingsimulateddata.Anevent-structureddatasetwas 482 constructedwithV=10voxels,K=10events,andT=500timepoints.Theeventstructurewaschosentobe 483 eitheruniform(with50timepointsperevent),orthelengthofeacheventwassampled(fromfirstto 484 last)fromN(1,0.25)*(timepointsremaining)/(eventsremaining).Ameanpatternwasdrawnforeach 485 eventfromastandardnormaldistribution,andthesimulateddataforeachtimepointwasthesumof 486 theeventpatternforthattimepointplusrandomlydistributednoisewithzeromeanandvarying 487 standarddeviation.Thenoisydataweretheninputtotheeventsegmentationmodel,andwemeasured 488 thefractionoftheeventboundariesthatwereexactlyrecoveredfromthetrueunderlyingevent 489 structure.AsshowninSupp.Fig.1,wereabletorecoveramajorityoftheeventboundariesevenwhen 490 thenoiselevelwasaslargeasthesignaturepatternsthemselves. 4O0 6O0 PO4 QO6O0 P QO0 equally .AnexampleofthisdistributionisshowninSupp.Fig.5.Duringtheannealingprocess, 29 G M/) bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 491 Implementationsofourmodel,alongwithsimulateddataexamples,areavailableongithubat 492 https://github.com/intelpni/brainiak(python)andathttps://github.com/cbaldassano/Event- 493 Segmentation(Matlab). 30 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 494 ExperimentalData 495 InterleavedStoriesdataset 496 Totestourmodelinadatasetwithclear,unambiguouseventboundaries,weuseddatafromsubjects 497 wholistenedtotwounrelatedaudionarratives(Chen,Chow,Norman,&Hasson,2015). 498 22subjects(allnativeEnglishspeakers)wererecruitedfromthePrincetoncommunity(9male,13 499 female,ages18-26).Allsubjectsprovidedinformedwrittenconsentpriortothestartofthestudyin 500 accordancewithexperimentalproceduresapprovedbythePrincetonUniversityInstitutionalReview 501 Board.Thestudywasapproximately2hourslongandsubjectsreceived$20perhourascompensation 502 fortheirtime.Datafrom3subjectswerediscardedduetofallingasleepduringthescan,and1dueto 503 problemswithaudiodelivery. 504 Inthisworkweuseddatafrom18subjectswholistenedtothetwoaudionarrativesinaninterleaved 505 fashion,withtheaudiostimulusswitchingbetweenthetwonarrativesapproximatelyevery60seconds 506 atnaturalparagraphbreaks.Thetotalstimuluslengthwasapproximately29minutes,duringwhich 507 therewere32storyswitches.Theaudiowasdeliveredviain-earheadphones. 508 Imagingdatawereacquiredona3Tfull-bodyscanner(SiemensSkyra)witha20-channelheadcoilusing 509 aT2*-weightedechoplanarimaging(EPI)pulsesequence(TR1500ms,TE28ms,flipangle64,whole- 510 braincoverage27slicesof4mmthickness,in-planeresolution3x3mm,FOV192x192mm). 511 PreprocessingwasperformedinFSL,includingslicetimecorrection,motioncorrection,linear 512 detrending,high-passfiltering(140scutoff),andcoregistrationandaffinetransformationofthe 513 functionalvolumestoatemplatebrain(MNI).Functionalimageswereresampledto3mmisotropic 514 voxelsforallanalyses. 31 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 515 Theanalysesinthispaperwerecarriedoutusingdatafromaposteriorcingulateregionofinterest,the 516 posteriormedialclusterinthe“dorsaldefaultmodenetwork”definedbywhole-brainrestingstate 517 connectivityclustering(Shirer,Ryali,Rykhlevskaia,Menon,&Greicius,2012). 518 SherlockRecalldataset 519 Ourprimarydatasetconsistedof17subjectswhowatchedthefirst50minutesofthefirstepisodeof 520 BBC’sSherlock,andwerethenaskedtofreelyrecalltheepisodeinthescannerwithoutcues(Chen, 521 Leong,etal.,2016).Subjectsvariedinthelengthandrichnessoftheirrecall,withtotalrecalltimes 522 rangingfrom11minutesto46minutes(andameanof22minutes).Imagingdatawasacquiredusinga 523 T2*-weightedechoplanarimaging(EPI)pulsesequence(TR1500ms,TE28ms,flipangle64,whole- 524 braincoverage27slicesof4mmthickness,in-planeresolution3x3mm,FOV192x192mm). 