Reduced and Oxidized Colloid Quantum Dots I. Introduction on colloidal quantum dots, spectroscopy, dynamics, microscopy II. Charges, conduction, lasing Philippe Guyot-Sionnest The University of Chicago I. Colloidal Quantum Dots Perceived applications: Screen-printed flat panel displays of large area. Better than OLED. Phosphors for white light LED conversion. Mix at will. Photovoltaic energy conversion. Bandgap optimized. Biolabels. A bit bigger but much better than dyes. Infrared tags for night vision. No organic alternative. Laser “dyes” for infrared (near IR and Atmosphere windows). Nanoelectronic and spintronics self-assembled components. Colloidal molecules. e- hν Many start-up companies, Nanosys, Q.dot, Evident tech…. h+ 150 M$ of venture capital. 1B$ perceived value Research: Fabrication, Spectra-size, carrier dynamics, trapping, energy relaxation, carrier transport… Nanocrystal quantum dots: The pioneers: Ekimov and Efros, 1980. Effective Mass Approximation applied to CuCl aggregates and excitonic spectra. The colloid synthesis: 1982: Precipitation, ionic precursors, Aqueous solutions. Brus, Henglein, Nozik 1986: Micelle “nanoreactor”. Pileni, Brus. Water/micelle in Oil. 1993 “organometallic approach”: Purely organic environment, high temperatures and surfactants. Murray and Bawendi 2000 “Greener” reagents for II-VI. Peng Spectroscopy 1200 2000 2800 Wavelength (nm) IR Material 400 500 600 700 Wavelength (nm) 300 400 500 Wavelength (nm) Visible Material Shim JACS 01 ZnO Absorbance (arb. units) ZnSe Absorbance (arb. units) Absorbance (arb. units) Absorbance (arb. units) CdSe Photoluminescence Intensity (arb. units) Hines JPC 98 Photoluminescence Intensity PbSe Wehrenberg JPC 02 300 400 500 600 Wavelength (nm) UV Material Photoluminescence Intensity (arb. units) QDs from the Near IR to UV: Continuously size-tunable spectra. Excitonic peaks assigned to transitions between “particle in the box” quantum states 1P-1P3/2 Murray and Bawendi, CdSe, 1993 1S-2S3/2 1S-1S3/2 Bawendi, Murray, Norris, Efros, 93-96 Some parity rules seen in Linear and nonlinear optical spectra. (and LARGE two-photon cross-section) Fluorescence: Phosphors. Lighting, Light-emitting diodes. , Displays, Lasers Surface capping molecules or inorganic shell to “passivate” the surface CdSe: Alkyl amines and alkylphosphine/oxide enhance luminescence. Thiols and pyridine reduce PL by orders of magnitude. (different for CdTe) Band-edge fluorescence Trapping and recombination center Type I Core/shell: CdSe/ZnS, CdSe/CdS, InAs/CdSe, CdSe/ZnSe/ZnS, PbSe/CdSe, etc… Absorbance (arb. units) Other materials and shapes e.g. PbSe 1200 2000 2800 Wavelength (nm) Kinetic size and shape control: => sphere, cubes, rods, stars… Small changes in surfactant compositions lead to large effects on final shape and size monodispersivity. For PbSe nanocrystals, 80 % QY, small shift and long (~0.9 µs) lifetimes at RT. Role of dielectric confinement in lengthening the lifetime: T = Trad ε 2 + 2ε 1 3ε 1 With εPbSe~ 24, ε1~ 2, T~ 20Trad ~ 0.4 µs. JPCB 2002 ε2 2 ε1 Intraband Spectroscopy Colloid QDs are soluble mid-IR material for linear and nonlinear optic, light