Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko J. Stefan Institute, Ljubljana, Slovenia UIB, Palma de Mallorca, 12. 12. 2007 • Quantum transport theory – prof. Janez Bonča1,2 – prof. Anton Ramšak1,2 – Tomaž Rejec1,2 – Jernej Mravlje1 • Experimental surface science and STM – prof. Albert Prodan1 – prof. Igor Muševič1,2 – Erik Zupanič1 – Herman van Midden1 – Ivan Kvasić1 1 J. Stefan Institute, Ljubljana, Slovenia 2 Faculty of Mathematics and Physics, Uni. of Ljubljana, Ljubljana, Slovenia Outline • Impurity physics • Numerical renormalization group • SNEG – Mathematica package for performing symbolic calculations with second quantization operator expressions • NRG Ljubljana – project goals – features – some words about the implementation • Impurity clusters – N parallel quantum dots (N=1...5, one channel) Classical impurity Quantum impurity This is Kondo model! Nonperturbative behaviour The perturbation theory fails for arbitrarily small J ! Screening of the magnetic moment Kondo effect! “Asymptotic freedom” ... T >> TK ... and “infrared slavery” S= 0 T << TK Analogy: TK QCD Nonperturbative scattering + S - S - S + S Why are quantum impurity problems important? • Quantum systems in interaction with the environment (decoherence) • Magnetic impurities in metals (Kondo effect) • Electrons trapped in nanostructures (transport phenomena) • Effective models in dynamical mean-field theory (DMFT) of strongly-correlated materials Renormalization group 1keV 1 eV ? 1 meV 100 mev Many energy scales are locally coupled (K. G. Wilson, 1975) Cascade effect Numerical renormalization group (NRG) -n/2 Iterative diagonalization Recursion relation: H N 1 T H N H N 1 1/ 2 H N N ( f † N 1, f N , f † N , f N 1, ) Tools: SNEG and NRG Ljubljana Add-on package for the computer algebra system Mathematica for performing calculations involving non-commuting operators Efficient general purpose numerical renormalization group code • flexible and adaptable • highly optimized (partially parallelized) • easy to use Both are freely available under the GPL licence: http://nrgljubljana.ijs.si/ t e, U e, U Package SNEG http://nrgljubljana.ijs.si/sneg SNEG - features • fermionic (Majorana, Dirac) and bosonic operators, Grassman numbers • basis construction (well defined number and spin (Q,S), isospin and spin (I,S), etc.) • symbolic sums over dummy indexes (k, ) • Wick’s theorem (with either empty band or Fermi sea vacuum states) • Dirac’s bra and ket notation • Simplifications using Baker-CampbellHausdorff and Mendaš-Milutinović formula SNEG - applications • • • • exact diagonalization of small clusters perturbation theory to high order high-temperature series expansion evaluation of (anti-)commutators of complex expressions • NRG – derivation of coefficients required in the NRG iteration – problem setup “NRG Ljubljana” - goals • Flexibility (very few hard-coded limits, adaptability) • Implementation using modern high-level programming paradigms (functional programming in Mathematica, object oriented programming in C++) short and maintainable code • Efficiency (LAPACK routines for diagonalization) • Free availability Package “NRG Ljubljana” http://nrgljubljana.ijs.si/ open source,GPL Definition of a quantum impurity problem in “NRG Ljubljana” f0,L f0,R t a b Himp = eps (number[a[]]+number[b[]])+ U/2 (pow[number[a[]]-1,2]+pow[number[b[]]-1,2]) Hab = t hop[a[],b[]] + V J chargecharge[a[],b[]] spinspin[a[],b[]] Hc = Sqrt[Gamma] (hop[a[],f[L]] + hop[b[],f[R]]) Definition of a quantum impurity problem in “NRG Ljubljana” f0,L f0,R t a b Himp = epsa number[a[]] + epsb number[b[]] + U/2 (pow[number[a[]]-1,2]+pow[number[b[]]-1,2]) Hab = t hop[a[],b[]] Hc = Sqrt[Gamma] (hop[a[],f[L]] + hop[b[],f[R]]) Computable quantities • Finite-site excitation spectra (flow diagrams) • Thermodynamics: magnetic and charge susceptibility, entropy, heat capacity • Correlations: spin-spin correlations, charge fluctuations,... spinspin[a[],b[]] number[d[]] pow[number[d[]], 2] • Dynamics: spectral functions, dynamical magnetic and charge susceptibility, other response functions Sample input file [param] model=SIAM U=1.0 Gamma=0.04 Model and parameters Lambda=3 Nmax=40 keepenergy=10.0 keep=2000 ops=q_d q_d^2 A_d NRG iteration parameters Computed quantities Spectral function Charge fluctuations Occupancy Kondo effect in quantum dots Conduction as a function of gate voltage for decreasing temperature W. G. van der Wiel, S. de Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, L. P. Kouwenhoven, Science 289, 2105 (2000) Scattering theory “Landauer formula” See, for example, M. Pustilnik, L. I. Glazman, PRL 87, 216601 (2001). Keldysh approach One impurity: Y. Meir, N. S. Wingreen. PRL 68, 2512 (1992). Conductance of a quantum dot (SIAM) Computed using NRG. Systems of coupled quantum dots triple-dot device L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett. 97, 036807 (2006). M. Korkusinski, I. P. Gimenez, P. Hawrylak, L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, Phys. Rev. B 75, 115301 (2007). Parallel quantum dots and the N-impurity Anderson model ikL v = e VVk≡V (L0) k k R. Žitko, J. Bonča: Multi-impurity Anderson model for quantum dots coupled in parallel, Phys. Rev. B 74, 045312 (2006) R. Žitko, J. Bonča: Quantum phase transitions in systems of parallel quantum dots, Phys. Rev. B 76, .. (2007). Conduction-band mediated inter-impurity exchange interaction RKKY exchange Super-exchange Effective single impurity S=N/2 Kondo model The RKKY interaction is ferromagnetic, JRKKY>0: JRKKY0.62 U(r0JK)2 4th order perturbation in Vk Effective model (T<JRKKY): S is the collective S=N/2 spin operator of the coupled impurities, S=P(SSi)P Free orbital regime (FO) Local moment regime (LM) o o Ferromagnetically frozen (FF) Strongcoupling regime (SC) The spin-N/2 Kondo effect Full line: NRG Symbols: Bethe Ansatz Conductance as a function of the gate voltage Kondo model Kondo model + potential scattering S=1 Kondo model S=1 Kondo model + potential scattering S=1/2 Kondo model + strong potential scattering Gate-voltage controlled spin filtering Spectral functions Kosterlitz-Thouless transition d1=+D, d2=-D S=1/2 Kondo S=1 Kondo Conclusions • Impurity clusters can be systematically studied with ease using flexible NRG codes • Very rich physics: various Kondo regimes, quantum phase transitions, etc. But to what extent can these effects be experimentally observed? • Towards more realistic models: better description of inter-dot interactions, role of QD shape and distances. http://nrgljubljana.ijs.si/
© Copyright 2026 Paperzz