525 Werestrictedoursearchlightanalysestovoxelsthatwerereliablydrivenbythestimuli,measuredusing 526 intersubjectcorrelation(Hasson,Nir,Levy,Fuhrmann,&Malach,2004).Voxelswithacorrelationless 527 thanr=0.25duringmovie-watchingwereremovedbeforerunningthesearchlightanalysis. 528 Wedefinedthreeregionsofinterestbasedonpriorwork.Inadditiontotheposteriorcingulateregion 529 definedabove,wedefinedtheangulargyrusasareaPG(bothPGaandPGp)usingthemaximum 530 probabilitymapsfromacytoarchitectonicatlas(Eickhoffetal.,2005),andwedefinedearlyauditory 531 cortexasvoxelswithintheHeschl’sgyrusregion(Harvard-Oxfordcorticalatlas)withreliableintersubject 532 correlationduringanaudionarrative(“Pieman”,Simonyetal.,2016). 533 SherlockNarrativedataset 534 Toinvestigatecross-modaleventrepresentationsandtheimpactofpriormemory,weusedaseparate 535 datasetinwhichsubjectsexperiencedmultipleversionsofanarrative.Onegroupof17subjects 536 watchedthefirst24minutesofthefirstepisodeofSherlock(aportionofthesameepisodeusedinthe 32 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 537 SherlockRecalldataset),whileanothergroupof17subjects(whohadneverseentheepisodebefore) 538 listenedtoan18minuteaudiodescriptionoftheeventsduringthispartoftheepisode(takenfromthe 539 audiorecordingofonesubject’srecallintheSherlockRecalldataset).Thesubjectswhowatchedthe 540 episodethenlistenedtothesame18minuteaudiodescription.Thisyieldedthreesetsofdata,allbased 541 onthesamestory:watchingamovieoftheevents,listeningtoanaudionarrationoftheeventswithout 542 priormemory,andlisteningtoanaudionarrationoftheeventswithpriormemory.Imagingdatawas 543 acquiredusingthesamesequenceasinSherlockRecalldataset;seeZadboodetal.(2016)forfull 544 details. 545 AsintheSherlockRecallexperiment,weremovedallvoxelsthatwerenotreliablydrivenbythestimuli. 546 Onlyvoxelswithanintersubjectcorrelationofatleastr=0.1acrossallthreeconditionswereincludedin 547 searchlightanalyses. 548 Eventannotationsbyhumanobservers 549 Fourhumanobserversweregiventhevideofileforthe50-minuteSherlockstimulus,andgiventhe 550 followingdirections:“Writedownthetimesatwhichyoufeellikeanewsceneisstarting;theseare 551 pointsinthemoviewhenthereisamajorchangeintopic,location,time,etc.Each“scene”shouldbe 552 between10secondsand3minuteslong.Also,giveeachsceneashorttitle.”Thesimilarityamong 553 observerswasmeasuredusingDice’scoefficient(numberofmatchingboundariesdividedbymean 554 numberofboundaries,consideringboundarieswithinthreetimepointsofoneanothertomatch). 33 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 555 Findingeventstructureinnarratives 556 TovalidateoureventsegmentationmodelonrealfMRIdata,wefirstfitthemodeltogroup-averaged 557 PCCdatafromtheInterleavedStoriesexperiment.Inthisexperiment,weexpectthataneventboundary 558 shouldbegeneratedeverytimethestimulusswitchesstories,givingagroundtruthagainstwhichto 559 comparethemodel’ssegmentations.AsshowninSupp.Fig.2,ourmethodwashighlyeffectiveat 560 identifyingevents,withthemajorityoftheidentifiedboundariesfallingclosetoastoryswitch. 561 TheremainingsubsectionsoftheMaterialsandMethodsdescribehowthemodelwasusedtoobtain 562 eachoftheexperimentalresults,withsubsectiontitlescorrespondingtosubsectionsoftheResults. 563 Timescalesofcorticaleventsegmentation 564 Weappliedthemodelinasearchlighttothewhole-brainmovie-watchingdatafromtheSherlockRecall 565 study.Cubicalsearchlightswerescannedthroughoutthevolumeatastepsizeof3voxelsandwitha 566 sidelengthof7voxels.Foreachsearchlight,theeventsegmentationmodelwasappliedtogroup- 567 averageddatafromallbutonesubject.Wemeasuredtherobustnessoftheidentifiedboundariesby 568 testingwhethertheseboundariesexplainedthedataintheheld-outsubject.Wemeasuredthespatial 569 correlationbetweenallpairsoftimepointsthatwerefourtimepointsapart,andthenbinnedthese 570 correlationsaccordingtowhetherthepairoftimepointsfellwithinthesameeventorcrossedoveran 571 eventboundary.Theaveragedifferencebetweenthewithin-versusacross-eventcorrelationswasused 572 asanindexofhowwellthelearnedboundariescapturedthetemporalstructureoftheheld-outsubject. 