emission, etc…. Carrier dynamics • Multicarrier effects: Auger. • Intraband relaxation. • Linewidths. Auger process Short biexciton lifetimes PRB 60, R2181, 1999, and unpublished 6 -1 cm s ) 0.15 Klimov showed that γ is size dependent ~ R3, γ (x 10 0.1 ∆α (O.D.) Its bulk rate is: dn/dt~ γn3, with γ~ 10-29/10-30 cm6s-1 10 -30 the Auger process is a threebody process, 4 R 1 2 3 Radius (nm) 2 1.15 mJ/cm 0.05 Science 287, 1011, 2000 2 0.14 mJ/cm 0 0 Typical time scales for “biexciton” Auger relaxation: 200 400 Delay (ps) ~ 20 ps for 3 nm diameter, and ~ 500 ps for 9 nm diameter. => much faster than fluorescence. => A significant “colloid” issue for lasing. 600 800 Intraband relaxation 1Se-1Pe relaxation rate? • Klimov et al, PRL 1998: 100 fs0.5 ps Interband bleach recovery. • Too fast for the understood phonon-mechanism, ∆E~ 10 ωLO(phonon bottleneck) • Explanation: electron-hole Auger relaxation, Singh (APL 1994) Efros (Sol. State. Comm. 1995) ~ 2 ps, Zunger (nanolett. 2004)~ 100s of ps. • An open debate. 150 ps; Linewidths: Interband linewidths and Acoustic side band by hole-burning CdSe, Palinginis, Wang et al, PRB 67, 201307 2003 ~ 10 µeV observed at low power high rep-rate or cw-hole burning. intraband linewidths and LO-phonon replicas. n-ZnO 10K Shim, PRB 64, 345432, 2001 Weak Coupling to LO phonon • • In polar semiconductors, polar cell motions, ( Cd2+ Se2- Longitudinal Optical Phonons) can couple to changes in charge distribution. Moderate magnitude and ~1/R size dependence (larger coupling for smaller sizes) consistent with the bulk electron-LO coupling. - - CdSe Moderate Coupling to acoustic phonons Γ = Γ0 + g acousticT + γ LO sinh 2 ( ω LO / kT ) InP T2=8ps;170µ V Intraband Photon Echo PRB 2001 CdSe Coupling to Acoustic Phonons Deformation potential: Acoustic phonon shift valence and conduction band energies. Small particle=> strong overlap of deformation amplitude and electronic wavefunction Effective FWHM linewidth ~ γT g ~ De2 (Ψ 1S 2 2 ) − Ψ1P ∆ (r ) ~ 1 / R 2 Because 1/2k∆(r)2R3~ hν~1/R, so ∆(r)~1/R2 Takagahara: ? Brus et al: γ~ g i2 ωi ~ R −2 γ ~ gω 3 ~ R −5 Single dot microscopy Two photon microscopy of single nanocrystal. Blanton et al, Chem. Phys. Lett. 229, 317 (1994), APL 1996. Biological imaging. Webb et al, Science 300, 1434 (2003) Observation of intensity and spectral wandering. APL 1996 One-Photon Microscopy • Visible to the eye. • Narrow emission ~ 100 µeV. • Linear Stark effect Demonstrated. • Spectral and intensity fluctuations. • Blinking: Nirmal, Brus, Bawendi. Power law Statistics, Kuno and Nesbitt. Empedocles and Bawendi, 1996 Presumed to be due to charge moving on the surface, ionization, or dynamic surface reorganization. Blinking A nanocrystal mystery: Dots blink on and off with Tonν and Toffµ., Time bins ν~ 1.5 ~ µ. Power law is independent of T, Radius, material. Can be seen in ensemble fluorescence (Pelton, APL), like 1/f noise of resistors. Bawendi, PRB 63, 205316, 2001 II. Colloidal QDs and the role of charges. 1. Some Possible Applications. 2. Effect of charges on color. 3. Effect of charges on Transport in close-packed QD films. 