The Practicality of Multi-Tag RFID Systems Leonid Bolotnyy Scott Krize Gabriel Robins Department of Computer Science University of Virginia Introduction • RFID • Tags types: passive semi-passive active • Frequencies: Low (125KHz), High (13.56MHz), UHF (915MHz) • Coupling methods: signal signal reader antenna Inductive coupling Backscatter coupling History • Radar invented - 1935 • EAS invented - early 1960’s • First RFID patent filed - 1973 • First RFID book published - 1999 • Auto-ID Center formed - 1999 • EPCglobal formed - 2004 • First RFID game marketed - 2006 Object Identification • Bar-codes vs. RFID – line-of-sight – scanning rate • Unreliability of object detection – – – – radio noise is ubiquitous temperature and humidity objects/readers moving speed liquids and metals are opaque to RF • milk, water, juice • metal-foil wrappers – – – – object occlusion number of objects grouped together tag variability and receptivity tag aging Case Studies • Defense Logistics Agency trials (2001) – – – – 3% of moving objects did not reach destination 20% of tags recorded at every checkpoint 2% of a tag type detected at 1 checkpoint some tags registered on arrival but not departure • Wal-Mart experiments (2005) – 90% tag detection at case level – 95% detection on conveyor belts – 66% detection inside fully loaded pallets Multi-Tag RFID Use Multiple tags per object to increase reliability of object detection/identification The Power of an Angle • Inductive coupling: voltage ~ sin(β), distance ~ (power)1/6 • Far-field propagation: voltage ~ sin2(β), distance ~ (power)1/2 B-field • Optimal Tag Placement: 4 Expected angle (in Degrees) 1 3 2 65 61.86 58.11 60 55 47.98 50 4 2 [ x(2 cos x) dx ( 0 4 45 40 35 β 32.7 [ x(2 cos x)dx] /(2 ) 2 0 30 1 2 3 Number of Tags 4 2 x)(2 cos x) dx] / Equipment and Setup • Equipment – 4 linear antennas by Alien Technology – 4 circular antennas by Alien Technology – 4 circular antennas by ThingMagic • Setup – – – – – empty room 20 solid non-metallic & 20 metallic and liquid objects tags positioned perpendicular to each other tags spaced apart software drivers Experiments • Read all tags in reader’s field • Randomly shuffle objects • Compute average detection rates • Variables – – – – – – – – – reader type antenna type tag type antenna power object type number of objects number of tags per object tags’ orientation tags’ receptivity Linear Antennas Antenna Pair #1, Power = 31.6dBm 1 0.9 Detection Probability 0.8 0.7 0.6 0.5 0.4 1Tag: 58% 2Tags: 79% 3Tags: 89% 4Tags: 93% 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Object Number Circular Antennas Antenna Pair #1, Power = 31.6dBm 1 Detection Probability 0.9 0.8 0.7 0.6 1Tag: 75% 0.5 2Tags: 94% 3Tags: 98% 0.4 4Tags: 100% 0.3 1 2 3 4 5 6 7 8 9 10 11 12 Object Number 13 14 15 16 17 18 19 20 Linear Antennas vs. Multi-tags Power = 31.6dBm 1 0.9 0.8 Detection Probability 0.7 0.6 0.5 0.4 2 Readers, 2 Tags 84.5% Δ= 5.2% 0.3 1 Reader, Δ=14.4% 0.2 0.1 Δ= 6.9% Δ=19.8% 2 Tags 79.3% 2 Readers, 1 Tag 64.9% 1 Reader, 1 Tag 58.0% 9 12 14 Δ=21.3% 0 1 2 3 4 5 6 7 8 10 11 Object Number 13 15 16 17 18 19 20 Circular Antennas vs. Multi-Tags Power = 31.6dBm 1 0.9 Detection Probability 0.8 0.7 0.6 2 Readers, 2 Tags 99.4% Δ= 5.2% 0.5 1 Reader, Δ=3.2% 0.4 Δ= 15.1% Δ=8.4% 2 Tags 94.2% 2 Readers, 1 Tag 91.0% 1 Reader, 75.9% 1 Tag Δ=18.3% 0.3 1 2 3 4 5 6 7 8 9 10 11 Object Number 12 13 14 15 16 17 18 19 20 Power 1 Tag 2 Tags 3 Tags 4 Tags Circular Antennas 1 1 0.9 0.9 Detection Probability Detection Probability Linear Antennas 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 31.6 30.6 29.6 28.6 Power (dBm) 27.6 26.6 25.6 31.6 30.6 29.6 28.6 27.6 26.6 Power (dBm) • Decrease in detection with decrease in power • More rapid decrease in detection for circular antennas 25.6 Importance of Tag Orientation Uni-polar tags 180-same 180-diff 90-same 90-diff Circular 1 Tag 2 Tags 0.55 0.74 0.47 0.67 0.80 Linear 1 Tag 2 Tags 0.37 0.52 0.33 0.52 0.63 Bi-polar tags 1 Tag 180 90 