573 Theanalysiswasrepeatedforeverypossibleheld-outsubject,andwithavaryingnumberofeventsfrom 574 K=10toK=120.Afteraveragingtheresultsacrosssubjects,thenumberofeventswiththebestwithin- 575 versusacross-eventcorrelationswaschosenastheoptimalnumberofeventsforthissearchlight.To 576 generateanulldistribution,thesameanalysiswasperformedexceptthattheeventboundarieswere 34 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 577 scrambledbeforecomputingthewithin-versusacross-eventcorrelation.Thisscramblingwasperformed 578 byreorderingtheeventswiththeirdurationsheldconstant,toensurethatthenulleventshadthesame 579 distributionofeventlengthsastherealevents.Thewithinversusacrossdifferencefortherealevents 580 comparedto1000nulleventswasusedtocomputeazvalue,whichwasconvertedtoapvalueusing 581 thenormaldistribution.ThepvalueswereBonferronicorrectedforthe12choicesofthenumberof 582 events,andthenthefalsediscoveryrateqwascomputedusingthesamecalculationasinAFNI(Cox, 583 1996). 584 Sincethetopographyoftheresultswassimilartopreviousworkontemporalreceptivewindows,we 585 comparedthemapoftheoptimalnumberofeventswiththeshortandmedium/longtimescalemaps 586 derivedbymeasuringinter-subjectcorrelationforintactversusscrambledmovies(Chen,Honey,etal., 587 2016).Thehistogramoftheoptimalnumberofeventsforvoxelswascomputedwithineachofthe 588 timescalemaps. 589 Comparisontohuman-labeledeventboundaries 590 Tocomparetheneurally-definedeventboundariesthroughoutthecortextothehuman-labeledevent 591 boundaries,wecomputedthefractionoftheneuraleventboundariesthatwereclosetoahuman- 592 labeledboundaryforeachsearchlight.Wedefined“closeto”as“withinthreetimepoints,”sincethe 593 typicaluncertaintyinthemodelaboutexactlywhereaneuraleventswitchoccurredwasapproximately 594 threetimepoints. 35 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 595 Relationshipbetweencorticaleventboundariesandhippocampalencoding 596 Afterapplyingtheeventsegmentationmodelthroughoutthecortexasdescribedabove,wemeasured 597 whetherthedata-driveneventboundarieswererelatedtoactivityinthehippocampus.Foragiven 598 corticalsearchlight,weextractedawindowofmeanhippocampalactivityaroundeachofthe 599 searchlight’seventboundaries.Wethenaveragedthesewindowstogether,yieldingaprofileof 600 boundary-triggeredhippocampalresponseaccordingtothisregion’sboundaries.Toassesswhetherthe 601 hippocampusshowedasignificantincreaseinactivityrelatedtotheseeventboundaries,wemeasured 602 themeanhippocampalactivityforthe10timepointsfollowingtheeventboundaryminusthemean 603 activityforthe10timepointsprecedingtheeventboundary,andcomparedthisdifferencetothesame 604 calculationfortheshuffledeventboundaries(asdescribedabove).Thezvalueforthisdifferencewas 605 computedtoapvalue,andthentransformedtoafalsediscoveryrateq. 36 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 606 Reinstatementofeventpatternsduringfreerecall 607 Foreachregionofinterest,wefittheeventsegmentationmodelasdescribedabove(onthegroup- 608 averageddata).Wethentookthelearnedsequenceofeventsignaturesmkandrantheforward- 609 backwardalgorithmoneachindividualsubject’srecalldata.Wesetthevarianceofeachevent’s 610 observationmodelbycomputingthevariancewithineacheventinthemovie-watchingdataof 611 individualsubjects,poolingacrossbothtimepointsandsubjects.Wecomparedthelog-likelihoodofthe 612 fittotherecalldataagainstanullmodelinwhichtheeventsignatureswererandomlyre-ordered,and 613 computedthezvalueofthetruelog-likelihoodcomparedto100nullshuffles,thenconvertedtoap 614 value.Thisnullhypothesistestthereforeassessedwhethertherecallexhibitedorderedreactivationof 615 theeventsidentifiedduringmovie-watching.Theanalysiswasrunfor10eventsto60eventsinstepsof 616 5. 