4. Effect of charges on Fluorescence Applications: Solar cells with Colloid Quantum dots. Alivisatos, Nature 2002 State of the art: 1.5 % efficiency at A.M. 1.5 Light Emitting Diodes State of the art efficiency: 0.52% Still in question: is it genuine e-h recombination or is it simply energy transfer? Bawendi, Nature 2002. Reduced or Oxidized QDs? • Nozik, Henglein, Kamat, mid-80’s- mid-90’ • Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites” , J. Chem. Phys. 79, 5566-5571 (1983) µ Charge and color Before charge transfer After charge transfer 3 3 1Pe 1Se 2 visible absorption 1.5 1 2 1 0.5 0 0 0.5 1 1.5 2 Energy (eV) 2.5 3 visible bleach 1.5 0.5 0 1Pe 1SeIR absorption 2.5 Absorbance Absorbance 2.5 n-type! 0 0.5 1 2 Energy (eV) dramatic changes in optical properties. Shim, Nature 407, 981 (2000). 1.5 2.5 3 Electrochromic response: Norm alized Absorbance (arb. units) Absorbance O ff O ff 1P e 0.5 0.4 0.3 0.3 0.8 0.2 0.2 0.1 0.1 On 0 0 On 400 On 800 1200 Tim e (sec) 0.6 On 1600 0 0V 0.4 0.4 0.2 0 0.2 0.3 0.4 0.5 0.5 0.5 −1.170 V 0.2 0 1.8 1.9 2 2.1 2.2 2.3 2.4 Energy (eV) 0.4 1S e 0.3 0.3 0.2 0.1 0 -0.1 0.4 1S 3/2 2S 3/2 2(3)S 1 /2 0.2 0.1 0 -0.1 -0.2 -0.2 0 0.2 0.4 0.6 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 Energy (eV) Thin films of nanocrystals change color with an applied electrochemical potential. Wang, Appl. Phys. Lett. 80, 4 (2002). Science 291, 2390 (2001). − ∆ α /α 0.6 O ff 0.4 −∆ α /α 0.8 1 0.6 Off Normalized Absorbance (arb. units) 1 Spectral changes resulting form 1Se occupation: ? P-state charging at more negative potentials Charges and Conduction e− e− Organic surfactant layer insulates the nanocrystal Nanocrystal solids have been reported to be “excellent” insulators! σ~10−14 S/cm below 200 K. 1 µ~ 10−4−10−6 cm2/Vs only at very high fields of 107 V/m. 2 1) M. Drndic et al., J. Appl. Phys. 92, 7498 (2002); C. A. Leatherdale et al., Phys. Rev. B 62, 2669 (2000); 2) D. S. Ginger et al., J. Appl. Phys. 87, 1361 (2000). Electrochemical tuning of carrier density in nanocrystals: ~5 m 1 CdSe Nanocrystal Solution 2 NH2 H2N NH2 H2N NH2 H2N 3 UV/Vis Source ~40 mV UV/Vis Detector Shell to shell conduction: -0.04 400 500 600 700 W avelength (nm) -1 10 -4 10 -5 1Se 10 -2 10 -6 1Pe 10 -3 10 -1 -0.5 P otential (V) 0 -7 10 Optical Bleach (O.D.) Optical Bleach (O.D.) -0.02 6.4 nm CdSe a) 10 0 5.4 nm CdSe b) -1 1S 10 10 10 -5 10 -6 10 -7 e -3 -1 -4 e -2 1P 10 -0.5 Potential (V) 0 Conductance (S) 0 10 0 Conductance (S) Conductivity peak at half filling ~ x(1−x) where x is the filling factor. Optical Bleach (O.D.) 10 Further improvement of conduction by modifying linker: -2 -2 10 10 Pyridine/1,4phenylenediamine -2 -3 -3 10 -5 10 TOPO/1,7heptadiamine -7 10 6.4 nm CdSe σ 0.1 1 # e in 1S state - µ 2 e -0.5 0 Potential (V) -6 10 2 µ~ 0.5.10 cm /V/s -7 -1 -5 10 -8 10 -5 10 -6 10 -4 10 -4 10 Conductance (S) Pyridine/1,7heptadiamine Conductivity (S/cm) 10 2 µ~ 10 cm /V/s Yu, Science, 300, 1277 (2003) G ∝ exp(−(T * / T ) ) 1/ 2 , Τ∗∼ 5300Κ 15 100K 10 5 0 -5 0 5 0.05 -1 1/T(K ) 0.1 0 10K (K -1/2 0.3 ) -1/2 0.25 T 0.2 0.15 0.1 -5 0.05 ln (G/nS) 10 ln (G/nS) 15 Variable Range Hopping Energy randomness Mott’s model of VRH -> LnG ~ T-1/4 T = e ag k (4πεε ) 4 0 B 2 0 ! C ε Coulomb gap Efros and Shklovskii model of VR-> LnG ~ (T*/T) 1/2 2 2 . 