0.75 Circular 2 Tags 1 0.93 3 Tags 1 1 1 Tag 0.53 Linear 2 Tags 0.57 0.97 3 Tags 0.7 1 Controlling Variables 1. Radio noise 2. Tag variability 3. Reader variability 4. Reader power level 5. Distance to objects & type, # of antennas Detection in Presence of Metals & Liquids Circular Antenna 1 Detection Probability 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Power=31.6dBm, No Liquids/Metals Power=31.6dBm, With Liquids/Metals Power=27.6dBm, No Liquids/Metals Power=27.6dBm, With Liquids/Metals 0 1 2 3 4 Number of Tags • Decrease in solid/non-liquid object detection • Significant at low power • Similar results for linear antennas Multi-Tags on Metals and Liquids 0.9 0.8 Power=31.6dBm, Circular Antennas Power=31.6dBm, Linear Antennas Power=27.6dBm, Circular Antennas Power=27.6dBm, Linear Antennas Detection Probability 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 Tag 2 Tags 3 Tags Antenna #1 1 Tag 2 Tags 3 Tags Antenna #2 Number of Tags 1 Tag 2 Tags 3 Tags Antenna #1 and #2 • Low detection probabilities • Linear antennas outperform circular • Drop in detection at low power • Multi-tags better than multiple readers Varying Number of Objects Experiment 1: 15 solid non-metallic & 15 liquids and metals Experiment 2: 20 solid non-metallic & 20 liquids and metals Effect of the Number of Objects on Detection Probability 0.9 Detection Probability 0.8 15/15 experiment 20/20 experiment 0.7 0.6 0.5 0.4 0.3 Metals & Liquids ∆ : 3%-13% 0.2 0.1 0 1 Tag 2 Tags 3 Tags 1 Tag 2 Tags 3 Tags 1 Tag 2 Tags 3 Tags 1 Tag 2 Tags 3 Tags 1 Antenna 2 Antennas 3 Antennas 4 Antennas Detection Delta Change in Detection Based on # of Antennas and Tags Change in Detection Probability 0.16 0.14 0.12 0.1 1 Tag 0.08 2 Tags 3 Tags 0.06 0.04 0.02 0 1 Antenna 2 Antennas 3 Antennas 4 Antennas Anti-Collision Algorithms Algorithm Redundant Tags Connected-Tags Binary No Effect No Effect Binary Variant No Effect No Effect Randomized Linear Increase** No Effect* STAC Causes DoS Slotted Aloha Linear Increase** No Effect* No Effect* * Assuming tags communicate to form a single response ** If all tags are detected Applications of Multi-Tags Reliability Availability Localization Safety More Applications Security Packaging Theft Prevention Tagging Bulk Materials Economics of Multi-Tags Cost 2001 2002 2003 2004 2005 2006 2007 2008 2011 $1.04 $0.81 $0.45 $0.19 $0.13 $0.08 $0.06 $0.05 $0.01 Passive Tag Cost Trend Tag Cost Year $1.00 $0.80 $0.60 $0.40 $0.20 $0.00 2001 2002 2003 2004 2005 2006 2007 Year Historical Cost • Rapid decrease in passive tag cost • 5 cent tag expected in 2008 • 1 penny tag in a few years Prediction Cost 2008 2011 Cost Trends Time Business Case for RFID • Costs & benefits (business case) – – – – – Moore’s law higher employee productivity reduction in workforce automated business processes workforce reduction • Tag manufacturing yield and testing – – – – 30% of chips damaged during manufacturing 15% damaged during printing [U.S. GAO] 20% tag failure rate in field [RFIDJournal] 5% of tags purchased marked defective RFID Tag Demand • Demand drivers – tag cost – desire to stay competitive Increase in RFID tag demand Decrease in RFID tag cost • Cost effective tag design techniques – memory design (self-adaptive silicon) – assembly technology (fluidic self assembly) – antenna design (antenna material) Conclusion • Unreliability of object detection – – – – radio noise is ubiquitous temperature and humidity objects/readers moving speed liquids and metals are opaque to RF • milk, water, juice • metal-foil wrappers – – – – object occlusion number of objects grouped together tag variability and receptivity tag aging • Many useful applications • Favorable economics Tag Cost Passive Tag Cost Trend $1.00 $0.80 $0.60 $0.40 $0.20 $0.00 2001 2002 2003 2004 2005 2006 2007 Year Historical Cost Prediction Cost 2008 2011 Our Research Generalized “Yoking Proofs” Multi-Tags 3 RFID PUF Inter-Tag Communication Thank You Questions?
© Copyright 2026 Paperzz