617 Weoperationalizedtheoverallreinstatementofaneventk,as 618 recalltimepointsoftheprobabilitythatthesubjectwasrecallingperceptualeventkatthattimepoint. 619 Wemeasuredwhetherthisper-eventre-activationduringrecallcouldbepredictedduringmovie- 620 watching,basedonthehippocampalresponseattheendoftheevent.Foreachsubject,wecomputed 621 thedifferencebetweenhippocampalactivityafterversusbeforetheeventboundaryasabove.Wethen 622 averagedtheeventre-activationandhippocampaloffsetresponseacrosssubjects,andmeasuredtheir 623 correlation.Toassesstherobustnessofthesecorrelations,weperformedabootstraptest,inwhichwe 624 resampledsubjects(withreplacement,yielding17subjectsasintheoriginaldataset)beforetakingthe 625 averageandcomputingthecorrelation.Thepvaluewasdefinedasthefractionof1000resamplesthat 626 yieldedcorrelationsgreaterthanzero.Forcomparisonpurposes,wealsoperformedthesameanalysis 627 butwithhippocampaldifferencesatthebeginningofeachevent,ratherthantheend. 37 & p(sT = k);thatis,thesumacrossall bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 628 Sharedeventstructureacrossmodalities 629 Todeterminewhetheraudionarrationofastoryelicitedthesamesequenceofeventsasamovieofthat 630 story,weusedanapproachsimilartothatusedfordetectingreactivationatrecall.Afterfittingthe 631 eventsegmentationmodeltoasearchlightofmovie-watchingdatafromtheSherlockNarration 632 experiment,wetookthelearnedeventsignaturesmkandusedthemtoruntheforward-backward 633 algorithmontheaudionarrationdata.Sinceboththemovieandaudiodatawereaveragedatthegroup 634 level,theyshouldhavesimilarlevelsofnoise,andthereforewesimplyusedthefitmovievarianceσ2for 635 theobservationvariance.Asabove,wecomparedtoanullmodelinwhichtheorderoftheevent 636 signatureswasshuffledbeforefittingtothenarrationdata,whichyieldedazvaluethatwasconverted 637 toapvalueandthencorrectedtoafalsediscoveryrateq. 638 Anticipatoryreinstatementforafamiliarnarrative 639 Todeterminewhethermemorychangedtheeventcorrespondencebetweenthemovieandnarration, 640 wethenfitthesegmentationmodelsimultaneouslytogroup-averageddatafromthemovie-watching 641 condition,audionarrationno-memorycondition,andaudionarrationwithmemorycondition,yieldinga 642 sequenceofeventsineachconditionwiththesameneuralsignatures.Wecomputedthe 643 correspondencebetweenthemoviestatessm,tandtheaudiono-memorystatessanm,tasas$ '5,&0 = 644 'WX5,&- = 645 determineifthiscorrespondencewassignificantlydifferentbetweenthememoryandno-memory 646 conditions,wecreatednullgroupsbyaveragingtogetherarandomhalfoftheno-memorysubjectswith 647 arandomhalfofmemorysubjects,andthenaveragingtogethertheremainingsubjectsfromeach 648 group,yieldingtwogroup-averagedtimecourseswhosecorrespondencesshoulddifferonlybychance. 649 Forboththerealandnullcorrespondences,wecomputedthedifferencesbetweenthegroup < $('5,&0 = () ∙ $('WX5,&- = (),andsimilarlyfortheaudiomemorystatessam,t.To 38 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. '5,&0 = 'WX5,&- − $ '5,&0 = 'W5,&- )* ,andcalculatedazvaluebased 650 correspondencesas 651 ontheresultsforrealversusnullgroups.Thiszvaluewasconvertedtoapvalueandthencorrectedtoa 652 falsediscoveryrateq.Forvisualization,wealsocomputedhowfarthememorycorrespondencewas 653 aheadoftheno-memorycorrespondenceasthemeanovert2ofthedifferenceintheexpectedvalues 654 &0 Z) $ &) &*($ '5,&0 = 'WX5,&- − &0 Z) $ '5,&0 = 'W5,&- . 