8 e T* = 4πεε 0 ak B Extremely nonlinear I/V: $ # " 9 decades for one decade of V 10 6 10 4 10 5 53K 1000 100 1 0.01 36K 36K G (nS) Current (nA) 52.5 K I ~ V9 ??? 22K 22K 15K 0.1 15K 10K 1 Bias (V) 10K 4.3K 4.3K 0.0001 0.1 10 0.001 10 100 0 0.001 E -1/2 0.002 (V/m) -1/2 G = A exp− E * E 0.003 5 15K 0.1 Conductance(nS) 0 -1/2 (V/m) 1000 10 22K 0.1 15K 4.3K r/d 15K 10K 4.3K 22K (F) 4.3K 6 4.3K 36K (D) 10K 15K 22K 36K 4 2 53K 0 0 0.002 0.004 0.006 1/E 1/2 (V/m ) r T * a eEr + exp(−2 − ) a T 8r k BT G=A T * a eEr + 1 + exp(− ) T 8r k B T 0.5 0 8 10K 15K 16 22K 1 (E) 6 4.3K 4 8 12 5 E (10 V/m) 36K 1.5 10K 4 0 2 53K 36K 2 10K -1/2 (C) 0.001 8 15K 2 0 0.001 0.002 0.003 E 5 4 10K 4.3K Current (nA) 0.001 22K -1/2 Simulation -------- 0 k BT * E = 2ea * 0 1 2 5 3 E (10 V/m ) 4 % 22K 6 High-Field dependence (B) 36K & 10 Current (nA) 53K 36K 1000 10 8 (A) r/d Conductance (nS) 10 Dielectric constant effect: T*~1/ε PbSe: ε~ 300 CdSe: ε~10, 40K 5 10 10 PbSe, 7 nm 10 53K 36K 10 22K 15K 0.1 0.1 0.001 CdSe, 7 nm 1000 4.3 K G (nS) G(nS) 1000 5 10K 4.3K 0 0.001 -1/2 E Τ∗∼ 600Κ 0.002 -1.2 (V/m) 0.003 0.001 0 0.001 E 0.002 -1/2 -1/2 (V/m) Τ∗∼ 5300Κ 0.003 Charge, Fluorescence and Lasing -1 Pump threshold: 1eh /dot Pump threshold: 0eh /dot! Lower ASE threshold of (QD)2-: 500 400 1.2 PL Intensity PL and ASE Intensity (arb. units) 600 0.8 0.4 0.0 600 620 640 660 Wavelength (nm) 300 200 100 0 0 0.5 1 1.5 2 Pump Fluence (mJ/cm ) 2 ! "#$ 4 3 2.5 2 1.2 1 0.8 0.6 −∆α/α 1 0.5 0 -1.6 -1.2 -0.8 -0.4 Potential (V) 2 1.5 ASE Threshold (mJ/cm ) 3.5 A 0.4 0.2 0 0 Light Emission Intensity at 648 nm (arb. units) %#$& 200 & ' −1.3 V 150 −1.4 V 100 −1.5 V −1.2 V 50 −0.7 V 0 -1000 −1.6 V 0 1000 2000 3000 Time (ms) 4000 5000 ! 0.20 1.2 1.2 0.20 1.0 0.10 0.6 0.4 0.05 "#$ Absorbance Absorbance (− 0.8 0.15 ( (&− 0.10 550 600 650 Wavelength (nm) 0.0 700 0.6 0.4 0.05 0.2 0.00 500 0.8 0.2 0.00 500 550 600 650 Wavelength (nm) 0.0 700 PL Intensity (arb. units) ( PL Intensity (arb. units) 0.15 1.0 ν , ) # . 0 * %+# - / ) 0 / / 1223"43# 1 &/ +# Charges in Colloidal Quantum Dots : III. Reduced lasing-threshold in the conducting state. •Single dot microscopy • • • • • • • Sean Blanton (1992-1997) Mark Schmidt (post-doc,1995-1997) Margaret (Peggy) Hines(1993-1998) Moonsub Shim (UIUC)(1998-2001) Congjun Wang(2000-2004) Brian Wehrenberg(2000-) Dong Yu(2001-) •Two-photon spectroscopy •Dipole moment •CdSe/ZnS •ZnSe •Intraband Spectroscopy Alamin Dhirani ,92-97, STMmolecular electronics, U.Toronto. Pao-Hong Lin, 94-00, Vib. Dyn. And Mol. Elec. (ITRI Taiwan) Charges and colloid quantum dots, the work: PRL 92, 216802 (2004) JPCB 0489830(2004) JACS, 125, 7806, (2003) Science, 300, 1277 (2003) JPCB, 107, 7355 (2003). APL, 80, 4 (2002). Science, 201, 2390, (2001) JPCB, 104, 1494, (2001) Nature, 407, 981 (2001) Uwe Schroeder, post-doc 9698, UHV Vib. Dyn. SFG. Siemens Chris Matranga, 98-02, Vib. Dyn., UHV, SFG. DOE lab. Herdis Adams, 01-, STM, mol. Elec. Mingzhao Liu, 02-, plasmonics Jiasen Ma, 03- Mol. Elec. Matt Pelton, 03- post-doc plasmonics
© Copyright 2026 Paperzz