39 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 655 Acknowledgements 656 WethankM.ChowforassistanceincollectingtheInterleavedStoriesdataset,M.C.Iordanforhelpin 657 portingthemodelimplementationtopython,andthemembersoftheHassonandNormanlabsfortheir 658 commentsandsupport.ThisworkwassupportedbyagrantfromIntelLabs(CAB),TheNational 659 InstitutesofHealth(R01-MH094480,UH,and2T32MH065214-11,KAN),theMcKnightFoundation 660 (JWP),NSFCAREERAwardIIS-1150186(JWP),andagrantfromtheSimonsCollaborationontheGlobal 661 Brain(JWP). 40 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 662 References 663 Anderson,J.R.,&Fincham,J.M.(2014).Discoveringthesequentialstructureofthought.Cognitive 664 665 Science,38(2),322–352.https://doi.org/10.1111/cogs.12068 Anderson,J.R.,Lee,H.S.,&Fincham,J.M.(2014).Discoveringthestructureofmathematicalproblem 666 667 solving.NeuroImage,97,163–177.https://doi.org/10.1016/j.neuroimage.2014.04.031 Anderson,J.R.,Pyke,A.A.,&Fincham,J.M.(2016).HiddenStagesofCognitionRevealedinPatternsof 668 669 BrainActivation.PsychologicalScience.https://doi.org/10.1177/0956797616654912 Baldassano,C.,Esteva,A.,Beck,D.M.,&Fei-Fei,L.(2016).Twodistinctsceneprocessingnetworks 670 671 connectingvisionandmemory(Vol.3).https://doi.org/10.1101/057406 Beal,D.J.,&Weiss,H.M.(2013).TheEpisodicStructureofLifeatWork.InA.B.Bakker&K.Daniels 672 (Eds.),ADayintheLifeofaHappyWorker(pp.8–24).NewYork,NY:PsychologyPress. 673 Ben-Yakov,A.,&Dudai,Y.(2011).Constructingrealisticengrams:poststimulusactivityofhippocampus 674 anddorsalstriatumpredictssubsequentepisodicmemory.TheJournalofNeuroscience :The 675 OfficialJournaloftheSocietyforNeuroscience,31(24),9032–42. 676 https://doi.org/10.1523/JNEUROSCI.0702-11.2011 677 Ben-Yakov,A.,Eshel,N.,&Dudai,Y.(2013).Hippocampalimmediatepoststimulusactivityinthe 678 encodingofconsecutivenaturalisticepisodes.JournalofExperimentalPsychology.General,142(4), 679 1255–63.https://doi.org/10.1037/a0033558 680 Chen,J.,Chow,M.,Norman,K.A.,&Hasson,U.(2015).Differentiationofneuralrepresentationsduring 681 682 processingofmultipleinformationstreams.InSocietyforNeuroscience. Chen,J.,Honey,C.J.,Simony,E.,Arcaro,M.J.,Norman,K.A.,&Hasson,U.(2016).AccessingReal-Life 41 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 683 EpisodicInformationfromMinutesversusHoursEarlierModulatesHippocampalandHigh-Order 684 CorticalDynamics.CerebralCortex,26(8),3428–3441.https://doi.org/10.1093/cercor/bhv155 685 Chen,J.,Leong,Y.C.,Norman,K.A.,&Hasson,U.(2016).Sharedexperience,sharedmemory:a 686 commonstructureforbrainactivityduringnaturalisticrecall.https://doi.org/10.1101/035931 687 Cox,R.W.(1996).AFNI:softwareforanalysisandvisualizationoffunctionalmagneticresonance 688 neuroimages.ComputersandBiomedicalResearch,anInternationalJournal,29(3),162–73. 689 Retrievedfromhttp://www.ncbi.nlm.nih.gov/pubmed/8812068 690 Danker,J.F.,Tompary,A.,&Davachi,L.(2016).Trial-by-TrialHippocampalEncodingActivationPredicts 691 theFidelityofCorticalReinstatementDuringSubsequentRetrieval.CerebralCortex,bhw146. 692 https://doi.org/10.1093/cercor/bhw146 693 DuBrow,S.,&Davachi,L.(2016).Temporalbindingwithinandacrossevents.NeurobiologyofLearning 694 andMemory,134,107–114.https://doi.org/10.1016/j.nlm.2016.07.011 695 Eickhoff,S.B.,Stephan,K.E.,Mohlberg,H.,Grefkes,C.,Fink,G.R.,Amunts,K.,&Zilles,K.(2005).Anew 696 SPMtoolboxforcombiningprobabilisticcytoarchitectonicmapsandfunctionalimagingdata. 697 NeuroImage,25(4),1325–35.https://doi.org/10.1016/j.neuroimage.2004.12.034 698 Ezzyat,Y.,&Davachi,L.(2011).Whatconstitutesanepisodeinepisodicmemory?PsychologicalScience, 699 700 22(2),243–52.https://doi.org/10.1177/0956797610393742 Gershman,S.J.,Radulescu,A.,Norman,K.A.,&Niv,Y.(2014).StatisticalComputationsUnderlyingthe 701 DynamicsofMemoryUpdating.PLoSComputationalBiology,10(11),e1003939. 702 https://doi.org/10.1371/journal.pcbi.1003939 703 Hasson,U.,Chen,J.,&Honey,C.J.(2015).Hierarchicalprocessmemory:Memoryasanintegral 704 componentofinformationprocessing.TrendsinCognitiveSciences,19(6),304–313. 42 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 705 https://doi.org/10.1016/j.tics.2015.04.006 706 Hasson,U.,Ghazanfar,A.A.,Galantucci,B.,Garrod,S.,&Keysers,C.(2012).Brain-to-braincoupling:A 707 mechanismforcreatingandsharingasocialworld.TrendsinCognitiveSciences,16(2),114–121. 708 https://doi.org/10.1016/j.tics.2011.12.007 709 Hasson,U.,Nir,Y.,Levy,I.,Fuhrmann,G.,&Malach,R.(2004).Intersubjectsynchronizationofcortical 710 activityduringnaturalvision.Science(NewYork,N.Y.),303(5664),1634–40. 711 https://doi.org/10.1126/science.1089506 712 Hasson,U.,Yang,E.,Vallines,I.,Heeger,D.J.,&Rubin,N.(2008).AHierarchyofTemporalReceptive 713 WindowsinHumanCortex.JournalofNeuroscience,28(10),2539–2550. 714 https://doi.org/10.1523/JNEUROSCI.5487-07.2008 715 Honey,C.J.,Thesen,T.,Donner,T.H.,Silbert,L.J.,Carlson,C.E.,Devinsky,O.,…Hasson,U.(2012).Slow 716 CorticalDynamicsandtheAccumulationofInformationoverLongTimescales.Neuron,76(2),423– 717 434.https://doi.org/10.1016/j.neuron.2012.08.011 718 Horner,A.J.,Bisby,J.A.,Wang,A.,Bogus,K.,&Burgess,N.(2016).Theroleofspatialboundariesin 719 shapinglong-termeventrepresentations.Cognition,30,1–30. 720 https://doi.org/10.1016/j.cognition.2016.05.013 721 Johnson-Laird,P.N.(1983).Mentalmodels:Towardsacognitivescienceoflanguage,inference,and 722 723 consciousness.HarvardUniversityPress. Kang,O.,&Wheatley,T.(2015).Pupildilationpatternsreflectthecontentsofconsciousness. 724 725 ConsciousnessandCognition,35(August),128–135.https://doi.org/10.1016/j.concog.2015.05.001 Lerner,Y.,Honey,C.J.,Silbert,L.J.,&Hasson,U.(2011).Topographicmappingofahierarchyof 726 temporalreceptivewindowsusinganarratedstory.TheJournalofNeuroscience :TheOfficial 43 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 727 JournaloftheSocietyforNeuroscience,31(8),2906–15.https://doi.org/10.1523/JNEUROSCI.3684- 728 10.2011 729 Mckendrick,R.,Parasuraman,R.,Murtza,R.,Formwalt,A.,Baccus,W.,Paczynski,M.,&Ayaz,H.(2016). 730 IntoTheWild:NeuroergonomicDifferentiationofHand-HeldandAugmentedRealityWearable 731 DisplaysDuringOutdoorNavigationwithFunctionalNearInfraredSpectroscopy.Frontiersin 732 HumanNeuroscience,10(216),1–15.https://doi.org/10.3389/fnhum.2016.00216 733 Murray,J.D.,Bernacchia,A.,Freedman,D.J.,Romo,R.,Wallis,J.D.,Cai,X.,…Wang,X.-J.(2014).A 734 hierarchyofintrinsictimescalesacrossprimatecortex.NatureNeuroscience,17(12),1661–3. 735 https://doi.org/10.1038/nn.3862 736 Newtson,D.,Engquist,G.A.,&Bois,J.(1977).Theobjectivebasisofbehaviorunits.Journalof 737 738 PersonalityandSocialPsychology,35(12),847–862.https://doi.org/10.1037/0022-3514.35.12.847 Nielson,D.M.,Smith,T.A.,Sreekumar,V.,Dennis,S.,&Sederberg,P.B.(2015).Humanhippocampus 739 representsspaceandtimeduringretrievalofreal-worldmemories.ProceedingsoftheNational 740 AcademyofSciencesoftheUnitedStatesofAmerica,112(35),11078–83. 741 https://doi.org/10.1073/pnas.1507104112 742 Ranganath,C.,&Ritchey,M.(2012).Twocorticalsystemsformemory-guidedbehaviour.Nature 743 744 Reviews.Neuroscience,13(10),713–26.https://doi.org/10.1038/nrn3338 Rissman,J.,Chow,T.E.,Reggente,N.,&Wagner,A.D.(2016).DecodingfMRISignaturesofReal-world 745 AutobiographicalMemoryRetrieval.JournalofCognitiveNeuroscience,28(4),604–620. 746 https://doi.org/10.1162/jocn_a_00920 747 Rugg,M.D.,&Vilberg,K.L.(2013).Brainnetworksunderlyingepisodicmemoryretrieval.Current 748 OpinioninNeurobiology,23(2),255–260.https://doi.org/10.1016/j.conb.2012.11.005 44 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 749 Sargent,J.Q.,Zacks,J.M.,Hambrick,D.Z.,Zacks,R.T.,Kurby,C.A.,Bailey,H.R.,…Beck,T.M.(2013). 750 Eventsegmentationabilityuniquelypredictseventmemory.Cognition,129(2),241–255. 751 https://doi.org/10.1016/j.cognition.2013.07.002 752 Schapiro,A.C.,Rogers,T.T.,Cordova,N.I.,Turk-Browne,N.B.,&Botvinick,M.M.(2013).Neural 753 representationsofeventsarisefromtemporalcommunitystructure.NatureNeuroscience,16(4), 754 486–92.https://doi.org/10.1038/nn.3331 755 Shirer,W.R.,Ryali,S.,Rykhlevskaia,E.,Menon,V.,&Greicius,M.D.(2012).Decodingsubject-driven 756 cognitivestateswithwhole-brainconnectivitypatterns.CerebralCortex,22(1),158–165. 757 https://doi.org/10.1093/cercor/bhr099 758 Silbert,L.J.,Honey,C.J.,Simony,E.,Poeppel,D.,&Hasson,U.(2014).Coupledneuralsystemsunderlie 759 theproductionandcomprehensionofnaturalisticnarrativespeech.ProceedingsoftheNational 760 AcademyofSciences,111(43),E4687–E4696.https://doi.org/10.1073/pnas.1323812111 761 Simony,E.,Honey,C.J.,Chen,J.,Lositsky,O.,Yeshurun,Y.,Wiesel,A.,&Hasson,U.(2016).Dynamical 762 reconfigurationofthedefaultmodenetworkduringnarrativecomprehension.Nature 763 Communications,7(May2015),1–13.https://doi.org/10.1038/ncomms12141 764 Speer,N.K.,Zacks,J.M.,&Reynolds,J.R.(2007).HumanBrainActivityTime-LockedtoNarrativeEvent 765 Boundaries.PsychologicalScience,18(5),449–455.https://doi.org/10.1111/j.1467- 766 9280.2007.01920.x 767 Stephens,G.J.,Honey,C.J.,&Hasson,U.(2013).Aplacefortime:thespatiotemporalstructureof 768 neuraldynamicsduringnaturalaudition.TheJournalofNeuroscience,110(9),2019–26. 769 https://doi.org/10.1152/jn.00268.2013 770 Swallow,K.M.,Barch,D.M.,Head,D.,Maley,C.J.,Holder,D.,&Zacks,J.M.(2011).ChangesinEvents 45 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 771 AlterHowPeopleRememberRecentInformation.JournalofCognitiveNeuroscience,23(5),1052– 772 1064.https://doi.org/10.1162/jocn.2010.21524 773 VanDijk,T.A.,&Kintsch,W.(1983).Strategiesofdiscoursecomprehension.NewYork:AcademicPress. 774 VanRullen,R.(2016).PerceptualCycles.TrendsinCognitiveSciences,15(12),1401. 775 776 https://doi.org/10.1016/j.tics.2016.07.006 Whitney,C.,Huber,W.,Klann,J.,Weis,S.,Krach,S.,&Kircher,T.(2009).Neuralcorrelatesofnarrative 777 shiftsduringauditorystorycomprehension.NeuroImage,47(1),360–366. 778 https://doi.org/10.1016/j.neuroimage.2009.04.037 779 Zacks,J.M.,Braver,T.S.,Sheridan,M.A.,Donaldson,D.I.,Snyder,A.Z.,Ollinger,J.M.,…Raichle,M.E. 780 (2001).Humanbrainactivitytime-lockedtoperceptualeventboundaries.NatureNeuroscience, 781 4(6),651–5.https://doi.org/10.1038/88486 782 Zacks,J.M.,Speer,N.K.,Swallow,K.M.,Braver,T.S.,&Reynolds,J.R.(2007).Eventperception:amind- 783 brainperspective.PsychologicalBulletin,133(2),273–293.https://doi.org/10.1037/0033- 784 2909.133.2.273 785 Zacks,J.M.,Speer,N.K.,Swallow,K.M.,&Maley,C.J.(2010).TheBrain’sCutting-RoomFloor: 786 SegmentationofNarrativeCinema.FrontiersinHumanNeuroscience,4(October),1–15. 787 https://doi.org/10.3389/fnhum.2010.00168 788 Zacks,J.M.,Tversky,B.,&Iyer,G.(2001).Perceiving,remembering,andcommunicatingstructurein 789 events.JournalofExperimentalPsychology.General,130(1),29–58.https://doi.org/10.1037/0096- 790 3445.130.1.29 791 Zadbood,A.,Chen,J.,Leong,Y.C.,Norman,K.A.,&Hasson,U.(2016).Howwetransmitmemoriesto 792 otherbrains:constructingsharedneuralrepresentationsviacommunication.bioRxiv. 46 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 793 Zhu,Y.,Kiros,R.,Zemel,R.,Salakhutdinov,R.,Urtasun,R.,Torralba,A.,&Fidler,S.(2015).Aligning 794 BooksandMovies:TowardsStory-likeVisualExplanationsbyWatchingMoviesandReadingBooks. 795 InInternationalConferenceonComputerVision(pp.19–27). 796 Zwaan,R.,Langston,M.,&Graesser,A.(1995).TheConstructionofSituationModelsinNarrative 797 Comprehension:AnEvent-IndexingModel.PsychologicalScience,6(5),292–297. 798 https://doi.org/10.1111/j.1467-9280.1995.tb00513.x 799 Zwaan,R.,&Radvansky,G.(1998).Situationmodelsinlanguagecomprehensionandmemory. 800 PsychologicalBulletin,123(2),162–185.https://doi.org/10.1037/0033-2909.123.2.162 801 802 47 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 803 804 805 806 807 SupplementaryFigures 808 48 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 809 810 SupplementaryFigure1:Theeventsegmentationmodelrecoverseventboundariesonsimulateddata. 811 Simulateddatawithadiscreteeventstructureobscuredbyvaryinglevelsofnoisewasinputtothe 812 segmentationmodel,withT=500,K=10,andV=10.Themodelsuccessfullyrecoversamajorityofthe 813 underlyingeventboundariesatlownoiselevels,andcanstillidentifyanabove-chancefractionof 814 boundariesevenathighnoiselevelsthatareaslargeasthedifferencesbetweentheeventpatterns. 815 Havingvariableeventlengthsleadstoonlyasmalllossinperformance,anddoesnotchangetheoverall 816 performancecurve. 817 49 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 818 819 SupplementaryFigure2:Theeventsegmentationmodelsuccessfullyidentifiesswitchesbetween 820 stories.Subjectslistenedtotwostories,whichwereinterleavedsuchthattheyalternatedbackand 821 forthabouteveryminute.UsingdatafromPCC,aneventsegmentationmodelwith34eventtransitions 822 showedthebestfittoheld-outsubjects(veryclosetotheactualnumberof32).Fittingthemodelwith 823 34transitions,themajority(20)werewithin3timepointsofastoryswitch.Anulldistributionwas 824 createdbypermutingtheorderoftheevents(preservingeventlengths);underthisnulldistributionthe 825 chanceofhavingthismanyeventboundariesclosetotruestoryswitcheswasp<0.001. 826 50 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 827 828 SupplementaryFigure3:Topographyofeventtimescalesbroadlymatchesthetopographyoftemporal 829 receptivewindows.(a)Theoptimalnumberofeventsduringmoviewatching(fromFig.2)was 830 comparedtothemapofvoxeltimescales(Chen,Honey,etal.,2016),whichwasdefinedbasedon 831 sensitivitytotemporalscramblingofamovie.Althoughderivedfromverydifferenttypesof 832 experimentaldata,thesetwoapproachesyieldsimilartopographies,withearlyvisualandauditory 833 regionsexhibitingalargenumberofeventsandhavingshorttimescales(orange),andhigher-level 834 regionshavingasmallnumberofeventsandmedium/longtimescales(blue).(b)Plottingthe 835 distributionsofthenumberofeventswithintheshortandmedium/longtimescalemasksconfirmsthat 836 mostregionswithasmallnumberofeventshavemedium/longtemporalreceptivewindows,which 837 mostregionswithalargenumberofeventshaveshorttemporalreceptivewindows. 838 51 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 839 840 SupplementaryFigure4:Movieandrecalldatashowmatchingeventstructureinhigh-levelregions 841 acrossarangeofsettingsforthenumberoflatentevents.TheresultsshowninFig.5bholdformost 842 choicesofthenumberoflatenteventsbetween10and40,withdecreasinggoodness-of-fitforlarger 843 numbersofevents.Notethatthebestfitswereachievedwithmodelshavingapproximately20-25 844 events,similartotheminimumnumberofhuman-labeledeventsthatwererecalledbythesubjects(24, 845 seetableS1inChen,Leong,etal.,2016). 52 bioRxiv preprint first posted online Oct. 14, 2016; doi: http://dx.doi.org/10.1101/081018. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 846 847 SupplementaryFigure5:Priordistributionovereventboundaries.Oureventsegmentationmodel 848 definesauniformprioroverallpossibleeventsegmentationsinwhicheveryeventoccursforatleast 849 onetimepointandalleventsoccurinorder.Thisinducesapriordistributionovereventboundaries, 850 shownhereforT=500,K=10.Duringtheannealingprocess,thedistributionofboundariesstartsatthis 851 prior,whichallowsfora(highlyuncertain)firstestimateofthesignatureneuralpatternforeachevent. 852 Basedonthesepatterns,thelatenteventsforalltimepointsarerefit,andthenthepatternsare 853 recalculated.Theprocesscontinues,withthepatternvarianceslowlydecreasing,untiltheloglikelihood 854 reachesapeak. 855 53
© Copyright 2026 Paperzz